
Workgroup: Network Working Group

Internet-Draft: draft-bormann-t2trg-stp-02

Published: 7 April 2020

Intended Status: Informational

Expires: 9 October 2020

Authors: C. Bormann

Universität Bremen TZI

K. Hartke

Ericsson

The Series Transfer Pattern (STP)

Abstract

Many applications make use of Series of data items, i.e., an array

of data items where new items can be added over time. Where such

Series are to be made available using REST protocols such as CoAP or

HTTP, the Series has to be mapped into a structure of one or more

resources and a protocol for a client to obtain the Series and to

learn about new items.

Various protocols have been standardized that make Series-shaped

data available, with rather different properties and objectives. The

present document is an attempt to extract a common underlying

pattern and to define media types and an access scheme that can be

used right away for further protocols that provide Series-shaped

data.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 October 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Objectives

3. A REST Series Transfer Pattern (STP)

3.1. Basic collections

3.2. Pagination and Observing linked lists

3.3. The "cursor" pattern

4. IANA considerations

5. Security considerations

6. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

(TO DO: Insert an extended form of the abstract first here,

expanding the reference to [RFC7230] and [RFC7252] in the process.)

Examples for protocols that provide Series-shaped data are:

The Atom Syndication Format [RFC4287] defines feeds as Series of

entries (links plus some metadata, which can often be much of the

content of an entry), where a feed is represented by a collection

resource that contains just a small number of the most recent

entries. By polling a feed, a client can contain a fresh view of

the Series, with a focus on recent items. If the client does not

poll often enough, it will miss items.

Messaging protocols such as XMPP or SIMPLE transfer series of

what is often called "Instant Messages". A publish/subscribe

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

https://trustee.ietf.org/license-info

mechanism allows a client to select sequences of messages that it

is interested in.

Mail servers that provide interactive access to stored messages

present a Series to their clients. Obviously, loss of messages is

frowned upon.

CoAP Observe allows a client to observe a resource as it changes;

the client can collect the changes into a Series. Observe is

focused on eventual consistency: a fresher data items simply

overwrites an older one. The present document uses the observe

pattern to build a more general Series Transfer Pattern.

Syslog is an interesting case of a Series Transfer.

[RFC8641], [I-D.voit-netmod-yang-notifications2], [RFC8639], [I-

D.ietf-netconf-notification-messages], [RFC8650].

An RTP stream can be viewed as an (somewhat extreme) case of a

Series; new items are just sent inside separate UDP packets. A

sequence number allows to detect (but not normally ask for

retransmission of) missing items. A timestamp as well as source

data (SSRC, CSRC) provide further common metadata that aid in the

processing of the Series items.

An example of an ad-hoc design of a series transfer protocol is

[I-D.ietf-netconf-udp-pub-channel].

Server-sent events [sse] are a somewhat bizarre version of a

series transfer protocol.

The Interface for Metadata Access Points (IF-MAP) specified by

the Trusted Computing Group and emerging derivatives of that

protocol create a series of updates to a graph representation of

related network-related security information. The requests

created by IF-MAP clients are bundled operations of updates to a

MAP Graph, which compose a Series Transfer Pattern of bundled

atomic operations that ensure the integrity of the MAP Graph.

[Henk Birkholz]

netflow/IPFIX was defined to transfer a series of data items

about flows. Information about PDU flows accounted by network

interfaces of endpoints is emitted in a series of counter bundles

via the IPFIX protocol. Only a series of these continuous Flow

Records creates a meaningful bigger picture about the current

traffic in the network topology of an administrative domain.

Depending on the characteristics measured, loss of a Flow Record

can range from harmless to missing the only vital counter

measurement. [Henk Birkholz]

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

TO DO: Add more items.

[I-D.birkholz-yang-push-coap-problemstatement] is a problem

statement that will require the design of another scheme to transfer

Series-shaped data.

2. Objectives

Series transfer applications may have rather different objectives.

