
Network Working Group R. van Brandenburg
Internet-Draft O. van Deventer
Intended status: Informational TNO
Expires: July 12, 2013 F. Le Faucheur
 K. Leung
 Cisco Systems
 January 8, 2013

Models for adaptive-streaming-aware CDN Interconnection
draft-brandenburg-cdni-has-04

Abstract

 This documents presents thoughts on the potential impact of
 supporting HTTP Adaptive Streaming technologies in CDN
 Interconnection (CDNI) scenarios. The intent is to present the
 authors' analysis of the CDNI-HAS problem space and discuss different
 options put forward both by the authors (and by others during
 informal discussions) on how to deal with HAS in the context of CDNI.
 THis document has been used as input information during the WG
 process for making its decision regarding support for HAS.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 12, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

van Brandenburg, et al. Expires July 12, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Terminology . 4

2. HTTP Adaptive Streaming aspects relevant to CDNI 5
2.1. Segmentation versus Fragmentation 6
2.2. Addressing chunks . 7
2.2.1. Relative URLs . 8
2.2.2. Absolute URLs with Redirection 9
2.2.3. Absolute URL without Redirection 10

2.3. Live vs. VoD . 10
2.4. Stream splicing . 11

3. Possible HAS Optimizations 11
3.1. File Management and Content Collections 12
3.1.1. General Remarks 12
3.1.2. Candidate approaches 13
3.1.2.1. Option 1.1: No HAS awareness 13

 3.1.2.2. Option 1.2: Allow single file storage of
 fragmented content 13

3.1.2.3. Option 1.3: Access correlation hint 14
3.1.3. Recommendation . 15

3.2. Content Acquisition of Content Collections 15
3.2.1. General Remarks 15
3.2.2. Candidate Approaches 15
3.2.2.1. Option 2.1: No HAS awareness 15

 3.2.2.2. Option 2.2: Allow single file acquisition of
 fragmented content 16

3.2.3. Recommendation . 17
3.3. Request Routing of HAS content 17
3.3.1. General remarks 17
3.3.2. Candidate approaches 17
3.3.2.1. Option 3.1: No HAS awareness 17
3.3.2.2. Option 3.2: Manifest File rewriting by uCDN . . . 19
3.3.2.3. Option 3.3: Two-step Manifest File rewriting . . . 21

3.3.3. Recommendation . 22
3.4. Logging . 22
3.4.1. General remarks 22
3.4.2. Candidate Approaches 23
3.4.2.1. Option 4.1: "Do-Nothing" Approach 23

 3.4.2.2. Option 4.2: "CDNI Metadata Content Collection

van Brandenburg, et al. Expires July 12, 2013 [Page 2]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 ID" Approach 25
 3.4.2.3. Option 4.3: "CDNI Logging Interface
 Compression" Approach 26
 3.4.2.4. Option 4.4: "Full HAS
 awareness/per-Session-Logs" Approach 27

3.4.3. Recommendation . 28
3.5. URL Signing . 30
3.5.1. HAS Implications 31
3.5.2. CDNI Considerations 31
3.5.3. Option 5.1: Do Nothing 32
3.5.4. Option 5.2: Flexible URL Signing by CSP 33
3.5.5. Option 5.3: Flexible URL Signing by Upstream CDN . . . 35

 3.5.6. Option 5.4: Authorization Group ID and
 HTTP Cookie . 36

3.5.7. Option 5.5: HAS-awareness with HTTP Cookie in CDN . . 37
3.5.8. Option 5.6: HAS-awareness with Manifest in CDN 38
3.5.9. Recommendation . 39

3.6. Content Purge . 40
3.6.1. Option 6.1: No HAS awareness 40
3.6.2. Option 6.2: Purge Identifiers 40
3.6.3. Recommendation . 41

3.7. Other issues . 41
4. IANA Considerations . 42
5. Security Considerations 42
6. Acknowledgements . 42
7. References . 42
7.1. Normative References 42
7.2. Informative References 42

 Authors' Addresses . 43

van Brandenburg, et al. Expires July 12, 2013 [Page 3]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

1. Introduction

 [RFC6707] defines the problem space for CDN Interconnection (CDNI)
 and the associated CDNI interfaces. This includes support, through
 interconnected CDNs, of content delivery to endusers using HTTP
 progressive download and HTTP Adpative Streaming (HAS).

 HTTP Adaptive Streaming is an umbrella term for various HTTP-based
 streaming technologies that allow a client to adaptively switch
 between multiple bitrates depending on current network conditions. A
 defining aspect of HAS is that, since it is based on HTTP, it is a
 pull-based mechanism, with a client actively requesting content
 segments, instead of the content being pushed to the client by a
 server. Due to this pull-based nature, media servers delivering
 content using HAS often show different characteristics when compared
 with media servers delivering content using traditional streaming
 methods such as RTP/RTSP, RTMP and MMS.

 This document presents a discussion on what the impact of these
 different characteristics is to the CDNI interfaces and what HAS-
 specific optimizations may be required or may be desirable. The
 scope of this document is to present the authors' analysis of the
 CDNI-HAS problem space and discuss different options put forward both
 by the authors (and by others during informal discussions) on how to
 deal with HAS in the context of CDNI. The documents concludes by
 presenting the authors' recommendations on how the CDNI WG should
 deal with HAS in its initial charter, with a focus on 'making it
 work' instead of including 'nice-to-have' optimizations that might
 delay the development of the CDNI WG deliverables identified in its
 initial charter.

 It should be noted that the document is not a WG document, but has
 been used as input information during the WG process for making its
 decision regarding support for HAS. We expect the analysis presented
 in the document will also be useful in the future if and when the WG
 re-charters and wants to re-asses the level of HAS optimizations to
 be supported in CDNI scenarios.

1.1. Terminology

 This document uses the terminology defined in [RFC6707] and
 [I-D.ietf-cdni-framework].

 For convenience, the definition of HAS-related terms are restated
 here:

 Content Item: A uniquely addressable content element in a CDN. A
 content item is defined by the fact that it has its own Content

https://datatracker.ietf.org/doc/html/rfc6707

van Brandenburg, et al. Expires July 12, 2013 [Page 4]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 Metadata associated with it. It is the object of a request routing
 operation in a CDN. An example of a Content Item is a video file/
 stream, an audio file/stream or an image file.

 Chunk: a fixed length element that is the result of a segmentation or
 fragmentation operation and that is independently addressable.

 Fragment: A specific form of chunk (see Section 2.1). A fragment is
 stored as part of a larger file that includes all chunks that are
 part of the Chunk Collection.

 Segment: A specific form of chunk (see Section 2.1). A segment is
 stored as a single file from a file system perspective.

 Original Content: Non-chunked content that is the basis for a
 segmentation of fragmentation operation. Based on Original Content,
 multiple alternative representations (using different encoding
 methods, supporting different resolutions and/or targeting different
 bitrates) may be derived, each of which may be fragmented or
 segmented.

