
Internet Draft R. Braden
Expiration: May 2003 USC/ISI
File: draft-braden-2level-signal-arch-01.txt B. Lindell
 USC/ISI

 A Two-Level Architecture for Internet Signaling

 November 3, 2002

Status of Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html. This document is an Internet-Draft.

Abstract

 This memo defines an architectural framework for a wide variety of
 Internet signaling protocols. This framework has a two-level
 organization: a common lower layer "transport" protocol together with
 a suite of upper-level signaling protocols. The common lower level
 protocol CSTP (Common Signaling Transport Protocol) provides a
 transport-like service that may include reliable delivery and soft
 state management. The upper layer protocols, which implement
 algorithms and data structures specific to particular signaling
 applications, are generically called ULSPs (Upper-layer Signaling
 Protocols). This memo motivates the two-level design and describes
 the service model, API, and operation of the lower level CSTP.

 Expiration: May 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-braden-2level-signal-arch-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft Internet Signaling Framework Oct 2002

Table of Contents

0. Changes in This Version 2
1. Introduction .. 3

1.1 Background .. 3
1.2 Terminology ... 5

2. The CSTP Service Model .. 7
2.1 CSTP Functions .. 8
2.2 General Operation ... 11
2.3 CSTP/ULSP API ... 13

3. The CSTP Protocol ... 16
3.1 Common Message Format 16
3.2 CSTP/IP ... 21
3.3 CSTP/TCP .. 24

4. Open Issues ... 24
5. Security Issues ... 25
6. Acknowledgments ... 25
Appendix A. RSVP Version 1 as a ULSP 26

 References ... 28

0. Changes in This Version

 o The text now foregrounds the support for two different
 signaling models, with and without soft state. The previous
 version had both models, but it was not somewhat buried.

 o The term ALSP is replaced by ULSP. We considered adopting
 one of the recently proposed sets of names for the CSTP and
 ULSP layers, but after careful thought decided that for now
 CSTP and ULSP are the best terms we can find.

 o We included some NSIS working group issues, such as path-
 coupled signaling. (With respect to "peer" vs. "neighbor",
 see the first sentence of Section 2.)

 o To make the job of the NSIS working group both harder (!),
 this revision introduces the alternative to basing CSTP
 either on TCP (section 3.3) or on the RSVP V1 mechanism
 (section 3.2). This choice does not affect the API or the
 ULSPs.

 o We made several additions and corrections pointed out by
 Xingguo Song (see Acknowledgments.)

 o We interchanged the terms INFO and EVENT to provide more
 intuitive terminology, and supplied some missing API calls.

 Expiration: May 2003 [Page 2]

Internet Draft Internet Signaling Framework Oct 2002

1. Introduction

 This memo presents the "Internet signaling protocol suite" (ISPS)
 framework, a unified architectural framework for the specification
 and implementation of a wide variety of Internet signaling
 protocols.

 The ISPS framework composes Internet signaling protocols using two
 protocol levels: (1) a common lower level protocol and (2) a set
 of upper-level signaling functions specific to particular
 signaling applications. In particular, ISPS includes a common
 lower-level protocol called CSTP ("Common Signaling Transport
 Protocol") to implement transport and state-management functions,
 plus a suite of higher-level "User-Layer Signaling Protocols"
 (ULSPs). Each ULSP implements the algorithms and data structures
 for a particular signaling task.

 The remainder of this section presents background and motivation
 and then introduces some terminology. Section 2 defines the
 functions and API that CSTP provides to a ULSP. Section 3
 describes two proposals for the CSTP protocol, CSTP/IP and
 CSTP/TCP.

 This memo makes several references to the RSVP Version 1
 specifications [RFC2205, RFC2961]. Familiarity with these
 specifications may be useful but is not required to read the
 present memo.

 1.1 Background

 Under the basic Internet architecture, routers are unaware of
 individual user flows or even flow aggregates; routers are
 stateless except for routing tables that are used by all data
 packets equally. While this basic model has proven extremely
 powerful, it has become necessary to engineer into network nodes
 some flow awareness for particular functions. These functions
 include support for Quality-of-Service (QoS), control of
 middleboxes, VPN control, and access-link management, for example.
 Such flow-dependent functions generally require that some control
 state be installed into network nodes, either statically by
 configuration or dynamically using a "signaling" protocol.

 The IETF defined RSVP Version 1 [RFC2205,Refresh00] specifically
 for signaling to support the Integrated Services QoS model
 [ISint93], but many RSVP extensions have been developed or
 proposed to support a variety of other Internet signaling
 applications. These applications include: QoS setup across
 diff-serv clouds [intdiff00], setting up MPLS paths with QoS

https://datatracker.ietf.org/doc/html/rfc2961
https://datatracker.ietf.org/doc/html/rfc2205

 Expiration: May 2003 [Page 3]

Internet Draft Internet Signaling Framework Oct 2002

 [mpls00], provisioning VPNs [aggr01], QoS setup for access
 networks [PCQoS99], NAT and firewall provisioning [TIST02], and
 active interest filtering for distributed simulation [AIF01].
 With these extensions, RSVP Version 1 has in effect been expanded
 to define a suite of Internet signaling protocols.

 Basing all of these protocols on RSVP brings some unity that is
 highly desirable. For example, the various signaling applications
 benefit from RSVP's transport, routing, and soft-state mechanisms
 as well as from its strongly-typed encoding. Using a common
 protocol base also has benefits in design economy and
 documentation. On the other hand, the complexity of the resulting
 multi-featured RSVP implementations and the confusion of feature
 interactions are the source of considerable complexity and some
 confusion.

 The unified ISPS framework described in this memo is designed to
 organize and simplify the design and implementation of a wide
 variety of signaling applications, while building on the most
 successful aspects of RSVP V1. The two levels provide the
 software engineering advantages of modularity, including
 commonality, clarity, and reusability. For example, the framework
 should allow the transport functions of CSTP to evolve
 independently of the signaling application protocols. In
 particular, this document proposes two quite different approaches
 to CSTP in Section 3, a choice that should be transparent to every
 ULSP.

 The two-level decomposition of the ISPS framework could be the
 first step towards a broader goal for unification: building the
 various ULSPs using a common set software building blocks. For
 example, it is possible that some sub-layering would be desirable
 within the ULSP level. However, we don't yet undersand how to
 take significant furthers step in this direction.

