
CoRE Working Group C. Bormann
Internet-Draft K. Hartke
Intended status: Informational Universitaet Bremen TZI
Expires: June 9, 2013 December 06, 2012

Miscellaneous additions to CoAP
draft-bormann-coap-misc-22

Abstract

 This short I-D makes a number of partially interrelated proposals how
 to solve certain problems in the CoRE WG's main protocol, the
 Constrained Application Protocol (CoAP). The current version has
 been resubmitted to keep information about these proposals available;
 the proposals are not all fleshed out at this point in time.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 9, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bormann & Hartke Expires June 9, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoAP-misc December 2012

Table of Contents

1. Introduction . 4
2. Observing Resources in CoAP 5
3. The Base-Uri Option . 8
4. Acknowledgements . 9
5. References . 10
5.1. Normative References 10
5.2. Informative References 11

Appendix A. The Nursery (Things that still need to ripen a
 bit) . 12

A.1. Envelope Options . 12
A.2. Payload-Length Option 13
A.3. URI Authorities with Binary Adresses 13
A.4. Length-aware number encoding (o256) 14
A.5. SMS encoding . 16
A.5.1. ASCII-optimized SMS encoding 17

A.6. CONNECT . 19
A.6.1. Requesting a Tunnel with CONNECT 20
A.6.2. Using a CONNECT Tunnel 20
A.6.3. Closing down a CONNECT Tunnel 21

Appendix B. The Museum (Things we did, but maybe not exactly
 this way) . 22

B.1. Getting rid of artificial limitations 22
B.1.1. Beyond 270 bytes in a single option 22
B.1.2. Beyond 15 options 23

 B.1.3. Implementing the option delimiter for 15 or more
 options . 26

B.1.4. Option Length encoding beyond 270 bytes 27
B.2. Registered Option . 30
B.2.1. A Separate Suboption Number Space 30
B.2.2. Opening Up the Option Number Space 31

B.3. Enabling Protocol Evolution 35
B.3.1. Potential new option number allocation 36

B.4. Patience, Leisure, and Pledge 38
B.4.1. Patience . 38
B.4.2. Leisure . 39
B.4.3. Pledge . 39
B.4.4. Option Formats . 40

Appendix C. The Cemetery (Things we won't do) 41
C.1. Example envelope option: solving #230 41
C.2. Example envelope option: proxy-elective options 42
C.3. Stateful URI compression 42

Appendix D. Experimental Options 44
D.1. Options indicating absolute time 44
D.2. Representing Durations 45
D.3. Rationale . 46
D.4. Pseudo-Floating Point 47

Bormann & Hartke Expires June 9, 2013 [Page 2]

Internet-Draft CoAP-misc December 2012

D.5. A Duration Type for CoAP 48
 Authors' Addresses . 55

Bormann & Hartke Expires June 9, 2013 [Page 3]

Internet-Draft CoAP-misc December 2012

1. Introduction

 The CoRE WG is tasked with standardizing an Application Protocol for
 Constrained Networks/Nodes, CoAP [I-D.ietf-core-coap]. This protocol
 is intended to provide RESTful [REST] services not unlike HTTP
 [RFC2616], while reducing the complexity of implementation as well as
 the size of packets exchanged in order to make these services useful
 in a highly constrained network of themselves highly constrained
 nodes.

 This objective requires restraint in a number of sometimes
 conflicting ways:

 o reducing implementation complexity in order to minimize code size,

 o reducing message sizes in order to minimize the number of
 fragments needed for each message (in turn to maximize the
 probability of delivery of the message), the amount of
 transmission power needed and the loading of the limited-bandwidth
 channel,

 o reducing requirements on the environment such as stable storage,
 good sources of randomness or user interaction capabilities.

 This draft attempts to address a number of problems not yet
 adequately solved in [I-D.ietf-core-coap]. The solutions proposed to
 these problems are somewhat interrelated and are therefore presented
 in one draft. As of the current version of the draft, the main body
 is almost empty, since few significant problems remain with CoAP or
 its satellite specifications.

 The appendix contains the "CoAP cemetery" (Appendix C, possibly later
 to move into its own draft), documenting roads that the WG decided
 not to take, in order to spare readers from reinventing them in vain.
 There is also a "CoAP museum" (Appendix B), which documents previous
 forms of proposals part of which did make it into the main documents
 in one form or another. Finally, the "CoAP nursery" (Appendix A)
 contains half- to fully-baked proposals that might become interesting
 as the basis for future extensions.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The term "byte" is used in its now customary sense as a synonym for
 "octet".

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119

Bormann & Hartke Expires June 9, 2013 [Page 4]

Internet-Draft CoAP-misc December 2012

2. Observing Resources in CoAP

 (Co-Author for this section: Matthias Kovatsch)

 There are two open issues related to -observe
 [I-D.ietf-core-observe]:

 o mixing freshness and observation lifetime, and

 o non-cacheable resources.

 To solve the first issue, we think that -observe should be clarified
 as follows:

 A server sends at least some notifications as confirmable messages.
 Each confirmable notification is an opportunity for the server to
 check if the client is still there. If the client acknowledges the
 notification, it is assumed to be well and alive and still interested
 in the resource. If it rejects the message with a reset message or
 if it doesn't respond, it is assumed not longer to be interested and
 is removed from the list of observers. So an observation
 relationship can potentially go on forever, if the client
 acknowledges each confirmable notification. If the server doesn't
 send a notification for a while and wants to check if the client is
 still there, it may send a confirmable notification with the current
 resource state to check that.

 So there is no mixing of freshness and lifetime going on.

 The other issue is a bit less trivial to solve. The problem is that
 normal CoAP and -observe actually have very different freshness
 models:

 Normally, when a client wants to know the current state of a
 resource, it retrieves a representation, uses it and stores it in its
 cache. Later, when it wants to know the current state again, it can
 either use the stored representation provided that it's still fresh,
 or retrieve a new representation, use it and store it in its cache.

 If a server knows when the state of the resource will change the next
 time, it can set the Max-Age of the representation to an accurate
 time span. So the change of the resource state will coincide with
 the expiration of the freshness of the representation stored in the
 client's cache (ignoring network latency).

 But if the resource changes its state unpredictably at any time, the
 server can set the Max-Age only to an estimate. If the state then
 actually changes before the freshness expires, the client wrongly

Bormann & Hartke Expires June 9, 2013 [Page 5]

Internet-Draft CoAP-misc December 2012

 believes it has fresh information. Conversely, if the freshness
 expires and the client wants to know the current state, the client
 wrongly believes it has to make a new request although the
 representation is actually still fresh (this is defused by ETag
 validation).

 -observe doesn't have these kinds of problems: the server does not
 have to predict when the resource will change its state the next
 time. It just sends a notification when it does. The new
 representation invalidates the old representation stored in the
 client's cache. So the client always has a fresh representation that
 it can use when it wants to know the current resource state without
 ever having to make a request. An explicit Max-Age is not needed for
 determining freshness.

 But -observe has a different set of problems:

 The first problem is that the resource may change its state more
 often than there is bandwidth available or the client can handle.
 Thus, -observe cannot make any guarantee that a client will see every
 state change. The solution is that -observe guarantees that the
 client will eventually see the latest state change, and follows a
 best effort approach to enable the client to see as many state
 changes as possible.

 The second problem is that, when a notification doesn't arrive for a
 while, the client does not know if the resource did not change its
 state or if the server lost its state and forgot that the client is
 interested in the resource. We propose the following solution: With
 each notification that the server sends, it makes a promise to send
 another notification, and that it will send this next notification at
 latest after a certain time span. This time span is included with
 each notification. So when no notification arrives for a while and
 the time span has not expired yet, the client assumes that the
 resource did not change its state. If the time span has expired, no
 notification has arrived and the client wants to know the current
 state of the resource, it has to make a new request.

 The third problem is that, when an intermediary is observing a
 resource and wants to create a response from a representation stored
 in its cache, it needs to specify a Max-Age. But the intermediary
 cannot predict when it will receive the next notification, because
 the next notification can arrive at any time. Unlike the origin
 server, it also doesn't have the application-specific knowledge that
 the origin server has. We propose the following solution: With each
 notification a server sends, it includes a value that an intermediary
 should use to calculate the Max-Age.

Bormann & Hartke Expires June 9, 2013 [Page 6]

Internet-Draft CoAP-misc December 2012

 To summarize:

 o A notification doesn't have a Max-Age; it's fresh until the next
 notification arrives. A notification is the promise for another
 notification that will arrive at latest after Next-Notification-
 At-Latest. This value is included with every notification. The
 promise includes that the server attempts to transmit a
 notification to the client for the promised time span, even if the
 client does not seem to respond, e.g., due to a temporary network
 outage.

 o A notification also contains another value, called Max-Age-Hint.
 This value is used by a cache to calculate a Max-Age for the
 representation if needed. In a cache, the Max-Age-Hint of a
 representation is counted down like Max-Age. When it reaches
 zero, however, the representation can be still used to satisfy
 requests, but is non-cacheable (i.e., Max-Age is 0). The Max-Age-
 Hint must be less than or equal to Next-Notification-At-Latest.

 We see two possible ways to encode Next-Notification-At-Latest and
 Max-Age-Hint in a message:

 o The first way is to require the values of Next-Notification-At-
 Latest and Max-Age-Hint to be the same, although they are
 conceptually unrelated. Then, a single option in the message can
 be used to hold both values.

 o The second way is to include two options, one for Next-
 Notification-At-Latest and one for Max-Age-Hint. Since Next-
 Notification-At-Latest is less than or equal to Max-Age-Hint, the
 first option should indicates Max-Age-Hint, and the second option
 Next-Notification-At-Latest minus Max-Age-Hint with a default
 value of 0.

Bormann & Hartke Expires June 9, 2013 [Page 7]

Internet-Draft CoAP-misc December 2012

3. The Base-Uri Option

 A proxy that forwards a response with embedded URIs may need to
 indicate a base URI relative to which the embedded URIs need to be
 interpreted that is different from the original request URI. E.g.,
 when the proxy forwarded the request to a multicast address, it may
 need to indicate which specific server sent the response. A similar
 requirement is the need to provide a request URI relative to which
 the Location-* options can be interpreted.

 The Base-Uri Option can be used in a response to provide this
 information. It is structured like the Proxy-Uri option, but it is
 elective and safe to forward (whether it is a cache-key is
 irrelevant, as it is a response option only).

 +--------+----------+-----------+
 | Number | Name | Reference |
 +--------+----------+-----------+
 | TBD | Base-Uri | [RFCXXXX] |
 +--------+----------+-----------+

Bormann & Hartke Expires June 9, 2013 [Page 8]

Internet-Draft CoAP-misc December 2012

4. Acknowledgements

 This work was partially funded by the Klaus Tschira Foundation and by
 Intel Corporation.

 Of course, much of the content of this draft is the result of
 discussions with the [I-D.ietf-core-coap] authors.

 Patience and Leisure were influenced by a mailing list discussion
 with Esko Dijk, Kepeng Li, and Salvatore Loreto - thanks!

Bormann & Hartke Expires June 9, 2013 [Page 9]

Internet-Draft CoAP-misc December 2012

5. References

5.1. Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-12 (work in progress), October 2012.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP",

draft-ietf-core-observe-07 (work in progress),
 October 2012.

