
INTERNET-DRAFT Carsten Bormann, Joerg Ott
Expires: December 1999 Universitaet Bremen
 Nils Seifert
 Tellique
 June 1999

MTP/SO: Self-Organizing Multicast
draft-bormann-mtp-so-02.txt

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 MTP/SO is a reliable multicast protocol based on the earlier
 protocols MTP (RFC1301) and MTP-2, simplifying the protocol
 considerably while adding self-organization of the members of the
 group into a hierarchy of local regions, local retransmissions, local
 NAK damping, and both global and local forward error correction.
 MTP/SO retains the coordinated many-to-many multicast model of MTP-2
 while improving scalability.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1301

Bormann, Ott, Seifert [Page 1]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

1. Introduction

 Multiparty cooperative applications have received much attention over
 the past years, as has the multicasting of datagrams in the Internet.
 The Internet datagram multicasting mechanism is not reliable, often
 requiring a higher level protocol to achieve the level of reliability
 required for an application.

 Much of the early work on reliable multicast protocols has assumed
 relatively stable groups that need to ensure that all messages are
 eventually received by all members of this well-defined group.
 Recently, work on loosely coupled teleconferencing has directed
 attention to a class of multicast applications that scale up to an
 extent where this assumption is no longer practical. Many other
 applications in the area of synchronous groupware also do not need
 the strong property of reliability, but can nonetheless benefit from
 a multicast protocol providing some weaker form of reliable
 transport.

 An interesting multicast transport protocol with a somewhat relaxed
 view of reliability is defined in RFC 1301 [1]. MTP can be used with
 unreliable and not necessarily sequence preserving underlying
 multicast (or broadcast) network protocols such as IP multicast. MTP
 provides globally ordered, receiver reliable, rate controlled and
 atomic transfer of messages to multiple recipients.

 A revised version of MTP, the Multicast Transport Protocol MTP-2, has
 been used for a number of applications for some time [2]. MTP-2 has
 been designed to avoid some of the practical problems experienced in
 using MTP and introduces a number of additional facilities that
 increase its utility. In particular, MTP-2 no longer has a single
 point of failure.

 This document defines Self-Organizing Multicast, MTP/SO. MTP/SO uses
 MTP-2 as a basis and adds spontaneous self-organization of the
 members of the group into a hierarchy of local regions. Scalability
 is increased by providing passive group joining and local
 retransmission of lost packets, as well as forward error correction
 (FEC).

2. Requirements

 Even more so than for unicast protocols, there are difficult trade-
 offs in designing a multicast protocol. It is unlikely that a single
 reliable multicast protocol can be applicable to all kinds of
 multicast applications, from a small set of replicated database
 systems synchronizing their updates, to distributed interactive
 simulation systems with hundreds of thousands of processes joining
 and leaving large numbers of groups with high frequency.

https://datatracker.ietf.org/doc/html/rfc1301

 Any design of a protocol that aims to cover a part of the ground must
 therefore be explicit about the specific requirements the designers
 had in mind. Concentrating on any single objective is unlikely to

Bormann, Ott, Seifert [Page 2]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 yield a generally applicable protocol. In this section, we list what
 we perceive to be the main requirements that went into the design of
 MTP/SO, in order of importance.

 o Scalability

 While the actual usage pattern of synchronous group communication
 software is not yet known, it is clear that groups of wildly
 different sizes will need to be accommodated. A protocol that is not
 scalable to large groups with a significant rate of membership change
 will not be a viable multicast platform.

 Many existing protocols that focus on reliability require a positive
 acknowledgment from each recipient to the sender of each message.
 This does not scale to large groups without elaborate aggregation
 schemes. Also, group management algorithms that require an
 acknowledgment from each member to accept a new member are not
 acceptable in large groups (in particular, building a group creates
 an n-square problem).

 As a first level of attack, this scaling problem can be circumvented
 by using negative acknowledgements (NAKs). Unfortunately, this also
 conflicts with a strict reliability requirement: Not every failure
 will be immediately detected, since the normal behavior of a
 recipient, i.e. being silent, cannot be distinguished from a silent
 failure. There is a trade-off between scalability and the kind of
 reliability that can be realized.

 o Efficiency

 A reliable multicast protocol should be comparable in performance to
 special protocols specifically designed for an application. Just as
 TCP generally is slightly less efficient than a specially designed
 protocol would be, some more packets and additional per-packet
 overhead as well as some additional processing time will be
 tolerable. However, the protocol needs to be in the same class of
 overhead to be applicable to an application.

 o Robustness and Reliability

 A reliable multicast protocol should obviously be ``reliable'' in
 some sense. Given the conflict with scalability, we define
 reliability to mean: A recipient can (within bounded time) find out
 when it is failing or being partitioned from active senders. A
 sender is assured (with sufficient probability) that all its messages
 reach within bounded time all recipients that are not failing or
 being partitioned.

