CoRE Working Group Internet-Draft Intended status: Informational Expires: August 18, 2014

CoAP Simple Congestion Control/Advanced draft-bormann-core-cocoa-01

Abstract

The CoAP protocol needs to be implemented in such a way that it does not cause persistent congestion on the network it uses. The CoRE CoAP specification defines basic behavior that exhibits low risk of congestion with minimal implementation requirements. It also leaves room for combining the base specification with advanced congestion control mechanisms with higher performance.

This specification defines some simple advanced CoRE Congestion Control mechanisms, Simple CoCoA. In the present version -01, it is already making use of some input from simulations, but might still benefit from simplifying it further.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of <u>BCP 78</u> and <u>BCP 79</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 18, 2014.

Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (<u>http://trustee.ietf.org/license-info</u>) in effect on the date of

Expires August 18, 2014

publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

$\underline{1}$. Introduction	 · <u>2</u>
<u>1.1</u> . Terminology	 . <u>2</u>
<u>2</u> . Context	 . <u>3</u>
$\underline{3}$. Advanced CoAP Congestion Control: RTO Estimation	 . <u>3</u>
<u>3.1</u> . Blind RTO Estimate	 · <u>4</u>
<u>3.2</u> . Measured RTO Estimate	 · <u>4</u>
<u>3.2.1</u> . Modifications to the algorithm of <u>RFC 6298</u>	 . <u>5</u>
<u>3.2.2</u> . Discussion	 . <u>5</u>
<u>3.3</u> . Lifetime, Aging	 . <u>5</u>
$\underline{4}$. Advanced CoAP Congestion Control: Non-Confirmables	 . <u>6</u>
<u>4.1</u> . Discussion	 . <u>6</u>
5. IANA Considerations	 · <u>7</u>
<u>6</u> . Security Considerations	 · <u>7</u>
<u>7</u> . Acknowledgements	 • 7
<u>8</u> . References	 · <u>7</u>
<u>8.1</u> . Normative References	 · <u>7</u>
<u>8.2</u> . Informative References	 . <u>8</u>
Author's Address	 . <u>8</u>

1. Introduction

(See Abstract.)

Extended rationale for this specification can be found in [<u>I-D.bormann-core-congestion-control</u>] and [<u>I-D.eggert-core-congestion-control</u>], as well as in the minutes of the IETF 84 CoRE WG meetings.

<u>1.1</u>. Terminology

This specification uses terms from [<u>I-D.ietf-core-coap</u>]. In addition, it defines the following terminology:

Initiator: The endpoint that sends the message that initiates an exchange. E.g., the party that sends a confirmable message, or a non-confirmable message conveying a request.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

[Page 2]

document are to be interpreted as described in [<u>RFC2119</u>] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain English words, absent their normative meanings.

(Note that this document is itself informational, but it is discussing normative statements.)

The term "byte", abbreviated by "B", is used in its now customary sense as a synonym for "octet".

2. Context

In the Vancouver IETF 84 CoRE meeting, a path forward was defined that includes a very simple basic scheme (lock-step with a number of parallel exchanges of 1) in the base specification together with performance-enhancing advanced mechanisms.

The present specification is based on the approved text in the [<u>I-D.ietf-core-coap</u>] base specification. It is making use of the text that permits advanced congestion control mechanisms and allows them to change protocol parameters, including NSTART and the binary exponential backoff mechanism. Note that Section 4.8 of [<u>I-D.ietf-core-coap</u>] limits the leeway that implementations have in changing the CoRE protocol parameters.

The present specification also assumes that, outside of exchanges, non-confirmable messages can only be used at a limited rate without an advanced congestion control mechanism (this is mainly relevant for -observe). It is also intended to address the [<u>RFC5405</u>] guideline about combining congestion control state for a destination; and to clarify its meaning for CoAP using the definition of an endpoint.

The present specification does not address multicast or dithering beyond basic retransmission dithering.

3. Advanced CoAP Congestion Control: RTO Estimation

For an initiator that plans to make multiple requests to one destination endpoint, it may be worthwhile to make RTT measurements in order to obtain a better RTO estimation than that implied by the default initial timeout of 2 to 3 s. This is based on the usual algorithms for RTO estimation [RFC6298], with appropriately extended default/base values, as proposed in Section 3.2.1. Note that such a mechanism must, during idle periods, decay RTT estimates that are shorter than the basic RTT estimate back to the basic RTT estimate, until fresh measurements become available again, as proposed in Section 3.3.

