
CDNI R. van Brandenburg
Internet-Draft O. van Deventer
Intended status: Informational TNO
Expires: August 27, 2012 February 24, 2012

Models for adaptive-streaming-aware CDN Interconnection
draft-brandenburg-cdni-has-00

Abstract

 This documents presents thougths on the potential impact of
 supporting HTTP Adaptive Streaming technologies in CDN
 Interconnection scenarios. Our intent is to spur discussion on how
 the different CDNI interfaces should deal with content delivered
 using adaptive streaming technologies.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 27, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

van Brandenburg & van Deventer Expires August 27, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

Table of Contents

1. Introduction . 3
1.1. Terminology . 3

2. HTTP Adaptive Streaming aspects relevant to CDNI 4
2.1. Segmentation versus Fragmentation 4
2.2. Addressing chunks . 5
2.2.1. Full Locator . 6
2.2.2. Relative Locator 7
2.2.3. Chunk Request Routing 7

3. Impact of HAS on CDNI . 8
3.1. General . 8
3.1.1. On the definition of a Content Item in CDNI 8
3.1.2. General CDNI-HAS Requirements 10

3.2. Impact on Request Routing Interface 10
3.2.1. Dealing with manifest files 10
3.2.2. HAS Request Routing 11
3.2.3. Dividing content over multiple nodes 12

 3.2.4. HAS Requirements for the CDNI Request Routing
 Interface . 12

3.3. Impact on Metadata Interface 12
3.3.1. HAS-specific Metadata 12
3.3.2. HAS Requirements for the CDNI Metadata Interface . . . 13

3.4. Impact on Logging Interface 13
3.4.1. Log processing . 13
3.4.2. HAS Requirements for the CDNI Logging Interface . . . 14

3.5. Impact on Control Interface 14
3.5.1. HAS Requirements for the CDNI Control Interface . . . 14

4. IANA Considerations . 14
5. Security Considerations 14
6. References . 14
6.1. Normative References 14
6.2. Informative References 15

 Authors' Addresses . 15

van Brandenburg & van Deventer Expires August 27, 2012 [Page 2]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

1. Introduction

 HTTP Adaptive Streaming (HAS) is an umbrella term for various HTTP-
 based streaming technologies that allow a client to adaptively switch
 between multiple bitrates depending on current network conditions. A
 defining aspect of HAS is that, since it is based on HTTP, it is a
 session-less pull-based mechanism, with a client actively requesting
 content segments, instead of the content being pushed to the client
 by a server. Due to this session-less nature, media servers
 delivering content using HAS often show different characteristics
 when compared with media servers delivering content using traditional
 streaming methods such as RTP/RTSP, RTMP and MMS. This document
 presents a discussion on what the impact of these different
 characteristics is to the CDNI interfaces. The scope of this
 document is explicitely not to define solutions, but merely to
 identify different methods of handling HAS in a CDN and the potential
 problems when using HAS in a CDNI context. The issues identified in
 this document may be used as input for defining HAS-specific
 requirements for the CDNI interfaces.

1.1. Terminology

 This document uses the terminology defined in
 [I-D.ietf-cdni-problem-statement].

 In addition, the following terms are used throughout this document:

 Content Item: A uniquely adressable content element in a CDN. A
 content item is defined by the fact that it has its own Content
 Metadata associated with it. It is the object of a request routing
 operation in a CDN. An example of a Content Item is a video file/
 stream, an audio file/stream or an image file. For a discussion on
 what may constitute a Content Item with regards to HAS, see section

3.1.1.

 Chunk: A fixed length element that is the result of a segmentation or
 fragmentation operation being performed on a single encoding of the
 Original Content. A chunk is independently, and uniquely,
 addressable. Depending on the way a Chunk is stored, it may also be
 referred to as a Segment or Fragment.

 Fragment: A specific form of chunk (see section 2.1). A fragment is
 stored as part of a larger file that includes all chunks that are
 part of the Chunk Collection.