 [I-D.ietf-httpbis-p1-messaging]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing",

draft-ietf-httpbis-p1-messaging-21 (work in progress),
 October 2012.

 [I-D.ietf-httpbis-p4-conditional]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Conditional Requests",

draft-ietf-httpbis-p4-conditional-21 (work in progress),
 October 2012.

 [I-D.ietf-httpbis-p6-cache]
 Fielding, R., Nottingham, M., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Caching",

draft-ietf-httpbis-p6-cache-21 (work in progress),
 October 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, May 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-12
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-21
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-21
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-21
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc6256

Bormann & Hartke Expires June 9, 2013 [Page 10]

Internet-Draft CoAP-misc December 2012

5.2. Informative References

 [CoRE201] "Clarify use of retransmission window for duplicate
 detection", CoRE ticket #201, 2012,
 <http://trac.tools.ietf.org/wg/core/trac/ticket/201>.

 [CoRE214] "Adopt vendor-defined option into core-coap", CoRE
 ticket #214, 2012,
 <http://trac.tools.ietf.org/wg/core/trac/ticket/214>.

 [CoRE230] "Multiple Location options need to be processed as a
 unit", CoRE ticket #230, 2012,
 <http://trac.tools.ietf.org/wg/core/trac/ticket/230>.

 [CoRE241] "Proxy Safe & Cache Key indication for options", CoRE
 ticket #241, 2012,
 <http://trac.tools.ietf.org/wg/core/trac/ticket/241>.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000.

 [RFC1924] Elz, R., "A Compact Representation of IPv6 Addresses",
RFC 1924, April 1996.

 [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
 HTTP/1.1", RFC 2817, May 2000.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, March 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC6648] Saint-Andre, P., Crocker, D., and M. Nottingham,
 "Deprecating the "X-" Prefix and Similar Constructs in
 Application Protocols", BCP 178, RFC 6648, June 2012.

http://trac.tools.ietf.org/wg/core/trac/ticket/201
http://trac.tools.ietf.org/wg/core/trac/ticket/214
http://trac.tools.ietf.org/wg/core/trac/ticket/230
http://trac.tools.ietf.org/wg/core/trac/ticket/241
https://datatracker.ietf.org/doc/html/rfc1924
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc5198
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/bcp178
https://datatracker.ietf.org/doc/html/rfc6648

Bormann & Hartke Expires June 9, 2013 [Page 11]

Internet-Draft CoAP-misc December 2012

Appendix A. The Nursery (Things that still need to ripen a bit)

A.1. Envelope Options

 As of [I-D.ietf-core-coap], options can take one of four types, two
 of which are mostly identical:

 o uint: A non-negative integer which is represented in network byte
 order using a variable number of bytes (see [I-D.ietf-core-coap]

Appendix A);

 o string: a sequence of bytes that is nominally a Net-Unicode string
 [RFC5198];

 o opaque: a sequence of bytes.

 o empty (not explicitly identified as a fourth type in
 [I-D.ietf-core-coap]).

 It turns out some options would benefit from some internal structure.
 Also, it may be a good idea to be able to bundle multiple options
 into one, in order to ensure consistency for a set of elective
 options that need to be processed all or nothing (i.e., the option
 becomes critical as soon as another option out of the set is
 processed, too).

 In this section, we introduce a fifth CoAP option type: Envelope
 options.

 An envelope option is a sequence of bytes that looks and is
 interpreted exactly like a CoAP sequence of options. Instead of an
 option count or an end-of-option marker, the sequence of options is
 terminated by the end of the envelope option.

 The nested options (options inside the envelope option) may come from
 the same number space as the top-level CoAP options, or the envelope
 option may define its own number space - this choice needs to be
 defined for each envelope option.

 If the top-level number space is used, the envelope option typically
 will restrict the set of options that actually can be used in the
 envelope. In particular, it is unlikely that an envelope option will
 allow itself inside the envelope (this would be a recursive option).

 Envelope options are a general, but simple mechanism. Some of its
 potential uses are illustrated by two examples in the cemetery:

Appendix C.1 and Appendix C.2. (Each of these examples has its own
 merits and demerits, which led us to decide not to pursue either of

https://datatracker.ietf.org/doc/html/rfc5198

Bormann & Hartke Expires June 9, 2013 [Page 12]

Internet-Draft CoAP-misc December 2012

 them right now, but this should be discussed separately from the
 concept of Envelope options employed in the examples.)

A.2. Payload-Length Option

 Not all transport mappings may provide an unambiguous length of the
 CoAP message. For UDP, it may also be desirable to pack more than
 one CoAP message into one UDP payload (aggregation); in that case,
 for all but the last message there needs to be a way to delimit the
 payload of that message.

 This can be solved using a new option, the Payload-Length option. If
 this option is present, the value of this option is an unsigned
 integer giving the length of the payload of the message (note that
 this integer can be zero for a zero-length payload, which can in turn
 be represented by a zero-length option value). (In the UDP
 aggregation case, what would have been in the payload of this message
 after "payload-length" bytes is then actually one or more additional
 messages.)

A.3. URI Authorities with Binary Adresses

 One problem with the way URI authorities are represented in the URI
 syntax is that the authority part can be very bulky if it encodes an
 IPv6 address in ASCII.

 Proposal: Provide an option "Uri-Authority-Binary" that can be an
 even number of bytes between 2 and 18 except 12 or 14.

 o If the number of bytes is 2, the destination IP address of the
 packet transporting the CoAP message is implied.

 o If the number of bytes is 4 or 6, the first four bytes of the
 option value are an IPv4 address in binary.

 o If the number of bytes is 8 or 10, the first eight bytes are the
 lower 64 bits of an IPv6 address; the upper eight bytes are
 implied from the destination address of the packet transporting
 the CoAP message.

 o If the number of bytes is 16 or 18, the first 16 bytes are an IPv6
 address.

 o If two more bytes remain, this is a port number (as always in
 network byte order).

 The resulting authority is (conceptually translated into ASCII and)
 used in place of an Uri-Authority option, or inserted into a Proxy-

Bormann & Hartke Expires June 9, 2013 [Page 13]

Internet-Draft CoAP-misc December 2012

 Uri. Examples:

 +-------------+------------------+---------+------------------------+
 | Proxy-Uri | Uri-Authority-Bi | Uri-Pat | URI |
 | | nary | h | |
 +-------------+------------------+---------+------------------------+
(none)	(none)	(none)	"/"
(none)	(none)	'temp'	"/temp"
(none)	2 bytes: 61616	'temp'	"coap://[DA]:61616/tem
			p"
(none)	16 bytes:	temp	"coap://[2000::1]/temp
	2000::1		"
'http://'	10 bytes:	(none)	"http://[DA::123:45]:6
	::123:45 + 616		16"
'http:///te	18 bytes:	(none)	"http://[2000::1]:616/
mp'	2000::1 + 616		temp"
 +-------------+------------------+---------+------------------------+

A.4. Length-aware number encoding (o256)

 The number encoding defined in Appendix A of [I-D.ietf-core-coap] has
 one significant flaw: Every number has an infinite number of
 representations, which can be derived by adding leading zero bytes.
 This runs against the principle of minimizing unnecessary choice.
 The resulting uncertainty in encoding ultimately leads to unnecessary
 interoperability failures. (It also wastes a small fraction of the
 encoding space, i.e., it wastes bytes.)

 We could solve the first, but not the second, by outlawing leading
 zeroes, but then we have to cope with error cases caused by illegal
 values, another source of interoperability problems.

 The number encoding "o256" defined in this section avoids this flaw.
 The suggestion is not to replace CoAP's "uint" encoding wholesale
 (CoAP is already too widely implemented for such a change), but to
 consider this format for new options.

 The basic requirements for such an encoding are:

 o numbers are encoded as a sequence of zero or more bytes

 o each number has exactly one encoding

Bormann & Hartke Expires June 9, 2013 [Page 14]

Internet-Draft CoAP-misc December 2012

 o for a < b, encoding-size(a) <= encoding-size(b) -- i.e., with
 larger numbers, the encoding only gets larger, never smaller
 again.

 o within each encoding size (0 bytes, 1 byte, etc.), lexicographical
 ordering of the bytes is the same as numeric ordering

 Obviously, there is only one encoding that satisfies all these
 requirements. As illustrated by Figure 1, this is unambiguously
 derived by

 1. enumerating all possible byte sequences, ordered by length and
 within the same length in lexicographic ordering, and,

 2. assigning sequential cardinals.

 0x'' -> 0
 0x'00' -> 1
 0x'01' -> 2
 0x'02' -> 3
 ...
 0x'fe' -> 255
 0x'ff' -> 256
 0x'0000' -> 257
 0x'0001' -> 258
 ...
 0x'fefd' -> 65534
 0x'fefe' -> 65535
 0x'feff' -> 65536
 ...
 0x'ffff' -> 65792
 0x'000000' -> 65793
 0x'000001' -> 65794

 Figure 1: Enumerating byte sequences by length and then lexicographic
 order

 This results in an exceedingly simple algorithm: each byte is
 interpreted in the base-256 place-value system, but stands for a
 number between 1 and 256 instead of 0 to 255. We therefore call this
 encoding "o256" (one-to-256). 0 is always encoded in zero bytes; 1 to
 256 is one byte, 257 (0x101) to 65792 (0x10100) is two bytes, 65793
 (0x10101) to 16843008 (0x1010100) is three bytes, etc.

 To further illustrate the algorithmic simplicity, pseudocode for
 encoding and decoding is given in Figure 2 and Figure 3, respectively
 (in the encoder, "prepend" stands for adding a byte at the _leading_

Bormann & Hartke Expires June 9, 2013 [Page 15]

Internet-Draft CoAP-misc December 2012

 edge, the requirement for which is a result of the network byte
 order). Note that this differs only in a single subtraction/addition
 (resp.) of one from the canonical algorithm for Appendix A uints.

 while num > 0
 num -= 1
 prepend(num & 0xFF)
 num >>= 8
 end

 Figure 2: o256 encoder (pseudocode)

 num = 0
 each_byte do |b|
 num <<= 8
 num += b + 1
 end

 Figure 3: o256 decoder (pseudocode)

 On a more philosophical note, it can be observed that o256 solves the
 inverse problem of Self-Delimiting Numeric Values (SDNV) [RFC6256]:
 SDNV encodes variable-length numbers together with their length
 (allowing decoding without knowing their length in advance, deriving
 delimiting information from the number encoding). o256 encodes
 variable-length numbers when there is a way to separately convey the
 length (as in CoAP options), encoding (and later deriving) a small
 part of the numeric value into/from that size information.

A.5. SMS encoding

 For use in SMS applications, CoAP messages can be transferred using
 SMS binary mode. However, there is operational experience showing
 that some environments cannot successfully send a binary mode SMS.

 For transferring SMS in character mode (7-bit characters), base64-
 encoding [RFC4648] is an obvious choice. 3 bytes of message (24 bits)
 turn into 4 characters, which cosume 28 bits. The overall overhead
 is approximately 17 %; the maximum message size is 120 bytes (160 SMS
 characters).

