
Workgroup: CBOR Working group

Internet-Draft:

draft-bormann-cbor-cddl-2-draft-01

Published: 6 March 2023

Intended Status: Informational

Expires: 7 September 2023

Authors: C. Bormann

Universität Bremen TZI

CDDL 2.0 — a draft plan

Abstract

The Concise Data Definition Language (CDDL) today is defined by

RFC 8610 and RFC 9165. The latter (as well as some more application

specific specifications such as RFC 9090) have used the extension

point provided in RFC 8610, the control operator.

As CDDL is used in larger projects, feature requirements become

known that cannot be easily mapped into this single extension point.

Hence, there is a need for evolution of the base CDDL specification

itself.

The present document provides a roadmap towards a "CDDL 2.0". It is

based on draft-bormann-cbor-cddl-freezer, but is more selective in

what potential features it takes up and more detailed in their

discussion. It is intended to serve as a basis for prototypical

implementations of CDDL 2.0. What specific documents spawn from the

present one or whether this document is evolved into a single

CDDL 2.0 specification.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-bormann-cbor-cddl-2-draft/.

Discussion of this document takes place on the cbor Working Group

mailing list (mailto:cbor@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/cbor/. Subscribe at https://

www.ietf.org/mailman/listinfo/cbor/.

Source for this draft and an issue tracker can be found at https://

github.com/cbor-wg/cddl-2.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-bormann-cbor-cddl-2-draft/
https://datatracker.ietf.org/doc/draft-bormann-cbor-cddl-2-draft/
mailto:cbor@ietf.org
https://mailarchive.ietf.org/arch/browse/cbor/
https://mailarchive.ietf.org/arch/browse/cbor/
https://www.ietf.org/mailman/listinfo/cbor/
https://www.ietf.org/mailman/listinfo/cbor/
https://github.com/cbor-wg/cddl-2
https://github.com/cbor-wg/cddl-2

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Mending syntax deficits

2.1. Empty data models

2.2. Non-literal Tag Numbers

2.3. Tag-oriented Literals

2.4. Clarifications

2.4.1. Err6527

2.4.2. Err6543

3. Processing model: Beyond Validation

4. Module superstructure

4.1. Compatibility

4.2. Namespacing

4.3. Cross-universe references

4.4. The "module", "directives"

4.5. Finding modules

4.6. Initial Set of Directives

4.7. Explicit selection of names

4.8. Tool Support for Command-Line Control

4.9. ABNF is a lot like CDDL

5. IANA Considerations

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Proposal Status:

Compatibility:

Proposal Status:

Compatibility:

6. Security considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Fridge

A.1. Tag-oriented Literals

A.2. Cross-universe references

A.2.1. IANA references

Appendix B. A CDDL 2.0 Tool

Acknowledgements

Author's Address

1. Introduction

(Please see abstract.)

Note that the existing extension point can be exercised for new

features in parallel to the work described here.

2. Mending syntax deficits

2.1. Empty data models

complete

backward (not forward)

[RFC8610] requires a CDDL file to have at least one rule.

This makes sense when the file has to stand alone, as it needs to

have at least one rule to provide an entry point (start rule).

With CDDL 2.0, CDDL files can also include directives (see

Section 4.6), and these might be the source of all the rules that

ultimately make up the module created by the file. The rule content

has to be available for directive processing, making the requirement

for at least one rule cumbersome.

Therefore, we extend the grammar as follows:

and make the existence of at least one rule a semantic constraint,

to be fulfilled after processing of all directives.

2.2. Non-literal Tag Numbers

complete

backward (not forward)

¶

¶

¶

¶

¶

 cddl = S 1*(rule S)¶

¶

¶

¶

 cddl = S *(rule S)¶

¶

¶

¶

Proposal Status:

Compatibility:

The CDDL 1.0 syntax for expressing tags in CDDL is (ABNF as in

[RFC5234]):

This means tag numbers can only be given as literal numbers (uints).

Some specifications operate on ranges of tag numbers, e.g.,

[RFC9277] has a range of tag numbers 1668546817 (0x63740101) to

1668612095 (0x6374FFFF) to tag specific content formats. This can

currently not be expressed in CDDL.

CDDL 2.0 extends this to

So the above range can be expressed in a CDDL fragment such as:

Note that reuses the angle bracket syntax for generics; this reuse

is innocuous as a generic parameter/argument only ever occurs after

a rule name (id), while it occurs after . here. (Whether there is

potential for human confusion can be debated; the above example

deliberately uses generics as well.)