 The Appendix A sketches how one would define a ULSP for QoS
 signaling with all the functions and features of RSVP V1.
 Although this member of the ISPS would not directly interoperate
 with RSVP Version 1, a signaling gateway could be developed to
 translate between RSVP Version 1 signaling messages and ISPS
 messages.

 Expiration: May 2003 [Page 4]

Internet Draft Internet Signaling Framework Oct 2002

 1.2 Terminology

 We first introduce some useful terminology.

 o Network Nodes

 We use the general term "network node", or simply "node", for
 a router or middlebox.

 o Flow

 A flow is simply a distinguishable subset of the packet
 stream.

 o Signaling

 The function of signaling is to set up state in one or more
 network nodes, to provide some desired service for user data
 flows.

 This definition makes no assumption about the degree of
 aggregation; a signaled flow may range from a micro-flow to
 all the traffic in a tunnel or trunk. The definition also
 does not assume that the endpoints of the signaling are end
 systems, or that state must be installed in every node along
 a path.

 By this definition, signaling is concerned with state setup
 along the path of some flow, rather than for example
 configuring an entire region of the network. It may be that
 some of the mechanisms for flow-related signaling would also
 be useful for regional state setup (i.e., network
 configuration), but regional state setup is outside the scope
 of the present ISPS framework.

 o Path-Coupled Signaling

 Even for flow-related signaling, there is an engineering
 choice about whether the signaling is primarily performed
 in-line by the nodes through which the data flows, or whether
 it is performed by a distinct set of signaling engines. The
 first case is called "path-coupled signaling", while the
 second is "path-uncoupled".

 o Signaled path

 Path-coupled signaling operates in the nodes along a
 "signaled path" between two (or more, for multicast)

 Expiration: May 2003 [Page 5]

Internet Draft Internet Signaling Framework Oct 2002

 "signaling endpoints". A signaling endpoint at which user
 data enters (or leaves) the signaled path is called " p-src"
 (or "p-sink", respectively). The p-src and p-sink nodes for
 a particular signaling instance might be end systems that are
 the ultimate sources and destinations of the data packets
 that establish the path, or they might be intermediate nodes
 such as border routers or aggregation points or tunnel
 endpoints.

 Note that "src" (source) and "sink" terms are relative to the
 data flow, not to the flow to signaling messages. Similarly,
 in each node along the signaled path the directions
 "upstream" and "downstream" are defined relative to the user
 data flow that defines the path.

 o ISPS Neighbors

 We define two CSTP-capable nodes as (ISPS) "neighbors" if
 they are connected by at least one path that includes no
 other CSTP-capable nodes. Neighbors that are directly
 connected, i.e., that have no nodes intervening, are "direct
 neighbors". A CSTP-capable node may have at most one
 neighbor through each point-to-point interface, but it may
 have multiple neighbors through a broadcast or NBMA
 interface.

 Signaling messages are generally (but not necessarily) sent
 hop-by-hop. Each hop is between neighbors, from an "h-src"
 (hop source) node to a neighbor node called "h-sink" (hop
 sink).

 o SAPU

 A "Signaling Application Protocol Unit" (SAPU) is the basic
 transmission unit for signaling. A SAPU is derived from the
 signaled state in the h-src node and it is used to set,
 modify, or delete state in the h-sink node.

 o Trigger, Refresh Messages

 A "trigger message" installs, modifies, or deletes signaled
 state, while a "refresh message" only refreshes existing
 state, i.e., prevents it from timing out.

 Expiration: May 2003 [Page 6]

Internet Draft Internet Signaling Framework Oct 2002

2. The CSTP Service Model

 Under the two-level architecture, corresponding ULSP modules in
 neighbor nodes are peers that communicate using the CSTP layer.
 Roughly, ULSP and CSTP correspond respectively to application-layer
 and transport layer protocols in the Internet stack. However, this
 memo uses the term "level" rather than "layer" for the ULSP/CSTP
 split, because they are more intertwined than strict protocol
 layering allows. This is reflected in the API to be described in

Section 2.3.

 Each ISPS message includes a ULSP identifier that selects a
 particular ULSP. We assume that there will be a simple registration
 space for ULSP identifiers. A major problem in developing particular
 ULSPs will be to choose an appropriate functional modularity. There
 might be a few very general and flexible ULSPs; at the other extreme,
 there might be a great many ULSPs that differ only in particular
 details. This choice is an engineering tradeoff whose criteria are
 not yet clear.

 The partition of functionality between CSTP and ULSP is a tradeoff
 between generality and unity. A "thicker" CSTP level, i.e., one that
 has more function, would provide greater unity among signaling tasks.
 On the other hand, a "thicker" CSTP would also be less general and
 more likely to constrain the range of signaling protocols that can be
 achieved by any ULSP. This memo suggests a fairly "thin" CSTP, which
 includes a set of functions that are closely interlinked and that are
 generally useful for a broad range of signaling applications. For
 example, this CSTP will support signaling tasks that require simplex
 or full-duplex signaling, and it will support receiver- or sender-
 initiated signaling.

 DISCUSSION

 Suppose that the the current Version 1 RSVP functionality were to
 be mapped into a (CSTP, ULSP) pair (see Appendix A.) Neither
 RSVP's receiver-oriented operation nor its reservation styles
 [RFC2205] should appear in CSTP; these features would be
 implemented only in the RSVP-specific ULSP module.

 CSTP has only hop-by-hop semantics; it handles the (reliable and
 secure) transmission of signaling state between neighbors and
 (optionally) managing this as soft state. End-to-end signaling
 semantics must be realized by the actions of the ULSP, which is
 responsible for maintaining consistent signaled state along the path.
 Upon receiving a new or modified SAPU, a ULSP module may send
 appropriate SAPUs to other neighbors, to keep the state consistent
 end-to-end (on the other hand, it may not, depending upon the

https://datatracker.ietf.org/doc/html/rfc2205

 Expiration: May 2003 [Page 7]

Internet Draft Internet Signaling Framework Oct 2002

 function to be performed.)

 CSTP must not constrain the granularity of the data flow that defines
 a signaling path (although an ULSP might.) The flow granularity
 might range from micro-flows that are created by particular user
 applications to highly-aggregated flows. On the other hand, each
 ULSP is likely to be optimized for a particular flow granularity or
 range of granularities.