 If a more compact encoding is desired, base85 encoding can be
 employed (however, probably not the version defined in [RFC1924] --
 instead, the version used in tools such as btoa and PDF should be
 chosen). However, this requires division operations. Also, the
 base85 character set includes several characters that cannot be
 transferred in a single 7-bit unit in SMS and/or are known to cause

https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc1924

Bormann & Hartke Expires June 9, 2013 [Page 16]

Internet-Draft CoAP-misc December 2012

 operational problems. A modified base85 character set can be defined
 to solve the latter problem. 4 bytes of message (32 bits) turn into 5
 characters, which consume 35 bits. The overall overhead is
 approximately 9.3 %; the resulting maximum message size is 128 bytes
 (160 SMS characters).

 Base64 and base85 do not make use of the fact that much CoAP data
 will be ASCII-based. Therefore, we define the following experimental
 SMS encoding.

A.5.1. ASCII-optimized SMS encoding

 Not all 128 theoretically possible SMS characters are operationally
 free of problems. We therefore define:

 Shunned code characters: @ sign, as it maps to 0x00

 LF and CR signs (0x0A, 0x0D)

 uppercase C cedilla (0x09), as it is often mistranslated in
 gateways

 ESC (0x1B), as it is used in certain character combinations only

 Some ASCII characters cannot be transferred in the base SMS character
 set, as their code positions are taken by non-ASCII characters.
 These are simply encoded with their ASCII code positions, e.g., an
 underscore becomes a section mark (even though underscore has a
 different code position in the SMS character set).

 Equivalently translated input bytes: $, @, [, \,], ^, _, `, {, |,
 }, ~, DEL

 In other words, bytes 0x20 to 0x7F are encoded into the same code
 positions in the 7-bit character set.

 Out of the remaining code characters, the following SMS characters
 are available for encoding:

 Non-equivalently translated (NET) code characters: 0x01 to 0x08, (8
 characters)

 0x0B, 0x0C, (2 characters)

 0x0E to 0x1A, (13 characters)

Bormann & Hartke Expires June 9, 2013 [Page 17]

Internet-Draft CoAP-misc December 2012

 0x1C to 0x1F, (4 characters)

 Of the 27 NET code characters, 18 are taken as prefix characters (see
 below), and 8 are defined as directly translated characters:

 Directly translated bytes: Equivalently translated input bytes are
 represented as themselves

 0x00 to 0x07 are represented as 0x01 to 0x08

 This leaves 0x08 to 0x1F and 0x80 to 0xFF. Of these, the bytes 0x80
 to 0x87 and 0xA0 to 0xFF are represented as the bytes 0x00 to 0x07
 (represented by characters 0x01 to 0x08) and 0x20 to 0x7F, with a
 prefix of 1 (see below). The characters 0x08 to 0x1F are represented
 as the characters 0x28 to 0x3F with a prefix of 2 (see below). The
 characters 0x88 to 0x9F are represented as the characters 0x48 to
 0x5F with a prefix of 2 (see below). (Characters 0x01 to 0x08, 0x20
 to 0x27, 0x40 to 0x47, and 0x60 to 0x7f with a prefix of 2 are
 reserved for future extensions, which could be used for some
 backreferencing or run-length compression.)

 Bytes that do not need a prefix (directly translated bytes) are sent
 as is. Any byte that does need a prefix (i.e., 1 or 2) is preceded
 by a prefix character, which provides a prefix for this and the
 following two bytes as follows:

 +------+-----+---+------+-----+
 | 0x0B | 100 | | 0x15 | 200 |
 +------+-----+---+------+-----+
 | 0x0C | 101 | | 0x16 | 201 |
 | | | | | |
 | 0x0E | 102 | | 0x17 | 202 |
 | | | | | |
 | 0x0F | 110 | | 0x18 | 210 |
 | | | | | |
 | 0x10 | 111 | | 0x19 | 211 |
 | | | | | |
 | 0x11 | 112 | | 0x1A | 212 |
 | | | | | |
 | 0x12 | 120 | | 0x1C | 220 |
 | | | | | |
 | 0x13 | 121 | | 0x1D | 221 |
 | | | | | |
 | 0x14 | 122 | | 0x1E | 222 |
 +------+-----+---+------+-----+

 (This leaves one non-shunned character, 0x1F, for future extension.)

Bormann & Hartke Expires June 9, 2013 [Page 18]

Internet-Draft CoAP-misc December 2012

 The coding overhead of this encoding for random bytes is similar to
 Base85, without the need for a division/multiplication. For bytes
 that are mostly ASCII characters, the overhead can easily become
 negative. (Conversely, for bytes that are more likely to be non-
 ASCII than in a random sequence of bytes, the overhead becomes
 greater.)

 So, for instance, for the CoAP message in Figure 4:

 ver tt code mid
 1 ack 2.05 17033
 content_type 40
 token sometok
 3c 2f 3e 3b 74 69 74 6c 65 3d 22 47 65 6e 65 72 |</>;title="Gener|
 61 6c 20 49 6e 66 6f 22 3b 63 74 3d 30 2c 3c 2f |al Info";ct=0,</|
 74 69 6d 65 3e 3b 69 66 3d 22 63 6c 6f 63 6b 22 |time>;if="clock"|
 3b 72 74 3d 22 54 69 63 6b 73 22 3b 74 69 74 6c |;rt="Ticks";titl|
 65 3d 22 49 6e 74 65 72 6e 61 6c 20 43 6c 6f 63 |e="Internal Cloc|
 6b 22 3b 63 74 3d 30 2c 3c 2f 61 73 79 6e 63 3e |k";ct=0,</async>|
 3b 63 74 3d 30 |;ct=0 |

 Figure 4: CoAP response message as captured and decoded

 The 116 byte unencoded message is shown as ASCII characters in
 Figure 5 (\xDD stands for the byte with the hex digits DD):

 bEB\x89\x11(\xA7sometok</>;title="General Info";ct=0,</time>
 ;if="clock";rt="Ticks";title="Internal Clock";ct=0,</async>;ct=0

 Figure 5: CoAP response message shown as unencoded characters

 The equivalent SMS encoding is shown as equivalent-coded SMS
 characters in Figure 6 (7 bits per character, \x12 is a 220 prefix
 and \x0B is a 100 prefix, the rest is shown in equivalent encoding),
 adding two characters of prefix overhead, for a total length of 118
 7-bit characters or 104 (103.25 plus padding) bytes:

 bEB\x12I1(\x0B'sometok</>;title="General Info";ct=0,</time>
 ;if="clock";rt="Ticks";title="Internal Clock";ct=0,</async>;ct=0

 Figure 6: CoAP response message shown as SMS-encoded characters

A.6. CONNECT

 [RFC2817] defines the HTTP CONNECT method to establish a TCP tunnel
 through a proxy so that end-to-end TLS connections can be made
 through the proxy. Recently, a requirement for similar functionality
 has been discussed for CoAP. This section defines a straw-man

Bormann & Hartke Expires June 9, 2013 [Page 19]

Internet-Draft CoAP-misc December 2012

 CONNECT method and related methods and response codes for CoAP.

 (IANA considerations for this section TBD.)

A.6.1. Requesting a Tunnel with CONNECT

 CONNECT is allocated as a new method code in the "CoAP Method Codes"
 registry. When a client makes a CONNECT request to an intermediary,
 the intermediary evaluates the Uri-Host, Uri-Port, and/or the
 authority part of the Proxy-Uri Options in a way that is defined by
 the security policy of the intermediary. If the security policy
 allows the allocation of a tunnel based on these parameters, the
 method returns an empty payload and a response code of 2.30 Tunnel
 Established. Other possible response codes include 4.03 Forbidden.

 It may be the case that the intermediary itself can only reach the
 requested origin server through another intermediary. In this case,
 the first intermediary SHOULD make a CONNECT request of that next
 intermediary, requesting a tunnel to the authority. A proxy MUST NOT
 respond with any 2.xx status code unless it has either a direct or
 tunnel connection established to the authority.

 An origin server which receives a CONNECT request for itself MAY
 respond with a 2.xx status code to indicate that a tunnel is
 established to itself.

 Code 2.30 "Tunnel Established" is allocated as a new response code in
 the "CoAP Response Codes" registry.

A.6.2. Using a CONNECT Tunnel

 Any successful (2.xx) response to a CONNECT request indicates that
 the intermediary has established a tunnel to the requested host and
 port. The tunnel is bound to the requesting end-point and the Token
 supplied in the request (as always, the default Token is admissible).
 The tunnel can be used by the client by making a DATAGRAM request.

 DATAGRAM is allocated as a new method code in the "CoAP Method Codes"
 registry. When a client makes a DATAGRAM request to an intermediary,
 the intermediary looks up the tunnel bound to the client end-point
 and Token supplied in the DATAGRAM request (no other Options are
 permitted). If a tunnel is found and the intermediary's security
 policy permits, the intermediary forwards the payload of the DATAGRAM
 request as the UDP payload towards the host and port established for
 the tunnel. No response is defined for this request (note that the
 request can be given as a CON or NON request; for CON, there will be
 an ACK on the message layer if the tunnel exists).

Bormann & Hartke Expires June 9, 2013 [Page 20]

Internet-Draft CoAP-misc December 2012

 The security policy on the intermediary may restrict the allowable
 payloads based on its security policy, possibly considering host and
 port. An inadmissible payload SHOULD cause a 4.03 Forbidden response
 with a diagnostic message as payload.

 The UDP payload of any datagram received from the tunnel and admitted
 by the security policy is forwarded to the client as the payload of a
 2.31 "Datagram Received" response. The response does not carry any
 Option except for Token, which identifies the tunnel towards the
 client.

 Code 2.31 "Datagram Received" is allocated as a new response code in
 the "CoAP Response Codes" registry.

 An origin server that has established a tunnel to itself processes
 the CoAP payloads of related DATAGRAM requests as it would process an
 incoming UDP payload, and forwards what would be outgoing UDP
 payloads in 2.31 "Datagram Received" responses.

A.6.3. Closing down a CONNECT Tunnel

 A 2.31 "Datagram Received" response may be replied to with a RST,
 which closes down the tunnel. Similarly, the Token used in the
 tunnel may be reused by the client for a different purpose, which
 also closes down the tunnel.

Bormann & Hartke Expires June 9, 2013 [Page 21]

Internet-Draft CoAP-misc December 2012

Appendix B. The Museum (Things we did, but maybe not exactly this way)

B.1. Getting rid of artificial limitations

 Artificial limitations are limitations of a protocol or system that
 are not rooted in limitations of actual capabilities, but in
 arbitrary design decisions. Proper system design tries to avoid
 artificial limitations, as these tend to cause complexity in systems
 that need to work with these limitations.

 E.g., the original UNIX filesystem had an artificial limitation of
 the length of a path name component to 14 bytes. This led to a
 cascade of workarounds in programs that manipulate file names: E.g.,
 systematically replacing a ".el" extension in a filename with a
 ".elc" for the compiled file might exceed the limit, so all ".el"
 files were suddenly limited to 13-byte filenames.

 Note that, today, there still is a limitation in most file system
 implementations, typically at 255. This just happens to be high
 enough to rarely be of real-world concern; we will refer to this case
 as a "painless" artificial limitation.

 CoAP-08 had two highly recognizable artificial limitations in its
 protocol encoding

 o The number of options in a single message is limited to 15 max.

 o The length of an option is limited to 270 max.

 It has been argued that the latter limitation causes few problems,
 just as the 255-byte path name component limitation in filenames
 today causes few problems. Appendix B.1.1 provided a design to
 extend this; as a precaution to future extensions of this kind, the
 current encoding for length 270 (eight ones in the extension byte)
 could be marked as reserved today. Since, Matthias Kovatsch has
 proposed a simpler scheme that seems to gain favor in the WG, see

Appendix B.1.4.

