
Workgroup: Network Working Group

Internet-Draft: draft-bormann-t2trg-sworn-05

Published: 7 February 2022

Intended Status: Informational

Expires: 11 August 2022

Authors: C. Bormann

Universität Bremen TZI

Y. Li

Huawei Technologies

SWORN: Secure Wake on Radio Nudging

Abstract

Normally off devices (RFC7228) would need to expend considerable

energy resources to be reachable at all times. Instead, MAC layer

mechanisms are often employed that allow the last hop router of the

device to "wake" the device via radio when needed. Activating these

devices even for a short time still does expend energy and thus

should be available to authorized correspondents only.

Traditionally, this has been achieved by heavy firewalling, allowing

only authorized hosts to reach the device at all. This may be too

inflexible for an Internet of Things.

The present report describes how to use a combination of currently

standardized technologies to securely effect this authorization.

We also discuss how the general approach of the original SWORN

protocol can be extended to cover additional use cases and

implementation environments.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-bormann-t2trg-sworn/.

Discussion of this document takes place on the Thing-to-Thing

(T2TRG) Research Group mailing list (mailto:t2trg@irtf.org), which

is archived at https://mailarchive.ietf.org/arch/browse/t2trg/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-bormann-t2trg-sworn/
https://datatracker.ietf.org/doc/draft-bormann-t2trg-sworn/
mailto:t2trg@irtf.org
https://mailarchive.ietf.org/arch/browse/t2trg/
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. The original SWORN proposal

2.1. Assumptions and Requirements

2.2. Security goals

2.3. Mechanism

2.3.1. Wake-Grant

2.3.2. Wake-Token

2.3.3. Finding the wake token

3. Generalizing SWORN towards Token-Based In-Network Authorization

3.1. Position of router R

3.2. Position of Token in Packet

3.3. Range of Checking

3.4. Information (attributes) to be used on the way

3.5. Example arrangements

3.5.1. Multiple Independent Grants

3.5.2. Hierarchical Grants

4. IANA Considerations

4.1. Original SWORN model

4.2. Generalized model

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Acknowledgements

¶

¶

¶

¶

https://trustee.ietf.org/license-info

C:

D:

R:

MAC:

MAC:

Authors' Addresses

1. Introduction

(See Abstract.)

1.1. Terminology

The term "byte" is used in its now customary sense as a synonym for

"octet".

Messages defined in this document employ CBOR [RFC8949] and are

described in CDDL [RFC8610].

Terms used in this draft:

Client, or Correspondent host. The node that wants to effect

"Wake on Radio" on D by sending a message to D.

Device. This is typically battery operated and "Normally off"

[RFC7228].

Router. The router that is adjacent to D, sharing an energy-

saving link with D, and serving as a ("parent") router to D.

Message Authentication Code (when discussing authentication

mechanisms)

Media Access Control (when discussing protocol layers)

2. The original SWORN proposal

2.1. Assumptions and Requirements

D is a normally off [RFC7228] device, waking up very briefly to

communicate with its first hop router R. R and D share a MAC layer

that allows R to keep D in extended wake periods.

R and D have a security association. (This may have been created in

network onboarding, or be setup dynamically from the device-to-

network security association when D chose R as a parent router.)

D wants to authorize a client (or correspondent host) C to ask R to

initiate wake periods in D.

Because of changes in the radio environment, D needs to be able to

change its parent router from R1 to R2 occasionally. This should not

cause a need to notify all its clients; which parent router is used

by D is therefore opaque to its clients as usual in IP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.2. Security goals

Since packets with wake tokens are kept in R for extended periods,

the limited size buffer provided in R for this is a resource that

needs to be protected to protect availability.

D uses up battery for a wake period, which would make it susceptible

to battery depletion attacks. To protect availability, D should only

undergo wake periods that R has commanded based on previous

authorization by D.

There may be confidentiality requirements (e.g., for privacy); this

is not addressed in the present version of this report.

