
HTTP Working Group D. Box
Internet Draft Developmentor

 G. Kakivaya
 A. Layman
 S. Thatte
 Microsoft
 Corporation

 D. Winer
 Userland Software

Document: <draft-box-http-soap-00.txt> September 1999
Category: Informational

SOAP: Simple Object Access Protocol

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 except that the right to
 produce derivative works is not granted.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet- Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

1. Abstract

 SOAP defines an RPC mechanism using XML for client-server
 interaction across a network by using the following mechanisms:
 * HTTP as the base transport
 * XML documents for encoding of invocation requests and responses

2. Conventions used in this document

https://datatracker.ietf.org/doc/html/draft-box-http-soap-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Box, Kakivaya, et al. HTTP -- March, 2000 1

 SOAP: Simple Object Access Protocol September, 1999

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [11].

3. Introduction

 SOAP defines an "XML-RPC" protocol for client-server interaction
 across a network by using the following mechanisms:
 * HTTP as the base transport
 * XML documents for encoding of invocation requests and
 responses

 SOAP is both low-entry and high-function, capable of use for simple
 stateless remote procedure calls as well as rich object systems.

 SOAP works with today's deployed World Wide Web and provides
 extensibility mechanisms for future enhancements. For example, SOAP
 supports submitting invocations using both M-POST and POST.

3.1. Goals
 * Provide a standard object invocation protocol built on
 Internet standards, using HTTP as the transport and XML for data
 encoding.
 * Create an extensible protocol and payload format that can
 evolve over time.

3.2. Non-Goals
 Define all aspects of a distributed object system, including the
 following:
 * Distributed garbage collection
 * Metadata discovery, type safety, and versioning
 * Bi-directional HTTP communications
 * Boxcarring or pipelining of messages
 * Objects-by-reference (which requires distributed garbage
 collection and bi-directional HTTP)
 * Activation (which requires objects-by-reference)

 This specification lays the groundwork for a distributed object
 system. Getting consensus on a full object system would be a long
 and time-consuming process. Therefore, SOAP currently contains only
 the base features necessary to get the basic format and protocol
 working.

3.3. Examples of a SOAP Call

https://datatracker.ietf.org/doc/html/rfc2119

 The call is to a StockQuote server, and the method is
 GetLastTradePrice. The method takes one string parameter, ticker,
 and returns a float.

3.3.1. Call

 Following is an example of the SOAP encoding required to make this
 method call. This example uses the familiar HTTP verb POST. SOAP

Box, Kakivaya, et al. HTTP -- March, 2000 2

 SOAP: Simple Object Access Protocol September, 1999

 mandates the use of the HTTP verb M-POST by preference over POST for
 reasons of extensibility and firewall friendliness. See section 6.1
 for more information on M-POST.

 POST /StockQuote HTTP/1.1
 Host: www.stockquoteserver.com
 Content-Type: text/xml-SOAP
 Content-Length: nnnn
 MessageType: Call

 <GetLastTradePrice>
 <ticker>DIS</ticker>
 </GetLastTradePrice>

3.3.2. Response

 Following is the return message containing the HTTP headers and XML
 body:

 HTTP/1.1 200 OK
 Connection: close
 Content-Type: text/xml-SOAP
 Content-Length: nnnn
 MessageType: CallResponse

 <GetLastTradePriceResponse>
 <__return>34.5</__return>
 </GetLastTradePriceResponse>

4. Relation to HTTP

 In SOAP, the mechanism used for all communication is HTTP. (See
 [1].) Indeed, a central design goal of SOAP, perhaps the most
 important, is that SOAP be usable strictly on top of today's
 actually deployed World Wide Web infrastructure. That means SOAP has
 to live with and work in the face of various levels of HTTP
 implementation, the active use of firewalls and proxies, and so on.
 Some aspects of SOAP, such as the permitted use of HTTP methods

 beyond those of classic HTTP, are designed to anticipate, and thus
 make use of, some evolution and improvement in this base, but
 nothing in SOAP can require such fundamental changes in order for
 SOAP to function.

 SOAP defines a new Content-Type of "text/xml-SOAP". This is used to
 specify the body of the HTTP message containing a XML encoded method
 call.

 To disambiguate the headers it adds to HTTP, SOAP makes use of the
 HTTP Extension Framework specification (See [2]). To facilitate
 firewall filtering, SOAP adds new headers to HTTP.

Box, Kakivaya, et al. HTTP -- March, 2000 3

 SOAP: Simple Object Access Protocol September, 1999

 Unless otherwise indicated in this document, existing practices with
 respect to the handling of HTTP requests and responses are to be
 adhered to. Specifically, this includes the following:

 * Redirection
 * Caching
 * Connection management
 * Support for access authentication and security

5. Relation to XML

 XML is used to encode the call and response bodies. See [3] for more
 information on XML.

 All protocol tags may be scoped to the SOAP namespace. Use of
 namespaces in SOAP is optional. The SOAP namespace has the proposed
 value "http://w3.org/Schemas/SOAP/kw". See [6] for more information
 on XML namespaces.