 The former limitation has been solved in CoAP-09. A historical
 discussion of other approaches for going beyond 15 options is in

Appendix B.1.2. Appendix B.1.3 discusses implementation.

B.1.1. Beyond 270 bytes in a single option

 The authors would argue that 270 as the maximum length of an option
 is already beyond the "painless" threshold.

 If that is not the consensus of the WG, the scheme can easily be

Bormann & Hartke Expires June 9, 2013 [Page 22]

Internet-Draft CoAP-misc December 2012

 extended as in Figure 7:

 for 15..269:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | Length - 15 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 for 270..65805:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | 1 1 1 1 1 1 1 1 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Length - 270 (in network byte order) |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 7: Ridiculously Long Option Header

 The infinite number of obvious variations on this scheme are left as
 an exercise to the reader.

 Again, as a precaution to future extensions, the current encoding for
 length 270 (eight ones in the extension byte) could be marked as
 reserved today.

B.1.2. Beyond 15 options

 (This section keeps discussion that is no longer needed as we have
 agreed to do what is documented in Appendix B.1.3).

 The limit of 15 options is motivated by the fixed four-bit field "OC"
 that is used for indicating the number of options in the fixed-length
 CoAP header (Figure 8).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | OC | Code | Message ID |
 +-+
 | Options (if any) ...
 +-+
 | Payload (if any) ...
 +-+

 Figure 8: Four-byte fixed header in a CoAP Message

Bormann & Hartke Expires June 9, 2013 [Page 23]

Internet-Draft CoAP-misc December 2012

 Note that there is another fixed four-bit field in CoAP: the option
 length (Figure 9 - note that this figure is not to the same scale as
 the previous figure):

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | Option Delta | Length | for 0..14
 +---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+

 Figure 9: Short Option Header

 Since 15 is inacceptable for a maximum option length, the all-ones
 value (15) was taken out of the set of allowable values for the short
 header, and a long header was introduced that allows the insertion of
 an extension byte (Figure 10):

 for 15..270:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | Length - 15 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 10: Long Option Header

 We might want to use the same technique for the CoAP header as well.
 There are two obvious places where the extension byte could be
 placed:

 1. right after the byte carrying the OC field, so the structure is
 the same as for the option header;

 2. right after the fixed-size CoAP header.

 Both solutions lose the fixed-size-ness of the CoAP header.

 Solution 1 has the disadvantage that the CoAP header is also changing
 in structure: The extension byte is wedged between the first and the
 second byte of the CoAP header. This is unfortunate, as the number
 of options only comes into play when the option processing begins, so
 it is more natural to use solution 2 (Figure 11):

Bormann & Hartke Expires June 9, 2013 [Page 24]

Internet-Draft CoAP-misc December 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | 15 | Code | Message ID |
 +-+
 | OC - 15 | Options ...
 +-+
 | Payload (if any) ...
 +-+

 Figure 11: Extended header for CoAP Messages with 15+ options

 This would allow for up to 270 options in a CoAP message, which is
 very likely way beyond the "painless" threshold.

B.1.2.1. Implementation considerations

 For a message decoder, this extension creates relatively little pain,
 as the number of options only becomes interesting when the encoding
 turns to the options part of the message, which is then simply lead
 in by the extension byte if the four-bit field is 15.

 For a message encoder, this extension is not so rosy. If the encoder
 is constructing the message serially, it may not know in advance
 whether the number of options will exceed 14. None of the following
 implementation strategies is particularly savory, but all of them do
 work:

 1. Encode the options serially under the assumption that the number
 of options will be 14 or less. When the 15th option needs to be
 encoded, abort the option encoding, and restart it from scratch
 one byte further to the left.

 2. Similar to 1, except that the bytes already encoded are all moved
 one byte to right, the extension byte is inserted, and the option
 encoding process is continued.

 3. The encoder always leaves space for the extension byte (at least
 if it can't prove the number will be less thatn 14). If the
 extension byte is not needed, an Option 0 with length 0 is
 encoded instead (i.e., one byte is wasted - this option is
 elective and will be ignored by the receiver).

 As a minimum, to enable strategy 3, the option 0 should be reserved
 at least for the case of length=0.

Bormann & Hartke Expires June 9, 2013 [Page 25]

Internet-Draft CoAP-misc December 2012

B.1.2.2. What should we do now?

 As a minimum proposal for the next version of CoAP, the value 15 for
 OC should be marked as reserved today.

B.1.2.3. Alternatives

 One alternative that has been discussed previously is to have an
 "Options" Option, which allows the carriage of multiple options in
 the belly of a single one. This could also be used to carry more
 than 15 options. However:

 o The conditional introduction of an Options option has
 implementation considerations that are likely to be more severe
 than the ones listed above;

 o since 270 bytes may not be enough for the encoding of _all_
 options, the "Options" option would need to be repeatable. This
 creates many different ways to encode the same message, leading to
 combinatorial explosion in test cases for ensuring
 interoperability.

B.1.2.4. Alternative: Going to a delimiter model

 Another alternative is to spend the additional byte not as an
 extended count, but as an option terminator.

B.1.3. Implementing the option delimiter for 15 or more options

 Implementation note: As can be seen from the proof of concept code
 in Figure 12, the actual implementation cost for a decoder is
 around 4 lines of code (or about 8-10 machine code instructions).

 while numopt > 0
 nextbyte = ... get next byte

 if numopt == 15 # new
 break if nextbyte == 0xF0 # new
 else # new
 numopt -= 1
 end # new

 ... decode the delta and length from nextbyte and handle them
 end

 Figure 12: Implementing the Option Terminator

Bormann & Hartke Expires June 9, 2013 [Page 26]

Internet-Draft CoAP-misc December 2012

 Similarly, creating the option terminator needs about four more lines
 (not marked "old" in the C code in Figure 13).

 b0 = 0x40 + (tt << 4); /* old */
 buffer[0] = b0 + 15; /* guess first byte */

 encode options /* old */

 if (option_count >= 15 || first_fragment_already_shipped)
 buffer[pos++] = 0xF0; /* use delimiter */
 else /* save a byte: */
 buffer[0] = b0 + option_count; /* old: backpatch */

 Figure 13: Creating the Option Terminator

B.1.4. Option Length encoding beyond 270 bytes

 For option lengths beyond 270 bytes, we reserve the value 255 of an
 extension byte to mean "add 255, read another extension byte"
 Figure 14. While this causes the length of the option header to grow
 linearly with the size of the option value, only 0.4 % of that size
 is used. With a focus on short options, this encoding is justified.

Bormann & Hartke Expires June 9, 2013 [Page 27]

Internet-Draft CoAP-misc December 2012

 for 15..269:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | Length - 15 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 for 270..524:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | 1 1 1 1 1 1 1 1 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Length - 270 | Option Value ...
 +---+---+---+---+---+---+---+---+
 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 for 525..779:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | 1 1 1 1 1 1 1 1 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 1 1 1 | Length - 525 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Value ...
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 for 780..1034:
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Option Delta | 1 1 1 1 | 1 1 1 1 1 1 1 1 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | Length - 780 | Option Value ...
 +---+---+---+---+---+---+---+---+
 |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 14: Options beyond 270 bytes

 Options that are longer than 1034 bytes MUST NOT be sent; an option
 that has 255 (all one bits) in the field called "Length - 780" MUST
 be rejected upon reception as an invalid option.

 In the process, the maximum length of all options that are currently
 set at 270 should now be set to a carefully chosen value. With the
 purely encoding-based limit gone, Uri-Proxy should now be restored to
 be a non-repeatable option.

Bormann & Hartke Expires June 9, 2013 [Page 28]

Internet-Draft CoAP-misc December 2012

 A first proposal for a new set of per-option length restrictions
 follows:

 +--------+---------------------+-----+------+--------+--------+
 | number | name | min | max | type | repeat |
 +--------+---------------------+-----+------+--------+--------+
 | 1 | content_type | 0 | 2 | uint | - |
 | | | | | | |
 | 2 | max_age | 0 | 4 | uint | - |
 | | | | | | |
 | 3 | proxy_uri | 1 | 1023 | string | - |
 | | | | | | |
 | 4 | etag | 1 | 8 | opaque | yes |
 | | | | | | |
 | 5 | uri_host | 1 | 255 | string | - |
 | | | | | | |
 | 6 | location_path | 0 | 255 | string | yes |
 | | | | | | |
 | 7 | uri_port | 0 | 2 | uint | - |
 | | | | | | |
 | 8 | location_query | 0 | 255 | string | yes |
 | | | | | | |
 | 9 | uri_path | 0 | 255 | string | yes |
 | | | | | | |
 | 10 | observe | 0 | 2 | uint | - |
 | | | | | | |
 | 11 | token | 1 | 8 | opaque | - |
 | | | | | | |
 | 12 | accept | 0 | 2 | uint | yes |
 | | | | | | |
 | 13 | if_match | 0 | 8 | opaque | yes |
 | | | | | | |
 | 14 | registered_elective | 1 | 1023 | opaque | yes |
 | | | | | | |
 | 15 | uri_query | 1 | 255 | string | yes |
 | | | | | | |
 | 17 | block2 | 0 | 3 | uint | - |
 | | | | | | |
 | 18 | size | 0 | 4 | uint | - |
 | | | | | | |
 | 19 | block1 | 0 | 3 | uint | - |
 | | | | | | |
 | 21 | if_none_match | 0 | 0 | empty | - |
 | | | | | | |
 | 25 | registered_critical | 1 | 1023 | opaque | yes |
 +--------+---------------------+-----+------+--------+--------+

 (Option 14 with a length of 0 is a fencepost only.)

Bormann & Hartke Expires June 9, 2013 [Page 29]

Internet-Draft CoAP-misc December 2012

B.2. Registered Option

 CoAP's option encoding is highly efficient, but works best with small
 option numbers that do not require much fenceposting. The CoAP
 Option Number Registry therefore has a relatively heavyweight
 registration requirement: "IETF Review" as described in [RFC5226].

 However, there is also considerable benefit in a much looser registry
 policy, enabling a first-come-first-served policy for a relatively
 large option number space.

 Here, we discuss two solutions that enable such a registry. One is
 to define a separate mechanism for registered options, discussed in

Appendix B.2.1. Alternatively, we could make it easier to use a
 larger main option number space, discussed in Appendix B.2.2.

B.2.1. A Separate Suboption Number Space

 This alternative defines a separate space of suboption numbers, with
 an expert review [RFC5226] (or even first-come-first-served)
 registration policy. If expert review is selected for this registry,
 it would be with a relatively loose policy delegated to the expert.
 This draft proposes leaving the registered suboption numbers 0-127 to
 expert review with a policy that mainly focuses on the availability
 of a specification, and 128-16383 for first-come-first-served where
 essentially only a name is defined.

 The "registered" options are used in conjunction with this suboption
 number registry. They use two normal CoAP option numbers, one for
 options with elective semantics (Registered-Elective) and one for
 options with critical semantics (Registered-Critical). The suboption
 numbers are not separate, i.e. one registered suboption number might
 have some elective semantics and some other critical semantics (e.g.,
 for the request and the response leg of an exchange). The option
 value starts with an SDNV [RFC6256] of the registered suboption
 number. (Note that there is no need for an implementation to
 understand SDNVs, it can treat the prefixes as opaque. One could
 consider the SDNVs as a suboption prefix allocation guideline for
 IANA as opposed to a number encoding.)

