
Workgroup: dyncast

Internet-Draft:

draft-bormann-t2trg-affinity-00

Published: 30 August 2021

Intended Status: Informational

Expires: 3 March 2022

Authors: C. Bormann

Universität Bremen TZI

Providing Instance Affinity in Dyncast

Abstract

Dyncast support in a network provides a client with a fresh optimal

path to a service provider instance, where optimality includes both

path and service provider characteristics. As a service invocation

usually takes more than one packet, dyncast needs to provide

instance affinity for each service invocation. Naive implementations

of instance affinity require per-application, per service-invocation

state in the network.

The present short document defines a way to provide instance

affinity that does not require, but also does not rule out per-

application state.

It also discusses how the information that an application needs to

operate this mechanism can be provided via the discovery mechanisms

offered by a CoRE (Constrained RESTful Environments) server, either

in /.well-known/core or via the CoRE resource directory.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 March 2022.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Assumptions

4. Objectives

5. Approach

6. Discussion

7. Details

8. Legacy IP Considerations

9. CoRE Discovery

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Author's Address

1. Introduction

Dyncast support in a network provides a client with a fresh optimal

path to a service provider instance, where optimality includes both

path and service provider characteristics. As a service invocation

usually takes more than one packet, dyncast needs to provide

instance affinity for each service invocation. Naive implementations

of instance affinity require per-application, per service-invocation

state in the network.

The present short document defines a way to provide instance

affinity that does not require, but also does not rule out per-

application state.

It also discusses how the information that an application needs to

operate this mechanism can be provided via the discovery mechanisms

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Client:

Service invocation:

Instance Affinity:

Service period:

Service stretch:

offered by a CoRE (Constrained RESTful Environments) server, either

in /.well-known/core or via the CoRE resource directory.

[I-D.liu-dyncast-ps-usecases] lists use cases of dyncast. The

present document does not discuss the specifics of how the network

provides dyncast, such as the way service instance metrics enter

path computations.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terminology of [I-D.liu-dyncast-ps-usecases],

in particular Service and Service Instance (the latter often

abbreviated to "Instance"). It also defines the following terms:

The system that requests a service.

A single transaction between client and a

service instance. The client is interested in talking to the same

service instance throughout one service invocation. Subsequent

and parallel service invocations can use different service

instances without a problem and therefore do not require

affinity.

The ability of the network to send all the

packets of a service invocation to the same service instance.

(Note that this doesn't necessarily imply path affinity -- the

client does not care about the path, only about getting to the

same service instance.)

The temporal granularity (rhythm) in which the

network updates the optimal paths it provides for a service.

The maximum amount of time that the network plans

to provide instance affinity for a service invocation.

3. Assumptions

This document makes a number of assumptions, some of which are

fundamental to its technical approach, but some of which are only

required for the exposition chosen in this document. A future

version of this document will clearly separate these two kinds of

assumptions.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Due to experience with overly eager load-based updates to routing

metrics, we assume that metrics will be updated on the scale of tens

of seconds. To simplify exposition we therefore set the service

period to 10 seconds (assumptions of this kind are intended to be

possible without loss of generality, but should not be wildly off).

We assume the affinity processing for the entire network will be on

a rhythm that is consistent with the service period. Updates take

effect at the start of a new service period. The entire network is

loosely synchronized on this rhythm. The clients are also aware of

this rhythm.

We assume the service stretch will be quite limited, on the order of

(a generous) five minutes or less. As a result, any service

invocation covers less than 32 service periods. Services that do

need longer service stretches will need to renew the service

invocation regularly (by checking whether the service instance has

changed upon such a renewal, any handover effort needed can be

minimized).

Service identifiers take the form of IPv6 addresses, or more

typically, IPv6 prefixes. The client is able to complete the prefix

with application information. (In a pinch, the client can obtain a

complete current address via DNS lookup.)

4. Objectives

Dyncast needs to provide instance affinity. The present document

outlines how to achieve this without creating per application, or

worse, per invocation state in the network.

The network does not provide any signaling to the clients beyond

what is expected in an IPv6 environment.

In summary, the objective of this draft is to define a stable client

interface to the instance affinity mechanism (and to motivate why

this interface is useful). This interface is designed to remain

stable even while the network support for this mechanism is

evolving.

5. Approach

We number the service periods with a cyclic numbering system that

wraps around about every two service stretches. The network and the

clients are aware of the current service period number; the

synchronization requirement between them is that clients typically

aren't ahead of the network.

When starting a new service invocation, the client builds an IPv6

address out of the service identifier and its view of the current

¶

¶

¶

¶

¶

¶

¶

¶

service period number (or it obtains this address using a DNS

lookup), essentially filling in 6 bits (for the numbers assumed

here). Service requests and the resulting communication within the

invocation are addressed to this current address. The client stores

the current address with the service invocation when initializing

it; it is not ever updated for this invocation.

The network keeps its path optimization state relative to (or

indexed by) the current period number. Routing updates can be

processed at any time but do not lead to an update of the path

optimization state for any service period. The result is that the

path chosen after a routing update may no longer be optimal, but

that instance affinity is kept. For each service, a pointer for the

best service instance is kept for the current and the last 32

service periods.