2.3. Tag-oriented Literals

Incomplete, see Appendix A.1.

2.4. Clarifications

complete

errata fix (targets 1.0 and 2.0)

A number of errata reports have been made around some details of

text string and byte string literal syntax: [Err6527] and [Err6543].

These need to be addressed by re-examining the details of these

literal syntaxes. Also, [Err6526] needs to be applied (missing

backslashes in text explaining backslash escaping).

2.4.1. Err6527

The ABNF used in [RFC8610] for the content of text string literals

is rather permissive:

¶

type2 /= "#" "6" ["." uint] "(" S type S ")"¶

¶

¶

type2 /= "#" "6" ["." tag-number] "(" S type S ")"

tag-number = uint / ("<" type ">")

¶

¶

ct-tag<content> = #6.<ct-tag-number>(content)

ct-tag-number = 1668546817..1668612095

; or use 0x63740101..0x6374FFFF

¶

¶

¶

¶

¶

¶

¶

This allows almost any non-C0 character to be escaped by a

backslash, but critically misses out on the \uXXXX and \uHHHH\uLLLL

forms that JSON allows to specify characters in hex. Both can be

solved by updating the SESC production to:

Now that SESC is more restrictively formulated, this also requires

an update to the BCHAR production used in the ABNF syntax for byte

string literals:

The updated version explicit allows \', which is no longer allowed

in the updated SESC:

2.4.2. Err6543

The ABNF used in [RFC8610] for the content of byte string literals

lumps together byte strings notated as text with byte strings

notated in base16 (hex) or base64 (but see also updated BCHAR

production above):

Errata report 6543 proposes to handle the two cases in separate

productions (where, with an updated SESC, BCHAR obviously needs to

be updated as above):

text = %x22 *SCHAR %x22

SCHAR = %x20-21 / %x23-5B / %x5D-7E / %x80-10FFFD / SESC

SESC = "\" (%x20-7E / %x80-10FFFD)

¶

¶

SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\

 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t

 (%x75 hexchar)) ; \u

hexchar = non-surrogate / (high-surrogate "\" %x75 low-surrogate)

non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /

 ("D" %x30-37 2HEXDIG)

high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG

low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG

¶

¶

bytes = [bsqual] %x27 *BCHAR %x27

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

bsqual = "h" / "b64"

¶

¶

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / "\'" / CRLF¶

¶

bytes = [bsqual] %x27 *BCHAR %x27

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

¶

¶

bytes = %x27 *BCHAR %x27

 / bsqual %x27 *QCHAR %x27

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

QCHAR = DIGIT / ALPHA / "+" / "/" / "-" / "_" / "=" / WS

¶

Proposal Status:

Compatibility:

This potentially causes a subtle change, which is hidden in the WS

production:

This allows any non-C0 character in a comment, so this fragment

becomes possible:

The current text is not unambiguously saying whether the three

apostrophes need to be escaped with a \ or not, as in:

... which would be supported by the existing ABNF in [RFC8610].

3. Processing model: Beyond Validation

experiments with implementations ongoing

backwards compatible

The basic (implicit) processing model for CDDL 1.0 applies a CDDL

data model to a data item and returns a Boolean that indicates

whether the data item matches that model ("validation").

Section 4 of [RFC9165] extends this model with named "features". A

validation can indicate which features were used. Validation could

also be parameterized with information about what features are

allowed to be used, enabling variants (see Section 4 of [RFC9165]

and [useful] for examples).

The cddl tool (Appendix F of [RFC8610]) also supports experimental

forms of "annotating" a validated data item with information about

which rules were used to support validation, currently entirely

based on the information that is in a standard CDDL 1.0 data model.

This leads to a more general concept of "annotation", where the data

model specification supports "annotating" the validated instance by

optionally supplying information in the model. (The annotated result

¶

WS = SP / NL

SP = %x20

NL = COMMENT / CRLF

COMMENT = ";" *PCHAR CRLF

PCHAR = %x20-7E / %x80-10FFFD

CRLF = %x0A / %x0D.0A

¶

¶

foo = h'

 43424F52 ; 'CBOR'

 0A ; LF, but don't use CR!

'

¶

¶

foo = h'

 43424F52 ; \'CBOR\'

 0A ; LF, but don\'t use CR!

