
Network Working Group C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Informational T. Kaupat
Expires: July 22, 2018 Lobaro UG
 January 18, 2018

 Slipmux: Using an UART interface for diagnostics, configuration, and
 packet transfer
 draft-bormann-t2trg-slipmux-02

Abstract

 Many research and maker platforms for Internet of Things
 experimentation offer a serial interface. This is often used for
 programming, diagnostic output, as well as a crude command interface
 ("AT interface"). Alternatively, it is often used with SLIP
 (RFC1055) to transfer IP packets only.

 The present report describes how to use a single serial interface for
 diagnostics, configuration commands and state readback, as well as
 packet transfer.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 22, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/pdf/bcp78
https://trustee.ietf.org/license-info

Bormann & Kaupat Expires July 22, 2018 [Page 1]

Internet-Draft UART slipmux January 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 2
 2. Using a UART interface 3
 3. Packet Transfer . 3
 4. Diagnostics Transfer . 4
 5. Configuration . 4
 6. Framing considerations 5
 7. Discussion . 5
 7.1. Why no shell? . 5
 7.2. Frame aborts . 6
 7.3. Unknown initial bytes 6
 8. IANA Considerations . 7
 9. Security Considerations 7
 10. References . 8
 10.1. Normative References 8
 10.2. Informative References 8
 Appendix A. Implementation 8
 Acknowledgements . 9
 Authors' Addresses . 9

1. Introduction

 Many research and maker hardware modules for Internet of Things
 experimentation ("platforms") offer a serial ("UART") interface.
 This is often used for programming, diagnostic output, as well as a
 crude command interface ("AT interface"). Alternatively, it is used
 with SLIP (RFC1055) to transfer IP packets only; this may require the
 use of another serial interface for diagnostics and configuration.

 The present report describes how to use a single serial interface for
 diagnostics, configuration commands and state readback, as well as
 packet transfer.

1.1. Terminology

https://datatracker.ietf.org/doc/pdf/rfc1055

 The term "byte" is used in its now customary sense as a synonym for
 "octet". Where bit arithmetic is explained, this document uses the
 notation familiar from the programming language C (including C++14's

Bormann & Kaupat Expires July 22, 2018 [Page 2]

Internet-Draft UART slipmux January 2018

 0bnnn binary literals), except that the operator "**" stands for
 exponentiation.

2. Using a UART interface

 The serial interfaces provided by today's platforms often do not
 actually use EIA-232 ("RS-232") levels, but some form of logic levels
 (TTL or more likely 3.3 V CMOS). The present report does not discuss
 physical interfacing, but assumes that a TXD (transmit data) pin, a
 RXD (receive data) pin, and a GND (common ground) pin are all that is
 available. To interface laptops and similar devices to these serial
 interfaces, inexpensive ($2) USB to UART adapters based on chips such
 as PL2303, CP2102 or CH340 are easily obtainable. (The usual care
 needs to be taken when mixing 3.3 V and 5 V platforms; this is well
 understood but beyond the scope of the present report.)

 The general assumption is that a serial port configuration of 8N1 (8
 bits per character, no parity, 1 stop bit) and a bit rate of 115200
 bit/s is used. As with the logic levels, alternative arrangements
 are possible, but a 3.3 V CMOS, 115200 bit/s interface is most likely
 to provide the best interoperability.

 While it would be possible to run relatively complex and versatile
 protocols such as PPP [RFC1661] on such serial interfaces, this goes
 against a need for simplicity and ease of setup. In today's systems,
 either weird ad-hoc protocols based on "AT commands" are used that
 are not interoperable at all, or a simple encapsulation such as SLIP
 [RFC1055] is used for packet transfer only.

 For the purposes of the present report, on top of the serial UART
 protocol, the frame format defined by [RFC1055] is indeed employed.
 The detailed descriptions below generally describe the frame data
 before applying SLIP escaping in the transmitter or after removing it
 in the receiver.

 The approach described here is informally referred to as "slipmux".

https://datatracker.ietf.org/doc/pdf/rfc1661
https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc1055

3. Packet Transfer

 Packet transfer uses the definitions of [RFC1055]. However, contrary
 to the statement in section DEFICIENCIES of [RFC1055], multiplexing
 is very well possible. A frame used for packet transfer is detected
 by an initial byte of one of the two forms:

 o 0x45 to 0x4f: IPv4 packet

 o 0x60 to 0x6f: IPv6 packet

Bormann & Kaupat Expires July 22, 2018 [Page 3]

Internet-Draft UART slipmux January 2018

 This initial byte forms part of the packet; it is not removed from
 the payload as with the other formats defined below.

 There are no changes to the formats defined by [RFC1055], so there
 should be immediate interoperability with tools such as tunslip.