 +-+
 |1 0 0 0 0 0 0 1|0 1 1 1 0 0 1 1| value... |
 +-+
 ___SDNV of registered number___/

 Figure 15: Example option value for registered option

 Note that a Registered Option cannot be empty, because there would be

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc6256

Bormann & Hartke Expires June 9, 2013 [Page 30]

Internet-Draft CoAP-misc December 2012

 no space for the SDNV. Also, the empty option 14 is reserved for
 fenceposting ([I-D.ietf-core-coap], section 3.2). (Obviously, once a
 Registered-Elective Option is in use, there is never a need for a
 fence-post for option number 14.)

 The Registered-Elective and Registered-Critical Options are
 repeatable.

 +-----+----------+---------------------+---------+--------+---------+
 | No. | C/E | Name | Format | Length | Default |
 +-----+----------+---------------------+---------+--------+---------+
14	Elective	Registered-Elective	(see	1-1023	(none)
			above)	B	
25	Critical	Registered-Critical	(see	1-1023	(none)
			above)	B	
 +-----+----------+---------------------+---------+--------+---------+

 This solves CoRE issue #214 [CoRE214]. (How many options we need
 will depend on the resolution of #241 [CoRE241].)

B.2.2. Opening Up the Option Number Space

 The disadvantage of the registered-... options is that there is a
 significant syntactic difference between options making use of this
 space and the usual standard options. This creates a problem not
 unlike that decried in [RFC6648].

 The alternative discussed in this section reduces the distance by
 opening up the main Option number space instead.

 There is still a significant incentive to use low-numbered Options.
 However, the proposal reduces the penalty for using a high-numbered
 Option to two or three bytes. More importantly, using a cluster of
 related high-numbered options only carries a total penalty of two or
 three bytes.

 The main reason high-numbered options are expensive to use and thus
 the total space is relatively limited is that the option delta
 mechanism only allows increasing the current option number by up to
 14 per one-byte fencepost. To use, e.g., Option number 1234 together
 with the usual set of low-numbered Options, one needs to insert 88
 fence-post bytes. This is prohibitive.

 Enabling first-come-first-served probably requires easily addressing
 a 16-bit option number space, with some potential increase later in
 the lifetime of the protocol (say, 10 to 15 years from now).

https://datatracker.ietf.org/doc/html/rfc6648

Bormann & Hartke Expires June 9, 2013 [Page 31]

Internet-Draft CoAP-misc December 2012

 To enable the use of large option numbers, one needs a way to advance
 the Option number in bigger steps than possible by the Option Delta.
 So we propose a new construct, the Long Jump construct, to move the
 Option number forward.

B.2.2.1. Long Jump construct

 The following construct can occur in front of any Option:

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 | 0 0 0 1 | 0xf1 (Delta = 15)
 +---+---+---+---+---+---+---+---+

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 | 0 0 1 0 | 0xf2
 +---+---+---+---+---+---+---+---+
 | Long Jump Value | (Delta/8)-2
 +---+---+---+---+---+---+---+---+

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 1 1 1 | 0 0 1 1 | 0xf3
 +---+---+---+---+---+---+---+---+
 | Long Jump Value, MSB |
 +---+---+---+---+---+---+---+---+ (Delta/8)-258
 | Long Jump Value, LSB |
 +---+---+---+---+---+---+---+---+

 Figure 16: Long Jump Format

 This construct is not by itself an Option. It can occur in front of
 any Option to increase the current Option number that then goes into
 its Option number calculation. The increase is done in multiples of
 eight. More specifically, the actual addition to the current Option
 number is computed as follows:

 Delta = ((Long Jump Value) + N) * 8

 where N is 2 for the one-byte version and N is 258 for the two-byte
 version.

 A Long Jump MUST be followed by an actual Option, i.e., it MUST NOT
 be followed by another Long Jump or an end-of-options indicator. A
 message violating this MUST be rejected as malformed.

 Long Jumps do NOT count as Options in the Option Count field of the

Bormann & Hartke Expires June 9, 2013 [Page 32]

Internet-Draft CoAP-misc December 2012

 header (i.e., they cannot by themselves end the Option sequence).

B.2.2.2. Discussion

 Adding a mechanism at this late stage creates concerns of backwards
 compatibility. A message sender never needs to implement long-jumps
 unless it wants to make use of a high-numbered option. So this
 mechanism can be added once a high-numbered option is added. A
 message receiver, though, would more or less unconditionally have to
 implement the mechanism, leading to unconditional additional
 complexity. There are good reasons to minimize this, as follows:

 o The increase in multiples of eight allows looking at an option and
 finding out whether it is critical or not even if the Long Jump
 value has just been skipped (as opposed to having been processed
 fully). (It also allows accessing up to approximately 2048
 options with a two-byte Long Jump.) This allows a basic
 implementation that does not implement any high-numbered options
 to simply ignore long jumps and any elective options behind them,
 while still properly reacting to critical options.

 o There is probably a good reason to disallow long-jumps that lead
 to an option number of 42 and less, enabling simple receivers to
 do the above simplification.

 o It might seem obvious to remove the fenceposting mechanism
 altogether in favor of long jumps. This is not advisable:
 Fenceposting already has zero implementation effort at the
 receiver, and the overhead at the sender is very limited (it is
 just a third kind of jump, at one byte per jump). Beyond 42,
 senders can ignore the existence of fenceposts if they want
 (possibly obviating the need for more complex base-14 arithmetic).

 There is no need for a finer granularity than 8, as the Option
 construct following can also specify a Delta of 0..14. (A
 granularity of 16 will require additional fenceposting where an
 option delta of 15 would happen to be required otherwise, which we
 have reserved. It can be argued that 16 is still the better choice,
 as fenceposting is already in the code path.)

 The Long Jump construct takes 0xf1 and 0xf2 from the space available
 for initial bytes of Options. (Note that we previously took 0xf0 to
 indicate end-of-options for OC=15.)

 Varying N with the length as defined above makes it unambiguous
 whether a one- or two-byte Long Jump is to be used. Setting N=2 for
 the one-byte version makes it clear that a Delta of 8 is to be
 handled the usual way (i.e., by Option Delta itself and/or

Bormann & Hartke Expires June 9, 2013 [Page 33]

Internet-Draft CoAP-misc December 2012

 fenceposting). If the delta is not small and not 7 modulo 8, there
 is still a choice between using the smaller multiple of 8 and a
 larger Delta in the actual Option or v.v., this biases the choice
 towards a larger Long Jump and a smaller following Delta, which is
 also easier to implement as it reduces the number of choice points.

B.2.2.3. Example

 The following sequence of bytes would encode a Uri-Path Option of
 "foo" followed by Options 1357 (value "bar") and 1360 (value "baz"):

 93 65 6f 6f Option 9 (0 + 9, "foo")
 f1 a6 Long Jump by 1344
 43 62 61 72 Option 1357 (9 + 1344 + 4, "bar")
 33 62 61 7a Option 1360 (1357 + 3, "baz")

 Figure 17: Example using a Long Jump construct

 where f1 a6 is the long jump forward by (0xa6+2)*8=1344 option
 numbers. The total option count (OC) for the CoAP header is 3. Note
 that even if f1 a6 is skipped, the 1357 (which then appears as an
 Option number 13) is clearly visible as Critical.

B.2.2.4. IANA considerations

 With the scheme proposed above, we could have three tiers of Option
 Numbers:

 +---------------+-------------------------+
 | Option Number | Policy [RFC5226] |
 +---------------+-------------------------+
 | 0..255 | Standards Action |
 | | |
 | 256..2047 | Designated Expert |
 | | |
 | 2048..65535 | First Come First Served |
 +---------------+-------------------------+

 For the inventor of a new option, this would provide a small
 incentive to go through the designated expert for some minimal cross-
 checking in order to be able to use the two-byte long-jump.

 This draft adds option numbers to Table 2 of [I-D.ietf-core-coap]:

https://datatracker.ietf.org/doc/html/rfc5226

Bormann & Hartke Expires June 9, 2013 [Page 34]

Internet-Draft CoAP-misc December 2012

 +--------+---------------------+-----------+
 | Number | Name | Reference |
 +--------+---------------------+-----------+
 | 14 | Registered-Elective | [RFCXXXX] |
 | | | |
 | 25 | Registered-Critical | [RFCXXXX] |
 +--------+---------------------+-----------+

 Table 1: New CoAP Option Numbers

 This draft adds a suboption registry, initially empty.

 +------------+-----------------------------+-----------+
 | Number | Name | Reference |
 +------------+-----------------------------+-----------+
 | 0..127 | (allocate on export review) | [RFCXXXX] |
 | | | |
 | 128..16383 | (allocate fcfs) | [RFCXXXX] |
 +------------+-----------------------------+-----------+

 Table 2: CoAP Suboption Numbers

B.3. Enabling Protocol Evolution

 To enable a protocol to evolve, it is critical that new capabilities
 can be introduced without requiring changes in components that don't
 really care about the capability. One such probem is exhibited by
 CoAP options: If a proxy does not understand an elective option in a
 request, it will not be able to forward it to the origin server,
 rendering the new option ineffectual. Worse, if a proxy does not
 understand a critical option in a request, it will not be able to
 operate on the request, rendering the new option damaging.

 As a conclusion to the Ticket #230 discussion in the June 4th interim
 call, we decided to solve the identification of options that a proxy
 can safely forward even if not understood (previously called Proxy-
 Elective).

 The proposal is to encode this information in the option number, just
 like the way the information that an option is critical is encoded
 now. This leads to two bits with semantics: the lowest bit continues
 to be the critical bit, and the next higher bit is now the "unsafe"
 bit (i.e., this option is not safe to forward unless understood by
 the proxy).

 Another consideration (for options that are not unsafe to forward) is
 whether the option should serve as a cache key in a request. HTTP
 has a vary header that indicates in the response which header fields

Bormann & Hartke Expires June 9, 2013 [Page 35]

Internet-Draft CoAP-misc December 2012

 were considered by the origin server to be cache keys. In order to
 avoid this complexity, we should be able to indicate this information
 right in the option number. However, reserving another bit is
 wasteful, in particular as there are few safe-to-forward options that
 are not cache-keys.

 Therefore, we propose the following bit allocation in an option
 number:

 xxx nnn UC

 Figure 18

 (where xxx is a variable length prefix, as option numbers are not
 bounded upwards). UC is the unsafe and critical bits. For U=0 only,
 if nnn is equal to 111 binary, the option does not serve as a cache
 key (for U=1, the proxy has to know the option to act on it, so there
 is no point in indicating whether it is a cache key). There is no
 semantic meaning of xxx.

 Note that clients and servers are generally not interested in this
 information. A proxy may use an equivalent of the following C code
 to derive the characteristics of an option number "onum":

 Critical = (onum & 1);
 UnSafe = (onum & 2);
 NoCache = ((onum & 0x1e) == 0x1c);

 Figure 19

 Discussion: This requires a renumbering of all options.

 This renumbering may also be considered as an opportunity to make
 the numbering straight again shortly before nailing down the
 protocol

 In particular, Content-Type is now probably better considered to
 be elective.