'

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9165#section-4
https://rfc-editor.org/rfc/rfc9165#section-4
https://rfc-editor.org/rfc/rfc8610#appendix-F

Proposal Status:

Compatibility:

is a special case of a "post-schema validation instance" [PSVI],

here one where the data item itself is only augmented, not changed,

by the process.)

Annotations could in turn provide input to further validation steps,

as is often done with Schematron validation in Relax-NG; with an

appropriate evaluation language this can be used for checking co-

occurrence constraints (Section 5 of

[I-D.draft-bormann-cbor-cddl-freezer]).

Finally, annotations are a first step to transformation, i.e.,

describing how a validated data item should be interpreted as a

transformed data item by performing certain computations. This

generally requires even more support from an evaluation language,

simple transformations such as adding in default values may not need

much support though.

At this time, existing experimental implementations do not lead to a

clear choice for what processing model enhancements should be in

CDDL 2.0. This document proposes to continue the experimentation and

document good approaches.

4. Module superstructure

collection of rough ideas with examples; initial

subset implemented

bidirectional (both backward and forward)

Originally, CDDL was used for small data models that could be

expressed in a few lines. As the size of data models that need to be

expressed in CDDL has increased, the need to modularize and re-use

components is increasing.

CDDL 1.0 has been designed with a crude form of composition:

Concatenating a number of CDDL snippets creates a valid CDDL data

model unless there is a name collision (identical redefinition is

allowed to facilitate this approach). With larger models, managing

the name space to avoid collisions becomes more pressing.

The knowledge which CDDL snippets need to be concatenated in order

to obtain the desired data model lives entirely outside the CDDL

snippets in CDDL 1.0. In CDDL 2.0, rules will be packaged as modules

and referenced from other modules.

There needs to be some control of namespace pollution, as well as

unambiguous referencing into evolving specifications ("versioning")

and selection of alternatives (as was emulated with snippets in

Section 11 of [RFC8428], although an alternative approach for

expressing variants is demonstrated in [useful] based on Section 4

of [RFC9165]).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-bormann-cbor-cddl-freezer-10#section-5
https://rfc-editor.org/rfc/rfc8428#section-11
https://rfc-editor.org/rfc/rfc9165#section-4

4.1. Compatibility

One approach to achieve the module structure that is friendly to

existing environments that operate with CDDL 1.0 snippets and

CDDL 1.0 implementations is to add a super-syntax (similar to the

way pragmas are often added to a language), e.g., by carrying them

in what is parsed as comments in CDDL 1.0.

This enables each module source file to be valid CDDL 1.0 (if

missing some rule definitions to be imported).

4.2. Namespacing

A convention for mapping CDDL-internal names to external ones could

be developed, possibly steered by some pragma-like constructs.

External names would likely be URI-based, with some conventions as

they are used in RDF or Curies. Internal names might look similar to

XML QNames. Note that the identifier character set for CDDL

deliberately includes $ and @, which could be used in such a

convention.

Note that this convention should not pollute the actual contents of

the model, where adding a simple prefix to rule names defined

elsewhere may be all that is needed.

4.3. Cross-universe references

See Appendix A.2.

4.4. The "module", "directives"

A single CDDL file becomes a module by processing the (zero or more)

directives in it.

The semantics of the module are independent of the module(s) using

it, however, using a module may involve transforming its rule names

into a new namespace.

Directives look like comments in CDDL 1.0, so they do not interfere

with forward compatibility.

Lines starting with the prefix ;# are parsed as directives in CDDL

2.0.

4.5. Finding modules

For now, we assume that module names are filenames taken from one of

several sources available to the CDDL 2.0 processor via the

environment. This avoids the need to nail down pathnames or partial

URIs into the CDDL files.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

In the CDDL 2.0 Tool described in Appendix B, the set of sourced is

determined from an environment value, CDDL_INCLUDE_PATH, which is

modeled after usual command-line search paths. It is a colon-

separated list of pathnames to directories, with one special

feature: an empty element points to he tool's own collection. In the

current version, this collection contains 20 fragments of extracted

CDDL from published RFCs, using names such as rfc9052.

(Future versions might augment this with Web extractors and/or ways

to extract CDDL modules from github and from Internet-Drafts.)

The default CDDL_INCLUDE_PATH is .: — i.e., files are found in the

current directory and, if not found there, cddlc’s collection.