 Obviously, this strict definition of reliability needs to be
 complemented by some measure of robustness: A protocol that declares

 failure or creates significant delays in the face of trivial errors
 may meet this definition but is not useful. In a teleconferencing
 environment, a desirable robustness property is the ability to

Bormann, Ott, Seifert [Page 3]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 continue operating within partitions should the group become
 partitioned. Ultimately, the applications that use the multicast
 transport platform should be the ones to decide when the situation
 has deteriorated to a point where continuing is meaningless.

 o Ordering

 Many applications are simplified considerably when (at least a
 certain subset of all) messages exchanged in the group arrive in the
 same order at all recipients, even if originated at different
 senders. This requirement distinguishes MTP/SO from other multiple
 sender multicast protocols such as SRM [5] that work best when the
 shared state of the multicast group is the (commutative and
 associative) sum of the independent contributions of all
 participants.

3. Overview

 This section gives an overview over the protocol functions of MTP/SO.
 (Note to readers that have seen MTP or MTP-2: This overview is given
 in terms that are more generic than those used in older protocol
 definitions. In particular, the terms group, coordinator, sender,
 and receiver have been substituted for the traditional terms web,
 master, producer, and consumer.)

 In MTP/SO there are three different roles of members in a group:
 coordinator, sender and receiver. The coordinator provides the
 message ordering for all members in a group and oversees the global
 rate management. Senders send data in messages (each sent as a
 sequence of one or more data packets) after obtaining a token from
 the designated coordinator. Receivers receive these messages and
 request the retransmission of packets that did not arrive.

 In MTP/SO, many actions such as retransmitting control packets or
 requesting retransmissions depend on a time interval that is a
 parameter to the whole group. This interval is called heartbeat and
 is measured in microseconds.

3.1. Global ordering

 The coordinator assigns a global sequence number to each message. In
 the simplest mode of transmission, before a sender is allowed to
 start sending a new message, it has to obtain a token from the
 coordinator. This can be done by transmitting a special request
 packet to the coordinator or by sending the request along with data
 packets belonging to other messages. The coordinator answers with a
 confirm packet, which contains the sequence number for the new
 message. Senders will then send this sequence number in every data
 packet belonging to the message. It is the responsibility of the

 receivers to deliver messages in the correct order to the
 applications, if sequenced delivery has been specified for a message.

Bormann, Ott, Seifert [Page 4]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 This results in an ordering class called ``global ordering'', which
 means that even when there are many senders simultaneously sending
 messages, every receiver will receive the messages in the same order
 (which comes close to the order in which the tokens were requested).

 As the sequencing will quite often result in an additional delay (for
 example when a short message is preceded by a very long one),
 applications can assign messages to different streams. A message is
 delivered irrespective of messages belonging to other streams, even
 if these carry lower sequence numbers. By using streams,
 applications can avoid unnecessary delays, simply by assigning
 independent messages to different streams.

 A message that can be processed independent of the ones preceding it
 can be marked with a sequencing_off bit. Messages so marked can be
 immediately delivered to the application by receivers, even if the
 stream numbers of preceding messages are still unknown.

 Normally the coordinator grants the tokens in the same order the
 token request packets are received. If there is a need to transmit
 some messages with a higher priority, applications can assign a
 priority to every message. This priority is only considered while
 granting a token (hence only when there are many tokens requested at
 the same time) and has no effect on the transmission rate of the
 message once a token has been assigned. As a result, when a sender
 sends messages with different priorities, it is no longer guaranteed
 that these are received in the same order they were queued for
 sending -- if they are in the same stream, they are, however,
 received in the same order by all receivers (including the sender).

3.2. Rate and Load management

 Rate management is overseen by the coordinator. A parameter global
 to the group defines the maximum bandwidth to be used by the group.
 The coordinator dynamically adjusts a per-message parameter called
 window to divide up the total rate into the number of tokens
 currently granted, controlling the inter-packet-interval at which
 senders pace data packets belonging to one message. So the
 coordinator can ensure that the maximum throughput defined for the
 group is not exceeded.

 An argument often heard against using a central coordinator is that
 it might limit scalability by becoming a bottleneck. First, it needs
 to be noted that in the worst case (all messages are one packet long)
 the coordinator handles three times as many packets as each other
 group member that does not send: one (small) token request, one
 (small) token confirm, and the actual reception of the data packet.
 There is no scalability problem involved, except the general problem
 that many active senders will generate many packets (independent of

 whether coordinated or not).

 There remains one problem, however. If more members desire to send
 than can be granted a token at any one time, a distributed queue

Bormann, Ott, Seifert [Page 5]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 needs to be formed. To be able to sustain large queues of senders,
 the coordinator maintains a global damping factor d for token
 requests. A new value for d is distributed every heartbeat by the
 coordinator (as a rounded-down base 2 logarithm). In normal
 operation, d is 1. When requesting a token or retransmitting this
 request, senders use the current value of 1/d in each heartbeat as
 the probability for actually sending the request in this heartbeat.
 Senders echo the damping factor used in each token request actually
 sent. The coordinator weighs the token requests by their damping
 factor to allocate tokens. Piggy-backed token requests are
 considered to have a damping factor of one (no damping is applied to
 piggy-backed token requests).

