
Workgroup: Network Working Group

Internet-Draft:

draft-bormann-cbor-cddl-map-like-data-01

Published: 1 June 2021

Intended Status: Informational

Expires: 3 December 2021

Authors: C. Bormann, Ed.

Universität Bremen TZI

B. Moran

Arm Limited

H. Birkholz

Fraunhofer SIT

E. Cormier

Map-like data in CBOR and CDDL

Abstract

The Concise Binary Object Representation (CBOR, RFC 8949) is a data

format whose design goals include the possibility of extremely small

code size, fairly small message size, and extensibility without the

need for version negotiation.

Basic CBOR supports non-ordered maps free of duplicate keys, similar

to the way JSON defines JSON objects (RFC 8259). Using the CBOR

extension point of tags, tags for a selection of variants of maps

and multimaps have been registered, but gaps remain. The present

document defines a consolidated set of CBOR tags for map-like data

items involving key-value pairs.

The Concise Data Definition Language (CDDL), standardized in RFC

8610, is often used to express CBOR data structure specifications.

It provides "control operators" as its main language extension

point. The present document defines a number of control operators

that enable the description of CBOR data structures that make use of

the newly defined tags or that employ the same underlying

structures.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 3 December 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. CBOR tags for map-like data items

2.1. Summary

2.2. Key/Value Type

2.3. Ordering

2.4. Key Uniqueness

2.5. Data Item

2.6. Related Tags (Informative)

2.6.1. Tag 259

2.6.2. Tag 275

2.6.3. Tag TBD279

2.6.4. Tag TDB280

3. CDDL Support for Map-Like Data Items

3.1. Map notation for map-like data items

3.2. Uniqueness

4. CDDL typenames

5. IANA Considerations

5.1. Tags

5.2. CDDL control operators

6. Implementation Status

7. Security considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Implementation Considerations

A.1. Programming Language Containers (Informative)

A.1.1. ECMAScript

A.1.2. Python

A.1.3. C++

¶

¶

¶

https://trustee.ietf.org/license-info

A.2. CDDL Implementation Considerations

Acknowledgements

Contributors

Authors' Addresses

1. Introduction

(See abstract for now.)

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification uses terminology from [RFC8949] and [RFC8610]. In

particular, with respect to CDDL control operators, "target" refers

to the left hand side operand, and "controller" to the right hand

side operand. The terms "array" and "map" (if unadorned) refer to

CBOR major type 4 and CBOR major type 5; this is not called out

explicitly.

2. CBOR tags for map-like data items

This document defines a consolidated set of CBOR tags for map-like

entities involving key-value pairs. These tags encode the following

meta-data concerning map-like data items:

the homogeneity of the types of the keys, and of the types of the

values;

whether the order of the key-value pairs carries semantic value

("ordered") or needs to be ignored ("non-ordered");

the uniqueness of the keys; and

the major type used to encode the key-value pairs.

Note that the term "ordered" as used in this document is distinct

from "sorted" -- "ordered" implies that the order in the data item

interchanged conveys a semantically relevant ordering, while a

property "sorted" can easily be established after interchange (by,

simply, sorting), less often needs to be indicated, and is more

complex to indicate as it may need details about the sorting.

2.1. Summary

¶

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

¶

Tag LSBs
Homogeneous

Value

Homogeneous

Key
Ordering

Duplicate

Keys

Allowed

Data

Item

Related

Tag

128 0000 No No
Non-

Ordered
No map 259

129 0001 No No
Non-

Ordered
Yes array TDB280*

130 0010 No No Ordered No array TBD279*

131 0011 No No Ordered Yes array

132 0100 No Yes
Non-

Ordered
No map 275

133 0101 No Yes
Non-

Ordered
Yes array

134 0110 No Yes Ordered No array

135 0111 No Yes Ordered Yes array

136 1000 Yes Yes
Non-

Ordered
No map

137 1001 Yes Yes
Non-

Ordered
Yes array

138 1010 Yes Yes Ordered No array

139 1011 Yes Yes Ordered Yes array

Table 1: New CBOR tags defined in this document

*TBD279: https://github.com/Sekenre/cbor-ordered-map-spec/blob/

master/CBOR_Ordered_Map.md

*TBD280: https://github.com/ecorm/cbor-tag-multimap

[The intention of the present document is to obviate the need for

defining TBD279/TBD280.]

Appendix A.1 provides information about constructs in a few

programming languages that are related to the tags being defined.

2.2. Key/Value Type

Bits 2 and 3 of the tag provide information on the map's key and

value types:

0b00xx Unspecified: There is no specified type for the map's keys

and values

0b01xx Homogeneous Key: All keys have the same data type

0b10xx Homogeneous Key/Value: All values have the same data type

in addition to all keys having the same data type (the types for

keys and values may be distinct).