The completeness of the Series transfer may be of utmost

importance (e.g., if each item represents a sale), it may be

desirable but can be jettisoned in an overload situation, or it

may just be a likely outcome with a very active client (e.g.,

with Atom). Note that there is never a way to guarantee

completeness unless all of the rate and size of incoming new

items, the transfer capacity available, and the processing

capabilities of the client are controlled; however, system

designs may want to give the illusion of "reliability".

Minimizing the latency of the transfer may be important, as may

be limiting it below a defined maximum (note that these are

different objectives). The latter can be supported in a polling

system by polling at least as often as that maximum latency; this

may be considered inefficient and "push" mechanisms may be

developed. Mail environments have developed "push" services to

enable minimizing the latency. Where latency requirements go

below the time that might be needed for an end-to-end

retransmission, error concealment may provide an acceptable user

experience (e.g., in RTP).

In general, minimizing latency and ensuring completeness are

competing objectives.

Series transfer environments sometimes centralize information

distribution functions, leading to "broker" architectures (often

combined with the "publish/subscribe" pattern). With brokers, Series

publishers may use an entirely different interface to the brokers

from that used by the receiving clients, or the interfaces can be

designed so they are similar for all the forwarding steps.

3. A REST Series Transfer Pattern (STP)

3.1. Basic collections

A series of items can be represented by a single collection

resource:

* ¶

¶

¶

*

¶

*

¶

¶

¶

¶

Figure 1: A collection of items

While this is adequate in many cases, it has a number of

limitations:

Each retrieval fetches the entire collection

As long as the collection does not change, this can be

mitigated with ETags (Section 5.10.6 of[RFC7252], Section 2.3

of [RFC7232]).

When the collection becomes too large, the server has to prune

older items. These then no longer can be retrieved, and there is

even no way for the server to indicate that there used to be

older items.

3.2. Pagination and Observing linked lists

In the Browser Web, it is usual to provide Pagination for collection

resources that can grow large (e.g., search results):

Figure 2: A paginated collection of items

| |

| item 11 |

|_____________|

| |

| item 10 |

|_____________|

| . |

| . |

| . |

|_____________|

| |

| item 1 |

|_____________|

¶

* ¶

-

¶

*

¶

¶

 _____________ _____________ _____________

| | | | | |

| item 11 | +--->| item 9 | +--->| item 2 |

|_____________| | |_____________| | |_____________|

| | | | | | |

| item 10 | | | item 8 | . . . | item 1 |

|_____________| | |_____________| |_____________|

| | | | | | page M

| link -----------+ | link -----------+

|_____________| |_____________|

 page 1 page 2

Without modification, this does not work well for resources that

actually change by themselves: Once a new page needs to be added,

what previously was page 1 now becomes page 2. Obviously, the naming

of pages better remains unchanged with new pages added a the front.

Figure 3: Pagination with stable names

However, now the client has no idea what initial page to request to

get the freshest items and the head of the list. It is easy to add a

link to the freshest page:

Figure 4: Pagination with stable names

The head of the linked list can now be simply observed; the addition

of pages will then be notified to the observer.

¶

 _____________ _____________ _____________

| | | | | |

| item 11 | +--->| item 9 | +--->| item 2 |

|_____________| | |_____________| | |_____________|

| | | | | | |

| item 10 | | | item 8 | . . . | item 1 |

|_____________| | |_____________| |_____________|

| | | | | | page 1

| link -----------+ | link -----------+

|_____________| |_____________|

 page M page 2

¶

 _____________ _____________ _____________

| | | | | |

| link --------------->| item 11 | +--->| item 2 |

|_____________| |_____________| | |_____________|

 head | | | |

 | item 10 | . . . | item 1 |

 |_____________| |_____________|

 | | | page 1

 | link -----------+

 |_____________|

 page M

¶

As usual in series transfer, the following considerations remain:

When can the server decide to no longer retain older items?

There may be a desire for an observer to be able to catch all

items in the series.