 The coordinator computes d as:

 max(1, w / (max(12,k)*2) - 1)

 where w is the sum of the echoed damping factors received in token
 requests during the last heartbeat and k is an exponentially weighted
 moving average of the number of token requests granted in recent
 heartbearts.

3.3. Atomicity

 Atomicity (arrival of a message at all members or at none of the
 members) is a desirable property of a group communication protocol.
 Unfortunately, full atomicity requires collecting positive
 acknowledgements from all group members until a message can be acted
 upon, too heavy-weight for the goals of MTP/SO. Instead, MTP/SO
 defines a lighter-weight form of atomicity that is still useful for
 many applications.

 At any point in time, each message is assigned a state by the
 coordinator: pending, accepted, or rejected.

 The state of a message is set to accepted when the coordinator did
 receive the complete message. As soon as a sender notices one of its
 messages to be accepted, it sends an acknowledgement of successful
 transmission to its application. Such an acknowledgement does not
 mean that every receiver received the message. It only guarantees
 that at least the coordinator was able to receive it correctly. (It
 also provides the sequence number assigned to the message so that the
 application can order its own messages with respect to other messages
 it may have received).

 A message marked as rejected was not completely received (even after
 requesting retransmissions) by the coordinator. Normally, every
 receiver will drop such a message and the sender of the message will
 indicate an unsuccessful-transmission error to its application.

 Receivers do not deliver pending or rejected messages to the
 application. If a specific receiver does not completely receive a
 message (even after requesting retransmissions) that is finally

Bormann, Ott, Seifert [Page 6]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 marked by the coordinator as accepted, it will signal this as an
 unsuccessful-reception error to its application.

 In summary, it is guaranteed that a message was either delivered
 correctly to every receiver, that it was delivered to no receiver and
 the sender is signalled an error, or that any receiver that did not
 receive the message is signalled an error. (Of course, the protocol
 works hard to minimize the number of such errors, but the above
 statements are guarantees of the protocol.)

 Atomicity increases the message latency: applications need to wait
 for the accepted state propagating from the coordinator before they
 can act on a message. In order to allow every member to quickly
 learn about the state of messages, every packet contains a copy of
 the most recent information available about the state of the most
 recent messages. If application semantics do not require atomicity,
 unnecessary delay can be avoided by marking a message such that it is
 delivered to applications even before accepted by the coordinator
 (atomicity_off).

3.4. Retransmission

 Receivers request retransmissions of data packets when there is a gap
 in the sequence numbers of data packets received for a message or if
 no further data packet has arrived for more than one heartbeat while
 the message is still incomplete. In case all data packets for a
 message have been lost, this will be recognized from the message
 state of packets from following messages or when the coordinator
 propagates the state of the most recent messages. In any case, the
 request for retransmission can be generated at the latest after two
 full heartbeats.

 Retransmission requests, or NAKs (negative acknowledgements) for
 short, are multicast to the group to reduce the implosion problem.
 Receivers dither the time at which they send NAKs and postpone
 sending a NAK when they have recently received one or more NAKs that
 together cover the same set of packets.

 In order to answer NAKs, senders keep a copy of every data packet
 they sent. To limit the number of packets stored, senders are
 allowed to discard these copies after a defined period of time which
 is measured in heartbeats and depending on a special factor called
 retention. After retention+4 heartbeats the copies are no longer
 available and requests for retransmissions received after that period
 are ignored. This makes sure packets are available for at least
 retention retransmissions.

 Nonetheless there is a nonzero probability that all retransmissions
 (or retransmission requests) related to a packet are lost and some

 receivers do not receive the message correctly. For example a
 network partitioning that lasts longer than heartbeat*retention will
 result in lost messages.

Bormann, Ott, Seifert [Page 7]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 This sounds undesirable, but it is similar to the retry limit used in
 positively acknowledged protocols, only that the normally relatively
 small value of heartbeat*retention puts a limit to the length of an
 outage that can be tolerated. We assume that the application
 protocol will have a way to handle receivers that experience such a
 long gap in reception, because it already needs a way to treat new
 members that appear late in the group. Note that for applications
 where this is undesirable, MTP/SO could be augmented by the
 equivalent of log servers [3]. In any case, MTP/SO guarantees that
 when a message was not completely received by every receiver, either
 the affected receivers or the responsible sender will indicate the
 error to the application.

3.5. Self-organization and Repetitors

 Once MTP/SO groups get large, even the handling of NAK-based
 retransmission traffic becomes a scalability problem. As with many
 scaling problems, the obvious solution is to introduce some form of
 hierarchy into the group. This allows at least some of the NAKs and
 resulting retransmissions to be handled locally within trunks and
 branches of that hierarchy. As MTP/SO is a many-to-many protocol, it
 does not make much sense to base the hierarchy on the multicast tree
 from any specific sender (including the coordinator, which generally
 is not the sole sender and which may transfer its role to another
 member during the activity of the group).