 Chunk Collection: The set of all chunks that are the result of a
 single segmentation or fragmentation operation being performed on a
 single representation of the Original Content. A Chunk Collection is
 described in a Manifest File.

 Content Collection: The set of all Chunk Collections that are derived
 from the same Original Content. A Content Collection may consist of
 multiple Chunk Collections, each corresponding to a single
 representation of the Original Content. A Content Collection may be
 described by one or more Manifest Files.

 Manifest File: A Manifest File, also referred to as Media
 Presentation Description (MPD) file, is a file that list the way the
 content has been chunked (possibly for multiple encodings) and where
 the various chunks are located (in the case of segments) or how they
 can be addressed (in the case of fragments).

2. HTTP Adaptive Streaming aspects relevant to CDNI

 In the last couple of years, a wide variety of HAS-like protocols
 have emerged. Among them are proprietary solutions such as Apple's
 HTTP Live Streaming (HLS), Microsoft's HTTP Smooth Streaming (HSS)
 and Adobe's HTTP Dynamic Streaming (HDS), and various standardized
 solutions such as 3GPP Adaptive HTTP Streaming (AHS) and MPEG Dynamic
 Adaptive Streaming over HTTP (DASH). While all of these technologies
 share a common set of features, each has its own defining elements.

van Brandenburg, et al. Expires July 12, 2013 [Page 5]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 This chapter will look at some of the common characteristics and some
 of the differences between these technologies and how those might be
 relevant to CDNI. In particular, Section 2.1 will describe the
 various methods to store HAS content and Section 2.2 will list three
 methods that are used to address HAS content in a CDN. After these
 generic HAS aspects are discussed, two special situations that need
 to be taken into account when discussing HAS are addressed:

Section 2.3 discusses the differences between Live and VoD content,
 while Section 2.4 discusses the scenario where multiple streams are
 combined in a single Manifest File (e.g. for ad insertion purposes).

2.1. Segmentation versus Fragmentation

 All HAS implementations are based around a concept referred to as
 chunking: the concept of having a server split content up in numerous
 fixed duration chunks, which are independently decodable. By
 sequentially requesting and receiving chunks, a client can recreate
 and play out the content. An advantage of this mechanism is that it
 allows a client to seamlessly switch between different encodings of
 the same Original Content at chunk boundaries. Before requesting a
 particular chunk, a client can choose between multiple alternative
 encodings of the same chunk, irrespective of the encoding of the
 chunks it has requested earlier.

 While every HAS implementation uses some form of chunking, not all
 implementations store the resulting chunks in the same way. In
 general, there are two distinct methods of performing chunking and
 storing the results: segmentation and fragmentation.

 - With segmentation, which is for example mandatory in all versions
 of Apple's HLS prior to version 7, the chunks, in this case also
 referred to as segments, are stored completely independent from
 each other, with each segment being stored as a separate file from
 a file system perspective. This means that each segment has its
 own unique URL with which it can be retrieved.

 - With fragmentation (or virtual segmentation), which is for example
 used in Microsoft's Smooth Streaming, all chunks, or fragments,
 belonging to the same Chunk Collection are stored together, as
 part of a single file. While there are a number of container
 formats which allow for storing this type of chunked content,
 Fragmented MP4 is most commonly used. With fragmentation, a
 specific chunk is addressable by subfixing the common file URL
 with an identifier uniquely identifying the chunk that one is
 interested in, either by timestamp, by byterange, or in some other
 way.

 While one can argue about the merits of each of these two different

van Brandenburg, et al. Expires July 12, 2013 [Page 6]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 methods of handling chunks, both have their advantages and drawbacks
 in a CDN environment. For example, fragmentation is often regarded
 as a method that introduces less overhead, both from a storage and
 processing perspective. Segmentation on the other hand, is regarded
 as being more flexible and easier to cache. In practice, current HAS
 implementations increasingly support both methods.

2.2. Addressing chunks

 In order for a client to request chunks, either in the form of
 segments or in the form of fragments, it needs to know how the
 content has been chunked and where to find the chunks. For this
 purpose, most HAS protocols use a concept that is often referred to
 as a Manifest File (also known as Media Presentation Description, or
 MPD); i.e. a file that lists the way the content has been chunked and
 where the various chunks are located (in the case of segments) or how
 they can be addressed (in the case of fragments). A Manifest File,
 or set of Manifest Files, may also identify the different
 representations, and thus Chunk Collections, available for a content.

 In general, a HAS client will first request and receive a Manifest
 File, and then, after parsing the information in the Manifest File,
 proceed with sequentially requesting the chunks listed in the
 Manifest File. Each HAS implementation has its own Manifest File
 format and even within a particular format there are different
 methods available to specify the location of a chunk.

 Of course managing the location of files is a core aspect of every
 CDN, and each CDN will have its own method of doing so. Some CDNs
 may be purely cache-based, with no higher-level knowledge of where
 each file resides at each instant in time. Other CDNs may have
 dedicated management nodes which, at each instant in time, do know at
 which servers each file resides. The CDNI interfaces designed in the
 CDNI WG will probably need to be agnostic to these kinds of CDN-
 internal architecture decisions. In the case of HAS there is a
 strict relationship between the location of the content in the CDN
 (in this case chunks) and the content itself (the locations specified
 in the Manifest File). It is therefore useful to have an
 understanding of the different methods in use in CDNs today for
 specifying chunk locations in Manifest Files. The different methods
 for doing so are described in sections 2.2.1 to 2.2.3.

 Although these sections are especially relevant for segmented
 content, due to its inherent distributed nature, the discussed
 methods are also applicable to fragmented content. Furthermore, it
 should be noted that the methods detailed below for specifying
 locations of content items in Manifest Files do not only relate to
 temporally segmented content (e.g. segments and fragments), but are

van Brandenburg, et al. Expires July 12, 2013 [Page 7]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 also relevant in situations where content is made available in
 multiple representations (e.g., in different qualities, encoding
 methods, resolutions and/or bitrates). In this case the content
 consists of multiple chunk collections, which may be described by
 either a single Manifest File or multiple interrelated Manifest
 Files. In the latter case, there may be a high-level Manifest File
 describing the various available bitrates, with URLs pointing to
 separate Manifest Files describing the details of each specific
 bitrate. For specifying the locations of the other Manifest Files,
 the same methods apply that are used for specifying chunk locations.

 One final note relates to the delivery of the Manifest Files
 themselves. While in most situations the delivery of both the
 Manifest File and the chunks are handled by the CDN, there are
 scenarios imaginable in which the Manifest File is delivered by e.g.
 the Content Provider, and the Manifest File is therefore not visible
 to the CDN.