 No XML document forming the HTTP request of a SOAP invocation may
 require the use of an XML DTD in any manner.

 SOAP uses the ID attribute "id" to specify the unique identifier of
 an encoded element. SOAP uses the attribute "href" to specify a
 reference to that value, in a manner conforming to the XML Linking
 Language specification working draft. See [9] for more information
 on XML Linking Language.

 It is worth noting that the rules governing XML payload format in
 SOAP are entirely independent of the fact that the payload is
 carried over an HTTP transport.

6. Method Invocation

 A method invocation is performed by creating the HTTP request header
 and body and processing the returned response header and body. The
 request and response headers consist of standard and extended HTTP
 headers.

 The following sections will cover the use of standard HTTP headers
 and the definition of extended HTTP headers.

6.1. HTTP Verb Rules

 SOAP allows two verb options within the Call HTTP header: M-POST or
 POST.

 The verb M-POST is an extension verb based on in the HTTP Extension
 Framework specification. (See [2].) A SOAP invocation must first try
 the invocation by using M-POST.

Box, Kakivaya, et al. HTTP -- March, 2000 4

 SOAP: Simple Object Access Protocol September, 1999

 If the M-POST invocation fails, it must retry using the HTTP method
 POST. The details of this mechanism are provided below. The purpose
 of supporting this extended invocation mechanism in SOAP is to
 provide a mechanism to unambiguously add headers to the HTTP
 protocol.

6.2. Using M-POST vs. POST

 Since a design goal of the use of M-POST is to provide Internet
 firewalls and proxies greater administrative flexibility, careful
 attention must be paid as to when a SOAP client uses the M-POST
 method vs. the POST method. The rules are as follows:

 When carrying out an invocation, a SOAP client must first try the
 invocation using the M-POST invocation style.

 If that M-POST invocation fails with an HTTP status of "501 Not
 Implemented" or "510 Not Extended," the client should retry the
 request using the POST invocation style. If that POST invocation
 fails with an HTTP status of "405 Method Not Allowed," the client
 should fail the request. If any other HTTP error is returned, it
 should be processed according to the HTTP specification.

 Further, if such a failure code is received on an M-POST, then in
 subsequent invocations to the same HTTP server, the client may omit

 the attempt at M-POST invocations for a period of 24 hours, thereby
 avoiding the need for an extra round-trip on each and every method
 invocation.

 Given this algorithm, firewalls can effectively force the use of M-
 POST for SOAP invocations by prohibiting POST invocations of
 Content-Type "text/xml-SOAP".

6.3. Method Invocation HTTP Headers

 M-POST and POST messages on call or response must include a header
 "MessageType" whose value is either "Call" or "CallResponse," to
 indicate the type of message in the payload.

 The payload and Content-Type of a method call are identical to a
 method response except in the following circumstances:

 * The method call must contain additional HTTP header fields in
 the request:

 a) If using the M-POST verb, a mandatory extension declaration
 must be present that refers to the namespace
 "http://www.microsoft.com/protocols/ext/SOAP". For the purposes of
 this section, suppose that said declaration chooses to map the
 namespace to the header-prefix "01". If the POST verb is used, the
 namespace header-prefix is not used. For example, a MethodName
 header would have an M-POST value of "01-MethodName" and a POST
 value of "MethodName".

Box, Kakivaya, et al. HTTP -- March, 2000 5

 SOAP: Simple Object Access Protocol September, 1999

 b) If an interface name is necessary to perform the invocation,
 the request must include a header "InterfaceName" whose value is the
 interface on the server. If interfaceName is not required in the
 method invocation, an "InterfaceName" header must not be present.

 c) If a method name is necessary to perform the invocation, then
 the request MUST include a header "MethodName" whose value is the
 method to be invoked on the target. If method name is NOT required
 in the method invocation, then a "MethodName" header MUST NOT be
 present

 * The server must fail the request if the required headers are
 missing. The failure HTTP response status-line should contain the
 value "400", which means "Bad Request".

6.4. Method Invocation Body

 A SOAP method invocation consists of a method call and optionally a
 method response. The method call and method response body consists
 of an HTTP header and the XML payload. The XML payload consists of
 the root, call, and response elements, and, optionally, header
 information.

 The body components are defined as follows:

 * The SOAP root element is the top element in the XML tree.

 * The SOAP payload headers contain implicit information that
 needs to travel with the call.

 * The call is the encoded call with parameters that is passed to
 the server. It is a child of the root element.

 * The response is the return value or error/exception that is
 passed back to the client. It is a child of the root element.

 The encoding rules are as follows:

 1) Root element
 a) The element tag is "SerializedStream". The root element
 provides serialization scope and as such is optional when it has a
 single child element.
 b) It may contain an attribute "main" whose value is a URI
 fragment identifier to the call or response element. If the
 attribute "main" is absent, the call or response element must be the
 first element scoped within the serialized stream.
 c) It may contain an attribute "headers" whose value is a URI
 fragment identifier to the headers element. All the elements
 referenced directly or indirectly by the header element must always
 precede those reachable directly or indirectly from the call or
 response element.