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

The semantics for homogeneity shall be the same as for [RFC8746]

homogeneous arrays (tag 41). That is, "which CBOR data items

constitute elements of the same application type is specific to the

application" (Section 3.2 of [RFC8746]).

Maps with arbitrary keys and homogeneous values are considered

unusual, so they are left out of this specification so that fewer

tag numbers need to be allocated (12 instead of 16).

2.3. Ordering

Bit 1 of the tag represents the map's ordering semantics:

0: The order of key-value pairs is unspecified

1: Key-value pairs are encoded in the same order in which they

were inserted

2.4. Key Uniqueness

Bit 0 of the tag represents the uniqueness of the map's keys.

0: Keys are unique within the map

1: Keys may be duplicated (i.e., multimaps)

2.5. Data Item

All these map-like data items could be represented as a tag with an

enclosed array of alternating key-value pairs, as in:

129(["key1", 1, "key2", 2])

However, representing the key-value pairs as a CBOR map for those

cases where this is possible enables generic decoders that are

oblivious of these tags to represent the data in a more appropriate

platform type.

Specifically, the key-value pairs are represented as a map if and

only if

the ordering is unspecified and

the keys are unique;

otherwise, they are represented as an array of alternating keys and

values ("flattened alist", see Figure 1).

¶

¶

¶

* ¶

*

¶

¶

* ¶

* ¶

¶

¶

¶

¶

* ¶

* ¶

¶

https://rfc-editor.org/rfc/rfc8746#section-3.2

FAList<K, V> = [* (K, V)]

Figure 1: CDDL for order-preserving representation of maps

Issue: [MAPREP] discusses alternative representations of (ordered

and other) maps. How much of this do we need to address here?

2.6. Related Tags (Informative)

2.6.1. Tag 259

Specification: https://github.com/shanewholloway/js-cbor-codec/blob/

master/docs/CBOR-259-spec--explicit-maps.md

The above defined tag 128 may be used instead to guide a JavaScript

decoder into interpreting a CBOR map as a JavaScript Map instead of

an Object.

2.6.2. Tag 275

Specification: https://github.com/ecorm/cbor-tag-text-key-map

The above defined tag 132 may be used instead to guide a decoder

into interpreting a CBOR map as a JavaScript-like Object having only

text string keys. The decoder would have to verify the first key to

establish that the map has homogeneous text string keys.

2.6.3. Tag TBD279

Draft specification: https://github.com/Sekenre/cbor-ordered-map-

spec/blob/master/CBOR_Ordered_Map.md

The above defined tag 130 may be used instead to encode map-like

data items where the order of the key-value pairs is semantically

significant.

2.6.4. Tag TDB280

Draft specification: https://github.com/ecorm/cbor-tag-multimap

The above defined tag 129 may be used instead to encode a multimap

as an array of key-value pairs.

3. CDDL Support for Map-Like Data Items

The Concise Data Definition Language (CDDL), standardized in RFC

8610, provides "control operators" as its main language extension

point.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The present document defines a number of control operators that

enable the use of group notation (enclosed in a CDDL map) to specify

any of the above map-like data structures:

Name Purpose

.omm Ordered (Multi-)Map

.nomm Non-Ordered (Multi-)Map

.unique Uniqueness requirement

Table 2: New control operators in

this document

3.1. Map notation for map-like data items

[needs better examples]

CDDL already can describe both arrays of alternating keys and values

and maps (non-ordered and with unique keys). The two control

operators .omm and .nomm introduced in this section enable the use

of CDDL map notation for map-like types beyond actual maps,

increasing readability and possibly even reusability.

In a simple example that provides an non-ordered collection of zero

or more home addresses and zero or more work addresses, each labeled

as such, we use traditional map notation to describe that

collection:

[* (text, any)] .nomm {

 * home: address

 * work: address

 $$more-addresses

}

The .omm and .nomm control operators convert a group definition

enclosed into a CDDL map given as a controller type into an array

type given as the target type. The controller type given is

unwrapped (Section 3.7 of [RFC8610]) into a group. Keys and values

of the entries in that group are then alternatingly matched as

elements in the target array. Note that both target and controller

type can contribute to the shaping of the data; declaring the key

type as text limits what can be added to the $$more-addresses

socket.

.omm and .nomm differ in the semantics of the array type

created: .omm defines an ordered (multi)map, i.e., the order of the

key/value element pairs in the array matters, while .nomm defines an

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8610#section-3.7

non-ordered (multi)map, i.e., data items that present the same set

of key/value pairs in different orders are equivalent.