2.2.1. Relative URLs

 One method for specifying chunk locations in a Manifest File is
 through the use of relative URLs. A relative URL is a URL that does
 not include the HOST part of a URL but only includes (part of) the
 PATH part of a URL. In practice, a relative URL is used by the
 client as being relative to the location where the Manifest File has
 been acquired from. In these cases a relative URL will take the form
 of a string that has to be appended to the location of the Manifest
 File to get the location of a specific chunk. This means that in the
 case a Manifest File with relative URLs is used, all chunks will be
 delivered by the same surrogate that delivered the Manifest File. A
 relative URL will therefore not include a hostname.

 For example, in the case a Manifest File has been requested (and
 received) from:

http://surrogate.server.cdn.example.com/content_1/manifest.xml

 , a relative URL pointing to a specific segment referenced in the
 Manifest File might be:

 segments/segment1_1.ts

 Which means that the client should take the location of the Manifest
 File and append the relative URL. In this case, the segment would
 then be requested from http://surrogate.server.cdn.example.com/

content_1/segments/segment1_1.ts

 The downside of using relative URLs is that it forces a CDN to

http://surrogate.server.cdn.example.com/content_1/manifest.xml
http://surrogate.server.cdn.example.com/content_1/segments/segment1_1.ts
http://surrogate.server.cdn.example.com/content_1/segments/segment1_1.ts

van Brandenburg, et al. Expires July 12, 2013 [Page 8]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 deliver all segments belonging to a given content item with the same
 surrogate that delivered the Manifest File for that content item,
 which results in limited flexibility. Another drawback is that
 Relative URLs do not allow for fallback URLs; should the surrogate
 that delivered the Manifest File break down, the client is no longer
 able to request chunks. The advantage of relative URLs is that it is
 very easy to transfer content between different surrogates and even
 CDNs.

2.2.2. Absolute URLs with Redirection

 Another method for specifying locations of chunks (or other Manifest
 Files) in a Manifest File is through the use of an absolute URL. An
 absolute URL contains a fully formed URL (i.e. the client does not
 have to calculate the URL as in the case of the relative URL but can
 use the URL from the Manifest File directly).

 In the context of Manifest Files, there are two types of absolute
 URLs imaginable: Absolute URLs with Redirection and Absolute URLs
 without Redirection. The two methods differ in whether the URL
 points to a request routing node which will redirect the client to a
 surrogate (Absolute URL with Redirection) or point directly to a
 surrogate hosting the requested content (Absolute URL without
 Redirection).

 In the case of Absolute URLs with Redirection, a request for a chunk
 is handled by the request routing system of a CDN just as if it were
 a standalone (non-HAS) content request, which might include looking
 up the surrogate (and/or CDN) best suited for delivering the
 requested chunk to the particular user and sending an HTTP redirect
 to the user with the URL pointing to the requested chunk on the
 specified surrogate (and/or CDN), or a DNS response pointing to the
 specific surrogate.

 An example of an Absolute URL with Redirection might look as follows:

http://requestrouting.cdn.example.com/
 content_request?content=content_1&segment=segment1_1.ts

 As can be seen from this example URL, the URL includes a pointer to a
 general CDN request routing function and includes some arguments
 identifying the requested segment.

 The advantage of using Absolute URLs with Redirection is that it
 allows for maximum flexibility (since chunks can be distributed
 across surrogates and CDN in any imaginable way) without having to
 modify the Manifest File every time one or more chunks are moved (as
 is the case when Absolute URLs without Redirection are used). The

http://requestrouting.cdn.example.com/

van Brandenburg, et al. Expires July 12, 2013 [Page 9]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 downside of this method is that it can adds significant load to a CDN
 request routing system, since it has to perform a redirect every time
 a client requests a new chunk.

2.2.3. Absolute URL without Redirection

 In the case of the Absolute URL without Redirection, the URL points
 directly to the specific chunk on the actual surrogate that will
 deliver the requested chunk to the client. In other words, there
 will be no HTTP redirection operation taking place between the client
 requesting the chunk and the chunk being delivered to the client by
 the surrogate.

 An example of an Absolute URLs without Redirection is the following:

http://surrogate.cdn.example.com/content_1/segments/segment1_1.ts

 As can be seen from this example URL, the URL includes both the
 identifier of the requested segment (in this case segment1_1.ts), as
 well as the server that is expected to deliver the segment (in this
 case surrogate.cdn.example.com). With this, the client has enough
 information to directly request the specific segment from the
 specified surrogate.

 The advantage of using Absolute URLs without Redirection is that it
 allows more flexibility compared to using Relative URLs (since
 segments do not necessarily have to be delivered by the same server)
 while not requiring per-segment redirection (which would add
 significant load to the node doing the redirection). The drawback of
 Absolute URLs without Redirection is that it requires a modification
 of the Manifest File every time content is moved to a different
 location (either within a CDN or across CDNs).

2.3. Live vs. VoD

 Though the formats and addresses of Manifest Files and chunk files do
 not typically differ significantly between live and Video-on-Demand
 (VoD) content, the time at which the Manifest Files and chunk files
 become available does differ significantly. For live content, chunk
 files and their corresponding Manifest Files are created and
 delivered in real-time. This poses a number of potential issues for
 HAS optimization:

 - With live content, chunk files are made available in real-time.
 This limits the applicability of bundling for content acquisition
 purposes. Prepositioning may still be employed, however, any
 significant latency in the prepositioning may diminish the value
 of prepositioning if a client requests the chunk prior to

http://surrogate.cdn.example.com/content_1/segments/segment1_1.ts

van Brandenburg, et al. Expires July 12, 2013 [Page 10]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 prepositioning, or if the prepositioning request is serviced after
 the chunk playout time has passed.

 - In the case of live content, Manifest Files must be updated for
 each chunk and therefore must be retrieved by the client prior to
 each chunk request. Any Manifest-File based optimization schemes
 must therefore be prepared to optimize on a per-segment request
 basis. Manifest Files may also be polled multiple times prior to
 the actual availability of the next chunk.

 - Since live Manifest Files are updated as each new chunk becomes
 available, the cacheability of Manifest Files is limited. Though
 timestamping and reasonable TTLs can improve delivery performance,
 timely replication and delivery of updated Manifest Files is
 critical to ensuring uninterrupted playback.

 - Manifest Files are typically updated after the corresponding chunk
 is available for delivery, to prevent premature requests for
 chunks which are not yet available. HAS optimization approaches
 which employ dynamic Manifest File generation must be synchronized
 with chunk creation to prevent playback errors.

2.4. Stream splicing

 Stream splicing is used to create media mashups, combining content
 from multiple sources. A common example in which content resides
 outside the CDNs is with advertisement insertion, for both VoD and
 live streams. Manifest Files which contain Absolute URLs with
 redirection may contain chunk or nested Manifest File URLs which
 point to content not delivered via any of the interconnected CDNs.