 It should be possible for signaling protocols supported by CSTP to
 operate correctly through CSTP-incapable nodes. This requirement,
 together with support for path-coupled signaling, can be met by
 sending signaling messages downstream using the destination address
 of the data. Such messages will automatically be forwarded correctly
 through CSTP-incapable nodes. This mechanism in turn requires that
 each CSTP hop intercept signaling messages from the data stream
 [Waypoint00], process and perhaps modify them, and then forward them.

 2.1 CSTP Functions

 The CSTP level performs the following functions. These functions
 are in general tightly coupled with each other, so they represent
 a logical set for CSTP to implement.

 o Reliable Delivery of Signaling Messages

 Signaling operation must not be threatened by packet loss or
 reordering. Therefore, CSTP provides reliable delivery of
 trigger messages so that state can be reliably and promptly
 added, changed, and explicitly removed.

 DISCUSSION

 The early design of RSVP Version 1 made the optimistic
 assumption that signaling traffic could be protected by
 QoS and that reordering would be rare. Experience later
 showed that these assumptions could be violated
 unacceptably often, so a reliable delivery mechanism
 [Refresh00] was pasted onto RSVP Version 1. Reliable
 delivery of trigger messages is a fundamental objective
 for CSTP, although a particular ULSP may choose to not use
 it.

 o Ordered Delivery of SAPUs

 The original RSVP v1 protocol spec [RFC2205] allowed network
 reordering of signaling packets to create significant (e.g.,

https://datatracker.ietf.org/doc/html/rfc2205

 Expiration: May 2003 [Page 8]

Internet Draft Internet Signaling Framework Oct 2002

 30 second) periods of erroneous reservation. The addition of
 reliable delivery prevents this particular failure mode, but
 it introduces the problem of delayed delivery of old
 duplicate packets. Therefore, CSTP includes a mechanism to
 ignore out-of-order trigger messages.

 o Soft State Support

 When signaling explicitly installs state in a node, there is
 cause for concern about the robustness with which this state
 will be removed. Besides system crashes, there is always the
 possibility of programming errors that "leak" state. In the
 somewhat chaotic multi-vendor environment of the Internet, it
 is unwise to assume error-free interoperation of many
 different implementations. CSTP therefore includes soft
 state -- removing state that is not periodically refreshed or
 explicitly torn down -- as a fundamental robustness
 mechanism, although a particular ULSP may choose to not use
 it.

 o Fragmentation, Reassembly, and Bundling of SAPUs

 CSTP must be able to fragment and reassemble SAPUs that
 exceed one MTU.

 DISCUSSION

 We expect that elementary ISPS messages will be only a
 little bit larger than the corresponding RSVP Version 1
 messages; the majority of SAPUs should be under 200 bytes.
 The addition of security credentials may lead to some
 SAPUs O(1000) bytes, but SAPUs significantly larger than
 this are expected to be rare.

 Bundling -- carrying multiple small SAPUs in a single IP
 datagram -- may be desirable for performance within CSTP. It
 may be useful when cryptographic integrity checking is in
 use, as it allows a single cryptographic checksum to be used
 across all bundled messages. This is discussed further in
 subsections 3.2 and 3.3.

 o Congestion Control

 It would seem that the signaling protocol and the network
 configuration could ensure that signaling traffic will almost
 always be small relative to the data flow. However, in
 general all Internet traffic must be able to slow down in
 response to congestion (in the absence of static or dynamic

 Expiration: May 2003 [Page 9]

Internet Draft Internet Signaling Framework Oct 2002

 partitioning of network bandwidth, e.g., by QoS.)
 DISCUSSION

 The flow of SAPUs normally has the general characteristics
 of media streams: long-lived (in fact, never-ending),
 somewhat bursty, streams of bytes. It should be possible
 to throttle back signaling bandwidth between a pair of
 nodes by slowing soft-state refreshes and by capping the
 rate of change of existing state, for example. In this
 regime, the techniques of TCP-friendly congestion control
 may be applicable to CSTP. However, bursts of trigger
 messages and retransmissions can also occur, so CSTP can
 also have TCP-like characteristics. Thus, reliable
 delivery introduces the need to dynamically compute the
 appropriate value for retransmission timers, and this
 computation must consider the round trip time (RTT) and
 network congestion.

 The two-level ISPS framework centralizes issues relating to
 the volume and timing of network signaling traffic within the
 common CSTP protocol. The CSTP module is in a position to
 perform complex scheduling of signaling message
 transmissions, taking into account the congestion at each
 target node and the signaling load. For example, CSTP might
 limit the rate of signaling traffic but still allow a burst
 of signaling traffic when a route changes.

 o Hop-by-Hop Security

 Since the CSTP operates strictly hop/hop, CSTP is a natural
 place to implement (optional) hop-by-hop integrity. We
 suggest that the RSVP hop-by-hop integrity algorithms
 [Integrity00] be used in CSTP.

 o Neighbor List

 A CSTP module maintains state that lists the node's
 neighbors. This state may include the IP address of the
 neighbor, the local interface used to reach it, and Boolean
 flags giving important properties of the neighbor: ISPS-
 capable and Direct-Neighbor. A node builds the neighbor list
 as a result of receiving CSTP messages. The neighbor list
 should be implemented as soft state that is deleted if it is
 not refreshed.

 An open issue is whether CSTP needs to provide an explicit
 neighbor-discovery mechanism or even an up/down protocol
 distinct from that provided by IP routing.

 Expiration: May 2003 [Page 10]

Internet Draft Internet Signaling Framework Oct 2002

 o Interface to Routing

 In order to perform path-related signaling, it is necessary
 that the signaling protocol be able to discover the route
 taken by the corresponding data flow. This should be true
 regardless of whether the signaling is path-coupled or path-
 decoupled. It would clearly be an architectural mistake for
 the signaling protocol to perform its own independent routing
 calculation, so signaling must be able to query (and perhaps
 influence, as in route pinning) IP routing. It makes sense
 to centralize this interface to routing in the CSTP module,
 to avoid replicating it in each ULSP.

 Note that it would be useful to be able to hide the
 complexities of multicast routing [Sections 3.3 and 3.9 of

RFC2205] within the CSTP level, to simplify ULSPs that need
 to support multicast. However, the functionality does not
 seem to divide cleanly across the CSTP/ULSP boundary, so that
 a ULSP that supports multicast may have to cope with some of
 the messy details of multicast routing.

 2.2 General ISPS Operation

 The ISPS framework operates in the following general manner.

 o Suppose that an ULSP in the h-src node S needs to send an
 SAPU containing signaled state to a peer ULSP on a neighbor
 h-sink node T. The h-src ULSP issues a downcall to its local
 CSTP module, passing the SAPU and a target IP address.