The ability to specify specific ("homogeneous") types is provided by

the ability to specify the target type, as in the example above.

Note that there is not strictly a need to define a control operator

for building non-ordered maps with non-duplicate keys, as existing

CBOR maps already fill this role, however the use of a map type as

the target is allowed for symmetry (implying uniqueness of the

keys), allowing the following:

{* text => any} .nomm {

 ? home: address

 ? work: address

 $$more-addresses

}

3.2. Uniqueness

The .unique control annotates the target as requiring uniqueness,

within the enclosing container(*), of its value, among the other

data items in that enclosing container that are also marked .unique,

under the same label (given as the controller).

E.g.,

feature-set = [* feature .unique "set"]

ordered-pairs-with-unique-keys-and-values =

 [* (any .unique "key", any .unique "value")]

defines a feature-set as an array of zero or more feature values

that need to be all different (as they are unique under the label

set), and ordered-map-with-unique-keys-and-values as an array of

zero pairs of keys and values, where the keys need to be unique

among themselves and the values need to be unique among themselves

(the latter example could employ an .omm or .nomm operator to

further restrict what can be in these keys and values).

Discussion: (*) while it is probably not a big problem to define

what exactly the "enclosing" container is, it may be useful to

actually define a larger scope of the uniqueness. CDDL currently

does not have a way to establish and point to such a larger

scope; we might define one ad hoc here or leave that for later

extension.

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. CDDL typenames

For the use with CDDL [RFC8610], the typenames defined in Figure 2

are recommended unless there is a need for more specific shaping of

the data.

anymap = {* any => any}

tbd128 = #6.128(anymap)

tbd129 = #6.129([* (any, any)] .nomm anymap)

tbd130 = #6.130([* ((any .unique "mm"), any)] .omm anymap)

tbd131 = #6.131([* (any, any)] .omm anymap)

tbd132<k> = #6.132({* k => any})

tbd133<k> = #6.133([* (k, any)] .nomm anymap)

tbd134<k> = #6.134([* ((k .unique "mm"), any)] .omm anymap)

tbd135<k> = #6.135([* (k, any)] .omm anymap)

tbd136<k,v> = #6.136({* k => v})

tbd137<k,v> = #6.137([* (k, v)] .nomm anymap)

tbd139<k,v> = #6.138([* ((k .unique "mm"), v)] .omm anymap)

tbd139<k,v> = #6.139([* (k, v)] .omm anymap)

Figure 2: Recommended typenames for CDDL

Issue: fill in better names for tbdnnn

Note that there is no need to call out the uniqueness of the keys

explicitly in tbd128, tbd132, or tbd136, as the use of maps as a

representation format already provides that key uniqueness.

5. IANA Considerations

5.1. Tags

IANA is requested to allocate the tags of Table 1 in the CBOR tags

registry [IANA.cbor-tags], using this document as the specification

reference.

The allocations are requested to be assigned from the "specification

required" space (24..255). The values in the column labeled "Tag" in

Table 1 are suggested as the allocated tag numbers.

5.2. CDDL control operators

This document requests IANA to register the contents of Table 3 into

the CDDL Control Operators registry [IANA.cddl]:

Name Reference

.omm [RFCthis]

¶

¶

¶

¶

¶

¶

[IANA.cbor-tags]

[IANA.cddl]

[RFC2119]

[RFC8174]

[RFC8610]

[RFC8746]

[RFC8949]

Name Reference

.nomm [RFCthis]

.unique [RFCthis]

Table 3: New control

operators to be

registered

6. Implementation Status

TBD

7. Security considerations

The security considerations of [RFC8610] apply.

8. References

8.1. Normative References

IANA, "Concise Binary Object Representation (CBOR)

Tags", <http://www.iana.org/assignments/cbor-tags>.

IANA, "Concise Data Definition Language (CDDL)",

<http://www.iana.org/assignments/cddl>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Bormann, C., Ed., "Concise Binary Object Representation

(CBOR) Tags for Typed Arrays", RFC 8746, DOI 10.17487/

RFC8746, February 2020, <https://www.rfc-editor.org/info/

rfc8746>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

¶

¶

http://www.iana.org/assignments/cbor-tags
http://www.iana.org/assignments/cddl
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8746
https://www.rfc-editor.org/info/rfc8746
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949

[MAPREP]

8.2. Informative References

Bormann, C., "Re: [Cbor] "ordered hash"", cbor@ietf.org

mailing list message, 30 July 2020, <https://

mailarchive.ietf.org/arch/msg/cbor/

5MuDSyPivZ7JfPhsfwCaW2usFHQ>.