 Instead, MTP/SO introduces the concept of a regional repetitor*.
 Receivers multicast NAKs locally before multicasting them to the
 entire group. Repetitors that have previously received the requested
 data, retransmit locally after receiving a local NAK. Repetitors
 that don't have the data simply send a NAK to the next higher level
 of hierarchy, up to the whole group (where, finally, the sender
 replies with another copy of the data).

 A prerequisite to this mechanism is a way to do a local multicast (of
 a NAK as well as of a retransmission). In current IP multicast
 implementations, one way to define such regions is with TTL threshold
 scoping; together with an appropriate protocol; administrative
 scoping provides a similar method [7]. The algorithms described in
 the rest of this section work best when such a scoping mechanism is
 in effect; leaks or other imperfections in the scoping boundaries do
 not cause catastrophic failures, though. The following discussion
 assumes three levels of local scopes, e.g., site, country, and
 continent; the exact choice of number and extent of scopes is a
 global parameter of the group.

 With three local scopes and one global scope, each group member is by

 * This was called ``repeater'' in earlier presentations of

MTP/SO [6]. We are now avoiding this term as it is sometimes used
as an alternative term for a transport layer ``bridge'' between
disconnected multicast domains.

Bormann, Ott, Seifert [Page 8]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 definition in four scopes, where each local scope is contained by the
 next higher scope in the hierarchy. Any member that takes on a
 receiver role can also decide to be a potential repetitor for any of
 the local scopes (e.g. depending on the cost structure of the
 Internet service or on the availability of local memory space).

 For scopes that contain only one member, it does not matter whether a
 member considers itself to be a repetitor for that scope or not. For
 scopes that contain more than one member, a protocol is needed that
 makes this fact known and selects one scope member as the repetitor.
 This protocol needs not necessarily ensure that there is exactly one
 repetitor for each scope at any time, as the retransmission protocol
 still works without a repetitor or with more than one repetitor per
 scope, albeit less efficient.

 Repetitor selection should favor the ``best'' member in the scope,
 i.e. a member that has particularly good reception from the senders,
 as it is most likely that this member will have received the data to
 be able to perform a local retransmission. Each potential repetitor
 therefore maintains a reception quality parameter that, on a first
 level of approximation, tallies the quotient of the number of
 recently correctly received packets to the number of packets that
 should have been received.

 Members that consider themselves repetitor for a scope periodically
 multicast a repetitor announcement message within the scope,
 containing the current value of the reception quality parameter.
 Potential repetitors observe these messages. If, within the most
 local scope, a potential repetitor has a considerably better
 reception quality parameter than the current repetitor, it sends a
 repetitor announcement at the start of its next heartbeat interval
 and assumes the role of the repetitor. Only the repetitors of the
 most local scope compete for the repetitor role of the next higher
 scope, and so on. (A new repetitor that displaces a member that was
 repetitor at higher level scopes also announces itself as repetitor
 at these higher level scopes.)

 To better cope with repetitor failure, receivers that are not
 repetitors send NAKs at the most local scope first and escalate them
 up the hierarchy if neither a retransmission nor a more global NAK
 follows within one heartbeat. Repetitors for a set of scopes begin
 sending NAKs within the next higher scope and then escalate them the
 same way. Retransmissions always occur at the highest level of scope
 that the NAKs leading to that retransmission carried (NAKs have a
 scope field for this purpose).

 A repetitor that leaves a group simply sends a repetitor announcement
 with reception quality zero. A repetitor that crashes stops sending
 repetitor announcements, causing potential repetitors to start

 sending repetitor announcements after a time interval that is
 inversely related to their reception quality parameter.

Bormann, Ott, Seifert [Page 9]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

3.6. Coordinator function

 As it is responsible for assigning tokens and updating the message
 state, the coordinator plays a central role in MTP/SO. If the member
 carrying the coordinator function leaves the group, the coordinator
 function will be passed to one of the remaining members
 automatically.

 To avoid the coordinator being a single point of failure, MTP/SO
 provides a coordinator recovery function. This allows the group to
 elect a new coordinator when the old one crashes or becomes
 unreachable. The new coordinator will then collect all information
 needed from the group members so that no information is lost. (This
 protocol should be, but is not yet, integrated with the repetitor
 function.)

 In order to enhance the performance of MTP/SO it may be useful to
 actively influence which member performs the coordinator function.
 For example if only one member will send messages for a longer period
 of time, the group can migrate the coordinator function to that
 member, thereby avoiding the overhead caused by requesting and
 obtaining tokens (between one and two packets for every message).
 MTP/SO allows either to request the coordinator function for oneself
 or the coordinator to pass the coordinator function to another
 member.