 This target address may explicitly name node T, or T may be
 determined implicitly because it intercepts the message that
 was addressed to some downstream node, e.g., to p-dest or to
 the ultimate destination address if different from p-dest.

 o The CSTP level reliably delivers the SAPU to the
 corresponding CSTP level in T, which then upcalls to the h-
 dest ULSP to deliver the SAPU.

 o At the request of the h-src ULSP, the SAPU contents can be
 treated as soft state. In this case, the CSTP level in S
 sends periodic refresh messages for the SAPU (unless the
 message was deleting state). The CSTP level in T will
 automatically time out the state and notify its local ULSP
 via an upcall if the state is not refreshed in time.

 o On the other hand, the SAPU contents may be "information"

https://datatracker.ietf.org/doc/html/rfc2205

 Expiration: May 2003 [Page 11]

Internet Draft Internet Signaling Framework Oct 2002

 that needs to be reliably communicated to a peer ULSP but not
 retained as independent (soft) state in the h-sink CSTP. For
 example, information state might be a QoS request that is
 used for an admission control decision in a core node, which
 does not retain the individual requests but only the
 cumulative reservation (in the ULSP).

 DISCUSSION

 In this example of "stateless" admission control in the
 core, the ULSP would need to keep track of the individual
 requests somewhere at the edge of the network, in order to
 reverse a reservation when a flow ceases.

 Also note that a ULSP could use this information (non-
 soft-state) option to transmit SAPUs to the peer ULSP and
 then implement its own soft state mechanism at the ULSP
 level. Bypassing the mechanism built into the CSTP in
 this manner is generally undersirable, but it does provide
 an escape for some unforeseen signaling requirement.

 o The information included in an SAPU is logically a (<key>,
 <value>) pair. The <key> part distinguishes the state
 specified by the <value> part from other state sent between
 the same pair of neighbors. However, the distinction between
 <key> and <value> within the SAPU is known only to the ULSP
 module; CSTP treats the SAPU as opaque.

 DISCUSSION: EXAMPLE FROM RSVP V1

 For the equivalent of an RSVP Resv message, the <key> part
 of the SAPU would consist of the SESSION and NHOP objects
 and perhaps (depending upon the STYLE) the FILTER_SPEC
 objects. Other fields -- e.g., STYLE and FLOWSPEC --
 would be in the <value> part. These complex rules on RSVP
 V1 <key>s would not be known by CSTP.

 o The format of an SAPU is specific to the particular ULSP that
 sends and receives it. However, many ULSPs will benefit
 from using the typed "object" syntax and the object encoding
 rules of RSVP Version 1, encoding an SAPU as a sequence of
 elementary (type, length, value) triplets.

 Expiration: May 2003 [Page 12]

Internet Draft Internet Signaling Framework Oct 2002

 2.3 CSTP/ULSP API

 This section defines a generic interface between CSTP and ULSP,
 i.e., the generic ULSP API.

 For simplicity we assume that the implementations of the two
 levels are distinct, sharing no data structures. This means that
 data structures must be passed across this interface by value and
 that the CSTP must keep a shadow copy of the SAPU state to be
 retransmitted. An actual implementation is likely to share data
 structures between the two levels to avoid this inefficiency. (An
 analogous relationship occurs between IP and TCP in most protocol
 implementations).

 Note that the CSTP level in designed to handle all of the event
 timing, so the ULSP can be event-driven by upcalls from the CSTP.

 2.3.1 Downcalls from the ULSP

 An ULSP may issue the following downcalls to the CSTP.

 o SendNewSAPU(SAPU, IP-target [, OIf], burst_flag)
 -> SAPUid

 This downcall causes the specified SAPU to be transmitted
 reliably to the h-sink node specified or implied by
 address IP-target; it also allocates and returns a unique
 identifier SAPUid to the ULSP. If reliable delivery
 fails, the CSTP level issues an asynchronous SendFailed()
 upcall to the ULSP. If the SAPU is delivered and
 acknowledged, the CSTP level sends periodic soft-state
 refresh messages for it, until the ULSP makes a
 SendModSAPU() or sendTearSAPU() downcall for the same
 SAPUid.

 In the downstream direction, IP-target may be the
 signaling destination's IP address; the neighbor node on
 the path to IP-target will intercept and process the
 message. Otherwise, IP-target it must be the IP address
 of a neighbor (h-sink). For a multicast IP-target
 address, the caller may specify the outgoing interface OIf
 to be used.

 In order to retransmit for reliable delivery, the CSTP may
 cache a copy of the SAPU. If an SAPU to be retransmitted
 is not in the cache, the CSTP can issue a RegenSAPU()
 upcall (see below) to ask the ULSP to regenerate the SAPU.

 Expiration: May 2003 [Page 13]

Internet Draft Internet Signaling Framework Oct 2002

 If a route change later causes loss of state in a
 neighbor, CSTP will make a RegenSAPU() upcall to ask the
 ULSP to reconstruct the original SAPU, and then send this
 CSTP in a NEW trigger message containing a new SAPUid.
 The upcall will also transmit a revised SAPUid to the
 ULSP.

 The burst_flag parameter is a boolean flag that can be
 used by the CSTP level as a "hint" about when it can
 efficiently bundle a set of successive calls (see Sections
 3.2.3 and 3.3). When CSTP issues a burst of successive
 calls to SendNewSAPU(), all except the last should have
 this flag set to True. CSTP will make the decision about
 when to bundle. This allows the CSTP to avoid the
 introduction of substantial bundling delays.

 o SendModSAPU(mod-SAPU, old-SAPUid, burst_flag)
 -> mod-SAPUid

 Modify an existing SAPU that had identifier old-SAPUid to
 be mod-SAPU with identifier mod-SAPUid.

 Mod-SAPU will be reliably delivered and refreshed at the
 neighbor specified or implied by IP-target, or else CSTP
 will issue a SendFailed(mod-SAPUid, reason) upcall to the
 ULSP.

 o SendTearSAPU(SAPUid)

 Tear down (remove) the SAPU state that corresponds to
 SAPUid.

 o SendInfoSAPU(SAPU, IP-target [, OIf], burst_flag)

 This call is used to send state to the specified target,
 without treating it as soft state. This call is identical
 to SendNewSAPU(), except the h-src CSTP does not retain
 state after the transmission is acknowledged and does not
 refresh the state, and the h-sink CSTP does not timeout
 the state.

 o SendEventSAPU(SAPU, IP-target [, OIf], burst_flag)

 This call sends an SAPU with neither reliable delivery nor
 refreshing, i.e., it is sent as a datagram. This is
 called an "event" message.