Box, Kakivaya, et al. HTTP -- March, 2000 6

 SOAP: Simple Object Access Protocol September, 1999

 d) It may contain an attribute "serializationPattern" that
 indicates any serialization rules used in addition to those required
 by the SOAP spec.
 e) It may contain namespace declarations.
 f) It may contain additional attributes, provided these are
 namespace-qualified.

 2) SOAP payload headers
 a) The element tag is "headers".
 b) It must contain an "id" attribute that the root element
 references.

 c) It contains a list of header entries.
 d) Standard entries include the following:
 i) "MethodSig" that contains an implementation-specific value used
 to disambiguate overloaded methods.
 ii) "InterfaceName" that contains the interface to invoke on.
 iii) "UnorderedParams" that contains a Boolean indicating whether or
 not the parameters are unordered. The default is for parameters to
 be ordered.

 3) Call
 a) The element tag is the method name.
 b) It may contain an "id" attribute that the root element
 references.
 c) It contains child elements for each [in] and [in/out]
 parameter. The element names are the parameter names or "__param"
 prefixed to the ordinal-representing position of the parameter
 starting at 0.
 d) It may contain a "version" attribute that specifies the version
 of the call object.

 4) Response
 a) The element tag is "Response" appended to the method name.
 b) It may contain an element "__return" containing the return
 value.
 c) It contains child elements for each [in/out] and [out]
 parameter. The element names are the parameter names or "__param"
 prefixed to the ordinal-representing position of the parameter
 starting at 0.
 d) It may contain an element "__fault" if an error occurred. When
 a "__fault" element is present, elements mentioned in b) and c) must
 not be present.
 e) It may contain a "version" attribute that specifies the version
 of the response object.

 If the call or response version attribute is not specified, the
 default value of "1.0" is used. A server must use the version passed
 in the call for encoding the response, or it must fail the request.
 In the case where the server accepts a version or level less than
 its maximum, it must respond to the client by using the same version
 and level. If a server receives a version it cannot handle, the HTTP
 response status-line should contain the value "400", which means

Box, Kakivaya, et al. HTTP -- March, 2000 7

 SOAP: Simple Object Access Protocol September, 1999

 "Bad Request", and contain a fault in the call response with the
 fault code SOAP_E_VERSION_MISMATCH.

 See section 7 for information on how to encode parameter values.

6.5. SOAP Payload Headers

 In addition to the elements that specify direct, explicit
 information about the call or response, SOAP provides a way to pass
 extended, implicit information with the call through the use of the
 "headers" element. It is referenced by and encoded as a child of the
 root XML element. It contains a collection of distinctly named
 entries.

 An example of the use of the header element is the passing of an
 implicit transaction ID along with a call. Since the transaction ID
 is not part of the signature and is typically held in an
 infrastructure component rather than application code, there is no
 direct way to pass the necessary information with the call. By
 adding an entry to the headers and giving it a fixed name, the
 transaction manager on the receiving side can extract the
 transaction ID and use it without affecting the coding of remote
 procedure calls.

 Each header entry is encoded as an embedded element. The encoding
 rules for a header are as follows:

 1. The element's name identifies the header.
 2. The element may contain an attribute "href" that refers to the
 header's value if the value is independently encoded. (See Section 6
 for details on encoding terms and rules.)
 3. If the element does not contain an attribute "href" referring
 to a value, the elment must contain an attribute "type" specifying
 the type of the immediately contained value.
 4. The element may contain an attribute "mustUnderstand"
 specifying required understanding of the header by the destination.

 An example is a header with an identifier of "TransactionID", a
 "mustUnderstand" value of true, and an integer value of 5. This
 would be encoded as follows:

 <TransactionID type="int" mustUnderstand="1">5</TransactionId>

6.5.1. The "mustUnderstand" Attribute

 Header entries may have an attribute "mustUnderstand". This may have
 one of two values, either "1" or "0". The absence of such a
 "mustUnderstand" attribute is semantically equivalent to its
 presence with the value "0".

Box, Kakivaya, et al. HTTP -- March, 2000 8

 SOAP: Simple Object Access Protocol September, 1999

 If a header element is tagged with a "mustUnderstand" with value
 "1", a SOAP implementation processing the element must understand
 the semantics intended for the element (as conveyed by its element
 tag, contextual setting, and so on) and honor those semantics. If
 the SOAP implementation doesn't understand the element, it must
 return an error as specified in section [5.1], "Results from a
 Method Call."

 The idea is to allow for robust semantic extensibility and change.
 Headers tagged with mustUnderstand="1" can be presumed to somehow
 concretely change or modify the semantics of their element. Tagging
 the headers in this manner assures that this change in semantics
 will not be silently (and, presumably, erroneously) ignored by those
 who may not fully understand it.

 If the "mustUnderstand" field is missing or has a value of "0", that
 element can safely be ignored.

 For example: If the client passed along a transaction ID header, as
 in the above example, with a "mustUnderstand" of "1", then the
 server should fail if it cannot process the transaction ID and
 comply with the transactional semantics.