2.3. Mechanism

e
r

v

f o

e x

M

f
n

i c

s

a
e

i

l

e

n

g

c

i
t g

t

S c
z

2

t k

A

A
o

R

r

e D

l

i

e

5 p

r e D i

i

c
r

e

v

t n
M

l o
a

u

o

h

C

s

p

a

a

D

e

o
g

v

u

t e
o ni

r

3 4

z

n a se

t

D

r

m

a

T

i o
u

M
o

rn g

e

n

C m v

a

y n en

0
h i

M

d y

n

k

o

o

n

n t

r

e
A t

r

R

6

A t

1
r

u
a

l

e d

s
h

A

el C

r o

a
i o

a

i

n t

e

C

t e

t

D
t

e

Figure 1: Illustration of a potential setup with Authorization Managers

2.3.1. Wake-Grant

A wake grant is a CWE [RFC8152], packaging a grant key, provided

from D or D's authorization manager to C. (Possibly the grant key

can be conveyed within a larger confidentiality protected data

structure or channel, such as a CWT [RFC8392] employing a cnf claim

for the key [RFC8747].)

A wake grant may then be used by C for initiating (a possibly

limited number or total duration of) wake periods, employing Wake-

Tokens.

Information about the wake grant is also made available to R, so it

knows the grant key and the parameters of the wake grant. (Upon a

¶

¶

¶

¶

¶

¶

change of parent router, D will need to make that information

available to its new parent router as well.)

2.3.2. Wake-Token

A wake token is a CWS, in a COSE_MAC0 [RFC8152] message built with

the Wake-Grant's key, containing a CBOR data item of the form:

[serial: uint, wake-period: duration]

The CWS is additionally marked by tagging it with a CBOR tag

1398230866 (a value that becomes visible in a packet dump as ASCII

"SWOR").

(Discussion: Should this be a CWE for confidentiality?)

The serial is used for replay detection, based on the usual window

mechanism. Wake-Tokens for a fresh wake grant start out with serial

numbers at zero.

A Wake-Token instructs R to use MAC mechanisms to provide an

extended wake period to D the next time it wakes up.

The wake token is sent from C to D; R finds it by examining packets

that it would need to forward to D.

2.3.3. Finding the wake token

As C is addressing D with the wake token, R needs to find it in

traffic purportedly for D.

As described in [I-D.bormann-intarea-alfi], this cannot be

reasonably done with IP options (which originally would have carried

this kind of information in the IP architecture).

Instead, R finds the wake token by deep packet inspection. The wake

token is found by a heuristic that may have false positives; this is

not a problem as the wake token is then verified by its MAC.

SWORN requests are carried in UDP packets that also may have a

payload function. To this end, they are conveyed as CoAP messages

[RFC7252]. The wake token is carried in a CoAP option, Wake-Token. R

can find the option by decoding the CoAP packet in the UDP payload

or simply by scanning for the 5-byte signature 0xda53574f52 created

by the CBOR wake token tag. Any potential wake token so found is

then validated as a CWS.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This works well with [RFC8613] as the CoAP security mechanism for

any payload function that this packet may have. To be able to use

DTLS as well, we define a media type "application/dtls-payload" that

can be used in a CoAP POST request to send a DTLS payload as payload

of a CoAP message (in other words, the CoAP POST request carries a

Wake-Token and a Content-Format option). (Any return packet can be

similarly sent back in the POST response.) (TODO: This media type

has to define the port number juggling needed.)

3. Generalizing SWORN towards Token-Based In-Network Authorization

The original SWORN protocol described so far was designed to solve a

specific use case in a specific implementation environment.

We can open up the design space in a number of dimensions, which

will be discussed in the following subsections.

The general idea of SWORN can be described as:

giving a packet sender a way to send authenticating information

with the packet,

that is not intended for the recipient of the packet, but instead

to be checked at particular enforcement points on the way,

which are not necessarily known by the sender,

to derive authorization to forward.

Generalizing the terms used so far, we can identify the following

players and components:

Packets P that require authorization (more generally, the

reliable derivation of attributes) by entities on their way,

a sender (C) and a recipient (D), where the packets P go from C

to D,

SWORN policy enforcement points (SPEPs) that are in the network

in places where the generalized SWORN authorization of and

derivation of attributes for the packets is performed; the ones

that are active for a packet P are called R, generalizing the

concept of the last-hop router R in the SWORN model,

the "grant" G that provides setup information for the SPEP (wake

grant in SWORN), and

the "token" T that is sent with a specific packet P to carry

information that will be checked by R/SPEP (wake token in SWORN).