How does the server know who are the observers? E.g., what

to do with newly joining observers?

How does an observer signal that it has caught up (to a

specific item)?

What to do when the decision to remove items from the list cannot

be made and there is no room for new items?

The link head can also include items that have so far not been added

to pages; this can be used to fill up pages evenly without them ever

changing. Obviously, the best number of items to prenotify in this

way as well as the best time to open a new page are different for

different applications.

3.3. The "cursor" pattern

A GET on a resource representing a Series may return a collection

item that contains the following pieces of information

An array of Series items, either as an array of media-typed

objects in a suitable representation format (e.g., CBOR, MIME) or

by using an array-like media type (e.g., SenML).

Items may be full items or limit themselves to some metadata

and a link; the client can then follow that link if it is

interested in the data (possibly basing that decision on the

metadata and/or a measure of load).

A "cursor" that can then be used as a parameter in further GET

requests (see below) in order to receive only newer items than

those received with this transfer.

A "more bit" that indicates whether such further items already

exist but could not be returned in the present response.

In Figure 5, the cursor is implemented as a URI that can be used as

a link to the next page.

¶

* ¶

-

¶

o

¶

o

¶

*

¶

¶

¶

*

¶

-

¶

*

¶

*

¶

¶

Figure 5: Cursor pattern pictured as pagination

A GET may be enhanced with additional parameters (possibly turning

it into a FETCH):

The cursor.

A "wait bit" that indicates whether a (possibly empty) reply

should be given right away or the server should wait for new

items to become available. (To avoid the equivalence of the

"silly window syndrome", the wait bit may be enhanced by a

minimum number of items and a timeout after which even a smaller

number is made available.) In effect, this requests a form of

"long polling"; see [RFC6202] for some considerations for this in

HTTP.

A server may implement a form of custody transfer by interpreting

the cursor as an acknowledgement that the client has received all

data up to the cursor. This is not necessarily acting as an unsafe

request ("destructive GET"), as other clients may be active that

have not yet received all these data. To implement a full custody

semantics, the server needs to be aware of all the clients that

expect a full Series Transfer (a classical group management

problem).

(Explain how Observe can help. Can it?)

4. IANA considerations

This memo registers a number of media types: TO DO.

A media type for FETCH selectors (Section 3):

An alternative way to encode this information into the URI of

a GET should also be available.

A Series media type as alluded to in Section 3.

 _____________ _____________ _____________

| | | | | |

| item 10 |<---+ | item 1 |<--------------- link |

|_____________| | |_____________| |_____________|

| | | | tail

| item 11 | . . . | item 2 |

|_____________| |_____________|

 page M | | |

 +----------- link |

 |_____________|

 page 1

¶

* ¶

*

¶

¶

¶

¶

* ¶

-

¶

* ¶

[I-D.birkholz-yang-push-coap-problemstatement]

[I-D.ietf-netconf-notification-messages]

[I-D.ietf-netconf-udp-pub-channel]

[I-D.voit-netmod-yang-notifications2]

[RFC4287]

[RFC6202]

[RFC7230]

5. Security considerations

TO DO

6. Informative References

Birkholz, H., Zhou, T., Liu, X., and E. Voit, "YANG Push

Operations for CoMI", Work in Progress, Internet-Draft,

draft-birkholz-yang-push-coap-problemstatement-00, 18

October 2017, <http://www.ietf.org/internet-drafts/draft-

birkholz-yang-push-coap-problemstatement-00.txt>.

Voit, E., Jenkins, T., Birkholz, H., Bierman, A., and A.

Clemm, "Notification Message Headers and Bundles", Work

in Progress, Internet-Draft, draft-ietf-netconf-

notification-messages-08, 17 November 2019, <http://

www.ietf.org/internet-drafts/draft-ietf-netconf-

notification-messages-08.txt>.

