
Workgroup: Network Working Group

Internet-Draft:

draft-bormann-cbor-cddl-freezer-07

Published: 21 April 2021

Intended Status: Informational

Expires: 23 October 2021

Authors: C. Bormann

Universität Bremen TZI

A feature freezer for the Concise Data Definition Language (CDDL)

Abstract

In defining the Concise Data Definition Language (CDDL), some

features have turned up that would be nice to have. In the interest

of completing this specification in a timely manner, the present

document was started to collect nice-to-have features that did not

make it into the first RFC for CDDL, RFC 8610.

It is now time to discuss thawing some of the concepts discussed

here. A number of additional proposals have been added.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 October 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Base language features

2.1. Cuts

3. Literal syntax

3.1. Tag-oriented Literals

3.2. Regular Expression Literals

3.3. Clarifications

3.3.1. Err6527

3.3.2. Err6543

4. Controls

4.1. Control operator .pcre

4.2. Endianness in .bits

4.3. .bitfield control

5. Co-occurrence Constraints

6. Module superstructure

6.1. Namespacing

7. Alternative Representations

8. IANA Considerations

9. Security considerations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgements

Author's Address

1. Introduction

In defining the Concise Data Definition Language (CDDL), some

features have turned up that would be nice to have. In the interest

of completing this specification in a timely manner, the present

document was started to collect nice-to-have features that did not

make it into the first RFC for CDDL [RFC8610].

It is now time to discuss thawing some of the concepts discussed

here. A number of additional proposals have been added.

There is always a danger for a document like this to become a

shopping list; the intention is to develop this document further

based on real-world experience with the first CDDL standard.

¶

¶

¶

¶

2. Base language features

2.1. Cuts

Section 3.5.4 of [RFC8610] alludes to a new language feature, cuts,

and defines it in a fashion that is rather focused on a single

application in the context of maps and generating better diagnostic

information about them.

The present document is expected to grow a more complete definition

of cuts, with the expectation that it will be upwards-compatible to

the existing one in [RFC8610], before this possibly becomes a

mainline language feature in a future version of CDDL.

3. Literal syntax

3.1. Tag-oriented Literals

Some CBOR tags often would be most natural to use in a CDDL spec

with a literal syntax that is tailored to their semantics instead of

their serialization in CBOR. There is currently no way to add such

syntaxes, no defined extension point either.

The text form of CoRAL [I-D.ietf-core-coral] defines literals of the

form

dt'2019-07-21T19:53Z'

for datetime items. (Similar advances should then probably be made

in diagnostic notation.)

3.2. Regular Expression Literals

Regular expressions currently are notated as strings in CDDL, with

all the string escaping rules applied once. It might be convenient

to have a more conventional literal format for regular expressions,

possibly also providing a place to add modifiers such as /i. This

might also imply text .regexp ..., which with the proposal in

Section 4.1 then raises the question of how to indicate the regular

expression flavor.

3.3. Clarifications

A number of errata reports have been made around some details of

text string and byte string literal syntax: [Err6527] and [Err6543].

These need to be addressed by re-examining the details of these

literal syntaxes. Also, [Err6526] needs to be applied.

¶

¶

¶

¶

¶

¶

¶

¶

3.3.1. Err6527

The ABNF used in [RFC8610] for the content of text string literals

is rather permissive:

text = %x22 *SCHAR %x22

SCHAR = %x20-21 / %x23-5B / %x5D-7E / %x80-10FFFD / SESC

SESC = "\" (%x20-7E / %x80-10FFFD)

This allows almost any non-C0 character to be escaped by a

backslash, but critically misses out on the \uXXXX and \uHHHH\uLLLL

forms that JSON allows to specify characters in hex. Both can be

solved by updating the SESC production to:

SESC = "\" (%x22 / "/" / "\" / ; \" \/ \\

 %x62 / %x66 / %x6E / %x72 / %x74 / ; \b \f \n \r \t

 (%x75 hexchar)) ; \u

hexchar = non-surrogate / (high-surrogate "\" %x75 low-surrogate)

non-surrogate = ((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /

 ("D" %x30-37 2HEXDIG)

high-surrogate = "D" ("8"/"9"/"A"/"B") 2HEXDIG

low-surrogate = "D" ("C"/"D"/"E"/"F") 2HEXDIG

Now that SESC is more restrictively formulated, this also requires

an update to the BCHAR production used in the ABNF syntax for byte

string literals:

bytes = [bsqual] %x27 *BCHAR %x27

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

bsqual = "h" / "b64"

The updated version explicit allows \', which is no longer allowed

in the updated SESC:

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / "\'" / CRLF

3.3.2. Err6543

The ABNF used in [RFC8610] for the content of byte string literals

lumps together byte strings notated as text with byte strings

notated in base16 (hex) or base64 (but see also updated BCHAR

production above):

¶

¶

¶

¶

¶

¶

¶

¶

¶

bytes = [bsqual] %x27 *BCHAR %x27

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

Errata report 6543 proposes to handle the two cases in separate

productions (where, with an updated SESC, BCHAR obviously needs to

be updated as above):

bytes = %x27 *BCHAR %x27

 / bsqual %x27 *QCHAR %x27

BCHAR = %x20-26 / %x28-5B / %x5D-10FFFD / SESC / CRLF

QCHAR = DIGIT / ALPHA / "+" / "/" / "-" / "_" / "=" / WS

This potentially causes a subtle change, which is hidden in the WS

production:

WS = SP / NL

SP = %x20

NL = COMMENT / CRLF

COMMENT = ";" *PCHAR CRLF

PCHAR = %x20-7E / %x80-10FFFD

CRLF = %x0A / %x0D.0A

This allows any non-C0 character in a comment, so this fragment

becomes possible:

foo = h'

 43424F52 ; 'CBOR'

 0A ; LF, but don't use CR!

'

The current text is not unambiguously saying whether the three

apostrophes need to be escaped with a \ or not, as in:

foo = h'

 43424F52 ; \'CBOR\'

 0A ; LF, but don\'t use CR!

'

... which would be supported by the existing ABNF in [RFC8610].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. Controls

Controls are the main extension point of the CDDL language. It is

relatively painless to add controls to CDDL. Several candidates have

been identified that aren't quite ready for adoption, of which one

shall be listed here.

4.1. Control operator .pcre

There are many variants of regular expression languages. Section

3.8.3 of [RFC8610] defines the .regexp control, which is based on

XSD [XSD2] regular expressions. As discussed in that section, the

most desirable form of regular expressions in many cases is the

family called "Perl-Compatible Regular Expressions" ([PCRE]);

however, no formally stable definition of PCRE is available at this

time for normatively referencing it from an RFC.

The present document defines the control operator .pcre, which is

similar to .regexp, but uses PCRE2 regular expressions. More

specifically, a .pcre control indicates that the text string given

as a target needs to match the PCRE regular expression given as a

value in the control type, where that regular expression is anchored

on both sides. (If anchoring is not desired for a side, .* needs to

be inserted there.)

Similarly, .es2018re could be defined for ECMAscript 2018 regular

expressions with anchors added.

4.2. Endianness in .bits

How useful would it be to have another variant of .bits that counts

bits like in RFC box notation? (Or at least per-byte? 32-bit words

don't always perfectly mesh with byte strings.)

4.3. .bitfield control

Provide a way to specify bitfields in byte strings and uints to a

higher level of detail than is possible with .bits. Strawman:

Field = uint .bitfield Fieldbits

Fieldbits = [

 flag1: [1, bool],

 val: [4, Vals],

 flag2: [1, bool],

]

Vals = &(A: 0, B: 1, C: 2, D: 3)

¶

¶

¶

¶

¶

¶

¶

Note that the group within the controlling array can have choices,

enabling the whole power of a context-free grammar (but not much

more).

5. Co-occurrence Constraints

While there are no co-occurrence constraints in CDDL, many actual

use cases can be addressed by using the fact that a group is a

grammar:

postal = {

 (street: text,

 housenumber: text) //

 (pobox: text .regexp "[0-9]+")

}

However, constraints that are not just structural/tree-based but are

predicates combining parts of the structure cannot be expressed:

session = {

 timeout: uint,

}

other-session = {

 timeout: uint .lt [somehow refer to session.timeout],

}

As a minimum, this requires the ability to reach over to other parts

of the tree in a control. Compare JSON Pointer [RFC6901] and JSON

Relative Pointer [I-D.handrews-relative-json-pointer]. Stefan

Goessner's jsonpath is a JSON variant of XPath that has not been

formally standardized [jsonpath].

More generally, something akin to what Schematron is to Relax-NG may

be needed.

6. Module superstructure

CDDL rules could be packaged as modules and referenced from other

modules. There could be some control of namespace pollution, as well

as unambiguous referencing ("versioning").

This is probably best achieved by a pragma-like syntax which could

be carried in CDDL comments, leaving each module to be valid CDDL

(if missing some rule definitions to be imported).

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC8610]

6.1. Namespacing

A convention for mapping CDDL-internal names to external ones could

be developed, possibly steered by some pragma-like constructs.

External names would likely be URI-based, with some conventions as

they are used in RDF or Curies. Internal names might look similar to

XML QNames. Note that the identifier character set for CDDL

deliberately includes $ and @, which could be used in such a

convention.