¶

¶

¶

¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

This model can accommodate additional entities, "authorization

managers" (AM), that pair with C (CAM) and D (DAM) for purposes of

creating setup information and potentially distributing it among C

and D and to network elements that might play the role of R. The

distribution may be further facilitated by adding Router AMs (RAM).

The roles of C and D can also be played by tunnel ingress/egress

points; this can enable the use of unmodified client and device

implementations (note that D, if a DAM is used, need not implement

anything special at all, but can of course benefit from information

in the token).

3.1. Position of router R

The original SWORN protocol is based on a 6LoWPAN-like environment

where a host (D) has a defined relationship (often including a MAC

layer security association) to the last-hop router(s) (R) supplying

it with packets. This enables D to provide R with information about

wake grants in a secure way, or to delegate this to its

authorization manager.

Within a limited domain [RFC8799], routers that act as SWORN policy

enforcement points (SPEPs) may be known by configuration. Security

associations from D's authorization manager (DAM) to each such PEP

may be set up already, providing a way for DAM to broadcast policy

information to all such SPEPs. This enables policy distribution

without any involvement from D.

Alternatively, C can have a security association with the SPEPs

(possibly indirectly through a client authorization manager CAM) and

can send special SWORN probe packets towards D that carry grant

information that the SPEPs on the way can extract and copy into

their local (soft?) state.

A SPEP could also react to tokens it does not understand by asking

authorization managers for the applicable grant; this may be

facilitated by identifying information in a token such as a "key

ID". It remains a quality of implementation issue whether the packet

can be buffered while the relevant grant is obtained. (On-demand

retrieval of grants also adds an obvious attack vector.)

3.2. Position of Token in Packet

The original SWORN protocol goes to some lengths to avoid the need

for C to influence properties below the application layer of the

packets it sends.

However, routers may be able to provide more efficient

implementations of SWORN when the token information is in a header.

¶

¶

¶

¶

¶

¶

¶

So if C has a platform API that could create/influence such a

header, this could be used instead.

While penultimate hop processing is in use in a number of

architectures (see, e.g., Section 3.16 of [RFC3031] or [I-D.ietf-

bier-php]), it is not currently part of the IPv6 architecture, so

there is no obvious IPv6 header that could carry this information.

3.3. Range of Checking

Tokens in the original SWORN protocol only check a serial number;

attackers might be able to extract such a token from a packet,

suppress the packet, and use the token in a different packet. We

call this form of attack "malicious reuse". Replay protection cannot

prevent this.

One way to reduce this attack vector is to make the grant very

specific to only a certain kind of packets, for instance by

effectively including an ACL (carrying, say, elements of the 5-

tuple) with the grant. (The grant could also include quantitative

aspects, such as a rate limit.) The cryptographic makeup of the

grant then must be such that a client cannot modify the ACL during

generation of a token from the grant.

Alternatively, some kinds of malicious reuse can be made harder to

perform by including more information in the signing input of the

MAC checked for a token. If a wake grant is shared between multiple

instances of D and C and therefore can only have a weak ACL,

including the source and destination addresses (IP address and

possibly port) in the signing input for a specific token T prevents

reuse of T for a different D/C pair.

Including the payload in the signing input (i.e., essentially

authenticating the entire packet) makes malicious reuse of tokens

less useful for an attacker as no new information can be injected by

it, but requires considerable processing power in the SPEP. We

assume that any authentication of the whole packet will most likely

be performed by its recipient D, based on a security association it

has with the sender C; R or any other SPEPs are not burdened with

this authentication. (However, some authentication offload in a

last-hop router R may be desirable for a very constrained device D,

at least if R and D have a robust security association that can

provide the level of authentication needed.)

Most likely, a token should include some information about what is

included in the signing input. (This information itself should then

also be included in the signing input.) This coverage information

could take the form of a bitmap, or of a set of offset-length pairs.

If coverage information and covered information is in a form that

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3031#section-3.16

can be processed by a network processor, higher processing and

forwarding rates can be achieved.

3.4. Information (attributes) to be used on the way

The original SWORN protocol provides one attribute beyond the

authentication itself: a wake period to be used in the MAC layer

that connects R and D. This can be generalized to other parameters

that control routing and forwarding, e.g., information that would be

equivalent to a DSCP.