 Expiration: May 2003 [Page 14]

Internet Draft Internet Signaling Framework Oct 2002

 2.3.2 Upcalls to the ULSP

 The CSTP level may issue the following upcalls to the ULSP.

 o SendFailed(SAPUid, reason)

 This upcall reports that the SendNewSAPU() or
 SendModSAPU() operation failed for the specified SAPUid.

 o RecvNewSAPU(SAPU, SAPUid, h-src)

 A new SAPU has been received from the node whose IP
 address is h-src. SAPU is passed up for subsequent use in
 a RecvTearSAPU upcall.

 o RecvModSAPU(SAPU, SAPUid, h-src)

 An existing SAPU has been modified.

 Note that the new/mod distinction here may not be needed;
 the ULSP will discover the status when it looks up the
 <key>. However, the mod upcall is included in the
 interface as a consistency check.

 o RecvTearSAPU(SAPUid, h-src)

 This upcall may result from receiving a TEAR message for
 the specified state or from a local soft-state timeout.
 In either case, this call is a signal to the ULSP that the
 specified SAPUid is henceforth invalidated.

 o RecvInfo(SAPU, SAPUid, h-src)

 This upcall delivers an SAPU that has been reliably
 transmitted but is not retained in the CSTP level as soft
 state. No refresh messages will be received for it, but a
 subsequent TEAR message may result in a RecvTearSAPU
 upcall for the same SAPUid.

 o RecvEvent(SAPU, h-src)

 This upcall delivers an Event SAPU, i.e., without reliable
 delivery and without soft state refresh.

 o RegenSAPU(SAPUid [, new-SAPUid]) -> SAPU

 This upcall requests that the ULSP regenerate and return
 the SAPU corresponding to SAPUid. If present, the

 Expiration: May 2003 [Page 15]

Internet Draft Internet Signaling Framework Oct 2002

 optional new-SAPUid parameter is used to replace SAPUid as
 the internal handle for this atom of signaled state.

 Note: this list is incomplete. For example, API calls are
 required for the routing interface (the RSRR interface of RSVP
 V1 may be a useful guide here) and for the neighbor list.

3. The CSTP Protocol

 There are two basic design choices for transporting ISPS messages:
 use TCP connections, or explicitly program the required semantics
 within CSTP. We refer to these alternatives as CSTP/TCP and CSTP/IP,
 respectively; they are described in subsections 3.2 and 3.3. In
 either case, a common message format, described in subsection 3.1, is
 used.

 3.1 Common Message Format

 The basic CSTP message consists of a CSTP header, or "M-header",
 and a payload that may include an SAPU. The M-header contains a
 specification of the message type that determines the contents and
 format of the payload.

 CSTP transports SAPUs in DnSig (down-stream signaling) messages
 and UpSig (upstream signaling) messages. We use the term "xSig"
 to denote an elementary CSTP signaling message without specifying
 the direction.

 Each trigger message includes a unique identifier, the SAPUid.
 The SAPUid is used as a handle on the SAPU that is known to the
 CSTP (as opposed to the <key>, buried within the SAPU, that the
 CSTP cannot see). A SAPUid is used for for efficiently refreshing
 the corresponding state and as a handle for state

 The M-header includes:

 o The length of the message, including the M-header and the
 payload.

 o A ULSP identifier

 o The CSTP message type for this message (see below).

 o The IP address h-src of the node that sent this message.

 o A list of zero or more SAPUids

 Expiration: May 2003 [Page 16]

Internet Draft Internet Signaling Framework Oct 2002

 The first two bytes of the SAPU must be its length in bytes;
 otherwise, the SAPU format is entirely opaque to CSTP.

 The nine currently-defined CSTP message types are as follows.
 They are shown schematically in functional notation with the type
 as the first parameter. In practice most the parameters listed
 here are carried explicitly in the M-header.

 xSig(NEW, h-src, SAPUid, SAPU, R)

 xSig(MOD, h-src, SAPUid, SAPU, old-SAPUid, R)

 xSig(TEAR, h-src, SAPUid)

 xSig(REFRESH, h-src, SAPUid, R)

 xSig(ACK, h-dest, SAPUid-list)

 xSig(NACK, h-src, SAPUid)

 xSig(INFO, h-src, SAPUid, SAPU)

 xSig(EVENT, h-src, SAPUid, SAPU)

 xSig(CHALLENGE, h-src, challenge-object)

 xSig(RESPONSE, h-src, challenge-object)

 xSig(ERROR, h-dest, SAPUid)

 Here:

 o Every message contains the IP address of its originator, h-
 src. In most but not all cases this address is the same as
 the source IP address of the ISPS packet. For simplicity we
 specify that h-src will always appear explicitly in a CSTP
 header. It is used to build neighbor state.

 o R specifies the refresh time for the SAPU (see [RFC2205]).

 o For the MOD message, the sending ULSP must ensure that the
 new SAPU with identifier SAPUid and the old SAPU with
 identifier old-SAPUid share the same <key> parts.

 o The NEW and MOD messages send soft state, and REFRESH
 messages refresh that state. The INFO message sends an SAPU
 reliably but does not retain or it as soft state. The EVENT
 message sends an SAPU on-time and unreliably.

https://datatracker.ietf.org/doc/html/rfc2205

 Expiration: May 2003 [Page 17]

Internet Draft Internet Signaling Framework Oct 2002

 o The CHALLENGE and RESPONSE messages are used to initialize
 the keyed hash integrity check [Integrity00]. The
 <challenge-object> is carried as a CSTP-level SAPU, which is
 a special case; all other SAPUs are opaque to CSTP and
 carried on behalf of an ULSP. <challenge-object> is defined
 in [Integrity00].

 Figures 1a and 1b show a state diagram for operation of CSTP
 at an h-src node, and Figure 2 summarizes the corresponding
 states at the receiver node h-sink. Here SendNewSAPU(),
 SendModSAPU(), and SendTearSAPU() represent down calls from
 the ULSP to the CSTP to install a new SAPU, modify an
 existing SAPU, or delete an SAPU, respectively. xSig(type)
 represents a CSTP message of a specific type. TO-R and TO-T
 refer to refresh and state timeouts, respectively.

