
APP area C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Informational February 25, 2013
Expires: August 29, 2013

The BinaryPack1pre2 JSON-like representation format
draft-bormann-apparea-bpack-01

Abstract

 JSON (RFC 4627) is an extremely successful format for the
 representation of structured information, supporting Boolean values,
 numbers, strings, arrays, and tables. Recently, a number of
 applications have started to look for binary representation formats
 that solve a similar problem. In particular, constrained node
 networks can benefit from such a binary representation format.

 A very successful binary representation that is otherwise comparable
 to JSON is MessagePack. Recently, a number of implementations have
 modified or extended MessagePack such that it allows for
 distinguishing UTF-8 strings from binary data. Further discussion on
 the MessagePack repository has resulted in proposals how to integrate
 such an addition back into the MessagePack community.

 This draft, as an independent effort, documents one such format,
 tentatively calling it BinaryPack1pre2 while the MessagePack
 extension proposals make their way through the MessagePack community.

 The current version -01 of this document is a snapshot that
 demonstrates a general direction. The details may change in future
 versions based on the development of the MessagePack specification.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Bormann Expires August 29, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft binarypack1pre2 February 2013

 This Internet-Draft will expire on August 29, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Objectives . 3
1.2. Terminology . 4
1.3. Notation . 4

2. The BinaryPack1pre2 Representation Format 5
2.1. Data Types . 5
2.2. Integers . 6
2.3. Floating Point Values 6
2.4. Special Values . 6
2.5. Binary: Opaque Byte Strings 7
2.6. UTF-8 Strings . 7
2.7. Arrays . 8
2.8. Tables . 8

3. Discussion . 8
3.1. JSON roundtripping 9

4. IANA Considerations . 9
5. Security Considerations 9
6. Acknowledgements . 9
7. References . 10
7.1. Normative References 10
7.2. Informative References 10

Appendix A. Unicode Considerations 11
Appendix B. Potential future work 12
B.1. Reserved Code Points 12
B.2. 16-bit floating point 12
B.3. DateTime . 12
B.4. Prefixing extensions 13
B.5. Extension Points . 13

 Author's Address . 13

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bormann Expires August 29, 2013 [Page 2]

Internet-Draft binarypack1pre2 February 2013

1. Introduction

 (To be written - for now please see the Abstract.)

 A description of the MessagePack binary representation format can be
 found in [msgpack]. A recent proposal for an update, still under
 discussion, is in [msgpack-update].

 One of the early proposals implementing separate types for byte
 strings and UTF-8 strings was called BinaryPack. An implementation
 of BinaryPack is available in [binarypack]. (An extension similar in
 spirit, but different in details, was made for the [msgpack-js] and
 [msgpack-js-browser] projects.)

1.1. Objectives

 (TBD, but this is a rough first approach:)

 The objectives of the present specification, roughly in decreasing
 order of importance, are:

 o Representing a reasonable set of basic data types and structures
 using binary encoding. "Reasonable" here is largely influenced by
 the capabilities of JSON, with the single addition of adding raw
 byte strings. The structures supported are limited to trees; no
 loops or lattice-style graphs.

 o Being implementable in a very small amount of code, thus being
 applicable to constrained nodes [I-D.ietf-lwig-terminology], even
 of class 1. (Complexity goal.) As a corollary: Being close to
 contemporary machine representations of data (e.g., not requiring
 binary-to-decimal conversion).

 o Being applicable to schema-less use. For schema-informed binary
 encoding, a number of approaches are already available in the
 IETF, including XDR [RFC4506]. (However, schema-informed use of
 the present specification, such as for a marshaling scheme for an
 RPC IDL, is not at all excluded. Any IDL for this is out of scope
 for this specification.)

 o Being reasonably compact. "Reasonable" here is bounded by JSON as
 an upper bound in size, and by implementation complexity
 maintaining a lower bound. The use of general compression schemes
 violates both of the complexity goals.

 o Being reasonably frugal in CPU usage. (The other complexity
 goal.) This is relevant both for constrained nodes and for
 potential usage in high-volume applications.

https://datatracker.ietf.org/doc/html/rfc4506

Bormann Expires August 29, 2013 [Page 3]

Internet-Draft binarypack1pre2 February 2013

 o Supporting a reasonable level of round-tripping with JSON, as long
 as the data represented are within the capabilities of JSON.
 Defining a unidirectional mapping towards JSON for all types of
 data.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The term "byte" is used in its now customary sense as a synonym for
 "octet".

 All multi-byte integers in this protocol are interpreted in network
 byte order.