7. Alternative Representations

For CDDL, alternative representations e.g. in JSON (and thus in

YAML) could be defined, similar to the way YANG defines an XML-based

serialization called YIN in Section 11 of [RFC6020]. One proposal

for such a syntax is provided by the cddlc tool [cddlc]; this could

be written up and agreed upon.

cddlj = ["cddl", +rule]

rule = ["=" / "/=" / "//=", namep, type]

namep = ["name", id] / ["gen", id, +id]

id = text .regexp "[A-Za-z@_$](([-.])*[A-Za-z0-9@_$])*"

op = ".." / "..." /

 text .regexp "\\.[A-Za-z@_$](([-.])*[A-Za-z0-9@_$])*"

namea = ["name", id] / ["gen", id, +type]

type = value / namea / ["op", op, type, type] /

 ["map", group] / ["ary", group] / ["tcho", 2*type] /

 ["unwrap", namea] / ["enum", group / namea] /

 ["prim", ?(0..7, ?uint)]

group = ["mem", null/type, type] /

 ["rep", uint, uint/false, group] /

 ["seq", 2*group] / ["gcho", 2*group]

value = ["number"/"text"/"bytes", text]

8. IANA Considerations

This document makes no requests of IANA.

9. Security considerations

The security considerations of [RFC8610] apply.

10. References

10.1. Normative References

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

¶

¶

¶

¶

¶

[cddlc]

[Err6526]

[Err6527]

[Err6543]

[I-D.handrews-relative-json-pointer]

[I-D.ietf-core-coral]

[jsonpath]

[PCRE]

[RFC6020]

[RFC6901]

[XSD2]

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

10.2. Informative References

"CDDL conversion utilities", n.d., <https://github.com/

cabo/cddlc>.

"Errata Report 6526", RFC 8610, <https://www.rfc-

editor.org/errata/eid6526>.

"Errata Report 6527", RFC 8610, <https://www.rfc-

editor.org/errata/eid6527>.

"Errata Report 6543", RFC 8610, <https://www.rfc-

editor.org/errata/eid6543>.

Luff, G. and H. Andrews,

"Relative JSON Pointers", Work in Progress, Internet-

Draft, draft-handrews-relative-json-pointer-02, 18

September 2019, <https://www.ietf.org/archive/id/draft-

handrews-relative-json-pointer-02.txt>.

Hartke, K., "The Constrained RESTful

Application Language (CoRAL)", Work in Progress,

Internet-Draft, draft-ietf-core-coral-03, 9 March 2020,

<https://www.ietf.org/archive/id/draft-ietf-core-

coral-03.txt>.

"jsonpath online evaluator", n.d., <https://

jsonpath.com>.

"Perl-compatible Regular Expressions (revised API:

PCRE2)", n.d., <http://pcre.org/current/doc/html/>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes

Second Edition", World Wide Web Consortium Recommendation

REC-xmlschema-2-20041028, 28 October 2004, <https://

www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

https://www.rfc-editor.org/info/rfc8610
https://github.com/cabo/cddlc
https://github.com/cabo/cddlc
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6526
https://www.rfc-editor.org/errata/eid6527
https://www.rfc-editor.org/errata/eid6527
https://www.rfc-editor.org/errata/eid6543
https://www.rfc-editor.org/errata/eid6543
https://www.ietf.org/archive/id/draft-handrews-relative-json-pointer-02.txt
https://www.ietf.org/archive/id/draft-handrews-relative-json-pointer-02.txt
https://www.ietf.org/archive/id/draft-ietf-core-coral-03.txt
https://www.ietf.org/archive/id/draft-ietf-core-coral-03.txt
https://jsonpath.com
https://jsonpath.com
http://pcre.org/current/doc/html/
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028

Acknowledgements

Many people have asked for CDDL to be completed, soon. These are

usually also the people who have brought up observations that led to

the proposals discussed here. Sean Leonard has campaigned for a

regexp literal syntax.

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

¶

tel:+49-421-218-63921
mailto:cabo@tzi.org

	A feature freezer for the Concise Data Definition Language (CDDL)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Base language features
	2.1. Cuts

	3. Literal syntax
	3.1. Tag-oriented Literals
	3.2. Regular Expression Literals
	3.3. Clarifications
	3.3.1. Err6527
	3.3.2. Err6543

	4. Controls
	4.1. Control operator .pcre
	4.2. Endianness in .bits
	4.3. .bitfield control

	5. Co-occurrence Constraints
	6. Module superstructure
	6.1. Namespacing

	7. Alternative Representations
	8. IANA Considerations
	9. Security considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgements
	Author's Address