 Expiration: May 2003 [Page 18]

Internet Draft Internet Signaling Framework Oct 2002

 +--------+
 | (none) |
 +--------+ +-------+
 | SendNewSAPU() SendModSAPU() | |
 | ------------- -------------- | |
 V send xSig(new) Send xSig(MOD) V |
 +-----------+ +----------+ |
 | | SendModSAPU() | | |
 | NEW |------------------------->| MOD |---+
 | | send xSig(MOD) +---->| |
 +-----------+ / +--| |
 | ^ | / / +----------+
 | | | SendTearSAPU() / / |
 | | +-----------------/---/-----------+ |
 recv xSig(ACK) | | send xSig(TEAR) / / | |
 --------------- | | / / | |
 X | recv xSig(NACK) / / | |
 | --------------- / recv xSig(ACK) | | |
 | send xSig(NEW) / / ---------- | |
 | | / / X | |
 | | SendMod() / / | |
 TO-R | | -------- / / | |
 -------- | | send xSig(MOD)/ | |
 send xSig(REFR) | | / / | |
 +-----+ | | / / | |
 | V V | / / V V
 | +-----------+ / / +----------+
 +----| |--+ / | |
 | INSTALLED |<----+ SendTearSAPU() | TORN |
 | |-------------------------->| |
 +-----------+ send xSig(TEAR) +----------+
 |
 Recv xSig(ACK)|TO-T |
 ------------------- V
 X +--------+
 | (none) |
 +--------+
 Figure 1a: H-Src CSTP State Diagram (Soft State)

 Expiration: May 2003 [Page 19]

Internet Draft Internet Signaling Framework Oct 2002

 +--------+
 | (none) |------------------+
 +--------+ |
 | SendInfoSAPU() |
 | --------------- |
 | send xSig(INFO) |
 V |
 +-----------+ | SendEventSAPU()
 | | | ---------------
 | INFO | | send xSig(EVENT)
 | | |
 +-----------+ |
 | |
 Recv xSig(ACK)|TO-T | |
 ------------------- | |
 X V |
 +--------+ |
 | (none) |<------------------+
 +--------+
 Figure 1b: H-Src CSTP State Diagram (Hard State and Datagrams)

 +--------+
 +-----------------| (none) |------------------+
 | +--------+ |
 | | |
 | | |
resv xSig(NEW)	recv xSig(TEAR)	recv xSig(INFO)
 send xSig(ACK) & | reset timer | send xSig(ACK) & |
 upcall RecvNewSAPU() | +-----+ | upcall RecvInfo() |
 V V | | |
 +-----------+ | | |
 | STATE |---+ | recv xSig(EVENT)|
 | TIMING | | ----------------- |
 +-----------+ | upcall RecvEvent()|
 | | |
 Recv xSig(TEAR)|TO-T | | |
 ------------------- | | |
 X | V |
 | +--------+ |
 +---------------->| (none) |<-----------------+
 +--------+

 Figure 2: H-Sink CSTP State Diagram)

 Expiration: May 2003 [Page 20]

Internet Draft Internet Signaling Framework Oct 2002

 3.2 CSTP/IP

 CSTP/IP uses the RSVP V1 signaling message paradigm. It includes
 a version of the RSVP "refresh reduction" extensions [Refresh00]
 to provide reliable delivery of trigger messages, rejection of old
 duplicates, and refreshing of state.

 These mechanisms use the SAPUid as handle on the state. Note that
 we are overloading this unique identifier by using it both for (1)
 transmitting and refreshing SAPUs and for (2) local handles in the
 API interfaces of h-src and h-sink nodes. In an actual
 implementation distinct SAPUids could be used in the API, if that
 were more efficient.

 3.2.1 Example: Sending New State

 Sending new signaled state involves the following sequence of
 steps. Some secondary parameters are omitted here for
 simplicity.

 1. The local ULSP issues the following downcall to its CSTP,
 passing the new SAPU:

 SendNewSAPU(SAPU, IP-target, [OIf]) -> SAPUid

 For downstream transmission, the target IP address P-
 target will be either the target signaling destination
 address p-dest or the address h-sink of a neighbor. For
 upstream transmission, it must be a neighbor address h-
 sink. The optional Outgoing InterFace (OIf) parameter is
 needed when IP-target is a multicast address.

 The CSTP:

 o generates an SAPUid,

 o creates a local send state block,

 o builds and sends the trigger message:

 xSig(NEW, h-src, SAPUid, SAPU)

 to the IP-target address,

 o sets a retransmit timer,

 o and returns the SAPUid to the ULSP, which records
 this handle.

 Expiration: May 2003 [Page 21]

Internet Draft Internet Signaling Framework Oct 2002

 2. If the retransmit timer goes off before the NEW message is
 acknowledged, the local CSTP retransmits the trigger
 message. This is repeated until either an ACK is received
 or a limit is reached. In the latter case, the CSTP
 issues the upcall:

 SendFailed(SAPUid, SAPU)

 and deletes the send state block.

 3. Otherwise, when the CSTP receives a xSig(ACK, SAPUid)
 message, it stops retransmitting and starts sending
 periodic refresh messages to IP-target:

 xSig(REFRESH, h-src, SAPUid)

 4. If the CSTP receives a xSig(NACK, SAPUid) message, it
 returns to step 2 to (re-)transmit the trigger message.

 5. When the NEW message is received at the h-sink node that
 was implied or specified by IP-target, the remote CSTP:

 o Creates a local receive state block,

 o passes the SAPU to the remote ULSP via an upcall:

 RecvNewSAPU(SAPU, h-src)

 o and returns an ACK message.

 3.2.2 Ordered Delivery in CSTP/IP

 Under soft-state signaling, old trigger messages should always
 be ignored. This can be accomplished by introducing a
 monotone-increasing sequence number in trigger messages.
 Following the example of the Refresh Reduction extensions to
 RSVP V1 [Refresh00], we can overload the SAPUid to serve as a
 sequence number as well as a handle on reservation state. An
 h-src node generates monotone increasing values for new SAPUids
 to be sent to a given h-sink. The h-sink node then:

 (1) remembers the largest SAPUid seen so far from h-src;

 (2) processes as a trigger message a SAPU received with a
 larger SAPUid;

 (3) treats the message as a refresh if the received SAPUid

 Expiration: May 2003 [Page 22]

Internet Draft Internet Signaling Framework Oct 2002

 matches that of existing state from h-src; and otherwise,

 (4) ignores the message and sends a NACK.