6.6. Making a Method Call

 To make a method call, the following information is needed:

 * The URI of the target objec,
 * An optional interface nam,
 * A method name
 * An optional method signature
 * The parameters to the method
 * Optional header data

 The target URI of the HTTP request indicates the resource that the
 invocation is being made against; in this specification, we refer to
 that resource as the "server address," to distinguish it from other
 uses of URIs. Other than it be a valid URI, SOAP places no
 restriction on the form of an address. See [8] for more information
 on URIs.

 The body of a SOAP method call must be of Content-Type 'text/xml-
 SOAP'.

 The SOAP protocol places no absolute restriction on the syntax or
 case-sensitivity of interface names, method names, or parameter
 names. Of course, individual SOAP servers will respond to only the
 names they support; the selection of these is at their own sole

 discretion. The one restriction is that the server must preserve the
 case of names.

6.6.1. Representation of Method Parameters

Box, Kakivaya, et al. HTTP -- March, 2000 9

 SOAP: Simple Object Access Protocol September, 1999

 Method parameters are encoded as child elements of the call or
 response, encoded using the following rules:

 1) The name of the parameter in the method signature is used as
 the name of the corresponding element.
 2) The parameter elements may contain a "type" attribute.
 3) Parameter values are expressed using the rules in section 6 of
 this document.

6.6.2. Sample Encoding

 This sample is the same call as in section 3.3.1 but uses optional
 headers and no parameter names. It uses XML namespaces to
 disambiguate SOAP keywords. The call element is not the first
 element nested within the root and is referenced by a main attribute
 in the root element.

 <SerializedStream headers="ref-0" main="ref-1"
 xmlns:SOAP="http://w3.org/Schemas/SOAP/kw"
 serializationPattern="urn:schemas-microsoft-com:soap.v1">
 <SOAP:headers id="ref-0">
 <TransactionId type="int"
 mustUnderstand="1">5</TransactionId>
 </SOAP:headers>
 <GetLastTradePrice id="ref-1">
 <__param0 id="ref-2">DIS</__param>
 </GetLastTradePrice>
 </SerializedStream>

7. Results of Method Calls

 At the receiving site, a call request can have one of the following
 four outcomes:

 a) The HTTP infrastructure on the receiving site was able to
 receive and process the request.

 b) The HTTP infrastructure on the receiving site could not receive
 and process the request.

 c) The SOAP infrastructure on the receiving site was able to
 decode the input parameters, dispatch to an appropriate server
 indicated by the server address, and invoke an application-level
 function corresponding semantically to the interface or method
 indicated in the method call.

 d) The SOAP infrastructure on the receiving site could not decode
 the input parameters, dispatch to an appropriate server indicated by
 the server address, and invoke an application-level function
 corresponding semantically to the interface or method indicated in
 the method call.

Box, Kakivaya, et al. HTTP -- March, 2000 10

 SOAP: Simple Object Access Protocol September, 1999

 In the first case, the HTTP infrastructure passes the headers and
 body to the SOAP ifrastructure.

 In the second case, the result is an HTTP response containing an
 HTTP error in the status field and no XML body.

 In the third case, the result of the method call consists of a
 result message.

 In the fourth case, the result of the method is a fault message
 indicating a fault that prevented the dispatching infrastructure on
 the receiving side from successful completion.

 In the third and fourth cases, additional payload headers may for
 extensibility again be present in the results of the call.

7.1. Results from a Method Call

 The results of the call are to be provided in the form of a call
 response. The HTTP response must be of Content-Type "text/xml-SOAP".

 Because a result indicates success and a fault indicates failure, it
 is an error for the method response to contain both a result and a
 fault.

7.2. SOAPFault and HTTP Status Codes

 If the HTTP infrastructure successfully processes the Call, passes
 it to the SOAP infrastructure, and an error occurs, an exception is
 passed to the caller in the fault element of the response. That
 exception can contain any record or structure. In this section, a
 simple exception record is defined. This record must be supported by
 the SOAP infrastructure and is used to return errors in the SOAP

 infrastructure.

 struct SOAPFault
 {
 int faultcode;
 String faultstring;
 int runcode;
 }

 Three members of this structure are defined, as follows:

 * "faultcode", which must contain a numeric value. The value
 should be taken from the space of SOAP status codes, described
 below. The faultcode is intended for use by software.

 * "faultstring", which must contain a string value. The
 faultstring is intended for use by human users and must not be acted
 upon algorithmically by software. faultstring is similar to the

Box, Kakivaya, et al. HTTP -- March, 2000 11

 SOAP: Simple Object Access Protocol September, 1999

 'Reason-Phrase' that may be present in HTTP responses. (See [1],
 section 6.1.)

 * "runcode", which must contain a numeric value. The runcode is
 intended to indicate whether or not the request reached the
 destination server. There are three runcodes currently defined: 0 -
 Maybe, 1 - No, 2 - Yes.

 Other struct members beyond the three described above may be
 present.

 If the fault specifies a server fault, as opposed to an HTTP fault,
 the HTTP status code must be "200" and the HTTP status message must
 be "OK". If it specifies an HTTP fault, the HTTP status code as
 defined in the HTTP specification [1] should be used.

