
Workgroup: Network Working Group

Internet-Draft:

draft-bormann-cbor-cddl-control-02

Published: 2 September 2020

Intended Status: Informational

Expires: 6 March 2021

Authors: C. Bormann

Universität Bremen TZI

Additional Control Operators for CDDL

Abstract

The Concise Data Definition Language (CDDL), standardized in RFC

8610, provides "control operators" as its main language extension

point.

The present document defines a number of control operators that did

not make it into RFC 8610: .cat/.plus for the construction of

constants, .abnf/.abnfb for including ABNF (RFC 5234/RFC 7405) in

CDDL specifications, and .feature for indicating the use of a non-

basic feature in an instance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 March 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction

1.1.  Terminology

2.  Computed Literals

2.1.  String Concatenation

2.2.  Numeric Addition

3.  Embedded ABNF

4.  Features

5.  IANA Considerations

6.  Implementation Status

7.  Security considerations

8.  References

8.1.  Normative References

8.2.  Informative References

Acknowledgements

Author's Address

1. Introduction

The Concise Data Definition Language (CDDL), standardized in RFC

8610, provides "control operators" as its main language extension

point.

The present document defines a number of control operators that did

not make it into RFC 8610:

Name Purpose

.cat String Concatenation

.plus Numeric addition

.abnf ABNF in CDDL (text strings)

.abnfb ABNF in CDDL (byte strings)

.feature Detecting feature use in extension points

Table 1: New control operators in this document

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



This specification uses terminology from [RFC8610]. In particular,

with respect to control operators, "target" refers to the left hand

side operand, and "controller" to the right hand side operand.

2. Computed Literals

CDDL as defined in [RFC8610] does not have any mechanisms to compute

literals. As an 80 % solution, this specification adds two control

operators: .cat for string concatenation, and .plus for numeric

addition.

2.1. String Concatenation

It is often useful to be able to compose string literals out of

component literals defined in different places in the specification.

The .cat control identifies a string that is built from a

concatenation of the target and the controller. As targets and

controllers are types, the resulting type is formally the cross-

product of the two types, although not all tools may be able to work

with non-unique targets or controllers.

Target and controller MUST be strings. The result of the operation

has the type of the target. The concatenation is performed on the

bytes in both strings. If the target is a text string, the result of

that concatenation MUST be valid UTF-8.

Figure 1: Example: concatenation of text and byte string

The example in Figure 1 builds a text string named a out of

concatenating the target text string "foo" and the controller byte

string entered in a text form byte string literal. (This particular

idiom is useful when the text string contains newlines, which, as

shown in the example for b, may be harder to read when entered in

the format that the pure CDDL text string notation inherits from

JSON.)

2.2. Numeric Addition

In many cases in a specification, numbers are needed relative to a

base number. The .plus control identifies a number that is

¶

¶

¶

¶

¶

a = "foo" .cat '

  bar

  baz

'

; on a system where the newline is \n, is the same string as:

b = "foo\n  bar\n  baz\n"

¶



constructed by adding the numeric values of the target and of the

controller.

Target and controller MUST be numeric. If the target is a floating

point number and the controller an integer number, or vice versa,

the sum is converted into the type of the target; converting from a

floating point number to an integer selects its floor (the largest

integer less than or equal to the floating point number).

Figure 2: Example: addition to a base value

The example in Figure 2 contains the generic definition of a group 

interval that gives a lower and an upper bound and optionally a

tolerance. rect combines two of these groups into a map, one group

for the X dimension and one for Y dimension.

3. Embedded ABNF

Many IETF protocols define allowable values for their text strings

in ABNF [RFC5234] [RFC7405]. It is often desirable to define a text

string type in CDDL by employing existing ABNF embedded into the

CDDL specification. Without specific ABNF support in CDDL, that ABNF

would usually need to be translated into a regular expression (if

that is even possible).

ABNF is added to CDDL in the same way that regular expressions were

added: by defining a .abnf control operator. The target is usually 

text or some restriction on it, the controller is the text of an

ABNF specification.