 Where arithmetic is used, this specification uses the notation
 familiar from the programming language C, except that the operator
 "**" stands for exponentiation.

1.3. Notation

 This specification uses a trivial notation for code bytes and the
 bitfields in them the meaning of which should be mostly obvious.
 More formally speaking, the meaning of the notation is:

 Potential values for the code bytes themselves are expressed by
 templates that represent 8-bit most-significant-bit-first binary
 numbers (without any special prefix), where 0 stands for 0, 1 for 1,
 and variable segments in these code byte templates are indicated by
 sequences of the same letter such as kkkkkkk or ssss, the length of
 which indicates the length of the variable segment in bits.

 In the notation of values derived from the code bytes, 0b is used as
 a prefix for expressing binary numbers in most-significant-bit first
 notation (akin to the use of 0x for most-significant-digit-first
 hexadecimal numbers in the C programming language). Where the above-
 mentioned sequences of letters are then referenced in such a binary
 number in the text, the intention is that the value from these
 bitfields in the actual code byte be inserted.

 Example: The code byte template

 101nssss

 stands for a byte that starts (most-significant-bit-first) with the
 bits 1, 0, and 1, and continues with five variable bits, the first of

https://datatracker.ietf.org/doc/html/rfc2119

Bormann Expires August 29, 2013 [Page 4]

Internet-Draft binarypack1pre2 February 2013

 which is referenced as "n" and the next four are referenced as
 "ssss". Based on this code byte template, a reference to

 0b0ssss000

 means a binary number composed from a zero bit, the four bits that
 are in the "ssss" field (for 101nssss, the four least significant
 bits) in the actual byte encountered, kept in the same order, and
 three more zero bits.

 Also, 0xhh stands for the hexadecimal value hh, and 1B, 2B, 4B, 8B,
 nB stand for 1, 2, 4, 8, or n bytes of data following; (1B) etc.
 stand for the numerical value of these bytes as an integer
 interpreted in network byte order; nD stands for n data objects, each
 in turn in BinaryPack1pre2 representation format.

2. The BinaryPack1pre2 Representation Format

2.1. Data Types

 The BinaryPack1pre2 representation format is able to represent the
 following data types:

 o Integers (represented in signed and unsigned forms)

 o Floating point values (in IEEE 754 32-bit and 64-bit forms)

 o special values nil, false, true

 o opaque ("raw") byte strings, or "binary strings"

 o UTF-8 strings

 o arrays, which can contain any combination of data types

 o tables (often called maps, hashes, dictionaries; objects in JSON),
 which contain pairs, key and value, which may in turn be of any
 data type

 This list is mostly faithful to JSON [RFC4627], which however does
 not distinguish integer from floating point number types. Based on
 recent discussions on the use of binary representation formats, the
 present specification distinguishes UTF-8 strings from opaque binary
 strings. (Interestingly, such a separation was already done in the
 binaryjs implementation of a "95 % MessagePack" format [binarypack],
 so the author of the present specification started out by just lazily
 copying that; more recent input taken from the msgpack developers
 [msgpack-update] is the technical basis for the current proposal.)

https://datatracker.ietf.org/doc/html/rfc4627

Bormann Expires August 29, 2013 [Page 5]

Internet-Draft binarypack1pre2 February 2013

2.2. Integers

 BinaryPack1pre2 provides a number of representations for integer
 values, assuming that these occur often. The encoder is free to
 choose any of these representations that is able to represent the
 desired value.

 +----------+--------------+----------------------------+
 | Bits | Value | Description |
 +----------+--------------+----------------------------+
 | 0nnnnnnn | 0bnnnnnnn | Positive Integer (0..127) |
 | | | |
 | 111nnnnn | 0bnnnnn - 32 | Negative Integer (-32..-1) |
 | | | |
 | 0xcc 1B | 1B as uint | Unsigned Integer |
 | | | |
 | 0xcd 2B | 2B as uint | Unsigned Integer |
 | | | |
 | 0xce 4B | 4B as uint | Unsigned Integer |
 | | | |
 | 0xcf 8B | 8B as uint | Unsigned Integer |
 | | | |
 | 0xd0 1B | 1B as sint | Signed Integer |
 | | | |
 | 0xd1 2B | 2B as sint | Signed Integer |
 | | | |
 | 0xd2 4B | 4B as sint | Signed Integer |
 | | | |
 | 0xd3 8B | 8B as sint | Signed Integer |
 +----------+--------------+----------------------------+

2.3. Floating Point Values

 BinaryPack1pre2 provides 32-bit and 64-bit IEEE 754 values. (See
 also Appendix B.2.)