4. Diagnostics Transfer

 While not transferring a frame bearing a packet, the platform can
 alternatively transmit a diagnostic frame. These are encoded (and
 escaped) using SLIP framing exactly like packet frames, but start
 with the byte 0x0a (ASCII newline) and contain UTF-8 encoded
 characters after that byte. There is no semantics attached to the
 diagnostics message, except that it is intended as a human-readable
 debug or diagnostic message from the platform code. It is generally
 preferable to end the payload of a diagnostics message in another
 newline (0x0a, which on the wire is then followed by 0xc0 due to the
 SLIP framing). Note that, as long as only ASCII characters are used,
 there is no need to actually perform escaping on the diagnostic
 message.

 Since diagnostic messages are intended for humans, they are only
 defined for the direction from platform to host (e.g., laptop); for
 robustness when connecting two platform modules, they should be
 ignored by platform modules.

5. Configuration

 Configuration is performed by sending CoAP messages [RFC7252] in SLIP

https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc7252

 framing. The encapsulation of a CoAP message starts with an
 additional byte 0xA9, with the bytes of the CoAP message following
 (which, as for all data in frames, are escaped as necessary as per
 [RFC1055]).

 In contrast to the packet and diagnostics frames defined above, CoAP
 frames benefit from a frame check mechanism. After the CoAP message,
 the last two bytes of a CoAP frame therefore contain a 16-bit CRC FCS
 computed over the byte 0xA9 followed by the (unescaped) bytes of the
 CoAP message, computed as specified in [RFC1662]. (Note that the two
 bytes of the CRC are escaped, as necessary, by the SLIP framing, as
 are all other bytes of the CoAP message.)

 CoAP messages with incorrect CRCs are silently discarded.

 Where a local URI needs to be formed for the configuration messages,
 the URI scheme "coap+uart" is used; the authority part of that URI
 might be used to refer to local interface names as needed, as in:

Bormann & Kaupat Expires July 22, 2018 [Page 4]

Internet-Draft UART slipmux January 2018

 coap+uart://ttyUSB0/APlist

 The client could also be using a local mapping table to provide some
 indirection in translating the authority part to a local identifier
 of the serial port(e.g., COM0 to ttyUSB0).

 Using an empty URI authority allows the client to use a default port,
 as in:

 coap+uart:///APlist

 A later version of this report might define some common CoAP
 resources that research or maker platforms might want to provide,
 e.g. to cover the configuration and status checking often done by "AT
 commands" today.

6. Framing considerations

 To make SLIP framing robust, it is important to send SLIP frame
 delimiters (0xc0) before and after each SLIP frame (maybe unless
 frames follow each other back to back). This means that empty frames
 need to be silently ignored by a receiver.

https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc1662

 If a platform starts to send a packet or message, but then decides it
 should not complete the message before having sent the rest of the
 frame, it can send the SLIP ESC (0xdb) followed by SLIP END (0xc0) to
 abort the frame. Note that this goes beyond the error handling
 suggested by the section "SLIP DRIVERS" in [RFC1055] and might
 therefore be of limited interoperability at first.

 Messages in slipmux are strictly sequential; there is no [RFC2687]
 style suspension. In particular, this means that diagnostic messages
 that are generated while another message is in progress may have to
 be buffered (unless they are important enough to abort the frame as
 described above).

7. Discussion

7.1. Why no shell?

 The present report is somewhat radical in that it does not provide a
 common staple of interactive computer access: A command line
 interface (CLI), or "shell".

 This would be easy to add, but distracts from the use of the platform
 as a "thing" - it should not have to carry an (even primitive) user
 interface; instead it should provide what would have been "shell
 commands" as CoAP resources.

Bormann & Kaupat Expires July 22, 2018 [Page 5]

Internet-Draft UART slipmux January 2018

 As a transition aid, existing shell commands can first be converted
 to just accept their parameters via CoAP but continue to provide
 their output as ASCII text over the diagnostic channel.

 However, in order to aid script-driven use of the platform, the next
 step should then be to also provide the response to the command in a
 CoAP response, possibly structured for better use by the script.
 Often code that was designed to format the data for human consumption
 can be simplified to just ship the raw data, e.g. in a CBOR data item
 [RFC7049].

7.2. Frame aborts

 Implementing frame aborts as described in Section 6 requires a
 receiver to receive the entire frame before acting on it. For

https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc2687
https://datatracker.ietf.org/doc/pdf/rfc7049

 diagnostic information, this is somewhat moot - the information is
 there independent of whether its frame was aborted or not. For
 packets, it is usually necessary to check a UDP or TCP header
 checksum before acting on it, anyway. For CoAP requests, similarly,
 the CRC needs to be checked. So implementing frame aborts should not
 be an undue burden.

7.3. Unknown initial bytes

 Frames with unknown initial bytes should be silently ignored.