 Furthermore, client and downstream proxy devices may depend on non-
 URL information provided in the Manifest File (e.g., comments or
 custom tags) for performing stream splicing. This often occurs
 outside the scope of the interconnected CDNs. HAS optimization
 schemes which employ dynamic Manifest File generation or rewriting
 must be cognizant of chunk URLs, nested Manifest File URLs, and other
 metadata which should not be modified or removed. Improper
 modification of these URLs or other metadata may cause playback
 interruptions, and in the case of unplayed advertisements, may result
 in loss of revenue for content providers.

3. Possible HAS Optimizations

 In the previous chapter, some of the unique properties of HAS have
 been discussed. Furthermore, some of the CDN-specific design
 decisions with regards to addressing chunks have been detailed. In

van Brandenburg, et al. Expires July 12, 2013 [Page 11]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 this chapter, the impact of supporting HAS in CDN Interconnection
 scenarios will be discussed.

 There are a number of topics, or problem areas, that are of
 particular interest when considering the combination of HAS and CDNI.
 For each of these problem areas it holds that there are a number of
 different ways in which the CDNI Interfaces can deal with them. In
 general it can be said that each problem area can either be solved in
 a way that minimizes the amount of HAS-specific changes to the CDNI
 Interfaces or in way that maximizes the flexibility and efficiency
 with which the CDNI Interfaces can deliver HAS content. The goal for
 the CDNI WG should probably be to try to find the middle ground
 between these two extremes and try to come up with solutions that
 optimize the balance between efficiency and additional complexity.

 In order to allow the WG to make this decision, this chapter will
 briefly describe each of the following problem areas together with a
 number of different options for dealing with them. Section 3.1 will
 discuss the problem of how to deal with file management of groups of
 files, or Content Collections. Section 3.2 will deal with a related
 topic: how to do content acquisition of Content Collections between
 the uCDN and dCDN. After that, Section 3.3 describes the various
 options for the request routing of HAS content, particularly related
 to Manifest Files. Section 3.4 talks about a number of possible
 optimizations for the logging of HAS content, while Section 3.5
 discusses the options regarding URL signing. Section 3.6 finally,
 describes different scenarios for dealing with the removal of HAS
 content from CDNs.

3.1. File Management and Content Collections

3.1.1. General Remarks

 One of the unique properties of HAS content is that it does not
 consist of a single file or stream but of multiple interrelated files
 (segment, fragments and/or Manifest Files). In this document this
 group of files is also referred to as a Content Collection. Another
 important aspect is the difference between segments and fragments
 (see Section 2.1).

 Irrespective of whether segments or fragments are used, different
 CDNs might handle Content Collections differently from a file
 management perspective. For example, some CDNs might handle all
 files belonging to a Content Collection as individual files, which
 are stored independently from each other. An advantage of this
 approach is that makes it easy to cache individual chunks. Other
 CDNs might store all fragments belonging to a Content Collection in a
 bundle, as if they were a single file (e.g. by using a fragmented MP4

van Brandenburg, et al. Expires July 12, 2013 [Page 12]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 container). The advantage of this approach is that it reduces file
 management overhead.

 This section will look at the various ways with which the CDNI
 interfaces might deal with these differences in handling Content
 Collections from a file management perspective. The different
 options can be distinguished based on the level of HAS-awareness they
 require on the part of the different CDNs and the CDNI interfaces.

3.1.2. Candidate approaches

3.1.2.1. Option 1.1: No HAS awareness

 This first option assumes no HAS awareness in both the involved CDNs
 and the CDNI Interfaces. This means that the uCDN uses individual
 files and the dCDN is not explicitly made aware of the relationship
 between chunks and it doesn't know which files are part of the same
 Content Collection. In practice this scenario would mean that the
 file management method used by the uCDN is simply imposed on the dCDN
 as well.

 This scenario also means that it is not possible for the dCDN to use
 any form of file bundling, such as the single-file mechanism which
 can be to store fragmented content as a single file (see

Section 2.1). The one exception to this rule is the situation where
 the content is fragmented and the Manifest Files on the uCDN contains
 byte range requests, in which case the dCDN might be able to acquire
 fragmented content as a single file (see Section 3.2.2.2).

 Effect on CDNI interfaces:

 o None

 Advantages/Drawbacks:

 + No HAS awareness necessary in CDNs, no changes to CDNI Interfaces
 necessary

 - The dCDN is forced to store chunks as individual files.

3.1.2.2. Option 1.2: Allow single file storage of fragmented content

 In some cases, the dCDN might prefer to store fragmented content as a
 single file on its surrogates to reduce file management overhead. In
 order to do so, it needs to be able to either acquire the content as
 a single file (see Section 3.2.2.2), or merge the different chunks
 together and place them in the same container (e.g. fragmented MP4).
 The downside of this is that in order to do so, the dCDN needs to be

van Brandenburg, et al. Expires July 12, 2013 [Page 13]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 fully HAS aware.

 Effect on CDNI interfaces:

 o CDNI Metadata Interface: Add fields for indicating the particular
 type of HAS (e.g. MPEG DASH or HLS) that is used and whether
 segments or fragments are used

 o CDNI Metadata Interface: Add field for indicating the name and
 type of the Manifest File(s)

 Advantages/Drawbacks:

 + Allows dCDN to store fragmented content as a single file, reducing
 file management overhead

 - Complex operation, requiring dCDN to be fully HAS aware

3.1.2.3. Option 1.3: Access correlation hint

 An intermediary approach between the two extremes detailed in the
 previous two sections is one that uses a 'Access Correlation Hint'.
 This hint, which is added to the CDNI Metadata of all chunks of a
 particular Content Collection, indicates that those files are likely
 to be requested in a short time window from each other. This
 information can help a dCDN to implement local file storage
 optimizations for VoD items (e.g. by bundling all files with the same
 Access Correlation Hint value in a single bundle/file), thereby
 reducing the number of files it has to manage while not requiring any
 HAS awareness.

 Effect on CDNI interfaces:

 o CDNI Metadata Interface: Add field for indicating Access
 Correlation Hint

 Advantages/Drawbacks:

 + Allows dCDN to perform file management optimization

 + Does not require any HAS awareness

 + Very small impact on CDNI Interfaces

 - Expected benefit compared with Option 1.1 is small

van Brandenburg, et al. Expires July 12, 2013 [Page 14]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

3.1.3. Recommendation

 Based on the listed pros and cons, the authors recommend the WG to go
 for Option 1.1, the 'Do Nothing'-approach. The likely benefits from
 going for Option 1.3 are not believed to be significant enough to
 warrant changing the CDNI Metadata Interface. Although Option 1.2
 would bring definite benefits for HAS aware dCDNs, going for this
 options would require significant CDNI extensions that would impact
 the WG's milestones. The authors therefore don't recommend to
 include it in the current work but mark it as a possible candidate
 for rechartering once the initial CDNI solution is completed.