3.7. Membership classes

 Not all members of the group will be in a position to take over the
 functions of a coordinator or of a repetitor. We therefore
 distinguish several ``classes'' of members:
 |
 class | description
 ------+---
 1 | normal member, potential coordinator and repetitor
 2 | normal member, potential repetitor
 3 | normal member
 4 | unreliable receiver, normal sender
 5 | unreliable member

 Most members of an MTP/SO group will be class 1 members, i.e. they
 are prepared to take over the coordinator role if this is required in
 a coordinator recovery*. Class 2 members do not want to take on this
 role (for application reasons or for reasons of limited resources),
 but compete for the repetitor function. Class 3 members take over
 neither special function, but take part as normal members in the
 group; in particular, they are allowed to send NAKs.

 * Instead, a single member can be designated fixed coordinator
by assuming class 0. This means that the multicast group shares
its fate with the class 0 coordinator.

Bormann, Ott, Seifert [Page 10]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 Class 4 members never send NAKs. Their reception of messages in the
 group is therefore unreliable. Nonetheless, they can originate
 messages that are reliably received by the class 3 or higher members
 of the group.

 Class 5 members listen only; the only packet type they can send to
 the group is unreliable multicast datagrams (not yet described in
 this version of the draft). When a minimum quality of
 transmission/reception is defined for the group (see group[info]
 packets below), members may have to downgrade themselves to class 5
 when they find out their own quality has dropped below the acceptable
 level.

 To aid class 4 and class 5 members, and as a general optimization,
 the multicast group can be configured to immediately add a percentage
 of redundancy packets to the data packets sent. This allows the
 receivers to reconstruct missing data packets by interpreting these
 redundancy packets. Redundancy packets also can be independently
 added by repetitors based on the local NAK rate.

4. Protocol Definition

4.1. Notational Conventions

 For convenience, the datagrams transmitted by MTP/SO group members
 are called packets in this document.

 MTP/SO packet types are written major[minor], where major is the
 major type of the packet and minor is the subtype within the major
 type. E.g., there are data[data] packets as well as data[eom]
 packets.

4.2. Protocol Functions and Packet Types

 o Heartbeat

 All members operate on a time line that is divided into heartbeats.
 The nominal length of a heartbeat is a global parameter of the group.
 The actual heartbeat boundaries (or heartbeats for short) are
 dithered around the nominal value. Most protocol actions are
 performed at the start of a new heartbeat interval. An exception is
 the actual transmission of data packets, which is evenly distributed
 over the heartbeat interval to which the data packets are allocated.
 Also, token requests (and token request cancellations) can be unicast
 to the coordinator and be responded to by the coordinator at any
 time.

 o Global Ordering

 A sender that wants to send a message applies for a token by
 unicasting a token[request] packet to the coordinator.

Bormann, Ott, Seifert [Page 11]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 Alternatively, the sender can include a token request field in a data
 packet that is sent under a previously obtained token.

 As soon as a token becomes available, the coordinator replies with a
 token[confirm] containing a new global sequence number, under
 consideration of the queue of token requests and the priority of the
 token request. The sender uses this global sequence number as the
 message number in every data packet pertaining to this message.

 o Message Acceptance

 The coordinator maintains the message acceptance state for recent
 messages. For the 12 most recent messages, the message acceptance
 state is disseminated in every packet. Packets sent by the
 coordinator contain the current message acceptance state; packets
 sent by other members contain a copy of the most recent message
 acceptance state available to that sender (for data packets, this is
 often the state obtained via the token[confirm] packet). As the
 field that is used to disseminate that state only has 12 entries, the
 number of messages that can be pending at any point in time is
 limited.

 To ensure that the most recent message acceptance state is always
 disseminated, the coordinator sends a group[info] packet at least* in
 every heartbeat in which no other member is scheduled to send packets
 based on tokens sent out.

 o Retransmissions

 At each heartbeat, receivers that are missing packets of a message
 multicast nak[request] packets (see also the discussion of self-
 organization and repetitors above). A nak[request] contains a list
 of ranges of sequence numbers for one or more messages. Ranges can
 be open, i.e. implicitly include all further packets when the ending
 packet number is not known. A nak[request] that is received by a
 receiver postpones sending a nak[request] for the set of packets
 listed in the nak[request]. Empty nak[request] packets are never
 sent.

4.3. Addresses

 A MTP/SO group has one group address and as many member addresses as
 there are members.

 The member address is the combination of a 128-bit IPv6 host address
 (possibly in IPv4 compatibility format, i.e. with 96 bits of leading
 zeroes) and a 16-bit UDP port number.

 * In periods of continuous activity, additional group[info]

packets are sent at a reduced rate to allow unreliable receivers
to join.

Bormann, Ott, Seifert [Page 12]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 The group address is the pair of a 128-bit IPv6 multicast address
 (again, possibly IPv4 compatible) and a group-ID. The group-ID
 simply is the member address of the current coordinator.

 MTP/SO multicasts always use the UDP destination port number 47112
 (to be assigned) and the UDP source port number from the member
 address. MTP/SO unicasts use UDP source and destination port numbers
 in the range 47112+1 to 49152-1 (note that the number 49152 marks the
 end of the medium priority port number space in some current IP
 multicast router implementations).