 +---------+-----------------------+-------------+
 | Bits | Value | Description |
 +---------+-----------------------+-------------+
 | 0xca 4B | 4B as 32-bit IEEE 754 | Float |
 | | | |
 | 0xcb 8B | 8B as 64-bit IEEE 754 | Double |
 +---------+-----------------------+-------------+

2.4. Special Values

Bormann Expires August 29, 2013 [Page 6]

Internet-Draft binarypack1pre2 February 2013

 Similar to the special literals "false null true" in JSON,
 BinaryPack1pre2 provides three special values:

 +------+-------+---------------+
 | Bits | Value | Description |
 +------+-------+---------------+
 | 0xc0 | nil | null, nothing |
 | | | |
 | 0xc2 | false | Boolean false |
 | | | |
 | 0xc3 | true | Boolean true |
 +------+-------+---------------+

2.5. Binary: Opaque Byte Strings

 (Note that the specific codepoint allocations in this section are
 very much up for discussion. It can also be argued that we should be
 spending some of the remaining reserved codepoints for short byte
 strings.)

 +------------+----------+----------------------------------+
 | Bits | Value | Description |
 +------------+----------+----------------------------------+
 | 0xd5 1B nB | n = (1B) | byte string (0..(2**8-1) bytes) |
 | | | |
 | 0xd6 2B nB | n = (2B) | byte string (0..(2**16-1) bytes) |
 | | | |
 | 0xd7 4B nB | n = (4B) | byte string (0..(2**32-1) bytes) |
 +------------+----------+----------------------------------+

2.6. UTF-8 Strings

 +-------------+-------------+-----------------------------------+
 | Bits | Value | Description |
 +-------------+-------------+-----------------------------------+
 | 101nnnnn nB | n = 0bnnnnn | Short UTF-8 string (0..31 bytes) |
 | | | |
 | 0xd9 1B nB | n = (1B) | UTF-8 string (0..(2**8-1) bytes) |
 | | | |
 | 0xda 2B nB | n = (2B) | UTF-8 string (0..(2**16-1) bytes) |
 | | | |
 | 0xdb 4B nB | n = (4B) | UTF-8 string (0..(2**32-1) bytes) |
 +-------------+-------------+-----------------------------------+

Bormann Expires August 29, 2013 [Page 7]

Internet-Draft binarypack1pre2 February 2013

 The strings transported MUST be UTF-8 strings [RFC3629]. (The
 general assumption is that these UTF-8 strings are in Network Unicode
 form [RFC5198], see Appendix A for some more discussion.)

2.7. Arrays

 +-------------+------------+------------------------------------+
 | Bits | Value | Description |
 +-------------+------------+------------------------------------+
 | 1001nnnn nD | n = 0bnnnn | Short array (0..15 data elements) |
 | | | |
 | 0xdc 2B nD | n = (2B) | array (0..(2**16-1) data elements) |
 | | | |
 | 0xdd 4B nD | n = (4B) | array (0..(2**32-1) data elements) |
 +-------------+------------+------------------------------------+

2.8. Tables

 +-------------+----------------+---------------------------------+
 | Bits | Value | Description |
 +-------------+----------------+---------------------------------+
 | 1000nnnn nD | n = 2 * 0bnnnn | Short table (0..15 data pairs) |
 | | | |
 | 0xde 2B nD | n = 2 * (2B) | table (0..(2**16-1) data pairs) |
 | | | |
 | 0xdf 4B nD | n = 2 * (4B) | table (0..(2**32-1) data pairs) |
 +-------------+----------------+---------------------------------+

 The sequence of n elements is a sequence of pairs of data objects,
 each pair represented as one data object representing the key
 followed by the data object representing its associated value.

3. Discussion

 This draft tries to be faithful to the successful MessagePack
 [msgpack] format, including an recent extension proposal that enables
 the distinction between opaque binary byte strings and UTF-8 byte
 strings [msgpack-update].

 Little analysis has been made whether a slightly different bit
 allocation (e.g., using up fewer of the code combination for single-
 byte integers) would be advantageous. However, the gains from a
 different allocation are likely to be limited except for pathological
 cases. (The main benefit achievable may be to have more codepoints
 reserved for future expansion.)

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5198

Bormann Expires August 29, 2013 [Page 8]

Internet-Draft binarypack1pre2 February 2013

 A short floating point (e.g., based on the 16-bit IEEE 754 floating
 point value) might be a useful additional representation format.
 Adding decimal floating point values probably is not so useful,
 except where high fidelity to JSON is desired.