 When a node crashes and restarts, losing its state, some
 mechanism is required to reliably instruct its neighbors to
 reset their latest sequence numbers. When a route changes and
 a REFRESH message is answered with a NACK, h-src must send the
 new trigger message with a new SAPUid; h-src must also upcall
 to inform its ULSP that the SAPUid has changed for the existing
 state.

 An alternative approach to ordered delivery would be to use the
 sequence number that is already present in the hop-by-hop
 cryptographic integrity check mechanism [Integrity00]. The
 integrity mechanism also includes a Challenge/Response
 mechanism to robustly (and securely) reset the sequence number
 in neighbors at startup.

 If a route change later causes loss of state in a neighbor,
 CSTP will make a RegenSAPU() upcall to ask the ULSP to
 reconstruct the original SAPU, and then send this CSTP in a NEW
 trigger message containing a new SAPUid. The upcall will also
 transmit the revised SAPUid to the ULSP.

 3.2.3 Fragmentation and Bundling

 In order to handle both fragmentation and bundling, an
 additional CSTP/IP header is prepended to each bundled message
 or fragment of a large message. This outer header is called
 the FB-header (fragment/bundle). Then a bundle of small
 messages has the form:

 <FB-header> <CSTP message> <CSTP message>*

 (where star denotes none or more), and a fragment of a large
 message has the form:

 <FB-header> <CSTP message>

 The BF-header contains:

 o The total length of the datagram in bytes

 o A fragment offset and MF ("More Fragments") bit

 o A checksum or keyed hash integrity object

 Expiration: May 2003 [Page 23]

Internet Draft Internet Signaling Framework Oct 2002

 3.3 CSTP/TCP

 An alternative to building a reliable, ordered delivery mechanism
 into CSTP, as in RSVP v1, would be to use TCP for delivery of CSTP
 messages. Using this CSTP/TCP, each CSTP module would open a TCP
 connection to each of its neighbors and use it for all signaling
 traffic. This traffic would be a series of CSTP messages as <M-
 header>, <payload> pairs, defined in subsection 3.1.

 TCP would provide reliable and ordered delivery, fragmentation and
 reassembly, and congestion control. This should considerably
 simplify the CSTP level of the ISPS framework compared to CSTP/IP.
 On the other hand, using TCP may give the CSTP less control over
 exactly how it reacts to congestion or to a burst of traffic.

 We believe that the API described in subsection 3.1 can be made to
 work equally well for CSTP/TCP and CSTP/IP, allowing the same ULSP
 to operate over either lower-level protocol. It is unclear
 whether only one or both of these CSTP protocols should be
 standardized. It may be that different situations will favor one
 or the other approach. If both are defined, then there must be
 some interoperability mechanism to allow a particular neighbor
 pair to agree on which is to be used.

 It might seem that bundling would add no functionality to
 CSTP/TCP. However, performance may be significantly improved by
 including in each TCP segment all the small CSTP messages that
 will fit. If cryptographic integrity is in use, it will be
 important to compute a single cryptographic hash across each
 segment, and a new per-segment header must be introduced to carry
 this hash. This is analogous to the FB header introduced in

Section 3.2.3, except that under CSTP/TCP it will not have a
 fragmentation function, only a bundling function.

4. Open Issues

 A number of issues are left unresolved in this memo. In the
 following list of these issues, the first three are fundamental
 issues of the NSIS working group agenda. The rest are more specific
 technical issues.

 1. A broad design question is how to partition the space of
 signaling applications into ULSPs (Section 2.)

 2. This memo describes two alternative approaches to CSTP, CSTP/IP
 and CSTP/TCP (Section 3). Should one, or both, be standardized?

 Expiration: May 2003 [Page 24]

Internet Draft Internet Signaling Framework Oct 2002

 3. Section 3.1 describes a generic API, which would be mapped into
 various implementation-specific interfaces. However, if it is
 desirable to create a market in third-party ULSP software, it
 will be necessary to standardize on a real API. Should we
 define a real API now?

 4. The ULSP API defined in Section 3.1 is incomplete. It omits a
 way to communicate neighbor information to a ULSP, and it also
 omits the common interface to routing.

 o Is an explicit neighbor discovery mechanism necessary or
 desirable (Section 2.1), or can CSTP simply learn of neighbors
 from signaling traffic and verify their status from routing?

 5. Should CSTP support another delivery mode for NEW and MOD:
 unreliable delivery but with refresh? (Note that this would
 correspond to the service provided by the version of RSVP
 defined in [RFC2205], before the Refresh Reduction Extensions
 were defined.) Similarly, should CSTP support the option of
 unreliable delivery for TEAR?

 6. Is MOD logically necessary, and is it useful?

 7. The spec is currently missing a preemption mechanism, which can
 do a reverse teardown. That is, it should be possible to
 initiate a teardown in the direction counter to the setup
 direction.

 8. Possible support for bidirectional reservations needs further
 thought.

5. Security Considerations

 The CSTP protocol may support hop-by-hop integrity using the
 algorithms of RSVP version 1 [Integrity00]. Policy issues -- e.g.,
 user authentication and access control as well as accounting -- are
 the province of each ULSP. Some ULSPs will wish to incorporate the
 COPS mechanisms for secure end-to-end authentication and access
 control [COPS00].

6. Acknowledgments

 The conception behind this memo is not original. One of the
 advances in STream protocol II (ST-II) [RFC1191] over its predecessor
 ST was the explicit definition of a reliable hop-by-hop control sub-
 protocol called ST Control Message Protocol (SCMP). We believe that
 CSTP reflects some important advances over SCMP, for example soft

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc1191

 Expiration: May 2003 [Page 25]

Internet Draft Internet Signaling Framework Oct 2002

 state management.

 We are grateful for several Xingguo Song of Concordia University for
 pointing out several errors and omissions in the previous version of
 this memo. He discovered these problems in the course of validating
 CSTP using the formal specification language SDL.

APPENDIX A. RSVP Version 1 as an ULSP

 To write an ULSP specification for the base Version 1 RSVP protocol
 of RFC 2205, we can adopt nearly all of RFC2205. This is largely
 because many of the issues handled by CSTP are dealt with in the
 Refresh Reduction extension document [Refresh00], not in RFC 2205.
 The Refresh Reduction document [Refresh00] would be entirely
 obsoleted by our ISPS proposal, although we have suggested adopting
 its basic concepts.