 Segment: A specific form of chunk (see section 2.1). A segment is
 stored as a single file from a file system perspective.

van Brandenburg & van Deventer Expires August 27, 2012 [Page 3]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 Original Content: Unchunked content that is the basis for a
 segmentation of fragmentation operation. Based on Original Content,
 multiple alternative encodings, resolutions or bitrates may be
 derived, each of which may be fragmented or segmented.

 Chunk Collection: The set of all chunks that are the result of a
 single segmentation or fragmentation operation being performed on a
 single encoding of the Original Content. A Chunk Collection is
 described in a manifest file.

 Content Collection: The set of all Chunk Collections that are derived
 from the same Original Content. A Content Collection may consist of
 multiple Chunk Collections, each being a single encoding, or variant,
 of the Original Content. A Content Collection may be described by
 one or more manifest files.

 Manifest File: A manifest file, also referred to as Media
 Presentation Description (MPD) file, is a file that list the way the
 content has been chunked and where the various chunks are located (in
 the case of segments) or how they can be addressed (in the case of
 fragments).

2. HTTP Adaptive Streaming aspects relevant to CDNI

 In the last couple of years, a wide variety of HAS-like protocols
 have emerged. Among them are proprietary solutions such as Apple's
 HTTP Live Streaming (HLS), Microsoft's Smooth Streaming (MSS) and
 Adobe's HTTP Dynamic Streaming (HDS), and various standardized
 solutions such as 3GPP AHS (AHS) and MPEG DASH (DASH). While all of
 these technologies share a common set of features, each has its own
 defining elements. This chapter will look at some of the differences
 between these technologies and how these differences might be
 relevant to CDNI. In particular, section 2.1 will describe the
 various methods to store HAS content and section 2.2 will list three
 methods that are used to address HAS content in a CDN.

2.1. Segmentation versus Fragmentation

 All HAS implementations are based around a concept referred to as
 chunking: the concept of having a server split content up in numerous
 fixed length chunks, which are independently decodable. By
 sequentially requesting and receiving chunks, a client can recreate
 and play out the content. An advantage of this mechanism is that it
 allows a client to seamlessly switch between different encodings of
 the same Original Content. Before requesting a particular chunk, a
 client can choose between mulitple alternatives of the same chunk,
 irrespective of the encoding of the chuncks it has requested earlier.

van Brandenburg & van Deventer Expires August 27, 2012 [Page 4]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 NOTE: The set of all chunks belonging to a single encoding, and thus
 the result of a single chunking operation, will from now on be
 referred to as a Chunk Collection. The set of all encodings of the
 same Original Content will be referred to as a Content Collection. A
 Content Collection can therefore consist of multiple Chunk
 Collections.

 While every HAS implementation uses some form of chunking, not all
 implementations store the resulting chunks in the same way. In
 general, there are two distinct methods of performing chunking and
 storing the results: segmentation and fragmentation.

 - With segmentation, which is for example mandatory in all versions
 of HLS prior to version 7, the chunks, in this case also referred
 to as segments, are stored completely independent from each other,
 with each segment being stored as a seperate file from a file
 system perspective. This means that each segment has its own
 unique URL with which it can be retrieved.

 - With fragmentation (or virtual segmentation), which is for example
 used in Microsoft's Smooth Streaming, all chunks, or fragments,
 belonging to the same Chunk Collection are stored together, as
 part of a single file. While there are a number of container
 formats which allow for storing this type chunked content,
 Fragmented MP4 is most commonly used. With fragmentation, a
 specific chunk is adressable by subfixing the common file URL with
 an identifier uniquely identifying the chunk one is interested in,
 either by timestamp, by byterange, or in some other way.