6. Discussion

The approach presented provides instance affinity without requiring

per application or per invocation state in the network. It does

require up to 32 copies of what are essentially host routes per

service instance. The state scales with the number of service

instances, and not with the number of clients.

The approach is based on IPv6. It can be made to work in an IPv4

network, if there are plentiful IPv4 addresses available (see also

Section 8).

7. Details

The service period number could simply be inserted in the service

identifier, or more complex computation could be performed to make

the current addresses generated this way stand out in a forwarding

engine.

Naïve clients will start a service invocation with a DNS lookup.

This allows the insertion of the period number to be performed in a

specialized DNS server for the service. Of course, this requires

short time to live (TTL) values and clients that do not on their own

cache the look up results.

So the preferred variant is for the client to be aware of the

current service period number and to do the insertion by itself on

each new service invocation.

8. Legacy IP Considerations

To make this work with IPv4 addresses as service identifiers, we

would need 6 bits that can be varied over time. This is likely too

expensive for many applications. An alternative approach is to use

¶

¶

¶

¶

¶

¶

¶

the port number for the 6 bits. This would mean that the network

would need to look up paths both on destination IP address and

destination port number (48-bit addressing). For IPv4, this should

be good enough.

9. CoRE Discovery

For use with IPv6, this document defines target attributes to enable

CoAP clients [RFC7252] to discover the availability of affinity

addressing and where in the address it is intended to be applied.

The target attributes are:

affinity-pos: The starting bit position (counting from most

significant bit first) of the sequence of bits where the service

period number can be inserted into the IPv6 address given.

affinity-len: The number of bits of the sequence of bits where

the service period number can be inserted into the IPv6 address

given.

affinity-period: The number of seconds a service period spans.

affinity-period is used as a divisor of the synchronized time in

seconds, yielding an incremented quotient for the next service

period, the lower affinity-len bits are then used as the service

period number.

Because of general availability of this time scale, the synchronized

time is interpreted according to POSIX [TIME_T]. (POSIX time is also

known as "UNIX Epoch time".) Note that leap seconds are handled

specially by POSIX time and this results in a 1 second discontinuity

several times per decade, which should be of rather limited

consequence for service affinity.

Using the example at the end of Section 5 of [RFC6690], a server

providing a large resource into a dyncast (anycast) pool could

include in its /.well-known/core:

(Additional line break for exposition. Obviously, more complex

services than simple retrieval of a large object could be offered.)

This link could turn up in a resource directory [I-D.ietf-core-

resource-directory] entry that looks like:

¶

¶

¶

*

¶

*

¶

* ¶

¶

¶

¶

REQ: GET /.well-known/core?rt=firmware

RES: 2.05 Content

</firmware/v2.1>;rt="firmware";sz=262144;affinity-pos=122;

affinity-len=6;affinity-period=10

¶

¶

¶

https://rfc-editor.org/rfc/rfc6690#section-5

[RFC7252]

[RFC6690]

[I-D.ietf-core-resource-directory]

[TIME_T]

[RFC2119]

Note that the address given here has a number of bits set in the

section to be overwritten by the service period number to be

inserted.

10. Security Considerations

TBD

11. IANA Considerations

No IANA action is required for this concept draft.

Currently, CoRE target attributes are not subject to registration;

this draft defines three new target attributes as per Section 9.

12. References

12.1. Normative References

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Shelby, Z., "Constrained RESTful Environments (CoRE) Link

Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

<https://www.rfc-editor.org/info/rfc6690>.

Amsüss, C., Shelby, Z., Koster,

M., Bormann, C., and P. V. D. Stok, "CoRE Resource

Directory", Work in Progress, Internet-Draft, draft-ietf-

core-resource-directory-28, 7 March 2021, <https://

www.ietf.org/archive/id/draft-ietf-core-resource-

directory-28.txt>.

The Open Group Base Specifications, "Open Group Standard:

Vol. 1: Base Definitions, Issue 7", Section 4.16 'Seconds

Since the Epoch', IEEE Std 1003.1, 2018 Edition, 2018,

<http://pubs.opengroup.org/onlinepubs/9699919799/

basedefs/V1_chap04.html#tag_04_16>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

<coap://[2001:db8:3::123]/firmware/v2.1>;rt="firmware";sz=262144;

affinity-pos=122;affinity-len=6;affinity-period=10

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc6690
https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt
https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt
https://www.ietf.org/archive/id/draft-ietf-core-resource-directory-28.txt
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16

[RFC8174]

[I-D.liu-dyncast-ps-usecases]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

Liu, P., Willis, P., and D. Trossen,

"Dynamic-Anycast (Dyncast) Use Cases & Problem

Statement", Work in Progress, Internet-Draft, draft-liu-

dyncast-ps-usecases-01, 15 February 2021, <https://

www.ietf.org/archive/id/draft-liu-dyncast-ps-

usecases-01.txt>.

Author's Address

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-01.txt
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-01.txt
https://www.ietf.org/archive/id/draft-liu-dyncast-ps-usecases-01.txt
tel:+49-421-218-63921
mailto:cabo@tzi.org

	Providing Instance Affinity in Dyncast
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Assumptions
	4. Objectives
	5. Approach
	6. Discussion
	7. Details
	8. Legacy IP Considerations
	9. CoRE Discovery
	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Author's Address