4.6. Initial Set of Directives

Two groups of directives are defined at this point:

include, which includes all the rules from a module (which

includes the ones imported/included there, transitively), or

specific explicitly selected rules

import, which includes only those rules from the module that are

referenced, implicitly or explicitly (see below), including the

rules that are referenced from these rules, transitively.

The include function is more useful for composing a single model

from parts controlled by one author, while the import function is

more about treating a module as a library:

The way an import works is shown by this simple example:

This results in the following CDDL 1.0 specification:

¶

¶

¶

¶

*

¶

*

¶

¶

¶

$ cddlc -2tcddl -

start = COSE_Key

;# import rfc9052

¶

¶

This is appropriate for using libraries that are well known to the

imported. However, if it is not acceptable that the library can

pollute the namespace of the importing module, the import directive

can specify a namespace prefix:

This results in the following CDDL 1.0 specification:

Note how the imported names are prefixed with cose. as specified in

the import directive, but CDDL prelude (Appendix D of [RFC8610])

names such as tstr and any are not.

4.7. Explicit selection of names

Both import and include directives can be augmented by an explicit

mentioning of rule names.

Starting with include:

start = COSE_Key

COSE_Key = {

 1 => tstr / int,

 ? 2 => bstr,

 ? 3 => tstr / int,

 ? 4 => [+ tstr / int],

 ? 5 => bstr,

 * label => values,

}

label = int / tstr

values = any

¶

¶

$ cddlc -2tcddl -

start = cose.COSE_Key

;# import rfc9052 as cose

¶

¶

start = cose.COSE_Key

cose.COSE_Key = {

 1 => tstr / int,

 ? 2 => bstr,

 ? 3 => tstr / int,

 ? 4 => [+ tstr / int],

 ? 5 => bstr,

 * cose.label => cose.values,

}

cose.label = int / tstr

cose.values = any

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#appendix-D

Only exactly the rules mentioned are included:

The module from which rules are explicitly imported can be

namespaced:

Again, only exactly the rules mentioned are included:

Both examples would work exactly the same with import, as the

included rules do not reference anything else from the included

module.

An import however also draws in the transitive closure of the rules

referenced:

The transitive closure of the rules mentioned is included:

$ cddlc -2tcddl -

mydata = {* label => values}

;# include label, values from rfc9052

¶

¶

mydata = {* label => values}

label = int / tstr

values = any

¶

¶

$ cddlc -2tcddl -

mydata = {* label => values}

;# include cose.label, cose.values from rfc9052 as cose

¶

¶

mydata = {* label => values}

cose.label = int / tstr

cose.values = any

¶

¶

¶

$ cddlc -2tcddl -

mydata = {Fritz: cose.empty_or_serialized_map}

;# import cose.empty_or_serialized_map from rfc9052 as cose

¶

¶

The import statement can also request an alias for an imported name:

Note how an additional rule provides an alias for

empty_or_serialized_map that does not have the namespace prefix:

4.8. Tool Support for Command-Line Control

A tool may provide a way to root the module tree from the command

line:

mydata = {"Fritz" => cose.empty_or_serialized_map}

cose.empty_or_serialized_map = bstr .cbor cose.header_map / bstr .size 0

cose.header_map = {

 cose.Generic_Headers,

 * cose.label => cose.values,

}

cose.Generic_Headers = (

 ? 1 => int / tstr,

 ? 2 => [+ cose.label],

 ? 3 => tstr / int,

 ? 4 => bstr,

 ? (5 => bstr // 6 => bstr),

)

cose.label = int / tstr

cose.values = any

¶

¶

$ cddlc -2tcddl -

mydata = {Fritz: cose.empty_or_serialized_map}

;# import empty_or_serialized_map from rfc9052 as cose

¶

¶

mydata = {"Fritz" => cose.empty_or_serialized_map}

empty_or_serialized_map = cose.empty_or_serialized_map

cose.empty_or_serialized_map = bstr .cbor cose.header_map / bstr .size 0

cose.header_map = {

 cose.Generic_Headers,

 * cose.label => cose.values,

}

cose.Generic_Headers = (

 ? 1 => int / tstr,

 ? 2 => [+ cose.label],

 ? 3 => tstr / int,

 ? 4 => bstr,

 ? (5 => bstr // 6 => bstr),

)

cose.label = int / tstr

cose.values = any

¶

¶

[RFC8610]

The command line argument -icose=rfc9052 is a shortcut for

Together with the start rule name, cose.COSE_Key, this results in

the following CDDL 1.0 specification:

In other words, the module had an empty CDDL file, which therefore

was not provided (no - on the command line).