 While one can argue about the merits of each of these two different
 methods of handling chunks, both have their advantages and drawbacks
 in a CDN environment. For example, fragmentation is often regarded
 as a method that introduces less overhead, both from a storage and
 processing perspective. Segmentation on the other hand, is regarded
 as being more flexible and efficient with regards to caching. In
 practice, current HAS implementations increasingly support both
 methods.

2.2. Addressing chunks

 In order for a client to request chunks, either in the form of
 segments or in the form of fragments, it needs to know how the
 content has been chunked and where to find the chunks. For this
 purpose, most HAS protocols use a concept that is often referred to
 as a manifest file (also known as Media Presentation Description, or
 MPD): a file that lists the way the content has been chunked and
 where the various chunks are located (in the case of segments) or how
 they can be addressed (in the case of fragments). A manifest file,

van Brandenburg & van Deventer Expires August 27, 2012 [Page 5]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 or set of manifest files, may also identify the different encodings,
 and thus Chunk Collections, the content is available in.

 In general, a HAS client will first request and receive a manifest
 file, and then, after parsing the information in the manifest file,
 proceed with sequentially requesting the chunks listed in the
 manifest file. Each HAS implementation has its own manifest file
 format and even within a particular format there are different
 methods available to specify the location of a chunk.

 Of course managing the location of files is a core aspect of every
 CDN, and each CDN will have its own method of doing so. Some CDNs
 may be purely cache-based, with no higher-level knowledge of where
 each file resides at each instant in time. Other CDNs may have
 dedicated management nodes which, at each instant in time, do know at
 which servers each file resides. The CDNI interfaces designed in the
 CDNI WG will probably need to be agnostic to these kinds of CDN-
 internal architecture decisions. In the case of HAS there is a
 strict relationship between the location of the content in the CDN
 (in this case chunks) and the content itself (the locations specified
 in the manifest file). It is therefore useful to have an
 understanding of the different methods in use in CDNs today for
 specifying chunk locations in manifest files. The different methods
 for doing so are described in sections 2.2.1 to 2.2.3.

 Although these sections are especially relevant for segmented
 content, due to its inherent distributed nature, the discussed
 methods are also applicable to fragmented content. Furthermore, it
 should be noted that the methods detailed below for specifying
 locations of content items in manifest files do not only relate to
 temporally segmented content (e.g. segments and fragments), but are
 also relevant in situations where content is made available in
 multiple qualities, encodings, or variants. In this case the content
 consists of multiple chunk collections, which may be described by
 either a single manifest file or multiple interrelated manifest
 files. In the latter case, there may be a high-level manifest file
 describing the various available bitrates, with URLs pointing to
 seperate manifest files describing the details of each specific
 bitrate. For specifying the locations of the other manifest files,
 the same methods apply that are used for specifying chunk locations.

2.2.1. Full Locator

 One method for specifying locations of chunks (or other manifest
 files) in a manifest file is through the use of a Full Locator. A
 Full Locator takes the form of an URL and is defined by the fact that
 it directly points to the specific chunk on the actual the server
 that is expected to deliver the requested chunk to the client.

van Brandenburg & van Deventer Expires August 27, 2012 [Page 6]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 An example of a Full Locator is the following:

http://deliverynode.server.cdn.com/content_1/segments/
segment1_1.ts

 As can be seen from this example URL, the URL includes both the
 identifier of the requested segment (in this case segment1_1.ts), as
 well as the server that is expected to deliver the segment (in this
 case deliverynode.server.cdn.com). With this, the client has enough
 information to directly request the specific segment from the
 specified delivery node.

2.2.2. Relative Locator

 Another method for specifying chunk locations in a manifest file is
 through the use of Relative Locator. A Relative Locator is a pointer
 that is relative to the location where the manifest file has been
 acquired from. In most cases a Relative Locator will take the form
 of a string that has to be appended to the location of the manifest
 file to get the location of a specific chunk. This means that in the
 case a manifest with a Relative Locator is used, all chunks will be
 delivered by the same delivery node that delivered the manifest file.
 A Relative Locator will therefore not include a hostname.