B.3.1. Potential new option number allocation

 We want to give one example for a revised allocation of option
 numbers. Option numbers are given as decimal numbers, one each for
 xxx, nnn, and UC, with the UC values as follows

Bormann & Hartke Expires June 9, 2013 [Page 36]

Internet-Draft CoAP-misc December 2012

 +-----------+------------+------------------------------------+
 | UC binary | UC decimal | meaning |
 +-----------+------------+------------------------------------+
 | 00 | 0 | (safe, elective, 111=no-cache-key) |
 | | | |
 | 01 | 1 | (safe, critical, 111=no-cache-key) |
 | | | |
 | 10 | 2 | (unsafe, elective) |
 | | | |
 | 11 | 3 | (unsafe, critical) |
 +-----------+------------+------------------------------------+

 The table is:

 +-----+---------+-------+-------------------+-----------------------+
 | New | xx nnn | Old | Name | Comment |
 | | UC | | | |
 +-----+---------+-------+-------------------+-----------------------+
4	0 1 0	1	Content-Type	category change
				(elective)
8	0 2 0	4	ETag	
12	0 3 0	12	Accept	
16	0 4 0	6	Location-Path	
20	0 5 0	8	Location-Query	
24	0 6 0	-	(unused)	
28	0 7 0	18	Size	needs nnn=111
32	1 0 0	20/22	Patience	
64	2 x 0	-	Location-reserved	(nnn = 0..3, 4
				reserved numbers)
1	0 0 1	13	If-Match	
5	0 1 1	21	If-None-Match	
2	0 0 2	2	Max-Age	
6	0 1 2	10	Observe	
10	0 2 2	xx	Observe-2	

Bormann & Hartke Expires June 9, 2013 [Page 37]

Internet-Draft CoAP-misc December 2012

14	0 3 2	xx	(unused)	was fencepost
3	0 0 3	3	Proxy-Uri	
7	0 1 3	5	Uri-Host	
11	0 2 3	7	Uri-Port	
15	0 3 3	9	Uri-Path	
19	0 4 3	15	Uri-Query	
23	0 5 3	11	Token	
27	0 6 3	17	Block2	
31	0 7 3	19	Block1	yes, we can use
				nnn=111 with U=1
 +-----+---------+-------+-------------------+-----------------------+

B.4. Patience, Leisure, and Pledge

 A number of options might be useful for controlling the timing of
 interactions.

 (This section also addresses core-coap ticket #177.)

B.4.1. Patience

 A client may have a limited time period in which it can actually make
 use of the response for a request. Using the Patience option, it can
 provide an (elective) indication how much time it is willing to wait
 for the response from the server, giving the server license to ignore
 or reject the request if it cannot fulfill it in this period.

 If the server knows early that it cannot fulfill the request in the
 time requested, it MAY indicate this with a 5.04 "Timeout" response.
 For non-safe methods (such as PUT, POST, DELETE), the server SHOULD
 indicate whether it has fulfilled the request by either responding
 with 5.04 "Timeout" (and not further processing the request) or by
 processing the request normally.

 Note that the value of the Patience option should be chosen such that
 the client will be able to make use of the result even in the
 presence of the expected network delays for the request and the
 response. Similarly, when a proxy receives a request with a Patience
 option and cannot fulfill that request from its cache, it may want to
 adjust the value of the option before forwarding it to an upstream

Bormann & Hartke Expires June 9, 2013 [Page 38]

Internet-Draft CoAP-misc December 2012

 server.

 (TBD: The various cases that arise when combining Patience with
 Observe.)

 The Patience option is elective. Hence, a client MUST be prepared to
 receive a normal response even after the chosen Patience period (plus
 an allowance for network delays) has elapsed.

B.4.2. Leisure

 Servers generally will compute an internal value that we will call
 Leisure, which indicates the period of time that will be used for
 responding to a request. A Patience option, if present, can be used
 as an upper bound for the Leisure. Leisure may be non-zero for
 congestion control reasons, in particular for responses to multicast
 requests. For these, the server should have a group size estimate G,
 a target rate R (which both should be chosen conservatively) and an
 estimated response size S; a rough lower bound for Leisure can then
 be computed as follows:

 lb_Leisure = S * G / R

 Figure 20: Computing a lower bound for the Leisure

 E.g., for a multicast request with link-local scope on an 2.4 GHz
 IEEE 802.15.4 (6LoWPAN) network, G could be (relatively
 conservatively) set to 100, S to 100 bytes, and the target rate to 8
 kbit/s = 1 kB/s. The resulting lower bound for the Leisure is 10
 seconds.

 To avoid response implosion, responses to multicast requests SHOULD
 be dithered within a Leisure period chosen by the server to fall
 between these two bounds.

 Currently, we don't foresee a need to signal a value for Leisure from
 client to server (beyond the signalling provided by Patience) or from
 server to client, but an appropriate Option might be added later.

B.4.3. Pledge

 In a basic observation relationship [I-D.ietf-core-observe], the
 server makes a pledge to keep the client in the observation
 relationship for a resource at least until the max-age for the
 resource is reached.

 To save the client some effort in re-establishing observation
 relationships each time max-age is reached, the server MAY want to

Bormann & Hartke Expires June 9, 2013 [Page 39]

Internet-Draft CoAP-misc December 2012

 extend its pledge beyond the end of max-age by signalling in a
 response/notification an additional time period using the Pledge
 Option, in parallel to the Observe Option.

 The Pledge Option MUST NOT be used unless the server can make a
 reasonable promise not to lose the observation relationship in this
 time frame.

 Currently, we don't foresee a need to signal a value for Pledge from
 client to server, but an appropriate behavior might be added later
 for this option when sent in a request.

B.4.4. Option Formats

 +-----+----------+----------+-----------------+--------+---------+
 | No. | C/E | Name | Format | Length | Default |
 +-----+----------+----------+-----------------+--------+---------+
 | 22 | Elective | Patience | Duration in mis | 1 B | (none) |
 | | | | | | |
 | 24 | Elective | Pledge | Duration in s | 1 B | 0 |
 +-----+----------+----------+-----------------+--------+---------+

 All timing options use the Duration data type (see Appendix D.2),
 however Patience (and Leisure, if that ever becomes an option) uses a
 timebase of mibiseconds (mis = 1/1024 s) instead of seconds. (This
 reduces the range of the Duration from ~ 91 days to 128 minutes.)

 Implementation note: As there are no strong accuracy requirements on
 the clocks employed, making use of any existing time base of
 milliseconds is a valid implementation approach (2.4 % off).

 None of the options may be repeated.

Bormann & Hartke Expires June 9, 2013 [Page 40]

Internet-Draft CoAP-misc December 2012

Appendix C. The Cemetery (Things we won't do)

 This annex documents roads that the WG decided not to take, in order
 to spare readers from reinventing them in vain.

C.1. Example envelope option: solving #230

 Ticket #230 [CoRE230] points out a design flaw of
 [I-D.ietf-core-coap]: When we split the elective Location option of
 draft -01 into multiple elective options, we made it possible that an
 implementation might process some of these and ignore others, leading
 to an incorrect interpretation of the Location expressed by the
 server.

 There are several more or less savory solutions to #230.

 Each of the elective options that together make up the Location could
 be defined in such a way that it makes a requirement on the
 processing of the related option (essentially revoking their elective
 status once the option under consideration is actually processed).
 This falls flat as soon as another option is defined that would also
 become part of the Location: existing implementations would not know
 that the new option is also part of the cluster that is re-
 interpreted as critical. The potential future addition of Location-
 Host and Location-Port makes this a valid consideration.

 A better solution would be to define an elective Envelope Option
 called Location. Within a Location Option, the following top-level
 options might be allowed (now or in the future):

 o Uri-Host

 o Uri-Port

 o Uri-Path

 o Uri-Query

 This would unify the code for interpreting the top-level request
 options that indicate the request URI with the code that interprets
 the Location URI.

 The four options listed are all critical, while the envelope is
 elective. This gives exactly the desired semantics: If the envelope
 is processed at all (which is elective), the nested options are
 critical and all need to be processed.

Bormann & Hartke Expires June 9, 2013 [Page 41]

Internet-Draft CoAP-misc December 2012

C.2. Example envelope option: proxy-elective options

 Another potential application of envelope options is motivated by the
 observation that new critical options might not be implemented by all
 proxies on the CoAP path to an origin server. So that this does not
 become an obstacle to introducing new critical options that are of
 interest only to client and origin server, the client might want to
 mark some critical options proxy-elective, i.e. elective for a proxy
 but still critical for the origin server.

 One way to do this would be an Envelope option, the Proxy-Elective
 Option. A client might bundle a number of critical options into a
 critical Proxy-Elective Option. A proxy that processes the message
 is obliged to process the envelope (or reject the message), where
 processing means passing on the nested options towards the origin
 server (preferably again within a Proxy-Elective option). It can
 pass on the nested options, even ones unknown to the proxy, knowing
 that the client is happy with proxies not processing all of them.

 (The assumption here is that the Proxy-Elective option becomes part
 of the base standard, so all but the most basic proxies would know
 how to handle it.)

C.3. Stateful URI compression

 Is the approximately 25 % average saving achievable with Huffman-
 based URI compression schemes worth the complexity? Probably not,
 because much higher average savings can be achieved by introducing
 state.

 Henning Schulzrinne has proposed for a server to be able to supply a
 shortened URI once a resource has been requested using the full-
 length URI. Let's call such a shortened referent a _Temporary
 Resource Identifier_, _TeRI_ for short. This could be expressed by a
 response option as shown in Figure 21.

 0
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | duration | TeRI...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 21: Option for offering a TeRI in a response

 The TeRI offer option indicates that the server promises to offer
 this resources under the TeRI given for at least the time given as
 the duration. Another TeRI offer can be made later to extend the
 duration.

Bormann & Hartke Expires June 9, 2013 [Page 42]

Internet-Draft CoAP-misc December 2012

 Once a TeRI for a URI is known (and still within its lifetime), the
 client can supply a TeRI instead of a URI in its requests. The same
 option format as an offer could be used to allow the client to
 indicate how long it believes the TeRI will still be valid (so that
 the server can decide when to update the lifetime duration). TeRIs
 in requests could be distinguished from URIs e.g. by using a
 different option number.

 Proposal: Add a TeRI option that can be used in CoAP requests and
 responses.

 Add a way to indicate a TeRI and its duration in a link-value.

 Do not add any form of stateless URI encoding.

 Benefits: Much higher reduction of message size than any stateless
 URI encoding could achieve.

 As the use of TeRIs is entirely optional, minimal complexity nodes
 can get by without implementing them.

 Drawbacks: Adds considerable state and complexity to the protocol.

 It turns out that real CoAP URIs are short enough that TeRIs are
 not needed.

 (Discuss the security implications of TeRIs.)

Bormann & Hartke Expires June 9, 2013 [Page 43]

Internet-Draft CoAP-misc December 2012

Appendix D. Experimental Options

 This annex documents proposals that need significant additional
 discussion before they can become part of (or go back to) the main
 CoAP specification. They are not dead, but might die if there turns
 out to be no good way to solve the problem.