4.4. Packet Formats

 Figure 1: Standard packet header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Version | Type | Mod | (Port part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+-+
| (Address part) |
+- -+
| |
+- For multicast packets: Group ID -+
| |
+- -+
| |
+-+
| Heartbeat | Coordinator State Sequence Number |
+-+
| Retention | Message Acceptance Sequence Number |
+-+
|T| Number|Prio | |Mes|sag|e A|cce|pta|nce| St|ate| Ar|ray| |
+-+
| Window |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The standard packet header contains the following fields:

 o Version

 For the current version of MTP/SO, version is always 3.

 o Type, Mod

 Packet type and type modifier (subtype).

 o Group ID

 For multicast packets, this field gives the member address of the
 current coordinator. For unicast packets, this field is not used.

Bormann, Ott, Seifert [Page 13]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 o Coordinator State Sequence Number

 A sequence number for the version of the coordinator state that is
 disseminated with this message.

 o Message Acceptance Sequence Number, Message Acceptance State Array

 Let n be the message acceptance sequence number, then message
 acceptance state array contains the most recent message acceptance
 states known for messages n-1 to n-12:

 0 pending
 1 accepted
 2 rejected
 3 (reserved)

 o T, Number, Prio

 If the T bit is set, Number gives the serial number and Prio the
 priority of a token request piggybacked in this packet.

 o Heartbeat, Retention, Window

 Current values for these three global parameters of the group. These
 parameters are given as pseudo-floating-point numbers:

 parameter bits mantissa (msb) exponent (lsb) unit

 heartbeat 8 3 5 microseconds (0 to
7*2^31)
 retention 8 4 4 1 (0 to
15*2^15)
 window 16 11 5 microseconds (0 to
2047*2^31)

 Figure 2: token[request]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |1| Number|Prio |1| Number|Prio |
+-+
|1| Number|Prio | |0 0 0| dlb |
+-+-+-+-+-+-+-+-+- +-+-+-+-+-+-+-+-+

 A token[request] packet is unicast from a member to the coordinator
 to apply for one or more tokens. Each of these requests for a token
 contains a serial number of that request plus a request priority.
 The first token request is carried in the token request part of the
 standard header; additional token requests can be sent in the packet
 type specific part following the standard header. This part ends
 with a byte echoing the base 2 logarithm of the damping factor used;

Bormann, Ott, Seifert [Page 14]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 this byte can be left off if dlb is zero.

 Figure 3: token[confirm], token[cancel]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | New Message Sequence |
+-+
| Number |
+-+-+-+-+-+-+-+-+

 A token[confirm] is unicast from the coordinator to the member that
 requested the token. A token[cancel] can be used by the token
 holding member to return the token to the coordinator.

 Figure 4: data packets (except data[eom])
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | stream number |
+-+
|S|A|R|0 0|O| L | Message Sequence Number |
+-+
| Packet Sequence Number |
+-+
| Data |
: :

 The S bit, if set, indicates that ordered delivery is not required
 for this message (``sequencing_off''). The A bit, if set, indicates
 that atomic delivery is not required for this message
 (``atomicity_off''). The R bit, if set, indicates that this message
 is not transmitted reliably, i.e., the producer is not going to
 answer any nak[request]s. Consumers are expected to wait for any
 missing packet of this message for one heartbeat and then mark the
 message as not received. The O bit (``original'') is set only for
 the first transmission of the data packet by the original sender. It
 is reset for any kind of retransmission (regardless whether performed
 by the original sender or not). L (``level'') is a binary number
 ranging from 0 to 3. Level 0 indicates a global transmission; levels
 1 to 3 indicate transmission of the packets at the second most global
 to most local level scope, resp. (For a retransmission, the
 transmission level indicates the scope in which this data packet was
 sent; lower level repetitors can use this information to decide
 whether they can defer their own retransmissions.)

Bormann, Ott, Seifert [Page 15]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 Figure 4a: data[eom]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | stream number |
+-+
|S|A|R|0 0|O| L | Message Sequence Number |
+-+
| Packet Sequence Number |
+-+
| 0 (AL) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+
| |
+- -+
| |
+- original sender's member address -+
| |
+- -+
| |
+-+
: authentication information (optional) :
+-+
| Data |
: :

 To ensure that the original sender of a message becomes known even if
 the only packets a receiver has received from this message were
 repetitor retransmissions, the data[eom] packet differs from the
 other data packets in that it contains a copy of the original
 sender's member address. (Note that this information is redundant
 for packets that have the O-bit set; it is retained in favor of a
 common packet format for all cases.) With an optional authentication
 protocol (not specified in this version of the document),
 authentication information can be given with this last packet of the
 message; the length in 32-bit words is in AL.