There are several small issues, with solutions given here:

ABNF can be used to define byte sequences as well as UTF-8 text

strings interpreted as Unicode scalar sequences. This means this

specification defines two control operators: .abnfb for ABNF

denoting byte sequences and .abnf for denoting sequences of

¶

¶

interval<BASE> = (

  BASE => int             ; lower bound

  (BASE .plus 1) => int   ; upper bound

  ? (BASE .plus 2) => int ; tolerance

)

X = 0

Y = 3

rect = {

  interval<X>

  interval<Y>

}

¶

¶

¶

¶

*



Unicode scalar values (codepoint) represented as UTF-8 text

strings. Both control operators can be applied to targets of

either string type; the ABNF is applied to sequence of bytes in

the string interpreting that as a sequence of bytes (.abnfb) or

as a sequence of code points represented as an UTF-8 text string

(.abnf). The controller string MUST be a text string.

ABNF defines a list of rules, not a single expression (called

"elements" in [RFC5234]). This is resolved by requiring the

controller string to be one valid "element", followed by zero or

more valid "rule" separated from the element by a newline; so the

controller string can be built by preceding a piece of valid ABNF

by an "element" that selects from that ABNF and a newline.

For the same reason, ABNF requires newlines; specifying newlines

in CDDL text strings is tedious (and leads to essentially

unreadable ABNF). The workaround employs the .cat operator

introduced in Section 2.1 and the syntax for text in byte

strings. As is customary for ABNF, the syntax of ABNF itself (NOT

the syntax expressed in ABNF!) is relaxed to allow a single

linefeed as a newline:

One set of rules provided in an ABNF specification is often used

in multiple positions, in particular staples such as DIGIT and

ALPHA. (Note that all rules referenced need to be defined in each

ABNF operator controller string -- there is no implicit import of

[RFC5234] Core ABNF or other rules.) The composition this calls

for can be provided by the .cat operator.

These points are combined into an example in Figure 3, which uses

ABNF from [RFC3339] to specify the CBOR tags defined in [I-D.ietf-

cbor-date-tag].

¶

*

¶

*

¶

 CRLF = %x0A / %x0D.0A¶

*

¶

¶



Figure 3: Example: employing RFC 3339 ABNF for defining CBOR Tags

4. Features

Traditionally, the kind of validation enabled by languages such as

CDDL provided a Boolean result: valid, or invalid.

In rapidly evolving environments, this is too simplistic. The data

models described by a CDDL specification may continually be enhanced

by additional features, and it would be useful even for a

specification that does not yet describe a specific future feature

to identify the extension point the feature can use, accepting such

extensions while marking them as such.

; for draft-ietf-cbor-date-tag

Tag1004 = #6.1004(text .abnf full-date)

; for RFC 7049

Tag0 = #6.0(text .abnf date-time)

full-date = "full-date" .cat rfc3339

date-time = "date-time" .cat rfc3339

; Note the trick of idiomatically starting with a newline, separating

;   off the element in the .cat from the rule-list

rfc3339 = '

   date-fullyear   = 4DIGIT

   date-month      = 2DIGIT  ; 01-12

   date-mday       = 2DIGIT  ; 01-28, 01-29, 01-30, 01-31 based on

                             ; month/year

   time-hour       = 2DIGIT  ; 00-23

   time-minute     = 2DIGIT  ; 00-59

   time-second     = 2DIGIT  ; 00-58, 00-59, 00-60 based on leap sec

                             ; rules

   time-secfrac    = "." 1*DIGIT

   time-numoffset  = ("+" / "-") time-hour ":" time-minute

   time-offset     = "Z" / time-numoffset

   partial-time    = time-hour ":" time-minute ":" time-second

                     [time-secfrac]

   full-date       = date-fullyear "-" date-month "-" date-mday

   full-time       = partial-time time-offset

   date-time       = full-date "T" full-time

' .cat rfc5234-core

rfc5234-core = '

         DIGIT          =  %x30-39 ; 0-9

; abbreviated here

'

¶

¶



The .feature control annotates the target as making use of the

feature named by the controller. The latter will usually be a

string. A tool that validates an instance against that specification

may mark the instance as using a feature that is annotated by the

specification.