 The same is true for frames with initial bytes that are
 unimplemented. However, there is an expectation that true slipmux
 implementations do implement CoAP framing. If this is unexpectedly
 not the case, as a courtesy to a peer CoAP client, a slipmux
 implementation could at least send CoAP Reset messages: a CoAP frame
 (initial byte 0xA9) with a message that starts with 0x40 to 0x5f
 could be replied to with a CoAP frame with a CoAP RST message,
 containing just these four bytes (as always, escaped as needed, and
 framed with an initial 0xA9 and a CRC):

 o 0x70

 o 0x00

 o The third (unescaped) byte of the message being replied to

 o The fourth (unescaped) byte of the message being replied to

 (Generating proper CoAP framing in response does, require
 implementing the PPP CRC.) In conjunction with the CoAP ping
 response of a normal CoAP implementation, this also can be used for
 liveness testing.

Bormann & Kaupat Expires July 22, 2018 [Page 6]

Internet-Draft UART slipmux January 2018

 (The check for the first byte of the CoAP message is needed to avoid
 endless back and forth of reset messages in certain error
 situations.)

8. IANA Considerations

 The present report does not foresee adding additional frame types,
 but as a matter of precaution, this section might define a registry

 for initial bytes in a frame. At this point, this would contain:

 o 0x0a: Diagnostics

 o 0x45 to 0x4f: IPv4 packet

 o 0x60 to 0x6f: IPv6 packet

 o 0xA9: CoAP message with 16-bit FCS

 If such a registry is desired, the following values for initial bytes
 should probably be reserved (while all these values could be used if
 required, implementation is easier if they are not):

 o 0x00

 o 0xc0: [RFC1055] END

 o 0xdb: [RFC1055] ESC

 There might also be a need to formally register the URI scheme
 "coap+uart".

9. Security Considerations

 The usual security considerations apply to the IP packets transferred
 in packet frames.

 When displaying information from diagnostic frames, care should be
 taken that features of a terminal triggered e.g. by escape sequences
 cannot be used for nefarious purposes.

 The CoAP configuration interface does not itself provide any
 security. This may be appropriate for the local configuration needs
 of an experimentation platform that is not expected to be physically
 connected to any system that is not allowed full control over it
 (e.g., by using the same physical interface for reflashing new
 firmware). Where the platform might connect to other systems over
 serial, object security for CoAP [I-D.ietf-core-object-security]
 might be employed, or the configuration interface might be restricted

Bormann & Kaupat Expires July 22, 2018 [Page 7]

Internet-Draft UART slipmux January 2018

 to a read-only mode only providing information that does not need

https://datatracker.ietf.org/doc/pdf/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc1055

 confidentiality protection. (It would be possible to provide a DTLS
 encapsulation, but this might go beyond the objective of extreme
 simplicity.)

10. References

10.1. Normative References

 [RFC1055] Romkey, J., "Nonstandard for transmission of IP datagrams
 over serial lines: SLIP", STD 47, RFC 1055,
 DOI 10.17487/RFC1055, June 1988,
 <https://www.rfc-editor.org/info/rfc1055>.

 [RFC1662] Simpson, W., Ed., "PPP in HDLC-like Framing", STD 51,
 RFC 1662, DOI 10.17487/RFC1662, July 1994,
 <https://www.rfc-editor.org/info/rfc1662>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

10.2. Informative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-07 (work in
 progress), November 2017.

 [RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
 STD 51, RFC 1661, DOI 10.17487/RFC1661, July 1994,
 <https://www.rfc-editor.org/info/rfc1661>.

 [RFC2687] Bormann, C., "PPP in a Real-time Oriented HDLC-like
 Framing", RFC 2687, DOI 10.17487/RFC2687, September 1999,
 <https://www.rfc-editor.org/info/rfc2687>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Appendix A. Implementation

 A work in progress implementation of slipmux is available as part of
 Lobaro's SLIP implementation:

Bormann & Kaupat Expires July 22, 2018 [Page 8]

https://datatracker.ietf.org/doc/pdf/rfc1055
https://www.rfc-editor.org/info/rfc1055
https://datatracker.ietf.org/doc/pdf/rfc1662
https://www.rfc-editor.org/info/rfc1662
https://datatracker.ietf.org/doc/pdf/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/pdf/draft-ietf-core-object-security-07
https://datatracker.ietf.org/doc/pdf/rfc1661
https://www.rfc-editor.org/info/rfc1661
https://datatracker.ietf.org/doc/pdf/rfc2687
https://www.rfc-editor.org/info/rfc2687
https://datatracker.ietf.org/doc/pdf/rfc7049
https://www.rfc-editor.org/info/rfc7049

Internet-Draft UART slipmux January 2018

 https://github.com/Lobaro/slip
 https://github.com/Lobaro/util-slip

Acknowledgements

 TBD

Authors' Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

 Tobias Kaupat
 Lobaro UG
 Tempowerkring 21d
 Hamburg D-21079
 Germany

 Phone: +49-40-22816531-0
 Email: tobias.kaupat@lobaro.de

https://github.com/Lobaro/slip
https://github.com/Lobaro/util-slip

Bormann & Kaupat Expires July 22, 2018 [Page 9]