Bormann, Ott, Seifert [Page 16]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 Figure 4b: data[fec]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0 |
+-+
| FEC Type | FEC Parameter | FEC Data Size |
+-+
| |
+ FEC Data (including modified header) +
: :
+-+
| 0 | Message Sequence Number |
+-+
| Packet Sequence Number |
+-+
| 0 | Message Sequence Number |
+-+
| Packet Sequence Number |
+-+
: :

 Senders and repetitors can send FEC packets in addition to (or
 instead of) data packets. A data[fec] packet contains forward error
 correction information computed out of one or more original data
 packets, including their headers, where the port part of the group
 address is replaced by a two-byte original packet length field and
 the rest of the group address is left out; these data packets are
 each identified by their message sequence number and packet sequence
 number. FEC data size is the total size of this information. The
 resulting information (starting at a two-byte boundary) is padded to
 a four-byte boundary. Only data packets with the same group address
 can be combined; they are sent with a copy of this group address in
 the header of the data[fec] packet. FEC type and parameter define
 the exact FEC code used; FEC type 1 is defined as XOR.

Bormann, Ott, Seifert [Page 17]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 Figure 5: nak[request]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0 | L |
+-+
|F| 0 | Message Sequence Number |
+-+
| Packet Sequence Number (Low) |
+-+
| Packet Sequence Number (High) |
+-+
|F| 0 | Message Sequence Number |
+-+
| Packet Sequence Number (Low) |
+-+
| Packet Sequence Number (High) |
+-+
: :

 The F bit, if set, indicates that, starting at the packet sequence
 number (low), all packets from the given message are missing. As
 with data packets, L gives the scope level at which this NAK is being
 multicast. NAK request packets inhibit the transmission of further
 such packets from other potential transmitters (for one heartbeat)
 only at the level of scope given. A retransmission that is a
 response to a NAK request should be sent at the level of scope given.

 Figure 6: status[request], status[deny]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0 | L |
+-+
| 0 | Message Sequence Number |
+-+
| 0 | Message Sequence Number |
+-+
: :

 A status request packet can be multicast by a member to request
 status for messages that already have scrolled off the message
 acceptance state array in the standard header. A status deny
 response indicates that the retention time for keeping information
 about the status of the messages has passed.

Bormann, Ott, Seifert [Page 18]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 Figure 7: status[info]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0 |
+-+
|U| S | 0 | Message Sequence Number |
+-+
|U| S | 0 | Message Sequence Number |
+-+
: :

 Responding to status requests, a repetitor (for local scopes) or the
 coordinator can multicast status info. The U bit, if set, indicates
 that the status of the given message is unknown. The S field gives
 the message acceptance state as in the message acceptance state
 array.

 Figure 8: group[seek]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Scope | 0 |C|K|
+-+
| Group Name . . .
+-+-+-+-+-+-+-+-+-

 The K-bit, if set, indicates that reliable receiver status
 (membership class 1 to 3) is intended, i.e., that an explicit
 acknowledgement for this member has to be given within a group[info].
 The C-bit, if set, indicates that the transmitter is a potential
 coordinator (membership class 1); it causes other potential
 coordinators with a higher member address to back off. The scope
 field gives the actual scope in which this packet was transmitted
 (this cannot just be given as a scope level number as the actual
 scope levels used in this group may not yet be known to the
 transmitter).

Bormann, Ott, Seifert [Page 19]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 Figure 9: group[info]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Quality |
+-+
| Activity | 0 | dlb |E| L |
+-+
| TTL Scope 0 | TTL Scope 1 | TTL Scope 2 | TTL Scope 3 |
+-+
| Network Packet Size |
+-+
| min. Receive Quality | min. Send Quality |
+-+
| Group Name Length | Group Name ... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
: (zero-padded to 4 byte alignment) |
+-+
: type | length | extension :
:-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
: :
:-+-:
: type | length | extension :
:-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
: :

 The group[info] packet is periodically transmitted by the coordinator
 and by each repetitor to ensure that all group members are aware of
 the global parameters of the group and of the quality of the current
 repetitor.

 Three parameters give dynamic information about the transmitter and
 about the group: Quality is the (0,16 bit fixed point) product of
 reception and transmission quality of the transmitter. Activity is a
 measure for the recent activity of this group (useful for merging
 decisions by applications). The dlb field gives the base-2 logarithm
 of the current token request damping factor d (i.e., dlb is normally
 zero unless damping is required).

 The other fields of the packet give global group parameters that
 usually are constant: The E-Bit (``elect'') is set for group[info]
 packets originated by the coordinator in case it is willing to
 transfer the coordinator function to a higher quality member; it
 requests other potential coordinators to announce their quality (if
 better) via group[info]. L gives the scope level, and, indirectly,
 the source of the group[info]: level 0 packets are originated by the
 coordinator or by other potential coordinators (the latter if the

 source address is not equal to the coordinator part of the group
 address), level 1 to 3 packets are originated by repetitors of the
 respective level. Analogously, the TTL fields provide the TTL scopes
 of the levels: TTL 0 is the scope of the entire group, TTL 1 to TTL 3

Bormann, Ott, Seifert [Page 20]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 give the scopes of the most global to most local repetitor levels.
 Setting the scope for a level to zero indicates that this level is
 not in use. The fields minimal send quality and minimal receive
 quality give minimum levels of quality for a member that wants to
 send reliable messages or that wants to request retransmissions
 (reliable reception); if not met, they cause the member to assume a
 lower membership class.