 For example, in the case a manifest file has been requested (and
 received) from

http://deliverynode.server.cdn.com/content_1/manifest.xml, a Relative
 Locator pointing to a specific segment referenced in the manifest
 might be:

 segments/segment1_1.ts

 Which means that the client should take the location of the manifest
 file and append the Relative Locator. In this case, the segment
 would then be requested from

http://deliverynode.server.cdn.com/content_1/segments/segment1_1.ts

2.2.3. Chunk Request Routing

 A final method for specifying chunk locations in a manifest file is
 through the use of request routing. In this case, chunks are handled
 by the request routing system of a CDN just as if they were 'normal'
 content items. A chunk request comes in at a central request routing
 node and is handled just as if it were a regular content request,
 which might include looking up the delivery node best suited for
 delivering the requested chunk to the particular user and sending an
 HTTP redirect to the user with the URL pointing to the requested
 chunk on the specified delivery node.

http://deliverynode.server.cdn.com/content_1/segments/segment1_1.ts
http://deliverynode.server.cdn.com/content_1/segments/segment1_1.ts
http://deliverynode.server.cdn.com/content_1/manifest.xml
http://deliverynode.server.cdn.com/content_1/segments/segment1_1.ts

van Brandenburg & van Deventer Expires August 27, 2012 [Page 7]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 An example of an URL pointing to a redirection mechanism might look
 as follows:

http://requestrouting.cdn.com/
 content_request?content=content_1&segment=segment1_1.ts

 As can be seen from this example URL, the URL includes a pointer to a
 general CDN request routing function and includes some arguments
 identifying the requested segment.

3. Impact of HAS on CDNI

 In the previous chapter, some of the unique properties of HAS have
 been discussed. Furthermore, some of the CDN-specific design
 decision with regards to addressing chunks have been detailed. In
 this chapter, the impact of supporting HAS in CDNI will be discussed.
 The scope of this chapter is explicitely not to define solutions, but
 merely to identify potential problems and issues that need to be
 agreed on. For this purpose, each subsection will pose a number of
 open questions that will need to be answered by the CDNI WG. At a
 later stage, the answers to these questions may be used to solicit
 HAS-related requirements for the CDNI Interfaces.

 The chapter is divided into three subsections. The first subsection,
 3.1, will discuss the impact supporting HAS has on the general CDNI
 architecture, use cases and requirements. The other four
 subsections, 3.2 to 3.5, will discuss the impact of HAS on each of
 the four CDNI Interfaces.

3.1. General

 This section will discuss the impact supporting HTTP Adaptive
 Streaming has on the general CDNI architecture, use cases and
 requirements.

3.1.1. On the definition of a Content Item in CDNI

 [I-D.ietf-cdni-problem-statement] defines content as

 Content: Any form of digital data. One important form of content
 with additional constraints on distribution and delivery is
 continuous media (i.e. where there is a timing relationship
 between source and sink).

 This very broad definition of content is useful for generalizing the
 CDNI interfaces in a way that allows them to be agnostic to the type
 of content that is delivered. However, what a Content Item in a CDN

http://requestrouting.cdn.com/

van Brandenburg & van Deventer Expires August 27, 2012 [Page 8]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 constitutes may become relevant in the context of HAS if one
 considers a Content Item to be the element with which Content
 Metadata is associated, and the element that is the object of a
 CDN(I) request routing operation.

 An example of a Content Item in the general sense is a video file or
 stream, such as a TV show or movie, or an audio file, such as an MP3.
 In a simple case, a single MP3 is a single Content Item. In a more
 complex case, a particular piece of content is made available in
 multiple resolutions, languages or qualities. A video item, for
 example, might be made available in three different resolutions. In
 these cases, it depends on the datamodel of a particular CDN (or a
 particular Content Provider) how it defines a Content Item. In some
 CDNs, all three video files might be seen as seperate Content Items,
 each with their own set of Content Metadata. In other CDNs, the
 three alternative encodings of the same content are seen as a single
 Content Item, with a single set of Content Metadata describing that
 the content consists of three different versions. The CDNI
 Interfaces defined in the CDNI WG are affected by these kinds
 differences in the ways different CDNs work and might need to be
 agnostic to these kinds of CDN-internal (or even Content Provider-
 related) decisions.