An ambitious use case might be a path from a sender to a recipient

that crosses multiple domains, where each domain boundary normally

bleaches DSCP information coming in from the previous domain.

The domain ingress router might check the SWORN information to be

able to apply a policy not to bleach, or to install DSCP information

specific to the domain it belongs to, or to operate on some DSCP-

like information outside the DSCP field.

Note that the model used by this extended version of SWORN is based

on an assumption that it is in the interest of all players to

cooperate in achieving the objectives. Security is used to ensure

that only actually authorized players can participate. But, in

general, the assumed trust and incentive models work best within a

limited domain [RFC8799], which spans one or maybe two security

domains only.

3.5. Example arrangements

This subsection discusses a number of example arrangements with more

complex relationships between the players. Once the set of clients

starts to scale, the issue of key setup becomes significant. In the

best case, the SPEPs do not need to be provisioned (set up)

separately for each separate client authorization.

The arrangements presented here are based on symmetric cryptography,

specifically MACs (message authentication codes). The MACs are based

on grant keys GK shared between the origin or a packet (or of a

grant key, see below) and the enforcement point. Several grant keys

may need to be employed; they are differentiated in the names of

variables defined in this section by using suffixes such as _z for

authorization and _n for authentication, or _1 and _2 for

consecutive steps.

In these arrangements, grant keys are managed by "authorization

managers" (AM, compare Figure 1); we simplify the discussion by

mentioning only the client authorization manager (CAM), which

actually may be in contact with other authorization managers closer

to the SPEPs. Some grant keys are shared only between CAM and the

¶

¶

¶

¶

¶

¶

¶

SPEPs, requiring the CAM to send a pre-computed MAC to the client;

some grant keys are shared between CAM, Client C, and the SPEPs,

allowing the client to compute MACs covering variable parts of the

packets.

The MACs of the example arrangements employ a mechanism to indicate

which parts of the packet go into the signing input for the MAC, the

coverage area indication, or cai for short, to be included in each

actual packet. The realization for this could contain a bitmap with

bits that enable individual predefined fields (e.g., elements of the

5-tuple), plus pointer/length information for the payload or other

dynamic attributes that need to be checked. As discussed above, the

coverage area indication itself should also go into the signing

input for the MAC.

The notation "fields(cai_x)" stands for the actual content of the

fields in the packet as enumerated by the coverage area indication

cai_x. If these fields are constant for the authorization conveyed

by a grant key (as is often required by an ACL), they can be

included in the derivation of the grant key; otherwise they are

included in the computation of the MAC keyed by the grant key.

Multiple MACs (based on a cai per MAC and separate GK) can be used

in each packet. This can be realized by including all of these MACs

in a packet (possibly by simply XORing them), or by building one of

the MACs into the signing input of another MAC.

We make the simplifying assumption that the IP address of the client

can be used as a client ID; this is always available in the 5-tuple

of the packet and can be included in a MAC via the coverage area

indication. We use Cx (C1, C2, ...) to discuss a specific client.

Based on these common mechanisms, we discuss two arrangements in the

rest of this section. Other arrangements can be built; the

information in the grants should enable the indication of the exact

structure of the arrangement, enabling the AM to determine which

specific arrangement is in use.

3.5.1. Multiple Independent Grants

In this example arrangement, the AM generates two different kinds of

grants, GK_z for authorization checking over a range of clients, and

GK_n_x that focuses only on authenticating the packet as originating

from a specific client Cx.

The corresponding MACs are used as follows: MAC_z contains

information that the AM wants to define, i.e. AM sets the values of

these fields; therefore MAC_z can be pre-computed by the AM. MAC_n

also contains information that the AM wants Cx to define, i.e. AM

identifies the fields (sets cai) and lets Cx set the values of these

¶

¶

¶

¶

¶

¶

¶

fields. (As an example, the wake_period of original SWORN would be

in MAC_n.)

GK_z is not provided to the clients, instead the CAM provides the

client with a ready-made token complete with a MAC, called MAC_z,

based on the grant key. This token indicates authorization for its

coverage area (typically elements of the 5-tuple, plus possibly some

more dynamic attributes). It is pre-computed for each client Cx and

conveyed to Cx from the CAM; as there is no replay protection of the

authorization, this token can be used essentially as a bearer token,

until dynamic attributes or keys need to be updated (then a new

authorization token needs to be sent from CAM to each Cx that shall

continue to communicate).