 Looking at RFC 2205 in detail, we find the following.

 o Section 1 of RFC 2205 would be little changed. This section
 discusses the objectives of RSVP and defines a session, a
 flowspec, a filterspec, receiver-initiated reservations, scope,
 reservation merging, and styles.

 o Section 2 of RFC 2205 which describe the RSVP protocol
 mechanisms in general terms, would be changed only where it
 describes soft state and specific RSVP Version 1 message types.
 RSVP Version 1 message types would become a combination of SAPU
 type and CSTP message types, as shown in the table below. Note
 that a few of the RSVP Version 1 message types, e.g., Bundle,
 simply disappear into mechanisms included in CSTP.

 o Section 3 of RFC 2205 contains the functional specification of
 RSVP Version 1, and section 3.1 defines RSVP Version 1 message
 syntax and semantics. Each <xxx Message> definition that maps
 into ISPS becomes a <yyy SAPU> definition. The Common Header is
 replaced by an SAPU header that contains only a length and an
 SAPU type. The INTEGRITY object is omitted since it will now
 appear in the CSTP header. Otherwise, Section 3.1 would be
 unchanged.

 o Some discussion would be required of exactly how the RSVP ULSP
 should invoke the downcalls to CSTP and the upcalls from CSTP.

 The message types of RSVP Version 1 will be mapped as follows, using
 the ISPS design of this memo.

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205#section-1
https://datatracker.ietf.org/doc/html/rfc2205#section-2
https://datatracker.ietf.org/doc/html/rfc2205#section-3

 Expiration: May 2003 [Page 26]

Internet Draft Internet Signaling Framework Oct 2002

 RSVP Version 1 Message Type SAPU Type CSTP Message Type
 __________________________ _____________ _________________

 Path Path NEW or MOD
 Resv Resv NEW or MOD
 Srefresh Path or Resv REFRESH
 ACK Path or Resv ACK or NACK
 PathTear Path TEAR
 ResvTear Resv TEAR
 PathErr PathErr EVENT
 ResvErr, ResvConf ResvErr EVENT
 DREQ DiagReq EVENT
 DREP DiagRep EVENT
 Integrity Challenge (none) CHALLENGE
 Integrity Response (none) RESPONSE
 Bundle (none) (CSTP header)
 ResvTearConf ??

 Expiration: May 2003 [Page 27]

Internet Draft Internet Signaling Framework Oct 2002

References

 [aggr01] Baker, F. et. al., "Aggregation of RSVP for IPv4 and IPv6
 Reservations", RFC 3175, September 2001.

 [AIF01] Keaton, M., Lindell, R., Braden, R., and S. Zabele, "Active
 Multicast Information Dissemination", submitted to conference,
 April 2001.

 [CM01] Balakrishnan, H. and S. Seshan, "The Congestion Manager", RFC
3124, June 2001.

 [COPS00] Durham, D., Ed., Boyle, J., Cohen, R., Herzog, S., Rajan,
 R., and A. Sastry, "The COPS (Common Open Policy Service)
 Protocol", RFC 2748, January 2000.

 [intdiff00] Bernet, Y. et al, "A Framework for Integrated Services
 Operation over Diffserv Networks", RFC 2998, November 2000.

 [Integrity00] Baker, F., Lindell, R., and M. Talwar, "RSVP
 Cryptographic Authentication", RSVP 2747, January 2000. 1996.

 [ISInt93] Braden, R., Clark, D., and S. Shenker, "Integrated
 Services in the Internet Architecture: an Overview", RFC 1633,
 June 1994.

 [ISrsvp96] Wroclawski, J., "The Use of RSVP with Integrated
 Services", RFC 2210, September 1997.

 [mpls00] Swallow, G., et al, "RSVP-TE: Extensions to RSVP for LSP
 Tunnels", <draft-ietf-mpls-rsvp-lsp-tunnel-09.txt>, IETF, Sept
 2001.

 [optical00] Rajagopalan, B., "LMP, LDP and RSVP Extensions for
 Optical UNI Signaling", <draft-bala-uni-signaling-extensions-

00.txt>, IETF, October 2001.

 [PCQoS99] "PacketCable(tm) Dynamic Quality-of-Service
 Specification", PKT-SP-DQOS-I01-991201, Cable Television
 Laboratories, Inc., 1999.

 [Refresh00] Berger, L., et. al., "RSVP Refresh Overhead Reduction
 Extensions", <draft-ietf-rsvp-refresh-reduct-05.txt>, IETF, June
 2000.

 [RFC2205] Braden., R. Ed., et. al., "Resource ReSerVation Protocol
 (RSVP) -- Version 1 Functional Specification", RFC 2205,
 September 1997.

https://datatracker.ietf.org/doc/html/rfc3175
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc2748
https://datatracker.ietf.org/doc/html/rfc2998
https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc2210
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-09.txt
https://datatracker.ietf.org/doc/html/draft-bala-uni-signaling-extensions-00.txt
https://datatracker.ietf.org/doc/html/draft-bala-uni-signaling-extensions-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rsvp-refresh-reduct-05.txt
https://datatracker.ietf.org/doc/html/rfc2205

 Expiration: May 2003 [Page 28]

Internet Draft Internet Signaling Framework Oct 2002

 [TIST02] Shore, M., "The TIST (Topology-Insensitive Service
 Traversal) Protocol", <draft-shore-tist-prot-00.txt>, IETF, May
 2002.

 [Waypoint00] The path-oriented concept was explored in an expired
 Internet Draft: Lindell, B., "Waypoint -- A Path Oriented
 Delivery Mechanism for IP based Control, Measurement, and
 Signaling Protocols"", <draft-lindell-waypoint-00.txt>, IETF,
 November 2000.

 [XSong02] Xingguo Song, "Specification and Validation of the Common
 Signaling Transport Protocol in SDL", Thesis, Concordia
 University, Montreal, Canada, September 2002.

Authors' Addresses

 Bob Braden
 USC Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (310) 448-9173
 EMail: Braden@ISI.EDU

 Bob Lindell
 USC Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (310) 448 8727
 EMail: Lindell@ISI.EDU

https://datatracker.ietf.org/doc/html/draft-shore-tist-prot-00.txt
https://datatracker.ietf.org/doc/html/draft-lindell-waypoint-00.txt

 Expiration: May 2003 [Page 29]