 If a method call fails to be processed because of a non-understood
 extension header element contained therein, the method invocation
 must return a SOAPFault. The SOAPFault must contain a 'faultcode' of
 SOAP_E_MUSTUNDERSTAND.

 If a method response fails to be processed for similar reasons, an
 appropriate exceptional condition should be indicated to the
 application layer in an implementation-defined manner.

7.3. SOAP Status Codes

 SOAP defines its own space of numeric status codes. This space is
 used only by the SOAP infrastructure and is not expected to be used
 on HTTP failure. The reason this space is defined is to aid the
 conversion of existing protocols onto SOAP.

 This status code space must be used for faultcodes contained in
 SOAPFaults and in the method definitions defined in this
 specification that return status code values. Further, use of this
 space is recommended (but not required) in the specification of
 methods defined outside of the present specification.

 The SOAP status code space contains numeric values drawn from the
 following ranges:

 a) The HTTP Status Code Definitions, defined in Section 10 of
 RFC2068. (See [1].) Such values are three-digit numbers in the range
 100-999 (decimal).

 b) 0x8011FE00-0x8011FFFF (decimal: 2,148,662,784 - 2,148,663,295)

 c) 0x0011FE00-0x0011FFFF (decimal: 1,179,136 - 1,179,647)

 This specification at present defines the following status codes
 beyond those specified in [1]:

Box, Kakivaya, et al. HTTP -- March, 2000 12

 SOAP: Simple Object Access Protocol September, 1999

 Name Value Meaning
 ==== ===== =======
 SOAP_E_VERSION_MISMATCH 0x8011FE00 The call was using an
 unsupported SOAP version.
 SOAP_E_MUSTUNDERSTAND 0x8011FE01 An XML element was
 received that contained an element tagged with mustUnderstand="1"
 that was not understood by the receiver.

7.4. Examples of Response Messages

 The response from the example in section 3.3.2 would be:

 HTTP/1.1 200 OK
 Connection: close
 Content-Type: text/xml-SOAP
 Content-Length: nnnn
 MessageType: CallResponse

 <SerializedStream

https://datatracker.ietf.org/doc/html/rfc2068#section-10
https://datatracker.ietf.org/doc/html/rfc2068#section-10

 serializationPattern="urn:schemas-microsoft-com:soap.v1">
 <GetLastTradePriceResponse>
 <__return>34.5</__return>
 </GetLastTradePriceResponse>
 </SerializedStream>

 If there was an error in the HTTP infrastructure, the response could
 be as follows:

 HTTP/1.1 401 Unauthorized
 Connection: close

 If there was an error in the SOAP infrastructure processing the
 request on the server, the response could be as follows:

 HTTP/1.1 200 OK
 Connection: close
 Content-Type: text/xml-SOAP
 Content-Length: nnnn
 MessageType: CallResponse

 <SerializedStream
 serializationPattern="urn:schemas-microsoft-com:soap.v1">
 <GetLastTradePriceResponse>
 <__fault>
 <faultcode>0x8011FE00</faultcode>
 <faultstring id="ref-2">SOAP Must Understand
 Error</faultstring>
 <runcode>1</runcode>
 </__fault>
 </GetLastTradePriceResponse>
 </SerializedStream>

Box, Kakivaya, et al. HTTP -- March, 2000 13

 SOAP: Simple Object Access Protocol September, 1999

 If the application passed back its own exception, the request
 response would be as follows:

 HTTP/1.1 200 OK
 Connection: close
 Content-Type: text/xml-SOAP
 Content-Length: nnnn
 MessageType: CallResponse

 <SerializedStream main="#ref-0"
 serializationPattern="urn:schemas-microsoft-com:soap.v1">
 <GetLastTradePriceResponse id="ref-0">

 <__fault href="#ref-1"/>
 </GetLastTradePriceResponse>
 <MyExceptionType href="#ref-1">
 <message type="string">My application didn't work</message>
 <errorcode type="int">1001</errorcode>
 </MyExceptionType>
 </SerializedStream>

8. Types

 SOAP uses a simple, traditional type system. A type either is a
 simple (scalar) type or is a compound type constructed as a
 composite of several parts, each with a type.

 Because all types are contained or referenced within a call or
 response element, the encoding samples in this section assume all
 namespace declarations are at a higher element level.

8.1. Rules for Encoding Types in XML

 XML allows very flexible encoding of data to represent a method
 call. SOAP defines a narrower set of rules for encoding. This
 section defines the encoding rules at a high level, and the next
 section describes the encoding rules for specific types when they
 require more detail.