The SPEP also has GK_z and can check the tokens based on the

information in the packet (and possibly cache e.g. MAC_z for the

flow, if not pre-computed from a table of client IDs).

This approach alone does not protect against replay attacks. For

this, we introduce GK_n_x in corresponding client grants, carrying a

client-specific authentication key. Each GK_n_x is provided by the

CAM to both an individual Cx and (indirectly via GK_z) to the SPEPs.

The authentication key is used against a selected subset of the

five-tuple, the dynamic attributes, and the payload. It effectively

proves that the holder of this key, Cx, is the actual originator of

the packet. It does not prove authorization of a specific five-tuple

plus attributes; this is the job of the GK_z/MAC_z.

Each packet carries MAC_z based on the shared grant key (bearer

token supplied by CAM for a specific selection of elements from the

5-tuple, proving that this communication with this selection of 5-

tuple elements is generally authorized.) A typical selection from

the 5-tuple would comprise the source (client) and destination

(device) IP addresses as well as the destination port number and

protocol; the source port number would remain dynamic to be chosen

by the client in this case. (MAC_z could also cover further

attributes relevant to the authorization, such as an application-id

or performance parameters such as intended maximum bitrate and

traffic priority; some of these attributes could be included in the

token, others could be derived from policy and an attribute such as

an application-id.)

We assume that the mechanisms discussed here need to provide source

authentication for the packets from Cx. If a separate source

authentication mechanism is available, GK_n_x and MAC_n are not

needed. Otherwise, for authentication, each packet also carries

MAC_n based on GK_n_x, which proves the actual origin of the packet;

the authorization that applies to the packet needs to be checked via

the authorization token. The coverage area of MAC_n is indicated by

¶

¶

¶

¶

¶

Token =

[cai_z, cai_n, GK_z-kid, CxID, attributes_conveyed,

cai_n; this will generally be a superset of cai_z and will include

the source port number as well, so this can be freely chosen by the

client but is still authenticated.

The payload may or may not be included into the signing input to

MAC_n (this is also indicated by cai_n). If the payload is included,

this ensures that an attacker can only replay completely identical

packets; in situations where this kind of replay would not be a

problem, no replay window mechanism needs to be employed.

In summary (bracket notation [..., ...] stands for an array of

values):

MAC_z = MAC([cai_z, fields(cai_z), attributes, cai_n, timestamp],

GK_z)

MAC_n = MAC([serial, cai_n, fields(cai_n)], GK_n_x)

where the CAM provides to Cx:

GK_n_x = KDF(["key for MAC_n", CxID, GK_z])

all other inputs to MAC_z except for timestamp

MAC_z

The actual information in the packet contains the token:

(MAC_z xor MAC_n_x)]

The provisioning needed is limited to distributing grant keys GK_z

for each specific authorization (e.g., Device IP address/port

number) plus a base key GK_n_x to derive authentication keys for

each client Cx. These are connected by the common parts of the 5-

tuple and a CxID.

The role of the different keys can be summarized as follows:

GK_z, known only by AM and the SPEPs, allows the AM to specify

the authorization information, which then can be checked by the

SPEP using MAC_z under the key GK_z.

Since the AM can compute the MAC_z ahead of time, from the point

of view of the client MAC_z essentially serves as a bearer token,

which however is only useful for packets with the fields(cai_z)

that are being authorized by AM.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

*

¶

¶

GK_n_x provides client x with a way to authenticate a wider

coverage, including values of the client's choice such as the

source port number or even the payload. Here, client x needs to

have the key so it can dynamically vary these fields without

needing to recur to AM.

3.5.2. Hierarchical Grants

Section 3.5.1 requires distributing separate authentication grants

for each client Cx to each SPEP, which may however be orthogonal to

the specific authorizations granted.

We cannot completely eliminate per-client "provisioning" as SPEP

needs to know about the authorization it needs to enforce. However,

by giving clients (e.g., C1/C2) more specific information than SPEP,

we can relieve SPEP from needing to know each of C1/C2 a priori, as

follows:

Let GK0 be the generic grant Key, which is generated by CAM and told

to the SPEPs in a generic grant. Clients never obtain GK0.