 Some additional data types might be useful for some protocols, e.g.
 UUIDs [RFC4122], date/time. See also Appendix B. This would further
 increase the distance from JSON that BinaryPack1pre2 creates by
 distinguishing opaque and UTF-8 strings.

3.1. JSON roundtripping

 BinaryPack1pre2 enables mostly lossless translation to JSON. JSON
 [RFC4627]. JSON roundtripping, however, is not necessarily the
 primary design goal of BinaryPack1pre2, but it is a consideration.

 In the translation of BinaryPack1pre2 to JSON, opaque byte strings
 SHOULD be converted to equivalent base64url [RFC4648] UTF-8 strings.
 Without a schema, it is hard to do the inverse consistently, as
 base64url encoded byte strings are not specially marked up in JSON.

 When translating BinaryPack1pre2 floating point values to JSON, the
 usual problem of converting binary fractions to decimal
 representation arises. In the other direction, the choice of a
 floating point format may be hard to do properly. Clearly, any
 number that can be transformed from a 64-bit IEEE 754 number to a
 32-bit IEEE 754 number without loss of information can be represented
 as the latter. Without schema information, it may be hard to find
 other cases where the precision maybe is not that important.

4. IANA Considerations

 Once this has received some discussion, we will understand how
 exactly to register Internet media types for this.

 The potential extension mechanisms discussed in Appendix B may need
 an IANA registry.

5. Security Considerations

 (Nothing but generic warnings about correctly implementing protocol
 encoders/decoders so far; this section will certainly grow as
 additional security considerations become known.)

6. Acknowledgements

 MessagePack was developed and promoted by Sadayuki Furuhashi
 ("frsyuki").

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648

Bormann Expires August 29, 2013 [Page 9]

Internet-Draft binarypack1pre2 February 2013

 BinaryPack is a minor derivation of MessagePack that was developed by
 Eric Zhang for the binaryjs project. A similar, but different
 extension was made by Tim Caswell for his [msgpack-js] and
 [msgpack-js-browser] projects.

 The author of the present specification deserves absolutely no
 credits whatsoever for any of this.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, March 2008.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

7.2. Informative References

 [I-D.ietf-lwig-terminology]
 Bormann, C. and M. Ersue, "Terminology for Constrained
 Node Networks", draft-ietf-lwig-terminology-00 (work in
 progress), February 2013.

 [N4246R2] Lunde, K., "Stabilizing CJK Compatibility Ideographs
 through the use of Standardized Variants", ISO/IEC JTC1/
 SC2/WG2 N4246R2, March 2012, <ftp://std.dkuug.dk/JTC1/sc2/

wg2/docs/n4246.pdf>.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122, July
 2005.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5198
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-terminology-00
ftp://std.dkuug.dk/JTC1/sc2/wg2/docs/n4246.pdf
ftp://std.dkuug.dk/JTC1/sc2/wg2/docs/n4246.pdf
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4122

Bormann Expires August 29, 2013 [Page 10]

Internet-Draft binarypack1pre2 February 2013

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [binarypack]
 Zhang, E., "BinaryPack for Javascript browsers", 2012,
 <https://github.com/binaryjs/js-binarypack>.

 [msgpack-js-browser]
 Caswell, T., "msgpack for the browser", 2012, <https://

github.com/creationix/msgpack-js-browser>.

 [msgpack-js]
 Caswell, T., "msgpack for node", 2012, <https://github.com

/creationix/msgpack-js>.

 [msgpack-update]
 Furuhashi, S., "msgpack-update-proposal1.md", February
 2012, <https://gist.github.com/frsyuki/5022569>.

 [msgpack] Ohta, K. and S. Colebourne, "MessagePack format
 specification", 2011, <http://wiki.msgpack.org/display/
 MSGPACK/Format+specification>.