3.2. Content Acquisition of Content Collections

3.2.1. General Remarks

 In the previous section the relationship between file management and
 HAS in a CDNI scenario has been discussed. This section will discuss
 a related topic, which is content acquisition between two CDNs.

 With regards to content acquisition, it is important to note the
 difference between CDNs that do Dynamic Acquisition of content and
 CDNs that perform Content Pre-positioning. In the case of dynamic
 acquisition, a CDN only requests a particular content item when a
 cache-miss occurs. In the case of pre-positioning, a CDN pro-
 actively places content items on the nodes on which it expects
 traffic for that particular content item. For each of these types of
 CDNs, there might be a benefit in being HAS aware. For example, in
 the case of dynamic acquisition, being HAS aware means that after a
 cache miss for a giving chunk occurs, that node might not only
 acquire the requested chunk, but might also acquire some related
 chunks that are expected to be requested in the near future. In the
 case of pre-positioning, similar benefits can be had.

3.2.2. Candidate Approaches

3.2.2.1. Option 2.1: No HAS awareness

 This first option assumes no HAS awareness in both the involved CDNs
 and the CDNI Interfaces. Just as with Option 1.1 discussed in the
 previous section with regards to file management, having no HAS
 awareness means that the dCDN is not aware of the relationship
 between chunks. In the case of content acquisition, this means that
 each and every file belonging to a Content Collection will have to be
 individually acquired from the uCDN by the dCDN. The exception to
 the rule is in cases with fragmented content where the uCDN uses
 Manifest Files which contain byte range requests. In this case the
 dCDN can simply omit the byte range identifier and acquire the

van Brandenburg, et al. Expires July 12, 2013 [Page 15]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 complete file.

 The advantage of this approach is that it is highly flexible. If a
 client only requests a small portion of the chunks belonging to a
 particular Content Collection, the dCDN only has to acquire those
 chunks from the uCDN, saving both bandwidth and storage capacity.

 The downside of acquiring content on a per-chunk basis is that it
 creates more transaction overhead between the dCDN and uCDN compared
 to a method in which entire Content Collections can be acquired as
 part of one transaction.

 Effect on CDNI interfaces:

 o None

 Advantages/Drawbacks:

 + Per-chunk content acquisition allows for high level of flexibility
 between dCDN and uCDN

 - Per-chunk content acquisition creates more transaction overhead
 between dCDN and uCDN

3.2.2.2. Option 2.2: Allow single file acquisition of fragmented
 content

 As discussed in Section 3.2.2.1, there is one (fairly rare) case
 where fragmented content can be acquired as a single file without any
 HAS awareness and that is when fragmented content is used and where
 the Manifest File specifies byte range request. This section
 discusses how to perform single file acquisition in the other (very
 common) cases. To do so, the dCDN would have to have full-HAS
 awareness (at least to the extent of being able to map between single
 file and individual chunks to serve).

 Effect on CDNI interfaces:

 o CDNI Metadata Interface: Add fields for indicating the particular
 type of HAS (e.g. MPEG DASH or HLS) that is used and whether
 segments or fragments are used

 o CDNI Metadata Interface: Add field for indicating the name and
 type of the Manifest File(s)

 Advantages/Drawbacks:

van Brandenburg, et al. Expires July 12, 2013 [Page 16]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 + Allows for more efficient content acquisition in all HAS-specific
 supported forms

 - Requires full HAS awareness on part of dCDN

 - Requires significant CDNI Metadata Interface extensions

3.2.3. Recommendation

 Based on the listed pros and cons, the authors recommend the WG to go
 for Option 2.1 since it is sufficient to 'make HAS work'. While
 Option 2.2 would bring benefits to the acquisition of large Content
 Collections, it would require significant CDNI extensions which would
 impact the WG's milestones. Option 2.2 might be a candidate to
 include in possible rechartering once the initial CDNI solution is
 completed.

3.3. Request Routing of HAS content

3.3.1. General remarks

 In this section the effect HAS content has on request routing will be
 identified. Of particular interest in this case are the different
 types of Manifest Files that might be used. In Section 2.2, three
 different methods for identifying and addressing chunks from within a
 Manifest File were described: Relative URLs, Absolute URLs without
 Redirection and Absolute URLs with Redirection. Of course not every
 current CDN will use and/or support all three methods. Some CDNs may
 only use one of the three methods, while others may support two or
 all three.

 An important factor in deciding which chunk addressing method is used
 is the Content Provider. Some Content Providers may have a strong
 preference for a particular method and deliver the Manifest Files to
 the CDN in a particular way. Depending on the CDN and the agreement
 it has with the Content Provider, a CDN may either host the Manifest
 Files as they were created by the Content Provider, or modify the
 Manifest File to adapt it to its particular architecture (e.g. by
 changing relative URLs to Absolute URLs which point to the CDN
 Request Routing function).

3.3.2. Candidate approaches

3.3.2.1. Option 3.1: No HAS awareness

 This first option assumes no HAS awareness in both the involved CDNs
 and the CDNI Interfaces. This scenario also assumes that neither the
 dCDN nor the uCDN have the ability to actively manipulate Manifest

van Brandenburg, et al. Expires July 12, 2013 [Page 17]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 Files. As was also discussed with regards to file management and
 content acquisition, having no HAS awareness means that each file
 constituting a Content Collections is handled on an individual basis,
 with the dCDN unaware of any relationship between files.

 The only chunk addressing method that works without question in this
 case is Absolute URLs with Redirection. In other words, the Content
 Provider that ingested the content into the uCDN created a Manifest
 File with each chunk location pointing to the Request Routing
 function of the uCDN. Alternatively, the Content Provider may have
 ingested the Manifest File containing relative URLs and the uCDN
 ingestion function has translated these to Absolute URLs pointing to
 the Request Routing function.

 In this Absolute URL with Redirection case, the uCDN can simply have
 the Manifest File be delivered by the dCDN as if it were a regular
 file. Once the client parses the Manifest File, it will request any
 subsequent chunks from the uCDN Request Routing function. That
 function can then decide to outsource the delivery of that chunk to
 the dCDN. Depending on whether HTTP-based (recursive or iterative)
 or DNS-based request routing is used, the uCDN Request Routing
 function will then either directly or indirectly redirect the client
 to the Request Routing function of the dCDN (assuming it does not
 have the necessary information to redirect the client directly to a
 surrogate in the dCDN).