 To describe encoding, the following terminology is used:

 1. A "type" includes integer, string, point, or street address. A
 type in SOAP corresponds to a scalar or structured type in a
 programming language or database. All values are of specific types.
 2. A "compound type" is one that has distinct, named parts and
 whose encoding should reflect those named parts. A "simple type" is
 one without named parts. A structured type in a programming language
 is a compound type, and so is an array.
 3. The name of a parameter or of a named part of a compound type
 is called an "accessor."
 4. If only one accessor can reference it, a value is considered
 "single-reference" for a given schema. If referenced by more than
 one, actually or potentially, it is "multi-reference." Therefore, it

Box, Kakivaya, et al. HTTP -- March, 2000 14

 SOAP: Simple Object Access Protocol September, 1999

 is possible for a certain type to be considered "single-reference"
 in one schema and "multi-reference" in another schema.
 5. Syntactically, an element may be "independent" or "embedded."
 An independent element is contained immediately by the root element.
 An embedded element is contained within a non-root element.

 The rules are as follows:
 1. Elements may be used to reflect either accessors or instances
 of types. Embedded elements always reflect accessors. Independent
 elements always reflect instances of types. When reflecting an
 accessor, the name of the element gives the name of the accessor.
 When reflecting an instance of a type, the name of the element gives
 the name of the type.
 2. A call or response is always encoded as an independent element.
 3. Accessors are always encoded as embedded elements.
 4. A value (simple or compound) is encoded as element content,
 either of an element reflecting an accessor to the value or of an
 element reflecting an instance of that type.
 5. A simple value is encoded as character data--that is, without
 any subelements.
 6. Strings and byte arrays are multi-reference simple types, but
 special rules allow them to be represented efficiently for common
 cases. An accessor to a string or byte-array value may have an
 attribute named "id" and of type "ID" per the XML Specifications. If
 so, all other accessors to the same value are encoded as empty
 elements having an attribute named "href" and of type "URI" per the
 XML Linking Language Specifications, with the href containing a URI
 fragment identifier referencing the single element containing the
 value.
 7. It is permissible to encode several references to a simple
 value as though these were references to several single-reference
 values, but only when from context it is known that the meaning of
 the XML instance is unaltered.
 8. A compound value is encoded as a sequence of elements, each
 named according to the accessor it reflects. (See also section

8.4.1.)
 9. A multi-reference simple or compound value is encoded as an
 independent element containing an attribute named "id" and of type
 "ID" per the XML Specifications. Each accessor to this value is an
 empty element having an attribute named "href" and of type "URI" per
 the XML Linking Language Specifications, with the href containing a
 URI fragment identifier referencing the corresponding independent
 element.
 10. Arrays are compound types. Arrays can be of one or more
 dimensions(rank) whose elements are normally laid contiguously in
 memory. Arrays can be single-reference or multi-reference values.
 Single-reference embedded arrays are encoded using accessor
 elements. Multi-reference arrays are encoded as independent elements
 named "Array". The independent element or the accessor must contain
 a "type" attribute that specifies the type and dimensions of the
 array and is encoded as the type of the array element, followed by
 "[", followed by comma-separated lengths of each dimension, followed
 by "]". Note that the array element itself can be an array. An array

Box, Kakivaya, et al. HTTP -- March, 2000 15

 SOAP: Simple Object Access Protocol September, 1999

 type is encoded as its element type, followed by "[", followed by
 rank encoded as a sequence of commas(one for each dimension),
 followed by "]". It may also contain an "offset" attribute to
 indicate the starting position of a partially represented array.
 Each element of an array is encoded using the accessor named "item".
 The elements are represented as a list with the dimension on the
 right side varying rapidly. The "item" accessor may contain the
 "position" attribute that conveys the position of the item in the
 enclosing array. Both "offset" and "Position" attributes are encoded
 as "[", followed by a comma-separated position in each dimension,
 followed by "]".
 11. Any accessor element that contains its value directly may
 optionally have an attribute named "type" whose value indicates the
 type of the element's contained value.
 12. A NULL reference is encoded as an independent element named
 SOAPNULL containing an attribute named "id" and of type "ID" per the
 XML Specifications. Each accessor to this value is an empty element
 having an attribute named "href" and of type "URI" per the XML
 Linking Language Specifications, with the href containing a URI
 fragment identifier referencing the SOAPNULL independent element.

8.2. Simple Types

 For simple types, SOAP adopts the types found in the section
 "Specific Datatypes" of the XML-Data Specification (see [4]), along
 with the corresponding recommended representation thereof. Examples
 include:

 ui4: 58502
 float: .314159265358979E+1
 i2: -32768

 Strings and arrays of bytes are encoded as multi-reference simple
 types.

8.2.1. String

 A string is a multi-reference simple type. According to the rules of
 multi-reference simple types, the containing element of the string
 value may have an ID attribute; additional accessor elements may
 then have matching href attributes.

 For example, two accessors to the same string could appear, as
 follows:

 <greeting id="String-0">Hello</greeting>
 <salutation href="#String-0"/>

 However, if the fact that both accessors reference the same instance
 of the string is immaterial, they may be encoded as though single-

 reference, as follows:

 <greeting>Hello</greeting>

Box, Kakivaya, et al. HTTP -- March, 2000 16

 SOAP: Simple Object Access Protocol September, 1999

 <salutation>Hello</salutation>

8.2.2. Array of Bytes

 An array of bytes is encoded as a multi-reference simple type. The
 recommended representation of an opaque array of bytes is the
 'bin.base64' encoding defined in XML DCD (see [5]), which simply
 references the MIME standard. However, the line length restrictions
 that normally apply to Base64 data in MIME do not apply in SOAP.

 bin.base64: aG93IG5vdyBicm93biBjb3cNCg==

8.3. Variant

 Many languages allow accessors that can polymorphically access
 values of several types, each type being available at run-time. When
 the value is single-reference, the type of this kind of accessor is
 often called "Variant". A Variant accessor must contain a "type"
 attribute that describes the type of the actual value.