Appendix A. Implementation Considerations

This non-normative appendix provides information about the use on

implementations of the tags and control operators defined.

A.1. Programming Language Containers (Informative)

The following subsections describe how the tags in this document

relate to various programming language containers. Containers that

are not part of the programming language or its standard libraries

are not considered here.

The Encoding Tag column in the following tables provide the

recommended tag that best represents the given container type. For

example, it's possible to use tag 132 for encoding an ECMAScript Map

if all keys happen to be of the same type, however tag 128 is more

general and applies to any Map. When encoding an ECMAScript Object,

tag 128 would be technically correct but is too general; tag 132

best presents the fact that an Object has text keys only.

The Decodable Tags column in the following tables, are for data

items can be decoded into the destination container without having

to inspect the following:

the uniqueness of the keys,

the ordering of the keys, and,

the data types of every keys/value pair.

It may however be necessary to inspect the data types of the first

key-value pair in the case of tags representing homogeneous keys/

values.

A.1.1. ECMAScript

Container Encoding Tag Decodable Tags

Object 132 132, 136

Map 128 128, 132, 136

Array of pairs 131 All

Table 4

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

https://mailarchive.ietf.org/arch/msg/cbor/5MuDSyPivZ7JfPhsfwCaW2usFHQ
https://mailarchive.ietf.org/arch/msg/cbor/5MuDSyPivZ7JfPhsfwCaW2usFHQ
https://mailarchive.ietf.org/arch/msg/cbor/5MuDSyPivZ7JfPhsfwCaW2usFHQ

A.1.2. Python

Container Encoding Tag Decodable Tags

TypedDict 136 136

namedtuple 132 132, 136

dict 128 128, 132, 136

OrderedDict 130 130, 134, 138

list of 2-tuples 131 All

Table 5

A.1.3. C++

Container(s) Encoding Tag Decodable Tags

Map<K, T> 136 136

Map<K, D> 132 132, 136

Map<D, D> 128 128, 132, 136

MultiMap<K, T> 137 137

MultiMap<K, D> 133 133

MultiMap<D, D> 129 128, 129

Sequence<Pair<K, T>> 139 [136, 139]

Sequence<Pair<K, D>> 135 [132, 139]

Sequence<Pair<D, D>> 131 All

Table 6

Legend:

K: Static key type

T: Static value type

D: Suitable dynamic type, such as std::any or std::variant

Map: std::map or std::unordered_map

MultiMap: std::multimap or std::unordered_multimap

Sequence: Sequence container that maintains order (e.g.

std::vector)

Pair: Object containing a key and a value, such as std::pair, or

std::tuple.

Note that a C++ std::map stores its key-value pairs in a sorted

fashion, and does not preserve insertion order in the same manner as

Python's OrderedDict.

A.2. CDDL Implementation Considerations

TBD

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

¶

¶

Acknowledgements

The CBOR tags defined in this document were developed by Emile

Cormier under the sponsorship of Duc Luong, based on discussions

with Kio Smallwood and Joe Hildebrand. The CDDL control operators

defined in this document were developed by Carsten Bormann, Brendan

Moran, and Henk Birkholz.

Contributors

Kio Smallwood

Joe Hildebrand

Authors' Addresses

Carsten Bormann (editor)

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

Brendan Moran

Arm Limited

Email: Brendan.Moran@arm.com

Henk Birkholz

Fraunhofer SIT

Email: henk.birkholz@sit.fraunhofer.de

Emile Cormier

Email: emile.cormier.jr@gmail.com

¶

tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:Brendan.Moran@arm.com
mailto:henk.birkholz@sit.fraunhofer.de
mailto:emile.cormier.jr@gmail.com

	Map-like data in CBOR and CDDL
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. CBOR tags for map-like data items
	2.1. Summary
	2.2. Key/Value Type
	2.3. Ordering
	2.4. Key Uniqueness
	2.5. Data Item
	2.6. Related Tags (Informative)
	2.6.1. Tag 259
	2.6.2. Tag 275
	2.6.3. Tag TBD279
	2.6.4. Tag TDB280

	3. CDDL Support for Map-Like Data Items
	3.1. Map notation for map-like data items
	3.2. Uniqueness

	4. CDDL typenames
	5. IANA Considerations
	5.1. Tags
	5.2. CDDL control operators

	6. Implementation Status
	7. Security considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Implementation Considerations
	A.1. Programming Language Containers (Informative)
	A.1.1. ECMAScript
	A.1.2. Python
	A.1.3. C++

	A.2. CDDL Implementation Considerations
	Acknowledgements
	Contributors
	Authors' Addresses