 The drawback of this method is that it creates a large amount of
 request routing overhead for both the uCDN and dCDN. For each chunk
 the full inter-CDN Request Routing process is invoked (which can
 result in two HTTP redirections in the case of iterative redirection,
 or result in one HTTP redirection plus one CDNI Request Routing/
 Redirection Interface request/response). Even in the case where DNS-
 based redirection is used, there might be significant overhead
 involved since both the dCDN and uCDN Request Routing function might
 have to perform database lookups and query each other. While with
 DNS this overhead might be reduced by using DNS' inherent caching
 mechanism, this will have significant impact on the accuracy of the
 redirect.

 With no HAS awareness, Relative URLs might or might not work
 depending on the type of Relative URL that is used. When a uCDN
 delegates the delivery of a Manifest File containing Relative URLs to
 a dCDN, the client goes directly to the dCDN surrogate from which it
 has received the Manifest File for every subsequent chunk. As long
 as the Relative URL is not path-absolute (see [RFC3986]), this
 approach will work fine.

 Since using Absolute URLs without Redirection inherently require a

https://datatracker.ietf.org/doc/html/rfc3986

van Brandenburg, et al. Expires July 12, 2013 [Page 18]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 HAS aware CDN, they also cannot be used in this case. The reason for
 this is that with Absolute URLs without Redirection, the URLs in the
 Manifest File will point directly to a surrogate in the uCDN. Since
 this scenario assumes no HAS awareness on the part of the dCDN or
 uCDN, it is impossible for either of these CDNs to rewrite the
 Manifest File and thus allow the client to either go to a surrogate
 in the dCDN or to a request routing function.

 Effect on CDNI interfaces:

 o None

 Advantages/Drawbacks:

 + Supports Absolute URLs with Redirection

 + Supports Relative URLs

 + Does not require HAS awareness and/or changes to the CDNI
 Interfaces

 - Not possible to use Absolute URLs without Redirection

 - Creates significant signaling overhead in case Absolute URLs with
 Redirection are used (inter-CDN request redirection for each
 chunk)

3.3.2.2. Option 3.2: Manifest File rewriting by uCDN

 While Option 3.1 does allow for Absolute URLs with Redirection to be
 used, it does so in a way that creates a high-level of request
 routing overhead for both the dCDN and the uCDN. This option
 presents a solution to significantly reduce this overhead.

 In this scenario, the uCDN is able to rewrite the Manifest File (or
 generate a new one) to be able to remove itself from the request
 routing chain for chunks being referenced in the Manifest File. As
 described in Section 3.3.2.1, in the case of no HAS awareness the
 client will go to the uCDN request routing function for each chunk
 request. This request routing function can then redirect the client
 to the dCDN request routing function. By rewriting the Manifest File
 (or generating a new one), the uCDN is able to remove this first
 step, and have the Manifest File point directly to the dCDN request
 routing function.

 A key advantage of this solution is that it does not directly have an
 impact on the CDNI Interfaces and is therefore transparent to these
 interfaces. It is a CDN-internal function that a uCDN can perform

van Brandenburg, et al. Expires July 12, 2013 [Page 19]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 autonomously by using information configured for regular CDNI
 operation or that is received from the dCDN as part of the regular
 communication using the CDNI Request Routing/Redirection Interface.

 More specifically, in order for the uCDN to rewrite the Manifest
 File, the minimum information needed is the location of the dCDN
 request routing function (or alternatively the location of the dCDN
 delivering surrogate). This information can be available from
 configuration or can be derived from the regular CDNI Request
 Routing/Redirection Interface. For example, the uCDN may ask the
 dCDN for the location of its request routing node (through the CDNI
 Request Routing/Redirection Interface) every time a request for a
 Manifest File is received and processed by the uCDN request routing
 function. The uCDN would then modify the Manifest File and deliver
 the Manifest File to the client. One advantage of this method is
 that it maximizes efficiency and flexibility by allowing the dCDN to
 optionally respond with the locations of its surrogates instead of
 the location of its request routing function (and effectively turning
 the URLs into Absolute URLs without Redirection). There are many
 variations around this approach, such as where the modification of
 the Manifest File in only performed once (or once per period of time)
 by the uCDN request routing function, when the first client for that
 particular Content Collection (and redirected to that particular
 dCDN) sends a Manifest File request. The advantage of such a
 variation is that the uCDN only has to modify the Manifest File once
 (or once per time period). The drawback of this variation is that
 the dCDN is no longer in a position to influence the request routing
 decision across individual content requests.

 It should be noted that there are a number of things to take into
 account when changing a Manifest File (see for example Section 2.3
 and Section 2.4 on live HAS content and ad insertion). Furthermore,
 some Content Providers might have issues with a CDN changing Manifest
 Files. However, in this option the Manifest File manipulation is
 only being performed by the uCDN, which can be expected to be aware
 of these limitations if it wants to perform Manifest File
 manipulation since it is in its own best interest that its customer's
 content gets delivered in the proper way and since there is a direct
 commercial and technical relationship between the uCDN (the
 Authoritative CDN in this scenario) and its customer (the Content
 Provider). Should the Content Provider want to limit Manifest File
 manipulation, it can simply arrange this with the uCDN bilaterally.

 Effect on CDNI interfaces:

 o None

 Advantages/Drawbacks:

van Brandenburg, et al. Expires July 12, 2013 [Page 20]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 + Possible to significantly decrease signaling overhead when using
 Absolute URLs.

 + (Optional) Possible to have uCDN rewrite the Manifest File with
 locations of surrogates in dCDN (turning Absolute URLs with
 Redirection in Absolute URLs without Redirection)

 + No changes to CDNI Interfaces

 + Does not require HAS awareness in dCDN

 - Requires high level of HAS awareness in uCDN (for modifying
 Manifest Files)

3.3.2.3. Option 3.3: Two-step Manifest File rewriting

 One of the possibilities with Option 3.2 is allowing the dCDN to
 provide the locations of a specific surrogate to the uCDN, so that
 the uCDN can fit the Manifest File with Absolute URLs without
 Redirection and the client can request chunks directly from a dCDN
 surrogate. However, some dCDNs might not be willing to provide this
 information to the uCDN. In that case they can only provide the uCDN
 with the location of their request routing function and thereby
 preventing use of Absolute URLs without Redirection.

 One method for solving this limitation is allowing two-step Manifest
 File manipulation. In the first step the uCDN would perform its own
 modification, and place the locations of the dCDN request routing
 function in the Manifest File. Then, once a request for the Manifest
 File comes in at the dCDN request routing function, it would perform
 a second modification in which it replaces the URLs in the Manifest
 Files with the URLs of its surrogates. This way the dCDN can still
 profit from having limited request routing traffic, while not having
 to share sensitive surrogate information with the uCDN.

 The downside of this approach is that it not only assumes HAS
 awareness in the dCDN but it also requires some HAS-specific
 additions to the CDNI Metadata Interface. In order for the dCDN to
 be able to change the Manifest File, it has to have some information
 about the structure of the content. Specifically, it needs to have
 information about which chunks make up the Content Collection.