Zheng, G., Zhou, T., and A. Clemm, "UDP based Publication

Channel for Streaming Telemetry", Work in Progress,

Internet-Draft, draft-ietf-netconf-udp-pub-channel-05, 11

March 2019, <http://www.ietf.org/internet-drafts/draft-

ietf-netconf-udp-pub-channel-05.txt>.

Voit, E., Bierman, A., Clemm, A., and T. Jenkins, "YANG

Notification Headers and Bundles", Work in Progress,

Internet-Draft, draft-voit-netmod-yang-notifications2-00,

24 February 2017, <http://www.ietf.org/internet-drafts/

draft-voit-netmod-yang-notifications2-00.txt>.

Nottingham, M., Ed. and R. Sayre, Ed., "The Atom

Syndication Format", RFC 4287, DOI 10.17487/RFC4287,

December 2005, <https://www.rfc-editor.org/info/rfc4287>.

Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,

"Known Issues and Best Practices for the Use of Long

Polling and Streaming in Bidirectional HTTP", RFC 6202,

DOI 10.17487/RFC6202, April 2011, <https://www.rfc-

editor.org/info/rfc6202>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

¶

http://www.ietf.org/internet-drafts/draft-birkholz-yang-push-coap-problemstatement-00.txt
http://www.ietf.org/internet-drafts/draft-birkholz-yang-push-coap-problemstatement-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-netconf-notification-messages-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-netconf-notification-messages-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-netconf-notification-messages-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-netconf-udp-pub-channel-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-netconf-udp-pub-channel-05.txt
http://www.ietf.org/internet-drafts/draft-voit-netmod-yang-notifications2-00.txt
http://www.ietf.org/internet-drafts/draft-voit-netmod-yang-notifications2-00.txt
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc6202
https://www.rfc-editor.org/info/rfc6202
https://www.rfc-editor.org/info/rfc7230

[RFC7232]

[RFC7252]

[RFC8639]

[RFC8641]

[RFC8650]

[sse]

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Conditional Requests", RFC

7232, DOI 10.17487/RFC7232, June 2014, <https://www.rfc-

editor.org/info/rfc7232>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,

E., and A. Tripathy, "Subscription to YANG

Notifications", RFC 8639, DOI 10.17487/RFC8639, September

2019, <https://www.rfc-editor.org/info/rfc8639>.

Clemm, A. and E. Voit, "Subscription to YANG

Notifications for Datastore Updates", RFC 8641, DOI

10.17487/RFC8641, September 2019, <https://www.rfc-

editor.org/info/rfc8641>.

Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A., and

A. Bierman, "Dynamic Subscription to YANG Events and

Datastores over RESTCONF", RFC 8650, DOI 10.17487/

RFC8650, November 2019, <https://www.rfc-editor.org/info/

rfc8650>.

WHATWG, "HTML Living Standard -- 9.2 Server-sent events",

n.d., <https://html.spec.whatwg.org/multipage/server-

sent-events.html#server-sent-events>.

Acknowledgements

The need for a Series Transfer Pattern has been made clear by a

number of people that contribute to the IRTF Thing-to-Thing Research

Group (T2TRG), e.g. Matthias Kovatsch and Henk Birkholz (both of

whom also provided feedback on an early draft). Henk also

contributed further examples for the use of Series Transfers in

protocols.

Authors' Addresses

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

¶

https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8639
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8650
https://www.rfc-editor.org/info/rfc8650
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events
tel:+49-421-218-63921
mailto:cabo@tzi.org

Klaus Hartke

Ericsson

Torshamnsgatan 23

16483 Stockholm

Sweden

Email: klaus.hartke@ericsson.com

mailto:klaus.hartke@ericsson.com

	The Series Transfer Pattern (STP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Objectives
	3. A REST Series Transfer Pattern (STP)
	3.1. Basic collections
	3.2. Pagination and Observing linked lists
	3.3. The "cursor" pattern

	4. IANA considerations
	5. Security considerations
	6. Informative References
	Acknowledgements
	Authors' Addresses