Appendix A. Unicode Considerations

 (TBD. Some initial guidelines at [msgpack-update]. This section
 should make clear that:)

 o At the BinaryPack1pre2 encoding/decoding layer, implementations
 are never concerned about Unicode normalization.

 o Internet usage of Unicode is governed by [RFC5198]. The present
 specification will not try to second-guess the evolution of this
 standards-track document.

 o [RFC5198] states that >>Before transmission, all character
 sequences SHOULD be normalized according to Unicode normalization
 form "NFC"<<. There may be some need to interpret this "SHOULD"
 in the context of the present specification, as follows.

 o There is a very strong expectation that applications making use of
 BinaryPack1pre2 will lean towards using Unicode in NFC form, as
 opposed to NFD. In other words, receivers may expect data in the
 maximally composed form, as opposed to decomposed form.

https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc4627
https://github.com/binaryjs/js-binarypack
https://github.com/creationix/msgpack-js-browser
https://github.com/creationix/msgpack-js-browser
https://github.com/creationix/msgpack-js
https://github.com/creationix/msgpack-js
https://gist.github.com/frsyuki/5022569
http://wiki.msgpack.org/display/
https://datatracker.ietf.org/doc/html/rfc5198
https://datatracker.ietf.org/doc/html/rfc5198

Bormann Expires August 29, 2013 [Page 11]

Internet-Draft binarypack1pre2 February 2013

 o The Normalization component of NFC may create problems in some
 applications (e.g., see [N4246R2]). Before this is repaired in
 some future version of Unicode, there is no expectation that all
 applications generating BinaryPack1pre2 always perform the
 canonical normalization where information loss would result.

 o There is a strong expectation that BinaryPack1pre2 receivers be
 resilient to the small variations in Unicode usage discussed here.

Appendix B. Potential future work

 Two data types have been discussed for addition to BinaryPack1pre2.

B.1. Reserved Code Points

 As of today, the following code points are reserved and could be used
 for further extension, if required:

 0xc1, 0xc4..0xc9, 0xd4, 0xd8

B.2. 16-bit floating point

 16-bit floating points have become popular recently. BinaryPack1pre2
 could enable the efficient transport of small floating point numbers
 by adding a Half-precision floating point representation:

 +---------+-----------------------+-------------+
 | Bits | Value | Description |
 +---------+-----------------------+-------------+
 | 0xc9 2B | 2B as 16-bit IEEE 754 | Half |
 | | | |
 | 0xca 4B | 4B as 32-bit IEEE 754 | Float |
 | | | |
 | 0xcb 8B | 8B as 64-bit IEEE 754 | Double |
 +---------+-----------------------+-------------+

B.3. DateTime

 Many applications need the transport of Date/Time information. Some
 need micro- or nanosecond resolution, some are more concerned about
 significant range.

 In the IETF, both NTP timestamps [RFC5905] and ISO8601 dates
 [RFC3339] are popular. The former probably require short and long
 versions to accommodate the different requirements in precision and
 range. As a start, a 32.32 and a 64.64 NTP timestamp could be
 defined. ISO8601 dates would need a length indicator and could

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc3339

Bormann Expires August 29, 2013 [Page 12]

Internet-Draft binarypack1pre2 February 2013

 therefore look close to the string8 form in BinaryPack1pre2. It is
 worth limiting the set of choices based on some more input on what is
 actually required.

B.4. Prefixing extensions

 As the small number of remaining code points could be used up
 quickly, some additions might preferably be expressed by a prefixing
 scheme. E.g., if 0xc1 is picked for prefixing, the format

 0xc1 0xnn 0xd5 0x08 ...

 could be used for designating an 8-byte binary string (0xd5 0x08 ...)
 as e.g. a date/time in 32.32 NTP timestamp format; the same value
 for 0xnn could also be followed by a 16-byte binary string for a full
 64.64 NTP timestamp and maybe even followed by an UTF-8 string for
 GeneralizedTime _or_ an ISO8601 time, depending on which of these
 formats are desirable. Implementations unaware of the semantics for
 a specific value of 0xnn could still process the information as a
 binary or UTF-8 string.

 The number of extensions defined this way should be kept very small,
 not only to preserve coding efficiency by making do with the single-
 byte discriminator. The values for 0xnn would then be maintained in
 an IANA registry, with a suitably careful allocation policy. This
 needs further discussion.

B.5. Extension Points

 More generally, evolution of a format always raises considerations
 about compatibility. There are two directions of compatibility: -
 Old data/old senders to new receivers (forward compatibility) and -
 new data/new senders to old receivers (backward compatibility).

 Further extension of the msgpack format currently always loses
 backward compatibility, as there is no way for an older
 implementation to find out the length that is consumed by a construct
 that uses a new codepoint. In addition to a prefixing mechanism, the
 BinaryPack1pre2 format could include deliberate extension points that
 would at least allow an old receiver to decode future versions of the
 BinaryPack1pre2 format without losing synchronization in the byte
 stream, while possibly having to treat some of the information as
 opaque.

Author's Address

Bormann Expires August 29, 2013 [Page 13]

Internet-Draft binarypack1pre2 February 2013

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Bormann Expires August 29, 2013 [Page 14]