 For example, a Variant parameter named "cost" with a type of float
 would be encoded as follows:

 <cost type="float">29.95</cost>

 as constrasted with a cost parameter whose type is invariant, as
 follows:

 <cost>29.95</cost>

8.4. Compound Types

 Beyond the simple types, SOAP defines support for the following
 constructed types:

 * Records/structs
 * arrays

 Where appropriate and possible, the representation in SOAP of a
 value of a given type mirrors that used by practitioners of XML-Data
 and the common practice of the XML community at large.

8.4.1. Compound Values and References to Values

 A compound value contains an ordered sequence of structural members.
 When the members have distinct names, as in an instance of a C or
 C++ "struct", this is called a "struct," and when the members do not
 have distinct names but instead are known by their ordinal position,
 this is called an "array..

Box, Kakivaya, et al. HTTP -- March, 2000 17

 SOAP: Simple Object Access Protocol September, 1999

 The members of a compound value are encoded as accessor elements.
 For a struct, the accessor element name is the member name. For an
 array, the accessor element name is "item" and the sequence of the
 accessor elements follows the ordinal sequence of the members.

 The following is an example of a struct of type Book:

 <Book>
 <author>Henry Ford</author>
 <preface>Prefatory text</preface>
 <intro>This is a book.</intro>
 </Book>

 Below is an example of a type with both simple and compound members.
 It shows two levels of referencing.

 Note that the "href" attribute of the Author accessor element is a
 reference to the value whose "id" attribute matches; a similar
 construction appears for the Address.

 <Book>
 <title >My Life and Work</title>
 <author href="#Person-1"/>
 </Book>
 <Person id="Person-1">
 <name>Henry Ford</name>
 <address href="#Address-2"/>
 </Person>
 <Address id="Address-2">
 <email>henryford@hotmail.com</email>
 <web>www.henryford.com</web>
 </Address>

 The form above is appropriate when the Person value and the Address
 value are multi-reference. If these were instead both single-
 reference, they would not need to be independent but could instead
 be embedded, as follows:

 <Book>
 <title>My Life and Work</title>
 <author>
 <name>Henry Ford</name>
 <address>
 <email>henryford@hotmail.com</email>
 <web>www.henryford.com</web>
 </address>
 </author>
 </Book>

 If instead there existed a restriction that no two persons can have
 the same address in a given schema and that an address can be either
 a Street-address or an Electronic-address, a Book with two authors
 would be encoded in such a schema as follows:

Box, Kakivaya, et al. HTTP -- March, 2000 18

 SOAP: Simple Object Access Protocol September, 1999

 <Book>
 <title >My Life and Work</title>
 <firstauthor href="#Person-1"/>
 <secondauthor href="#Person-2"/>
 </Book>
 <Person id="Person-1">
 <name>Henry Ford</name>
 <address type="Electronic-address">
 <email>henryford@hotmail.com</email>
 <web>www.henryford.com</web>
 </address>
 </Person>
 <Person id="Person-2">
 <name>Thomas Cook</name>
 <address type="Street-address">
 <Street>Martin Luther King Rd</Street>
 <City>Raliegh</City>
 <State>North Carolina</State>
 </address>
 </Person>

8.4.1.1. Generic Records

 There are cases where a struct is represented with its members named
 and values typed at run time. Even in these cases, the existing
 rules apply. Each member is encoded as an element with matching
 name, and each value is either contained or referenced. Contained
 values must have a "type" attribute giving the type of the value.

8.4.2. Arrays

 The representation of the value of an array is an ordered sequence
 of elements constituting items of the array. Each element is named
 "item".

 As with compound types generally, if the type of an item in the
 array is a single-reference type, each item contains its value.
 Otherwise, the item references its value via an href attribute.

 The following example is an array containing integer array members.
 The length attribute is optional.

 <Array type="int[2]">
 <item>3</item>
 <item>4</item>
 </Array>

 The following example is an array of Variants containing an integer
 and a string.

 <Array type="variant[2]">
 <item type="int">23</item>

Box, Kakivaya, et al. HTTP -- March, 2000 19

 SOAP: Simple Object Access Protocol September, 1999

 <item type="string" id="ref-0">some silly old string</item>
 </Array>

 The following is an example of a two-dimensional array of strings.

 <Array type="string[3,3]">
 <item>r1c1</item>
 <item>r1c2</item>
 <item>r1c3</item>
 <item>r2c1</item>
 <item>r2c2</item>
 <item>r2c3</item>
 </Array>

 The following is an example of an array of two arrays, each of which
 is an array of strings.