 Effect on CDNI interfaces (apart from those already listed under
 Option 3.2):

 o CDNI Metadata Interface: Add necessary fields for conveying HAS
 specific information (e.g. the files that make up the Content
 Collection) to the dCDN.

van Brandenburg, et al. Expires July 12, 2013 [Page 21]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 o CDNI Metadata Interface: Allow dCDN to modify Manifest File

 Advantages/Drawbacks (apart from those already listed under Option
 3.2):

 + Allows dCDN to use Absolute URLs without Redirection without
 having to convey sensitive information to the uCDN

 - Requires high level of HAS awareness in dCDN (for modifying
 Manifest Files)

 - Requires adding HAS-specific and Manifest File manipulation
 specific information to the CDNI Metadata Interface

3.3.3. Recommendation

 Based on the listed pros and cons, the authors recommend to go for
 Option 3.1, with Option 3.2 as an optional feature that may be
 supported as a CDN-internal behavior by an uCDN. While Option 3.1
 allows for HAS content to be delivered using the CDNI interfaces, it
 does so with some limitations regarding supported Manifest Files and,
 in some cases, with large signaling overhead. Option 3.2 can solve
 most of these limitations and presents a significant reduction of the
 request routing overhead. Since Option 3.2 does not require any
 changes to the CDNI interfaces but only changes the way the uCDN uses
 the existing interfaces, supporting it is not expected to result in a
 significant delay of the WG's milestones. The authors recommend the
 WG to not include Option 3.3, since it raises some questions of
 potential brittleness and including it would result in a significant
 delay of the WG's milestones.

3.4. Logging

3.4.1. General remarks

 As stated in [RFC6707], "the CDNI Logging interface enables details
 of logs or events to be exchanged between interconnected CDNs".

 As discussed in [I-D.draft-bertrand-cdni-logging], the CDNI logging
 information can be used for multiple purposes including maintenance/
 debugging by uCDN, accounting (e.g. in view of billing or
 settlement), reporting and management of end-user experience (e.g. to
 the CSP), analytics (e.g. by the CSP) and control of content
 distribution policy enforcement (e.g. by the CSP).

 The key consideration for HAS with respect to logging is the
 potential increase of the number of Log records by two to three
 orders of magnitude, as compared to regular HTTP delivery of a video,

https://datatracker.ietf.org/doc/html/rfc6707
https://datatracker.ietf.org/doc/html/draft-bertrand-cdni-logging

van Brandenburg, et al. Expires July 12, 2013 [Page 22]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 since, by default, log records would typically be generated on a per-
 chunk-delivery basis instead of per-content-item-delivery basis.
 This impacts the scale of every processing step in the Logging
 Process (see [I-D.draft-bertrand-cdni-logging]), including:

 a. Logging information generation and storing on CDN elements
 (Surrogate, Request Routers,..)

 b. Logging information aggregation within a CDN

 c. Logging information manipulation (including information
 protection, filtering , update and rectification)

 d. (Where needed) Logging information CDNI reformatting (e.g.
 reformatting from CDN-specific format to the CDNI Logging
 Interface format for export by dCDN to uCDN)

 e. Logging exchange via CDNI Logging Interface

 f. (Where needed) Logging re-reformatting (e.g. reformatting from
 CDNI Logging Interface format into log-consuming specific
 application)

 g. Logging consumption/processing (e.g. feed logs into uCDN
 accounting application, feed logs into uCDN reporting system to
 provide per CSP views, feed logs into debugging tools)

 Note that there may be multiple instances of step [f] and [g] running
 in parallel.

 While the CDNI Logging Interface is only used to perform step [e], we
 note that its format directly affects step [d] and [f] and that its
 format also indirectly affects the other steps (for example if the
 CDNI Logging Interface requires per-chunk log records, step [a], [b]
 and [d] cannot operate on a per-HAS-session basis and they also need
 to operate on a per-chunk basis).

 This section discusses the main candidate approaches identified for
 CDNI in terms of dealing with HAS with respect to Logging.

3.4.2. Candidate Approaches

3.4.2.1. Option 4.1: "Do-Nothing" Approach

 In this approach nothing is done specifically for HAS so that each
 HAS-chunk delivery is considered, for CDNI Logging, as a standalone
 content delivery. In particular, a separate log record for each HAS-
 chunk delivery is included in the CDNI Logging Interface in step [e]

https://datatracker.ietf.org/doc/html/draft-bertrand-cdni-logging

van Brandenburg, et al. Expires July 12, 2013 [Page 23]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 (as defined in Section 3.4.1). This approach requires that step [a],
 [b], [c], [d] and [e] also be performed on a per-chunk basis. This
 approach allows [g] to be performed either on a per-chunk basis
 (assuming step [f] maintains per-chunk records) or on a more
 "summarized" manner such as per-HAS-Session basis (assuming step [f]
 summarizes per-chunk records into per-HAS-session records).

 Effect on CDNI interfaces:

 o None

 Advantages/Drawbacks:

 + No information loss (i.e. all details of each individual chunk
 delivery are preserved). While this full level of detail may not
 be needed for some Log consuming applications (e.g. billing), this
 full level of detail is likely valuable (possibly required) for
 some Log consuming applications (e.g. debugging)

 + Easier integration (at least in the short term) into existing
 Logging tools since those are all capable of handling per-chunk
 records

 + No extension needed on CDNI interfaces

 - High volume of logging information to be handled (storing &
 processing) at every step of the Logging process from [a] to [g]
 (while summarization in step [f] is conceivable, it may be
 difficult to achieve in practice without any hints for correlation
 in the log records).

 An interesting question is whether a dCDN could use the CDNI Logging
 interface specified for the "Do-Nothing" approach to report
 summarized "per-session" log information in the case where the dCDN
 performs such summarization. The high level idea would be that, when
 a dCDN performs HAS log summarization for its own purposes anyways,
 this dCDN could include, in the CDNI Logging interface, one (or a
 few) log entry for a HAS session (instead of one entry per HAS-chunk)
 that summarizes the deliveries of many/all HAS-chunk for a session.
 However, the authors feel that, when considering the details of this,
 this is not achievable without explicit agreement between the uCDN
 and dCDN about how to perform/interpret such summarization. For
 example, when a HAS session switches between representations, the
 uCDN and dCDN would have to agree on things such as:

 o whether the session will be represented by a single log entry
 (which therefore cannot convey the distribution across
 representations) or multiple log entries such as one entry per

van Brandenburg, et al. Expires July 12, 2013 [Page 24]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 contiguous period at a given representation (which therefore would
 be generally very difficult to correlate back into a single
 session)

 o what would the single URI included in the log entry correspond to?
 the Manifest/top-level-playlist/next-level-playlist,...