Figure 4 shows what could be the definition of a person, with

potential extensions beyond name and organization being marked 

further-person-extension. Extensions that are known at the time this

definition is written can be collected into $$person-extensions.

However, future extensions would be deemed invalid unless the

wildcard at the end of the map is added. These extensions could then

be specifically examined by a user or a tool that makes use of the

validation result.

Leaving out the entire extension point would mean that instances

that make use of an extension would be marked as whole-sale invalid,

making the entire validation approach much less useful. Leaving the

extension point in, but not marking its use as special, would render

mistakes such as using the label organisation instead of 

organization invisible.

Figure 4: Map extensibility with .feature

Figure 5 shows another example where .feature provides for type

extensibility.

Figure 5: Type extensibility with .feature

A CDDL tool may simply report the set of features being used; the

control then only provides information to the process requesting the

validation. One could also imagine a tool that takes arguments

allowing the tool to accept certain features and reject others

(enable/disable). The latter approach could for instance be used for

a JSON/CBOR switch:

¶

¶

¶

person = {

  ? name: text

  ? organization: text

  $$person-extensions

  * (text .feature "further-person-extension") => any

}

$$person-extensions //= (? bloodgroup: text)

¶

allowed-types = number / text / bool / null

              / [* number] / [* text] / [* bool]

              / (any .feature "allowed-type-extension")

¶



[IANA.cddl]

[RFC2119]

It remains to be seen if the enable/disable approach can lead to new

idioms of using CDDL. The language currently has no way to enforce

mutually exclusive use of features, as would be needed in this

example.

5. IANA Considerations

This document requests IANA to register the contents of Table 2 into

the CDDL Control Operators registry [IANA.cddl]:

Name Reference

.cat [RFCthis]

.plus [RFCthis]

.abnf [RFCthis]

.abnfb [RFCthis]

.feature [RFCthis]

Table 2

6. Implementation Status

An early implementation of the control operator .feature has been

available in the CDDL tool since version 0.8.11. The validator warns

about each feature being used and provides the set of target values

used with the feature.

7. Security considerations

The security considerations of [RFC8610] apply.

8. References

8.1. Normative References

IANA, "Concise Data Definition Language (CDDL)", , 

<http://www.iana.org/assignments/cddl>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

SenML-Record = {

; ...

  ? v => number

; ...

}

v = JC<"v", 2>

JC<J,C> = J .feature "json" / C .feature "cbor"

¶

¶

¶

¶

¶

http://www.iana.org/assignments/cddl


[RFC5234]

[RFC7405]

[RFC8174]

[RFC8610]

[I-D.ietf-cbor-date-tag]

[RFC3339]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>. 

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/info/rfc7405>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610, 

June 2019, <https://www.rfc-editor.org/info/rfc8610>. 

8.2. Informative References

Jones, M., Nadalin, A., and J. Richter, "Concise Binary

Object Representation (CBOR) Tags for Date", Work in

Progress, Internet-Draft, draft-ietf-cbor-date-tag-06, 26

August 2020, <http://www.ietf.org/internet-drafts/draft-

ietf-cbor-date-tag-06.txt>. 

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002, 

<https://www.rfc-editor.org/info/rfc3339>. 

Acknowledgements

Jim Schaad suggested several improvements. The .feature feature was

developed out of a discussion with Henk Birkholz.

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
http://www.ietf.org/internet-drafts/draft-ietf-cbor-date-tag-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-cbor-date-tag-06.txt
https://www.rfc-editor.org/info/rfc3339
tel:+49-421-218-63921
mailto:cabo@tzi.org

	Additional Control Operators for CDDL
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Computed Literals
	2.1. String Concatenation
	2.2. Numeric Addition

	3. Embedded ABNF
	4. Features
	5. IANA Considerations
	6. Implementation Status
	7. Security considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgements
	Author's Address