 <Array type="string[][2]">
 <item href="#array-1"/>
 <item href="#array-2"/>
 </Array>
 <Array id="array-1" type="string[3]">
 <item>r1c1</item>

 <item>r1c2</item>
 <item>r1c3</item>
 </Array>
 <Array id="array-2" type="string[2]">
 <item>r2c1</item>
 <item>r2c2</item>
 </Array>

 Finally, the following is an example of an array of phone numbers
 embedded in a struct of type Person:

 <Person>
 <name>John Hancock</name>
 <phone-numbers type="string[2]">
 <item>111-2222</item>
 <item>999-0000</item>
 </phone-numbers>
 </Person>

8.4.2.1. Partially transmitted arrays

 SOAP provides support for partially transmitted arrays, known as
 "varying" arrays, in some contexts. (See [7].) A partially
 transmitted array indicates in an "offset" attribute the zero-origin
 index of the first element transmitted; if omitted, the offset is
 taken as zero.

 The following is an example of an array of size five that transmits
 only the third and fourth element:

Box, Kakivaya, et al. HTTP -- March, 2000 20

 SOAP: Simple Object Access Protocol September, 1999

 <Array type="string[5]" offset="[2]">
 <item>The third element</item>
 <item>The fourth element</item>
 </Array>

8.4.2.2. Sparse Arrays

 SOAP provides support for sparse arrays in some contexts. Each
 element contains a "position" attribute that indicates its position
 within the array. The following is an example of array of arrays of
 strings:

 <Array type="string[,][2]">
 <item href="#array-1" position="[2]"/>
 </Array>

 <Array id="array-1" type="string[10,10]">
 <item position="[2,2]">The second element"</item>
 <item position="[7,2]">The seventh element</item>
 </Array>

 Assuming that the only reference to array-1 occurs in the enclosing
 array, this example could also have been encoded as follows:

 <Array type="string[,][2]">
 <item position="[2]">
 <Array type="string[10,10]">
 <item position="[2,2]">The second element"</item>
 <item position="[7,2]">The seventh element</item>
 </Array>
 </item>
 </Array>

8.5. Default Values

 An omitted accessor element implies either a default value or that
 no value is known. The specifics depend on the accessor, method, and
 its context. Typically, an omitted accessor implies a Null value for
 Variant and for polymorphic accessors (with the exact meaning of
 Null accessor-dependent). Typically, an omitted Boolean accessor
 implies either a False value or that no value is known, and an
 omitted numeric accessor implies either that the value is zero or
 that no value is known.

9. Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) as described in RFC-2234 [10].

10. Security Considerations

Box, Kakivaya, et al. HTTP -- March, 2000 21

 SOAP: Simple Object Access Protocol September, 1999

 Not described in this document are methods for integrity and privacy
 protection. Such issues will be addressed more fully in a future
 version(s) of this document.

11. References

 [1] RFC2068: Hypertext Transfer Protocol,
http://info.internet.isi.edu/in-notes/rfc/files/rfc2068.txt. Also:

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2068
http://info.internet.isi.edu/in-notes/rfc/files/rfc2068.txt

http://www.w3.org/Protocols/History.html.

 [2] HTTP Extension Framework,
http://www.w3.org/Protocols/HTTP/ietf-http-ext.

 [3] The XML Specification, http://www.w3.org/TR/WD-xml-lang.
 [4] XML-Data Specification, http://www.w3.org/TR/1998/NOTE-XML-

data.
 [5] Document Content Description for XML,

http://www.w3.ort/TR/NOTE-dcd.
 [6] Namespaces in XML, http://www.w3.org/TR/REC-xml-names.
 [7] Transfer Syntax NDR, in "DCE 1.1: Remote Procedure Call,"

http://www.rdg.opengroup.org/onlinepubs/9629399/toc.htm.
 [8] RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax
 and Semantics, http://www.ietf.org/rfc/rfc2396.txt.
 [9] XML Linking Language, http://www.w3.org/1999/07/WD-xlink-

19990726.
 [10] RFC-2234: Augmented BNF for Syntax Specifications: ABNF
 [11] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997

12. Author's Addresses

 G. Kavivaya
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 Email: gopalk@microsoft.com

Box, Kakivaya, et al. HTTP -- March, 2000 22

 SOAP: Simple Object Access Protocol September, 1999

Full Copyright Statement

 "Copyright (C) The Internet Society (date). All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into

http://www.w3.org/Protocols/History.html
http://www.w3.org/Protocols/HTTP/ietf-http-ext
http://www.w3.org/TR/WD-xml-lang
http://www.w3.org/TR/1998/NOTE-XML-data
http://www.w3.org/TR/1998/NOTE-XML-data
http://www.w3.ort/TR/NOTE-dcd
http://www.w3.org/TR/REC-xml-names
http://www.rdg.opengroup.org/onlinepubs/9629399/toc.htm
https://datatracker.ietf.org/doc/html/rfc2396
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/1999/07/WD-xlink-19990726
http://www.w3.org/1999/07/WD-xlink-19990726
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Box, Kakivaya, et al. HTTP -- March, 2000 23