 For content delivered using HAS, there is an even wider variety in
 the way different CDNs might interpret the definition of a Content
 Item. For example, CDNs using the Relative Locator method (see

section 2.2.2) in their manifest files, might define all chunks that
 are part of the same Content Collection, and therefore referenced in
 the same (set of) manifest file(s), as a single Content Item for the
 purposes of Content Metadata and request routing. Other CDNs might
 define all chunks related to a single encoding of a particular video
 item, and thus part of the same Chunk Collection, as a single Content
 Item, thereby having multiple inter-related Content Items which are
 part of the same 'parent' Content Item. Yet another group of CDNs,
 especially those using the Chunk Request Routing method (see Section

2.2.3), might define every individual chunk as a seperate Content
 Item, with a seperate set of metadata describing each chunk.

 In order for the CDNI WG to realise a standardized method of dealing
 with metadata, logging and request routing, it will be important to
 first have a common understanding of the term Content Item, and what
 it constitutes, especially with regard to HAS. One option would be
 to not impose a specific model, but allow the CDNI interfaces to
 support all the different definitions of Content Item (i.e. from
 considering each chunk to be a Content Item to considering all chunks
 originating from the same Original Content, and thus part of the same
 Content Collection, to be a single content item).

van Brandenburg & van Deventer Expires August 27, 2012 [Page 9]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 o Should the CDNI Interfaces be agnostic to the definition of a
 Content Item in a particular CDN?

 And if this is not the case, then

 o What constitutes a Content Item for the purposes of associating
 metadata and request routing?

 o How does the definition of a Content Item relate to Chunks, Chunk
 Collections and Content Collection?

 If the WG decides to not impose a specific definition of what
 constitutes a Content Item, it is for further study whether it is
 required for all parties involved in the delivery of a single video
 item, CSP, uCDN and dCDN, to use the same definition. For example,
 is it possible for the uCDN to define a complete Content Collection
 as a single Content Item, but for the dCDN which delivers the actual
 content to see each chunk as a seperate Content Item and handle the
 metadata accordingly?

 o Is it necessary for all CDNs involved in the delivery of a single
 video item to use the same definition of a Content Item (e.g. can
 the uCDN define a Content Collection as a Content Item and the
 dCDN define a chunk as a Content Item)?

3.1.2. General CDNI-HAS Requirements

 This section is a placeholder for HAS-specific CDNI requirements that
 are not related to a specific CDNI interface.

3.2. Impact on Request Routing Interface

 This section will discuss the impact supporting HTTP Adaptive
 Streaming has on the CDNI Request Routing Interface.

3.2.1. Dealing with manifest files

 In section 2.2, three different methods for identifying and
 addressing chunks from within a manifest file were described: Full
 Locators, Relative Locators and Chunk Request Routing. Of course not
 every current CDN will use and/or support all three methods. Some
 CDNs may only support one of the three methods, while others may
 support two or all three.

 The question is whether all CDNs involved in the delivery of a single
 video item need to support the same method. Is it for example
 possible for a dCDN to use Chunck Request Routing while the uCDN uses
 Full Locators? This question boils down to the more fundamental

van Brandenburg & van Deventer Expires August 27, 2012 [Page 10]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 question of who manages manifest file. Should a dCDN be allowed to
 change a manifest file? Or even create a new one?

 o Should the CDNI Interfaces be agnostic to the way chunks are
 identified in the manifest file and requested by the client?

 o Should it be possible for a uCDN and dCDN to use two different
 methods of addressing chunks in manifest files?