D.1. Options indicating absolute time

 HTTP has a number of headers that may indicate absolute time:

 o "Date", defined in Section 14.18 in [RFC2616] (Section 9.3 in
 [I-D.ietf-httpbis-p1-messaging]), giving the absolute time a
 response was generated;

 o "Last-Modified", defined in Section 14.29 in [RFC2616], (Section
6.6 in [I-D.ietf-httpbis-p4-conditional], giving the absolute time

 of when the origin server believes the resource representation was
 last modified;

 o "If-Modified-Since", defined in Section 14.25 in [RFC2616],
 "If-Unmodified-Since", defined in Section 14.28 in [RFC2616], and
 "If-Range", defined in Section 14.27 in [RFC2616] can be used to
 supply absolute time to gate a conditional request;

 o "Expires", defined in Section 14.21 in [RFC2616] (Section 3.3 in
 [I-D.ietf-httpbis-p6-cache]), giving the absolute time after which
 a response is considered stale.

 o The more obscure headers "Retry-After", defined in Section 14.37
 in [RFC2616], and "Warning", defined in section 14.46 in
 [RFC2616], also may employ absolute time.

 [I-D.ietf-core-coap] defines a single "Date" option, which however
 "indicates the creation time and date of a given resource
 representation", i.e., is closer to a "Last-Modified" HTTP header.
 HTTP's caching rules [I-D.ietf-httpbis-p6-cache] make use of both
 "Date" and "Last-Modified", combined with "Expires". The specific
 semantics required for CoAP needs further consideration.

 In addition to the definition of the semantics, an encoding for
 absolute times needs to be specified.

 In UNIX-related systems, it is customary to indicate absolute time as
 an integer number of seconds, after midnight UTC, January 1, 1970.
 Unless negative numbers are employed, this time format cannot
 represent time values prior to January 1, 1970, which probably is not
 required for the uses ob absolute time in CoAP.

https://datatracker.ietf.org/doc/html/rfc2616#section-14.18
https://datatracker.ietf.org/doc/html/rfc2616#section-14.29
https://datatracker.ietf.org/doc/html/rfc2616#section-14.25
https://datatracker.ietf.org/doc/html/rfc2616#section-14.28
https://datatracker.ietf.org/doc/html/rfc2616#section-14.27
https://datatracker.ietf.org/doc/html/rfc2616#section-14.21
https://datatracker.ietf.org/doc/html/rfc2616#section-14.37
https://datatracker.ietf.org/doc/html/rfc2616#section-14.37
https://datatracker.ietf.org/doc/html/rfc2616#section-14.46
https://datatracker.ietf.org/doc/html/rfc2616#section-14.46

Bormann & Hartke Expires June 9, 2013 [Page 44]

Internet-Draft CoAP-misc December 2012

 If a 32-bit integer is used and allowance is made for a sign-bit in a
 local implementation, the latest UTC time value that can be
 represented by the resulting 31 bit integer value is 03:14:07 on
 January 19, 2038. If the 32-bit integer is used as an unsigned
 value, the last date is 2106-02-07, 06:28:15.

 The reach can be extended by: - moving the epoch forward, e.g. by 40
 years (= 1262304000 seconds) to 2010-01-01. This makes it impossible
 to represent Last-Modified times in that past (such as could be
 gatewayed in from HTTP). - extending the number of bits, e.g. by one
 more byte, either always or as one of two formats, keeping the 32-bit
 variant as well.

 Also, the resolution can be extended by expressing time in
 milliseconds etc., requiring even more bits (e.g., a 48-bit unsigned
 integer of milliseconds would last well after year 9999.)

 For experiments, an experimental "Date" option is defined with the
 semantics of HTTP's "Last-Modified". It can carry an unsigned
 integer of 32, 40, or 48 bits; 32- and 40-bit integers indicate the
 absolute time in seconds since 1970-01-01 00:00 UTC, while 48-bit
 integers indicate the absolute time in milliseconds since 1970-01-01
 00:00 UTC.

 However, that option is not really that useful until there is a
 "If-Modified-Since" option as well.

 (Also: Discuss nodes without clocks.)

D.2. Representing Durations

 Various message types used in CoAP need the representation of
 durations, i.e. of the length of a timespan. In SI units, these
 are measured in seconds. CoAP durations represent integer numbers of
 seconds, but instead of representing these numbers as integers, a
 more compact single-byte pseudo-floating-point (pseudo-FP)
 representation is used (Figure 22).

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0... value |
 +---+---+---+---+---+---+---+---+

 +---+---+---+---+---+---+---+---+
 | 1... mantissa | exponent |
 +---+---+---+---+---+---+---+---+

Bormann & Hartke Expires June 9, 2013 [Page 45]

Internet-Draft CoAP-misc December 2012

 Figure 22: Duration in (8,4) pseudo-FP representation

 If the high bit is clear, the entire n-bit value (including the high
 bit) is the decoded value. If the high bit is set, the mantissa
 (including the high bit, with the exponent field cleared out but
 still present) is shifted left by the exponent to yield the decoded
 value.

 The (n,e)-pseudo-FP format can be decoded with a single line of code
 (plus a couple of constant definitions), as demonstrated in
 Figure 23.

 #define N 8
 #define E 4
 #define HIBIT (1 << (N - 1))
 #define EMASK ((1 << E) - 1)
 #define MMASK ((1 << N) - 1 - EMASK)

 #define DECODE_8_4(r) (r < HIBIT ? r : (r & MMASK) << (r & EMASK))

 Figure 23: Decoding an (8,4) pseudo-FP value

 Note that a pseudo-FP encoder needs to consider rounding; different
 applications of durations may favor rounding up or rounding down the
 value encoded in the message.

 The highest pseudo-FP value, represented by an all-ones byte (0xFF),
 is reserved to indicate an indefinite duration. The next lower value
 (0xEF) is thus the highest representable value and is decoded as
 7340032 seconds, a little more than 12 weeks.

D.3. Rationale

 Where CPU power and memory is abundant, a duration can almost always
 be adequately represented by a non-negative floating-point number
 representing that number of seconds. Historically, many APIs have
 also used an integer representation, which limits both the resolution
 (e.g., if the integer represents the duration in seconds) and often
 the range (integer machine types have range limits that may become
 relevant). UNIX's "time_t" (which is used for both absolute time and
 durations) originally was a signed 32-bit value of seconds, but was
 later complemented by an additional integer to add microsecond
 ("struct timeval") and then later nanosecond ("struct timespec")
 resolution.

 Three decisions need to be made for each application of the concept
 of duration:

Bormann & Hartke Expires June 9, 2013 [Page 46]

Internet-Draft CoAP-misc December 2012

 o the *resolution*. What rounding error is acceptable?

 o the *range*. What is the maximum duration that needs to be
 represented?

 o the *number of bits* that can be expended.

 Obviously, these decisions are interrelated. Typically, a large
 range needs a large number of bits, unless resolution is traded. For
 most applications, the actual requirement for resolution are limited
 for longer durations, but can be more acute for shorter durations.

D.4. Pseudo-Floating Point

 Constrained systems typically avoid the use of floating-point (FP)
 values, as

 o simple CPUs often don't have support for floating-point datatypes

 o software floating-point libraries are expensive in code size and
 slow.

 In addition, floating-point datatypes used to be a significant
 element of market differentiation in CPU design; it has taken the
 industry a long time to agree on a standard floating point
 representation.

 These issues have led to protocols that try to constrain themselves
 to integer representation even where the ability of a floating point
 representation to trade range for resolution would be beneficial.

 The idea of introducing _pseudo-FP_ is to obtain the increased range
 provided by embedding an exponent, without necessarily getting stuck
 with hardware datatypes or inefficient software floating-point
 libraries.

 For the purposes of this draft, we define an (n,e)-pseudo-FP as a
 fixed-length value of n bits, e of which may be used for an exponent.
 Figure 22 illustrates an (8,4)-pseudo-FP value.

 If the high bit is clear, the entire n-bit value (including the high
 bit) is the decoded value. If the high bit is set, the mantissa
 (including the high bit, but with the exponent field cleared out) is
 shifted left by the exponent to yield the decoded value.

 The (n,e)-pseudo-FP format can be decoded with a single line of code
 (plus a couple of constant definition), as demonstrated in Figure 23.

Bormann & Hartke Expires June 9, 2013 [Page 47]

Internet-Draft CoAP-misc December 2012

 Only non-negative numbers can be represented by this format. It is
 designed to provide full integer resolution for values from 0 to
 2^(n-1)-1, i.e., 0 to 127 in the (8,4) case, and a mantissa of n-e
 bits from 2^(n-1) to (2^n-2^e)*2^(2^e-1), i.e., 128 to 7864320 in the
 (8,4) case. By choosing e carefully, resolution can be traded
 against range.

 Note that a pseudo-FP encoder needs to consider rounding; different
 applications of durations may favor rounding up or rounding down the
 value encoded in the message. This requires a little more than a
 single line of code (which is left as an exercise to the reader, as
 the most efficient expression depends on hardware details).

D.5. A Duration Type for CoAP

 CoAP needs durations in a number of places. In [I-D.ietf-core-coap],
 durations occur in the option "Subscription-lifetime" as well as in
 the option "Max-age". (Note that the option "Date" is not a
 duration, but a point in time.) Other durations of this kind may be
 added later.

 Most durations relevant to CoAP are best expressed with a minimum
 resolution of one second. More detailed resolutions are unlikely to
 provide much benefit.

 The range of lifetimes and caching ages are probably best kept below
 the order of magnitude of months. An (8,4)-pseudo-FP has the maximum
 value of 7864320, which is about 91 days; this appears to be adequate
 for a subscription lifetime and probably even for a maximum cache
 age. Figure 24 shows the values that can be expressed. (If a larger
 range for the latter is indeed desired, an (8,5)-pseudo-FP could be
 used; this would last 15 milleniums, at the cost of having only 3
 bits of accuracy for values larger than 127 seconds.)

 Proposal: A single duration type is used throughout CoAP, based on
 an (8,4)-pseudo-FP giving a duration in seconds.

 Benefits: Implementations can use a single piece of code for
 managing all CoAP-related durations.

 In addition, length information never needs to be managed for
 durations that are embedded in other data structures: All
 durations are expressed by a single byte.

 It might be worthwhile to reserve one duration value, e.g. 0xFF, for
 an indefinite duration.