4.9. ABNF is a lot like CDDL

Many of the constructs defined here for CDDL also could be used with

ABNF specifications. ABNF would definitely benefit from a standard

way to import snippets from existing RFCs. Since CDDL contains ABNF

support (Section 3 of [RFC9165]), it would be natural to make some

of the functionality discussed in this section available for ABNF as

well.

5. IANA Considerations

(Insert new registry for application specific literals here, if

adopted.)

6. Security considerations

The security considerations of [RFC8610] apply.

7. References

7.1. Normative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

$ cddlc -2tcddl -icose=rfc9052 -scose.COSE_Key¶

¶

;# import rfc9052 as cose¶

¶

$.start.$ = cose.COSE_Key

cose.COSE_Key = {

 1 => tstr / int,

 ? 2 => bstr,

 ? 3 => tstr / int,

 ? 4 => [+ tstr / int],

 ? 5 => bstr,

 * cose.label => cose.values,

}

cose.label = int / tstr

cose.values = any

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9165#section-3

[RFC9165]

[cddlc]

[Err6526]

[Err6527]

[Err6543]

[I-D.bormann-cbor-edn-literals]

[I-D.draft-bormann-cbor-cddl-freezer]

[PSVI]

[RFC5234]

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

Bormann, C., "Additional Control Operators for the

Concise Data Definition Language (CDDL)", RFC 9165, DOI

10.17487/RFC9165, December 2021, <https://www.rfc-

editor.org/rfc/rfc9165>.

7.2. Informative References

"CDDL conversion utilities", n.d., <https://github.com/

cabo/cddlc>.

"Errata Report 6526", RFC 8610, <https://www.rfc-

editor.org/errata/eid6526>.

"Errata Report 6527", RFC 8610, <https://www.rfc-

editor.org/errata/eid6527>.

"Errata Report 6543", RFC 8610, <https://www.rfc-

editor.org/errata/eid6543>.

Bormann, C., "Application-Oriented Literals in CBOR

Extended Diagnostic Notation", Work in Progress,

Internet-Draft, draft-bormann-cbor-edn-literals-01, 24

October 2022, <https://datatracker.ietf.org/doc/html/

draft-bormann-cbor-edn-literals-01>.

Bormann, C., "A feature freezer for the Concise Data

Definition Language (CDDL)", Work in Progress, Internet-

Draft, draft-bormann-cbor-cddl-freezer-10, 24 October

2022, <https://datatracker.ietf.org/doc/html/draft-

bormann-cbor-cddl-freezer-10>.

"Use Cases for XML Schema PSVI API", 24 June 2002,

<https://www.w3.org/XML/2002/05/psvi-use-cases>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

https://www.rfc-editor.org/rfc/rfc8610
https://www.rfc-editor.org/rfc/rfc9165
https://www.rfc-editor.org/rfc/rfc9165
https://github.com/cabo/cddlc
https://github.com/cabo/cddlc
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6527
https://www.rfc-editor.org/errata/eid6527
https://www.rfc-editor.org/errata/eid6543
https://www.rfc-editor.org/errata/eid6543
https://datatracker.ietf.org/doc/html/draft-bormann-cbor-edn-literals-01
https://datatracker.ietf.org/doc/html/draft-bormann-cbor-edn-literals-01
https://datatracker.ietf.org/doc/html/draft-bormann-cbor-cddl-freezer-10
https://datatracker.ietf.org/doc/html/draft-bormann-cbor-cddl-freezer-10
https://www.w3.org/XML/2002/05/psvi-use-cases

[RFC7405]

[RFC8428]

[RFC9090]

[RFC9277]

[useful]

Proposal Status:

Compatibility:

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/rfc/rfc7405>.

Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.

Bormann, "Sensor Measurement Lists (SenML)", RFC 8428,

DOI 10.17487/RFC8428, August 2018, <https://www.rfc-

editor.org/rfc/rfc8428>.

Bormann, C., "Concise Binary Object Representation (CBOR)

Tags for Object Identifiers", RFC 9090, DOI 10.17487/

RFC9090, July 2021, <https://www.rfc-editor.org/rfc/

rfc9090>.

Richardson, M. and C. Bormann, "On Stable Storage for

Items in Concise Binary Object Representation (CBOR)",

RFC 9277, DOI 10.17487/RFC9277, August 2022, <https://

www.rfc-editor.org/rfc/rfc9277>.