[Page 3]

One important consideration not relevant for TCP is the fact that a CoAP round-trip may include application processing time, which may be hard to predict, and may differ between different resources available at the same endpoint. Servers will only trigger their early ACKs (with a non-piggybacked response to be sent later) based on the default timers, e.g. after 1 s. A client that has arrived at a RTO estimate shorter than 1 s SHOULD therefore use a larger backoff factor for retransmissions to avoid expending all of its retransmissions in the default interval of 2 to 3 s. A proposal for a mechanism with variable backoff factors is presented in Section 3.2.1.

It may also be worthwhile to do RTT estimates not just based on information measured from a single destination endpoint, but also based on entire hosts (IP addresses) and/or complete prefixes (e.g., maintain an RTT estimate for a whole /64). The exact way this can be used to reduce the amount of state in an initiator is for further study.

3.1. Blind RTO Estimate

The initial RTO estimate for an endpoint is set to 2 seconds.

If only the initial RTO estimate is available, the RTO estimate for each of up to NSTART exchanges started in parallel is set to 1 s times 2 to the power of the number of parallel exchanges, e.g. if two exchanges are already running, the initial RTO estimate for an additional exchange is 8 seconds.

The binary exponential backoff is truncated at 32 seconds. Similar to the way retransmissions are handled in the base specification, they are dithered between 1 x RTO and ACK_RANDOM_FACTOR x RTO.

3.2. Measured RTO Estimate

The RTO estimator runs two copies of the algorithm defined in [RFC6298], as modified in Section 3.2.1: One copy for exchanges that complete on initial transmissions (the "strong estimator"), and one copy for exchanges that have run into retransmissions (the "weak estimator"). For the latter, there is some ambiguity whether a response is based on the initial transmission or any retransmission. For the purposes of the weak estimator, the time from the initial transmission counts.

[Page 4]

CoAP Simple CoCoA

The overall RTO estimate is a exponentially weighted moving average (alpha = 0.5) computed of the strong and the weak estimator, which is evolved after each contribution to the weak estimator or to the strong estimator, from the estimator that made the most recent contribution:

RTO_overall_ := 0.5 * RTO_recent_ + 0.5 * RTO_overall_

(Note that the contribution of the weak estimator may be too big in naturally lossy networks. TBD.)

3.2.1. Modifications to the algorithm of <u>RFC 6298</u>

This subsection presents three modifications that must be applied to the algorithm of [RFC6298] as per this document. The first two recommend new parameter settings. The third one is the variable backoff factor mechanism.

The initial value for each of the two RTO estimators is 2 s.

For the weak estimator, the factor K (the RTT variance multiplier) is set to 1 instead of 4. This is necessary to avoid a strong increase of the RTO in the case that the RTTVAR value is very large, which may be the case if a weak RTT measurement is obtained after one or more retransmissions.

If an RTO estimation is lower than 1 s or higher than 8 s, instead of applying a binary backoff factor in both cases, a variable backoff factor is used. For RTO estimations below 1 s, the RTO for a retransmission is multiplied by 3, while for estimations above 8 s, the RTO is multiplied only by 1.3 (this initial choice of numbers to be verified by more simulations). This helps to avoid that exchanges with small initial RTOs use up all retransmissions in a short interval of time and exchanges with large initial RTOs may not be able to carry out all retransmissions within MAX_TRANSMIT_WAIT (93 s).

3.2.2. Discussion

In contrast to [RFC6298], this algorithm attempts to make use of ambiguous information from retransmissions. This is motivated by the high non-congestion loss rates expected in constrained node networks, and the need to update the RTO estimators even in the presence of loss. Additional investigation is required to determine whether this is indeed justified.

<u>3.3</u>. Lifetime, Aging

[Page 5]

CoAP Simple CoCoA

The state of the RTO estimators for an endpoint SHOULD be kept as long as possible. If other state is kept for the endpoint (such as a DTLS connection), it is very strongly RECOMMENDED to keep the RTO state alive at least as long as this other state. It MUST be kept for at least 255 s.

If an estimator has a value that is lower than 1 s, and it is left without further update for a time that is more than 16 times its current value, its value is doubled.