 Duration Seconds Encoded

Bormann & Hartke Expires June 9, 2013 [Page 48]

Internet-Draft CoAP-misc December 2012

 ----------- ---------- -------
 00:00:00 0x00000000 0x00
 00:00:01 0x00000001 0x01
 00:00:02 0x00000002 0x02
 00:00:03 0x00000003 0x03
 00:00:04 0x00000004 0x04
 00:00:05 0x00000005 0x05
 00:00:06 0x00000006 0x06
 00:00:07 0x00000007 0x07
 00:00:08 0x00000008 0x08
 00:00:09 0x00000009 0x09
 00:00:10 0x0000000a 0x0a
 00:00:11 0x0000000b 0x0b
 00:00:12 0x0000000c 0x0c
 00:00:13 0x0000000d 0x0d
 00:00:14 0x0000000e 0x0e
 00:00:15 0x0000000f 0x0f
 00:00:16 0x00000010 0x10
 00:00:17 0x00000011 0x11
 00:00:18 0x00000012 0x12
 00:00:19 0x00000013 0x13
 00:00:20 0x00000014 0x14
 00:00:21 0x00000015 0x15
 00:00:22 0x00000016 0x16
 00:00:23 0x00000017 0x17
 00:00:24 0x00000018 0x18
 00:00:25 0x00000019 0x19
 00:00:26 0x0000001a 0x1a
 00:00:27 0x0000001b 0x1b
 00:00:28 0x0000001c 0x1c
 00:00:29 0x0000001d 0x1d
 00:00:30 0x0000001e 0x1e
 00:00:31 0x0000001f 0x1f
 00:00:32 0x00000020 0x20
 00:00:33 0x00000021 0x21
 00:00:34 0x00000022 0x22
 00:00:35 0x00000023 0x23
 00:00:36 0x00000024 0x24
 00:00:37 0x00000025 0x25
 00:00:38 0x00000026 0x26
 00:00:39 0x00000027 0x27
 00:00:40 0x00000028 0x28
 00:00:41 0x00000029 0x29
 00:00:42 0x0000002a 0x2a
 00:00:43 0x0000002b 0x2b
 00:00:44 0x0000002c 0x2c
 00:00:45 0x0000002d 0x2d
 00:00:46 0x0000002e 0x2e

Bormann & Hartke Expires June 9, 2013 [Page 49]

Internet-Draft CoAP-misc December 2012

 00:00:47 0x0000002f 0x2f
 00:00:48 0x00000030 0x30
 00:00:49 0x00000031 0x31
 00:00:50 0x00000032 0x32
 00:00:51 0x00000033 0x33
 00:00:52 0x00000034 0x34
 00:00:53 0x00000035 0x35
 00:00:54 0x00000036 0x36
 00:00:55 0x00000037 0x37
 00:00:56 0x00000038 0x38
 00:00:57 0x00000039 0x39
 00:00:58 0x0000003a 0x3a
 00:00:59 0x0000003b 0x3b
 00:01:00 0x0000003c 0x3c
 00:01:01 0x0000003d 0x3d
 00:01:02 0x0000003e 0x3e
 00:01:03 0x0000003f 0x3f
 00:01:04 0x00000040 0x40
 00:01:05 0x00000041 0x41
 00:01:06 0x00000042 0x42
 00:01:07 0x00000043 0x43
 00:01:08 0x00000044 0x44
 00:01:09 0x00000045 0x45
 00:01:10 0x00000046 0x46
 00:01:11 0x00000047 0x47
 00:01:12 0x00000048 0x48
 00:01:13 0x00000049 0x49
 00:01:14 0x0000004a 0x4a
 00:01:15 0x0000004b 0x4b
 00:01:16 0x0000004c 0x4c
 00:01:17 0x0000004d 0x4d
 00:01:18 0x0000004e 0x4e
 00:01:19 0x0000004f 0x4f
 00:01:20 0x00000050 0x50
 00:01:21 0x00000051 0x51
 00:01:22 0x00000052 0x52
 00:01:23 0x00000053 0x53
 00:01:24 0x00000054 0x54
 00:01:25 0x00000055 0x55
 00:01:26 0x00000056 0x56
 00:01:27 0x00000057 0x57
 00:01:28 0x00000058 0x58
 00:01:29 0x00000059 0x59
 00:01:30 0x0000005a 0x5a
 00:01:31 0x0000005b 0x5b
 00:01:32 0x0000005c 0x5c
 00:01:33 0x0000005d 0x5d
 00:01:34 0x0000005e 0x5e

Bormann & Hartke Expires June 9, 2013 [Page 50]

Internet-Draft CoAP-misc December 2012

 00:01:35 0x0000005f 0x5f
 00:01:36 0x00000060 0x60
 00:01:37 0x00000061 0x61
 00:01:38 0x00000062 0x62
 00:01:39 0x00000063 0x63
 00:01:40 0x00000064 0x64
 00:01:41 0x00000065 0x65
 00:01:42 0x00000066 0x66
 00:01:43 0x00000067 0x67
 00:01:44 0x00000068 0x68
 00:01:45 0x00000069 0x69
 00:01:46 0x0000006a 0x6a
 00:01:47 0x0000006b 0x6b
 00:01:48 0x0000006c 0x6c
 00:01:49 0x0000006d 0x6d
 00:01:50 0x0000006e 0x6e
 00:01:51 0x0000006f 0x6f
 00:01:52 0x00000070 0x70
 00:01:53 0x00000071 0x71
 00:01:54 0x00000072 0x72
 00:01:55 0x00000073 0x73
 00:01:56 0x00000074 0x74
 00:01:57 0x00000075 0x75
 00:01:58 0x00000076 0x76
 00:01:59 0x00000077 0x77
 00:02:00 0x00000078 0x78
 00:02:01 0x00000079 0x79
 00:02:02 0x0000007a 0x7a
 00:02:03 0x0000007b 0x7b
 00:02:04 0x0000007c 0x7c
 00:02:05 0x0000007d 0x7d
 00:02:06 0x0000007e 0x7e
 00:02:07 0x0000007f 0x7f
 00:02:08 0x00000080 0x80
 00:02:24 0x00000090 0x90
 00:02:40 0x000000a0 0xa0
 00:02:56 0x000000b0 0xb0
 00:03:12 0x000000c0 0xc0
 00:03:28 0x000000d0 0xd0
 00:03:44 0x000000e0 0xe0
 00:04:00 0x000000f0 0xf0
 00:04:16 0x00000100 0x81
 00:04:48 0x00000120 0x91
 00:05:20 0x00000140 0xa1
 00:05:52 0x00000160 0xb1
 00:06:24 0x00000180 0xc1
 00:06:56 0x000001a0 0xd1
 00:07:28 0x000001c0 0xe1

Bormann & Hartke Expires June 9, 2013 [Page 51]

Internet-Draft CoAP-misc December 2012

 00:08:00 0x000001e0 0xf1
 00:08:32 0x00000200 0x82
 00:09:36 0x00000240 0x92
 00:10:40 0x00000280 0xa2
 00:11:44 0x000002c0 0xb2
 00:12:48 0x00000300 0xc2
 00:13:52 0x00000340 0xd2
 00:14:56 0x00000380 0xe2
 00:16:00 0x000003c0 0xf2
 00:17:04 0x00000400 0x83
 00:19:12 0x00000480 0x93
 00:21:20 0x00000500 0xa3
 00:23:28 0x00000580 0xb3
 00:25:36 0x00000600 0xc3
 00:27:44 0x00000680 0xd3
 00:29:52 0x00000700 0xe3
 00:32:00 0x00000780 0xf3
 00:34:08 0x00000800 0x84
 00:38:24 0x00000900 0x94
 00:42:40 0x00000a00 0xa4
 00:46:56 0x00000b00 0xb4
 00:51:12 0x00000c00 0xc4
 00:55:28 0x00000d00 0xd4
 00:59:44 0x00000e00 0xe4
 01:04:00 0x00000f00 0xf4
 01:08:16 0x00001000 0x85
 01:16:48 0x00001200 0x95
 01:25:20 0x00001400 0xa5
 01:33:52 0x00001600 0xb5
 01:42:24 0x00001800 0xc5
 01:50:56 0x00001a00 0xd5
 01:59:28 0x00001c00 0xe5
 02:08:00 0x00001e00 0xf5
 02:16:32 0x00002000 0x86
 02:33:36 0x00002400 0x96
 02:50:40 0x00002800 0xa6
 03:07:44 0x00002c00 0xb6
 03:24:48 0x00003000 0xc6
 03:41:52 0x00003400 0xd6
 03:58:56 0x00003800 0xe6
 04:16:00 0x00003c00 0xf6
 04:33:04 0x00004000 0x87
 05:07:12 0x00004800 0x97
 05:41:20 0x00005000 0xa7
 06:15:28 0x00005800 0xb7
 06:49:36 0x00006000 0xc7
 07:23:44 0x00006800 0xd7
 07:57:52 0x00007000 0xe7

Bormann & Hartke Expires June 9, 2013 [Page 52]

Internet-Draft CoAP-misc December 2012

 08:32:00 0x00007800 0xf7
 09:06:08 0x00008000 0x88
 10:14:24 0x00009000 0x98
 11:22:40 0x0000a000 0xa8
 12:30:56 0x0000b000 0xb8
 13:39:12 0x0000c000 0xc8
 14:47:28 0x0000d000 0xd8
 15:55:44 0x0000e000 0xe8
 17:04:00 0x0000f000 0xf8
 18:12:16 0x00010000 0x89
 20:28:48 0x00012000 0x99
 22:45:20 0x00014000 0xa9
 1d 01:01:52 0x00016000 0xb9
 1d 03:18:24 0x00018000 0xc9
 1d 05:34:56 0x0001a000 0xd9
 1d 07:51:28 0x0001c000 0xe9
 1d 10:08:00 0x0001e000 0xf9
 1d 12:24:32 0x00020000 0x8a
 1d 16:57:36 0x00024000 0x9a
 1d 21:30:40 0x00028000 0xaa
 2d 02:03:44 0x0002c000 0xba
 2d 06:36:48 0x00030000 0xca
 2d 11:09:52 0x00034000 0xda
 2d 15:42:56 0x00038000 0xea
 2d 20:16:00 0x0003c000 0xfa
 3d 00:49:04 0x00040000 0x8b
 3d 09:55:12 0x00048000 0x9b
 3d 19:01:20 0x00050000 0xab
 4d 04:07:28 0x00058000 0xbb
 4d 13:13:36 0x00060000 0xcb
 4d 22:19:44 0x00068000 0xdb
 5d 07:25:52 0x00070000 0xeb
 5d 16:32:00 0x00078000 0xfb
 6d 01:38:08 0x00080000 0x8c
 6d 19:50:24 0x00090000 0x9c
 7d 14:02:40 0x000a0000 0xac
 8d 08:14:56 0x000b0000 0xbc
 9d 02:27:12 0x000c0000 0xcc
 9d 20:39:28 0x000d0000 0xdc
 10d 14:51:44 0x000e0000 0xec
 11d 09:04:00 0x000f0000 0xfc
 12d 03:16:16 0x00100000 0x8d
 13d 15:40:48 0x00120000 0x9d
 15d 04:05:20 0x00140000 0xad
 16d 16:29:52 0x00160000 0xbd
 18d 04:54:24 0x00180000 0xcd
 19d 17:18:56 0x001a0000 0xdd
 21d 05:43:28 0x001c0000 0xed

Bormann & Hartke Expires June 9, 2013 [Page 53]

Internet-Draft CoAP-misc December 2012

 22d 18:08:00 0x001e0000 0xfd
 24d 06:32:32 0x00200000 0x8e
 27d 07:21:36 0x00240000 0x9e
 30d 08:10:40 0x00280000 0xae
 33d 08:59:44 0x002c0000 0xbe
 36d 09:48:48 0x00300000 0xce
 39d 10:37:52 0x00340000 0xde
 42d 11:26:56 0x00380000 0xee
 45d 12:16:00 0x003c0000 0xfe
 48d 13:05:04 0x00400000 0x8f
 54d 14:43:12 0x00480000 0x9f
 60d 16:21:20 0x00500000 0xaf
 66d 17:59:28 0x00580000 0xbf
 72d 19:37:36 0x00600000 0xcf
 78d 21:15:44 0x00680000 0xdf
 84d 22:53:52 0x00700000 0xef
 91d 00:32:00 0x00780000 0xff (reserved)

 Figure 24

Bormann & Hartke Expires June 9, 2013 [Page 54]

Internet-Draft CoAP-misc December 2012

Authors' Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

Bormann & Hartke Expires June 9, 2013 [Page 55]