Let GKx be a specific grant Key, which is generated by CAM for each

Cx and told to Cx in a specific grant. Client x only knows its own

GKx, not that of other clients Cy.

For a complete exposition, we also introduce cai_1 and cai_2:

Both cai_1 and fields(cai_1) are shared between CAM and SPEP in a

generic grant; fields(cai_1) are the constant parts of the

packets to be authorized (e.g., device IP address, device port

number).

cai_2 is a superset of cai_1; it indicates the fields that need

to be checked by SPEP. The generic grant provides cai_2, but not

fields(cai_2), as these can differ per packet and are chosen by

Cx.

Ignoring nonces, serials, and key identifier/lifetime/rollover

mechanisms, the following computations can be done:

by CAM or SPEP (who both know GK0 and cai_1, i.e. generic

information about all packets covered by this grant):

Grant_x = [GK0-kid, cai_1, cai_2, fields(cai_1), GKx]

where GKx = KDF([cai_1, cai_2, fields(cai_1), GK0])

by Cx based on its provisioned GKx and a specific packet, but

also by SPEP based on the GKx the SPEP can compute for Cx

*

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

¶

¶

*

¶

token = [GK0-kid, cai_1, cai_2, MAC([serial, cai_2,

fields(cai_2)], GKx)]

(These computations do not explicitly mention a client ID, which is

implied by the source IP address included in fields(cai_n).)

Note that the token can be verified by SPEP as it can compute GKx

from the secret key GK0 that is only shared between CAM and SPEP, as

long as it knows which GK0 to apply (e.g., using GK0-kid, which here

simply is copied into the token). As they don't know GK0, the

individual clients Cx cannot compute GKx -- they need to obtain it

from CAM as part of Grant_x, which also gives them cai_1 and cai_2

-- containing the information for Cx how to apply the GKx. The

token, computed from GKx, therefore authenticates Cx as the holder

of xGKx, and signifies the authorization of Cx to send a packet with

fields(cai_1) as indicated in GKx, with the additional requirement

on Cx that it also authenticates a serial number (used for replay

protection) and additional fields(cai_2).

Since the token includes the relevant parts of the 5-tuple, and

cai_1 is part of the first MAC and therefore cannot be changed by

the Cxes, there is no need to apply any additional ACL beyond

feeding the cai-selected fields of the packet into the MAC.

So GK0 only needs to be provisioned once to the SPEPs for all Cxes;

each GKx is provisioned only to Cx. An SPEP can compute GKx from

cai_1, cai_2 (part of the token) and fields(cai_1) (taken from the

packet). GKx is eminently cacheable, but in any case does not need

to be provisioned as it can be derived from GK0 and information that

is in the packet.

C1 and C2 have GK1 and GK2, respectively; the coverage area is

easily extended to include D1-address and D1-port etc., by setting

the bits in either cai_1 (if these are fixed for Cx) or cai_2 (if

these can be chosen by Cx).

4. IANA Considerations

4.1. Original SWORN model

Define CBOR Wake-Token Tag 1398230866 in [IANA.cbor-tags].

Define CoAP option Wake-Token in the CoAP Option Numbers Registry of

[IANA.core-parameters] (Section 12.2 of [RFC7252]. (The option is

safe, no-cache-key, elective, repeatable, of type opaque 0-255

bytes.)

Define media-type "application/dtls-payload", with an associated

CoAP Content-Format in the CoAP Content-Formats Registry of

[IANA.core-parameters] (Section 12.3 of [RFC7252].

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/core-parameters#option-numbers
https://rfc-editor.org/rfc/rfc7252#section-12.2
https://www.iana.org/assignments/core-parameters#content-formats
https://rfc-editor.org/rfc/rfc7252#section-12.3

[IANA.cbor-tags]

[IANA.core-parameters]

[RFC7252]

[RFC8152]

[RFC8392]

[RFC8610]

4.2. Generalized model

TBD

5. Security Considerations

The purpose of the security mechanisms described is primarily to

protect availability (obviously, any symmetric keys employed also

need to be confidentiality protected for the sake of the integrity

of the mechanism). For the purposes of this kind of availability

protection, occasional false positives of the per-packet

authorization mechanisms may be acceptable, as long as they don't

reach a threshold of probability of success that is application

dependent (say, success in one out of a million of brute force

attempts, equivalent to 20-bit security). This may offer

optimization opportunities that need further study.