 And, related to this

 o Should a dCDN be able to adapt a manifest file (i.e. is a manifest
 file part of the content, and therefore by definition not
 adaptable, or is it part of the delivery method) ?

 If the CDNI WG decides that the anwer to these questions is negative,
 this will probably mean that the only supported method for Chunk
 Adressing is using Relative Locators. For both Full Locators as well
 as Chunk Request Routing, it is necessary for the delivering CDN to
 change the URLs specified in the manifest file.

3.2.2. HAS Request Routing

 One of the essential questions relating to HAS and request routing is
 whether CDNI request routing is handled on a per chunk level, a per
 Content Collection level, or somewhere in between. This question is
 tightly related to the definition of a Content Item, discussed in

section 3.1.1. If a Content Item is the object of request routing,
 then it depends on the definition of a Content Item what type of
 content element is being request routed.

 o Should the CDNI Interfaces specify what element of a HAS stream is
 being request routed (i.e. should the CDNI interfaces support per-
 chunk request routing) ?

 While having a seperate request routing operation for every chunk
 will probably not be very efficient, only allowing for entire Content
 Collections to be request routed is very limiting. For example, it
 might be efficient for a dCDN targeted at mobile devices to only host
 (and thus be able to deliver) the lower resolution encodings of a
 given video item. In this case it probably wouldn't make sense to
 force the mobile CDN to host all resolutions (including the very high
 ones with multi-channel audio) that are hosted by the uCDN since
 there will be no clients accessing the high resolution content
 through the mobile CDN.

van Brandenburg & van Deventer Expires August 27, 2012 [Page 11]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 o Should it be possible for a dCDN to host (and deliver) only a
 subset of all the chunks, or chunk collections, of a given Content
 Collection?

3.2.3. Dividing content over multiple nodes

 An aspect that is related to the issues discussed in sections 3.2.1
 and 3.2.2, is that of dividing content over multiple delivery nodes.
 In non-cache-based CDNs, where the location of content on delivery
 nodes is managed by a centralized process and where content is often
 pre-positioned, different Chunk Collections belonging to the same
 Content Collection, or even different chunks belonging to the same
 Chunk Collection, may be distributed over different delivery nodes.
 For example, the most popular resolutions of a particular Content
 Collection may be hosted on more delivery nodes than the less popular
 resolutions. In order to allow for this kind of internal CDN
 optimization it is necessary that the dCDN is able adapt the manifest
 file.

 o Should it be possible for a dCDN to distribute the chunks, or
 Chunk Collections, constituting a given Content Collection over
 its delivery nodes?

3.2.4. HAS Requirements for the CDNI Request Routing Interface

 This section is a placeholder for HAS-specific requirements for the
 CDNI Request Routing interface.

3.3. Impact on Metadata Interface

 This section will discuss the impact supporting HTTP Adaptive
 Streaming has on the CDNI Metadata Interface.

3.3.1. HAS-specific Metadata

 In section 3.1.1, the impact of HAS on the definition of a Content
 Item, and what constitutes a Content Item was discussed. More
 specifically, it was discussed how different CDNs might see chunks or
 chunk collections as Content Items or as parts of Content Items.
 This question also has an effect on the way the CDNI Metadata
 Interface. If one defines a Content Item as the CDN element with
 which Content Metadata is associated, this raises the question how
 Content Metadata is associated with HAS content. For example, is
 there specific metadata element associated with each chunk, with each
 chunk collection, with each content collection, or is there a
 specific form of metadata for HAS content?

van Brandenburg & van Deventer Expires August 27, 2012 [Page 12]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 o Is Content Metadata associated with Content Collections, Chunk
 Collections or chunks?

 o Is it necessary to extend the CDNI Metadata model with HAS-
 specific extensions?

3.3.2. HAS Requirements for the CDNI Metadata Interface

 This section is a placeholder for HAS-specific requirements for the
 CDNI Metadata interface.

