
Internet Engineering Task Force A. Boronine, Ed.
Internet-Draft
Intended status: Informational December 5, 2014
Expires: June 8, 2015

Minimal JSON Type System
draft-boronine-teleport-02

Abstract

 Teleport is a minimal type system designed as an extension of JSON.
 It comes with 10 types sufficient for basic use and provides two
 patterns for extending it with new types. Teleport's type
 definitions are JSON values, for example, an array of strings is
 defined as {"Array": "String"}.

 Teleport implementations can be used for data serialization, input
 validation, for documenting JSON APIs and for building API clients.

 This document provides the mathematical basis for Teleport and can be
 used for implementing libraries.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 8, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Boronine Expires June 8, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Abbreviated Title December 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Terminology 3
2.1. Syntax . 3

3. Type Patterns . 3
4. JSON Schemas . 3
5. Mathematical Basis . 4
5.1. Concrete Types . 4
5.2. Generic Types . 4

6. Built-in Concrete Types 4
7. Built-in Generic Types 5
8. IANA Considerations . 6
9. Security Considerations 6
10. References . 6
10.1. Normative References 6
10.2. Informative References 6

Appendix A. Mailing List . 6
 Author's Address . 6

1. Introduction

 In Teleport, a type is a relation between a type definition and a
 value space. For example:

 t("Integer") = {0, -1, 1, -2, 2, -3, 3, ...}

 Here "Integer" is a type definition and t("Integer") is the set of
 all values this type can take. The t function is used to represent
 this relationship.

 Because Teleport is based on JSON, all value spaces are sets of JSON
 values. More interestingly, type definitions are JSON values too,
 which makes it trivial to share them with other programs.

 Teleport's design goals is to be a natural extension of JSON, be
 extremely lightweight, and extendable not only with rich types but
 with high-level type system concepts.

Boronine Expires June 8, 2015 [Page 2]

Internet-Draft Abbreviated Title December 2014

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The terms "JSON", "JSON text", "JSON value", "member", "element",
 "object", "array", "number", "string", "boolean", "true", "false",
 and "null" in this document are to be interpreted as defined in RFC

4627 [RFC4627].

2.1. Syntax

 Throughout this document, an extended JSON syntax is used. Unquoted
 strings are symbols representing JSON values, sets and functions.
 Also, the following set theory syntax is used:

 a :: A Set A contains element a.

 D -> C The set of functions that map values from set D to values
 from set C.

3. Type Patterns

 Types defined simply by a string, like "Integer" above, are called
 concrete. Teleport ships with 7 concrete types.

 A generic type maps a set of schemas to a set of value spaces. Each
 pair in the mapping is called an instance. For example, {"Array":
 "Integer"} is an instance of the Array type.

 Three generic types are provided: Array, Map and Struct. Their
 precise definition is provided in the following sections, but these
 examples should be enough to understand how they work:

 ["foo", "bar"] :: t({"Array": "String"})

 {"a": 1, "b": 2} :: t({"Map": "Integer"})

 {"name": "Alexei"} :: t({"Struct": {
 "required": {"name": "String"},
 "optional": {"age": "Integer"}})

4. JSON Schemas

 Schema, one of the build-in concrete types, is made possible by the
 fact that type definitions are JSON values. The Schema type is

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Boronine Expires June 8, 2015 [Page 3]

Internet-Draft Abbreviated Title December 2014

 useful to specify APIs. For example, to describe a function you can
 use this:

 t({"Struct": {
 "optional": {},
 "required": {
 "input": "Schema",
 "output": "Schema"}}}

5. Mathematical Basis

 The set of all JSON values is called V. A subset of V is called a
 value space and the set of all value spaces is called S.

 V = {null, true, false, 0, 1, 2, 3, 4, ...}

 S = {{}, {null}, {null, true}, {null, ...}, ...}

 There is a certain function t that maps JSON values to value spaces.

 t :: (V -> S)

 This document does not give a full definition of the t function, it
 merely provides some instances of its inputs and outputs. Expanding
 the definition of the t function is the basis for extending Teleport.

5.1. Concrete Types

 x is of concrete type c if and only if

 1. c is a string

 2. x :: t(c).

5.2. Generic Types

 x is of generic type g if and only if

 1. g is a string

 2. x :: t({g: p}) for some p

6. Built-in Concrete Types

 JSON t("JSON") is the set of all JSON values. This type can be
 used as a wildcard for type-checking or as a noop for
 composable serialization.

Boronine Expires June 8, 2015 [Page 4]

Internet-Draft Abbreviated Title December 2014

 Schema t("Schema") is the set of all type definitions, including
 all strings representing concrete types as well as every
 instance of every generic type.

 Decimal t("Decimal") is the set of all numbers. This type
 represents real numbers and arbitrary-precision
 approximations of real numbers.

 Integer t("Integer") is the set of all numbers that don't have a
 fractional or exponent part.

 String t("String") is the set of all strings. Note that JSON
 strings are sequences of Unicode characters.

 Boolean t("Boolean") is a set containing the JSON values true and
 false.

 DateTime t("DateTime") is the set of all strings that are valid
 according to RFC 3339 [RFC3339]. This type represents
 typestamps with optional timezone data.

7. Built-in Generic Types

 x :: t({"Array": p}) if and only if

 x is an array

 e :: t(p) for every element e in x

 x :: t({"Map": p}) if and only if

 x is an object

 v :: t(p) for every pair (k, v) in x

 x :: t({"Struct": p}) if and only if

 p is an object with at least two members: required and optional.
 Both are objects and their names are disjoint, that is, they don't
 have a pair of members with the same name.

 x is an object. The name of every member of p.required is also
 the name of a member of x.

 For every pair (k, v) in x, there is a pair (k, s) in either
 p.required or p.optional such that v :: t(s).

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Boronine Expires June 8, 2015 [Page 5]

Internet-Draft Abbreviated Title December 2014

 NOTE: the definition of Struct implies that its parameter p can
 contain arbitrary metadata in the form of other object members.

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 All drafts are required to have a security considerations section.
 See RFC 3552 [RFC3552] for a guide.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

10.2. Informative References

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

Appendix A. Mailing List

 Comments are solicited and should be addressed to the working group's
 mailing list at teleport-json@googlegroups.com and/or the author.

Author's Address

 Alexei Boronine (editor)

 Email: alexei@boronine.com

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552

Boronine Expires June 8, 2015 [Page 6]