TBD

6. References

6.1. Normative References

IANA, "Concise Binary Object Representation (CBOR)

Tags", <https://www.iana.org/assignments/cbor-tags>.

IANA, "Constrained RESTful Environments

(CoRE) Parameters", <https://www.iana.org/assignments/

core-parameters>.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

Application Protocol (CoAP)", RFC 7252, DOI 10.17487/

RFC7252, June 2014, <https://www.rfc-editor.org/info/

rfc7252>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Jones, M., Wahlstroem, E., Erdtman, S., and H.

Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI

10.17487/RFC8392, May 2018, <https://www.rfc-editor.org/

info/rfc8392>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

¶

¶

¶

https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/core-parameters
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8610

[RFC8747]

[RFC8949]

[I-D.bormann-intarea-alfi]

[I-D.ietf-bier-php]

[RFC3031]

[RFC7228]

[RFC8613]

[RFC8799]

Jones, M., Seitz, L., Selander, G., Erdtman, S., and H.

Tschofenig, "Proof-of-Possession Key Semantics for CBOR

Web Tokens (CWTs)", RFC 8747, DOI 10.17487/RFC8747, March

2020, <https://www.rfc-editor.org/info/rfc8747>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

6.2. Informative References

Bormann, C., "Adaptation Layer Fragmentation Indication",

Work in Progress, Internet-Draft, draft-bormann-intarea-

alfi-04, 9 September 2013, <https://www.ietf.org/archive/

id/draft-bormann-intarea-alfi-04.txt>.

Zhang, Z., "BIER Penultimate Hop Popping", Work

in Progress, Internet-Draft, draft-ietf-bier-php-07, 7

December 2021, <https://www.ietf.org/archive/id/draft-

ietf-bier-php-07.txt>.

Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol

Label Switching Architecture", RFC 3031, DOI 10.17487/

RFC3031, January 2001, <https://www.rfc-editor.org/info/

rfc3031>.

Bormann, C., Ersue, M., and A. Keranen, "Terminology for

Constrained-Node Networks", RFC 7228, DOI 10.17487/

RFC7228, May 2014, <https://www.rfc-editor.org/info/

rfc7228>.

Selander, G., Mattsson, J., Palombini, F., and L. Seitz,

"Object Security for Constrained RESTful Environments

(OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,

<https://www.rfc-editor.org/info/rfc8613>.

Carpenter, B. and B. Liu, "Limited Domains and Internet

Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,

<https://www.rfc-editor.org/info/rfc8799>.

Acknowledgements

 (Bo Chen) provided input for Section 3.

TBD

¶

¶

https://www.rfc-editor.org/info/rfc8747
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.ietf.org/archive/id/draft-bormann-intarea-alfi-04.txt
https://www.ietf.org/archive/id/draft-bormann-intarea-alfi-04.txt
https://www.ietf.org/archive/id/draft-ietf-bier-php-07.txt
https://www.ietf.org/archive/id/draft-ietf-bier-php-07.txt
https://www.rfc-editor.org/info/rfc3031
https://www.rfc-editor.org/info/rfc3031
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8799

Authors' Addresses

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

Yizhou Li

Huawei Technologies

Email: liyizhou@huawei.com

tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:liyizhou@huawei.com

	SWORN: Secure Wake on Radio Nudging
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. The original SWORN proposal
	2.1. Assumptions and Requirements
	2.2. Security goals
	2.3. Mechanism
	2.3.1. Wake-Grant
	2.3.2. Wake-Token
	2.3.3. Finding the wake token

	3. Generalizing SWORN towards Token-Based In-Network Authorization
	3.1. Position of router R
	3.2. Position of Token in Packet
	3.3. Range of Checking
	3.4. Information (attributes) to be used on the way
	3.5. Example arrangements
	3.5.1. Multiple Independent Grants
	3.5.2. Hierarchical Grants

	4. IANA Considerations
	4.1. Original SWORN model
	4.2. Generalized model

	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgements
	Authors' Addresses