 At the end of the fixed part of group[info] packets, extensions can
 be added. Their type is identified by a one-byte type code their
 length given by a one-byte length field, giving the number of 32-bit
 words beyond the initial one in this extension.

 Figure 9a: group[info] extension for member acks
+-+
: 1 | 4 | (Port part) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+-+
: (Address part) :
+- -+
: Acknowledged :
+- Member-Address -+
: :
+- -+
: :
+-+

 Type 1 group[info] extensions are used to carry an acknowledgement
 for a group[seek] requests by a member that needs to achieve reliable
 reception status quickly (K-bit in group[seek] set).

4.5. Summary of packet types

 packet type type[code] multi/uni sent by see Figure
 --
 data[data] 0[0] m C,R,s 4
 data[eom] 0[1] m C,R,s 4a
 data[ceom] 0[3] m C,R,s 4*)
 data[fec] 0[4] m C,R,s 4b
 nak[request] 1[0] mu r 5
 group[info] 2[0] m C,R 9
 group[seek] 2[1] m C,R,s,r 8
 token[request] 4[0] u s 2
 token[confirm] 4[1] u C 3
 token[cancel] 4[2] u s 3
 status[request] 5[0] m C,R,s,r 6
 status[info] 5[1] m C,R 7

 coord[suspected] 6[0] m R,s,r *)
 coord[inforeq] 6[4] u p *)
 coord[info] 6[5] u C *)

Bormann, Ott, Seifert [Page 21]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

 coord[statusreq] 6[6] m p *)
 coord[status] 6[7] m R,s,r *)
 coord[give] 6[8] u C *)
 coord[accept] 6[9] u p *)

 multi/uni: m is multicast, u is unicast.

 sent by: C is coordinator (p is potential coordinator), R is
 repetitor, s is sender, r is receiver.

 *) Not yet described in the present version of the document.

5. References

 [1] S. Armstrong, A. Freier, K. Marzullo: ``Multicast Transport
 Protocol'', RFC 1301, February 1992.

 [2] C. Bormann, J. Ott, H.-C. Gehrcke, T. Kerschat and N. Seifert:
 ``MTP-2: Towards Achieving the S.E.R.O. Properties for Multicast
 Transport'', International Conference on Computer Communications
 and Networks (ICCCN 94), 1994 (available from ftp://ftp.cs.tu-

berlin.de/pub/local/kbs/mtp/doc/sero.ps).

 [3] Holbrook, H.W., Singhal, S.K., and Cheriton, D.R., Log-based
 Receiver-Reliable Multicast for Distributed Interactive
 Simulation. SIGCOMM '95, Cambridge, MA, August, 1995.

 [4] N. Seifert, C. Bormann, J. Ott: MTP/SO: Self-Organizing
 Multicast, First Multicast-Workshop, GI/TU Braunschweig, May
 1999.

 [5] S. Floyd, V. Jacobson, S. McCanne: A Reliable Multicast
 Framework for Light-weight Sessions and Application Level
 Framing, SIGCOMM '95, Cambridge, MA, August, 1995.

 [6] C. Bormann, J. Ott, N. Seifert: MTP/SO: Receiver-Reliable
 Coordinated Many-to-Many Multicast, Presentation at the SIGCOMM
 96 Workshop on Matters Mbone (``SIG-Bone''), Palo Alto;

http://www.cs.ucl.ac.uk/staff/jon/sigbone.html, 27-August-1996.

 [7] R. Kermode: Scoped Address Discovery Protocol (SADP), November
 1998, Internet-draft draft-kermode-sadp-00.txt.

https://datatracker.ietf.org/doc/html/rfc1301
ftp://ftp.cs.tu-berlin.de/pub/local/kbs/mtp/doc/sero.ps
ftp://ftp.cs.tu-berlin.de/pub/local/kbs/mtp/doc/sero.ps
http://www.cs.ucl.ac.uk/staff/jon/sigbone.html
https://datatracker.ietf.org/doc/html/draft-kermode-sadp-00.txt

Bormann, Ott, Seifert [Page 22]

INTERNET-DRAFT MTP/SO: Self-Organizing Multicast June 1999

6. Authors' addresses

 Carsten Bormann, Joerg Ott
 Universitaet Bremen FB3 TZI
 Postfach 330440
 D-28334 Bremen, GERMANY
 cabo, jo@tzi.org
 phone +49.421.218-7024, 201-7028
 fax +49.421.218-7000

 Nils Seifert, Joerg Ott
 Tellique GmbH
 Gustav-Meyer-Allee 25, Haus 12
 D-13355 Berlin, GERMANY
 se, jo@tellique.de
 phone +49.30.46307-551, -550
 fax +49.30.46307-579

Bormann, Ott, Seifert [Page 23]