"Useful CDDL", n.d., <https://github.com/cbor-wg/cddl/

wiki/Useful-CDDL>.

Appendix A. Fridge

This appendix contains sections that may not make it to a 2.0, but

might be part of a followup.

A.1. Tag-oriented Literals

rough idea, porting from EDN

backward (not forward)

Some CBOR tags often would be most natural to use in a CDDL spec

with a literal syntax that is tailored to their semantics instead of

their serialization in CBOR. There is currently no way to add such

syntaxes, no defined extension point either.

The proposal "Application-Oriented Literals in CBOR Extended

Diagnostic Notation" [I-D.bormann-cbor-edn-literals] defines

application-oriented literals, e.g., of the form

dt'2019-07-21T19:53Z'

for datetime items. With additional considerations for unambiguous

syntax, a similar literal form could be included in CDDL.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc8428
https://www.rfc-editor.org/rfc/rfc8428
https://www.rfc-editor.org/rfc/rfc9090
https://www.rfc-editor.org/rfc/rfc9090
https://www.rfc-editor.org/rfc/rfc9277
https://www.rfc-editor.org/rfc/rfc9277
https://github.com/cbor-wg/cddl/wiki/Useful-CDDL
https://github.com/cbor-wg/cddl/wiki/Useful-CDDL

This proposal opens a name space for the prefix that indicates an

application specific literal. A registry could be provided to make

this name space a genuine extension point. (This is currently the

production bsqual in Appendix B of [RFC8610].)

The syntax provided in [I-D.bormann-cbor-edn-literals] does not

enable the use of CDDL types — it has the same flaw that is being

fixed for tag numbers in Section 2.2.

A.2. Cross-universe references

Often, a CDDL specification needs to import from specifications in a

different language or platform.

A.2.1. IANA references

In many cases, CDDL specifications make use of values that are

specified in IANA registries. The .iana control operator can be used

to reference such a set of values.

The reference needs to be able to point to a draft, the registry of

which has not been established yet, as well as to an established

IANA registry.

An example of such a usage might be:

Unfortunately, the vocabulary employed in IANA registries has not

been designed for machine references. In this case, the potential

values would come from applying the XPath expression

to https://www.iana.org/assignments/cose/cose.xml, plus some

filtering on the records returned that only leaves actual

allocations. Additional functionality may be needed for filtering

with respect to other columns of the registry record, e.g.,

<capabilities> in the case of this example.

Appendix B. A CDDL 2.0 Tool

This appendix is for information only.

A rough CDDL 2.0 tool is available [cddlc]. It can process CDDL 2.0

models into CDDL 1.0 models that can then be processed by the CDDL

tool described in Appendix F of [RFC8610].

A typical command line involving both tools might be:

¶

¶

¶

¶

¶

¶

cose-algorithm = int .iana ["cose", "algorithms", "value"]¶

¶

//iana:registry[@id='algorithms']/iana:record/iana:value¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#appendix-B
https://rfc-editor.org/rfc/rfc8610#appendix-F

Install on a system with a modern Ruby (Ruby version ≥ 3.0) via:

The present document assumes the use of cddlc version 0.1.5.

Acknowledgements

TBD

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

cddlc -2 -tcddl mytestfile.cddl | cddl - gp 10¶

¶

gem install cddlc¶

¶

¶

tel:+49-421-218-63921
mailto:cabo@tzi.org

	CDDL 2.0 — a draft plan
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Mending syntax deficits
	2.1. Empty data models
	2.2. Non-literal Tag Numbers
	2.3. Tag-oriented Literals
	2.4. Clarifications
	2.4.1. Err6527
	2.4.2. Err6543

	3. Processing model: Beyond Validation
	4. Module superstructure
	4.1. Compatibility
	4.2. Namespacing
	4.3. Cross-universe references
	4.4. The "module", "directives"
	4.5. Finding modules
	4.6. Initial Set of Directives
	4.7. Explicit selection of names
	4.8. Tool Support for Command-Line Control
	4.9. ABNF is a lot like CDDL

	5. IANA Considerations
	6. Security considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Fridge
	A.1. Tag-oriented Literals
	A.2. Cross-universe references
	A.2.1. IANA references

	Appendix B. A CDDL 2.0 Tool
	Acknowledgements
	Author's Address