3.4. Impact on Logging Interface

 This section will discuss the impact supporting HTTP Adaptive
 Streaming has on the CDNI Logging Interface.

3.4.1. Log processing

 One aspect of using HAS in a CDN context that has been getting a lot
 of attention is logging. In contrast to other streaming solutions
 which are either session-based (e.g. RTP) or using a single file
 (e.g. Progressive Download), the chunked nature of HAS means that
 regular logging methods that simply log each content request will
 generate extremely large log files with a seperate entry for each
 chunk being accessed. Apart from the large file size of these log
 files, a further problem is that due to the distributed nature of
 these log entries it can be difficult to trace them back to a
 specific number of clients or users, which makes reporting difficult.

 For this reason, some CDNs use dedicated log processing software
 which accumulates, processes and aggregates log files. This log
 processing software is a further element where different CDNs might
 have different approaches. For example, some CDNs might do the log
 processing at a low-level, such as real-time in the delivery nodes.
 Other CDNs might process the log files in batches at a centralized
 location, such as once every hour or every day.

 For the CDNI Logging interface, it will be necessary to realise a
 common understanding on what type of logging information is passed
 between the uCDn and the dCDN in the case a HAS-like protocol is used
 for delivery. Ideally, this interface is agnostic to the CDN-
 internal method of log processing. However, this might not be
 possible. For example, it can be argued that for transparency
 reasons, it is necessary for the dCDN to communicate the raw log
 files back to the uCDN. On the other hand, this creates a very large
 overhead in the inter-CDN communication, with log files for popular
 content possibly exceeding the file size of the content itself.
 Another method would be to require the dCDN to aggregate the log

van Brandenburg & van Deventer Expires August 27, 2012 [Page 13]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 files before reporting back to the uCDN, however this would require
 the dCDN to have specific log processing software.

 o Should the CDNI Logging Interface define a specific log-file
 format to be used for HAS content?

3.4.2. HAS Requirements for the CDNI Logging Interface

 This section is a placeholder for HAS-specific requirements for the
 CDNI Logging interface.

3.5. Impact on Control Interface

 This section will discuss the impact supporting HTTP Adaptive
 Streaming has on the CDNI Control Interface.

 NOTE: At this point the impact of HAS on the CDNI Control Interface
 has not yet been determined.

3.5.1. HAS Requirements for the CDNI Control Interface

 This section is a placeholder for HAS-specific requirements for the
 CDNI Control interface.

4. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

5. Security Considerations

 TBD.

6. References

6.1. Normative References

 [I-D.ietf-cdni-problem-statement]
 Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
 Distribution Network Interconnection (CDNI) Problem
 Statement, draft-ietf-cdni-problem-statement-03",
 January 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-cdni-problem-statement-03

van Brandenburg & van Deventer Expires August 27, 2012 [Page 14]

Internet-Draft HTTP Adaptive streaming and CDNI February 2012

 [I-D.ietf-cdni-use-cases]
 Bertrand, G., Ed., Stephan, E., Watson, G., Burbridge, T.,
 Eardley, P., and K. Ma, "Use Cases for Content Delivery
 Network Interconnection, draft-ietf-cdni-use-cases-03",
 January 2012.

6.2. Informative References

 [Anchor] "".

Authors' Addresses

 Ray van Brandenburg
 TNO
 Brassersplein 2
 Delft 2612CT
 the Netherlands

 Phone: +31-88-866-7000
 Email: ray.vanbrandenburg@tno.nl

 M. Oskar van Deventer
 TNO
 Brassersplein 2
 Delft 2612CT
 the Netherlands

 Phone: +31-88-866-7000
 Email: oskar.vandeventer@tno.nl

https://datatracker.ietf.org/doc/html/draft-ietf-cdni-use-cases-03

van Brandenburg & van Deventer Expires August 27, 2012 [Page 15]