(It is allowed to implement this cumulatively at the time it is used next, possibly approximating multiple doublings by replacing the value with 1/8th of the time that has elapsed since the last update. Alternatively, simple estimators can be simply updated to 1 s after being without update for a time that is more than 16 times its value, or, even simpler, be clamped at 1 s or above.)

4. Advanced CoAP Congestion Control: Non-Confirmables

(TO DO: Align this with final consensus on -observe!)

A COAP endpoint MUST NOT send non-confirmables to another COAP endpoint at a rate higher than defined by this document. Independent of any congestion control mechanisms, a COAP endpoint can always send non-confirmables if their rate does not exceed 1 B/s.

Non-confirmables that form part of exchanges are governed by the rules for exchanges.

Non-confirmables outside exchanges (e.g., [<u>I-D.ietf-core-observe</u>] notifications sent as non-confirmables) are governed by the following rules:

- Of any 16 consecutive messages towards this endpoint that aren't responses or acknowledgments, at least 2 of the messages must be confirmable.
- The confirmable messages must be sent under an RTO estimator, as specified in <u>Section 3</u>.
- 3. The packet rate of non-confirmable messages cannot exceed 1/RTO, where RTO is the overall RTO estimator value at the time the non-confirmable packet is sent.

4.1. Discussion

[Page 6]

CoAP Simple CoCoA

This is relatively conservative. More advanced versions of this algorithm could run a TFRC-style Loss Event Rate calculator [<u>RFC5348</u>] and apply the TCP equation to achieve a higher rate than 1/RTO.

5. IANA Considerations

This document makes no requirements on IANA. (This section to be removed by RFC editor.)

6. Security Considerations

(TBD. The security considerations of, e.g., [<u>RFC5681</u>], [<u>RFC2914</u>], and [<u>RFC5405</u>] apply. Some issues are already discussed in the security considerations of [<u>I-D.ietf-core-coap</u>].)

7. Acknowledgements

The first document to examine CoAP congestion control issues in detail was [<u>I-D.eggert-core-congestion-control</u>], to which this draft owes a lot.

Michael Scharf did a review of CoAP congestion control issues that asked a lot of good questions. Several Transport Area representatives made further significant inputs this discussion during IETF84, including Lars Eggert, Michael Scharf, and David Black. Andrew McGregor, Eric Rescorla, Richard Kelsey, Ed Beroset, Jari Arkko, Zach Shelby, Matthias Kovatsch and many others provided very useful additions. Carles Gomez, August Betzler and Ilker Demirkol provided a first detailed review of the present document; August provided simulation results that shaped some of the recommendations here but also indicate a need for further effort.

8. References

8.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.
- [RFC2914] Floyd, S., "Congestion Control Principles", <u>BCP 41</u>, <u>RFC</u> 2914, September 2000.
- [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines for Application Designers", <u>BCP 145</u>, <u>RFC 5405</u>, November 2008.

[Page 7]

Internet-Draft

[RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent, "Computing TCP's Retransmission Timer", <u>RFC 6298</u>, June 2011.

<u>8.2</u>. Informative References

- [I-D.bormann-core-congestion-control] Bormann, C. and K. Hartke, "Congestion Control Principles for CoAP", draft-bormann-core-congestion-control-02 (work in progress), July 2012.
- [I-D.eggert-core-congestion-control]

Eggert, L., "Congestion Control for the Constrained Application Protocol (CoAP)", <u>draft-eggert-core-</u> <u>congestion-control-01</u> (work in progress), January 2011.

[I-D.ietf-core-coap]

Shelby, Z., Hartke, K., and C. Bormann, "Constrained Application Protocol (CoAP)", <u>draft-ietf-core-coap-18</u> (work in progress), June 2013.

[I-D.ietf-core-observe]

Hartke, K., "Observing Resources in CoAP", <u>draft-ietf-</u> <u>core-observe-11</u> (work in progress), October 2013.

- [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP Friendly Rate Control (TFRC): Protocol Specification", <u>RFC</u> 5348, September 2008.
- [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion Control", <u>RFC 5681</u>, September 2009.

Author's Address

Carsten Bormann Universitaet Bremen TZI Postfach 330440 Bremen D-28359 Germany

Phone: +49-421-218-63921 Email: cabo@tzi.org

[Page 8]