 The authors feel that since explicit agreement is needed between uCDN
 and dCDN on how to perform/interpret the summarization, then, to this
 can only work if specified as part of the CDNI Logging interface and
 then effectively boils down to Option 4.4 defined below ("Full HAS
 awareness/per-Session-Logs" Approach).

 We note that support by CDNI of a mechanism (independent of HAS)
 allowing the customization of the fields to be reported in log
 entries by the dCDN to the uCDN would have a mitigation effect on the
 HAS logging scaling concerns because it ensures that only the
 necessary subset of fields are actually stored, reported and
 processed.

3.4.2.2. Option 4.2: "CDNI Metadata Content Collection ID" Approach

 In this approach, a "Content Collection IDentifier (CCID)" field is
 distributed through the CDNI Metadata Interface and the same CCID
 value is associated through the CDNI Metadata interface with every
 chunk of the same Content Collection. The CCID value needs to be
 such that it allows, in combination with the content URI, to uniquely
 identify a Content Collection. When distributed, and CCID logging is
 requested from the dCDN, the dCDN Surrogates are to store the CCID
 value in the corresponding log entries. The objective of this field
 is to facilitate optional summarization of per-chunk records at step
 [f] into something along the lines of per-HAS-session logs, at least
 for the Log consuming applications that do not require per-chunk
 detailed information (for example billing).

 We note that, if the downstream CDN happens to have sufficient HAS
 awareness to be able to generate a "Session IDentifier (Session-ID)",
 optionally including such Session-ID (in addition to the CCID) in the
 per-chunk log record would further facilitate optional summarization
 performed at step [f]. The Session-ID value to be included in a log
 record by the delivering CDN is such that

 o different per-chunk log records with the same Session-ID value
 must correspond to the same user session (.i.e delivery of same
 content to same enduser at a given point in time).

 o log records for different chunks of the same user session (.i.e
 delivery of same content to same enduser at a given point in time)

van Brandenburg, et al. Expires July 12, 2013 [Page 25]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 should be provided with the same session-ID value. While
 undesirable, there may be situations where the delivering CDN uses
 more than one session-ID value for different per-chunk log records
 of a given session, for example in scenarios of fail-over or load-
 balancing across multiple Surrogates and where the delivering CDN
 does not implement mechanisms to synchronize session-IDs across
 Surrogates.

 Effect on CDNI interfaces:

 o CDNI Metadata interface: One additional metadata field (CCID) in
 CDNI Metadata Interface. We note that a similar Content
 Collection ID is discussed for handling of other aspects of HAS
 and observe that further thought is needed to determine whether
 such CCID should be shared for multiple purposes or should be
 independent.

 o CDNI Logging interface: Two additional fields (CCID and
 Session-ID) in CDNI Logging records.

 Advantages/Drawbacks:

 + No information loss (i.e. all details of each individual chunk
 delivery are preserved). While this full level of detail may not
 be needed for some Log consuming applications (e.g. billing), this
 full level of detail is likely valuable (possibly required) for
 some Log consuming applications (e.g. debugging)

 + Easier integration (at least in the short term) into existing
 Logging tools since those are all capable of handling per-chunk
 records

 + Very minor extension to CDNI interfaces needed

 + Facilitated summarization of records related to a HAS session in
 step [f] and therefore ability to operate on lower volume of
 logging information in step [g] by log consuming applications that
 do not need per-chunk record details (e.g. billing) or that need
 per-session information (e.g. analytics)

 - High volume of logging information to be handled (storing &
 processing) at every step of the Logging process from [a] to [f].

3.4.2.3. Option 4.3: "CDNI Logging Interface Compression" Approach

 In this approach, a loss-less compression technique is applied to the
 sets of Logging records (e.g. Logging files) for transfer on the
 IETF CDNI Logging Interface. The objective of this approach is to

van Brandenburg, et al. Expires July 12, 2013 [Page 26]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 reduce the volume of information to be stored and transferred in step
 [e].

 Effect on CDNI interfaces:

 o One additional compression mechanism to be included in the CDNI
 Logging Interface

 Advantages/Drawbacks:

 + No information loss (i.e. all details of each individual chunk
 delivery are preserved). While this full level of detail may not
 be needed for some Log consuming applications (e.g. billing), this
 full level of detail is likely valuable (possibly required) for
 some Log consuming applications (e.g. debugging)

 + Easier integration (at least in the short term) into existing
 Logging tools since those are all capable of handling per-chunk
 records

 + Small extension to CDNI interfaces needed

 + Reduced volume of logging information in step [e]

 + Compression likely to be also applicable to logs for non-HAS
 content

 - High volume of logging information to be handled (storing &
 processing) at every step of the Logging process from [a] to [g],
 except [e].

3.4.2.4. Option 4.4: "Full HAS awareness/per-Session-Logs" Approach

 In this approach, HAS-awareness is assumed across the CDNs
 interconnected via CDNI and the necessary information to describe the
 HAS relationship across all chunks of the same Content Collection is
 distributed through the CDNI Metadata Interface. In this approach,
 the dCDN Surrogates leverage the HAS information distributed through
 the CDNI metadata and their HAS-awareness to generate summarized
 logging information in the very first place (or alternatively, if
 per-chunk-logs are generated, to accurately correlate and summarize
 per-chunk-logs into per-session logs) for exchange over the CDNI
 Logging interface. The objective of that approach is to operate on
 lower volume of logging information as early as ppossible in the
 successives steps of the Logging process.

 Effect on CDNI interfaces:

van Brandenburg, et al. Expires July 12, 2013 [Page 27]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 o CDNI Metadata Interface: significant extension to convey HAS
 relationship across chunks of a Content Collection. Note that
 this extension requires specific support for every HAS-protocol to
 be supported over the CDNI mesh

 o CDNI Logging Interface: extension to specify summarized per-
 session logs

 Advantages/Drawbacks:

 + Lower volume of logging information to be handled (storing &
 processing) at every step of the Logging process from [a] to [g]

 + Accurate generation of summarized logs because of HAS awareness in
 dCDN (for example, where the Surrogate is also serving the
 Manifest File(s) for a content collection, the Surrogate may be
 able to extract definitive information about the relationship
 between all chunks)

 - Very significant extensions to CDNI interfaces needed including
 per HAS-protocol specific support

 - Very significant additional requirement for HAS awareness on dCDN
 and for this HAS-awareness to be consistent with the defined CDNI
 Logging summarization

 - Some information loss (i.e. all details of each individual chunk
 delivery are not preserved). The actual information loss depends
 on the summarization approach selected (typically the lower the
 information loss, the lower the summarization gain) so the right
 sweet-spot would had ego be selected. While full level of detail
 may not be needed for some Log consuming applications (e.g.
 billing), the full level of detail is likely valuable (possibly
 required) for some Log consuming applications (e.g. debugging)

 - Less easy integration (at least in the short term) into existing
 Logging tools since those are all capable of handling per-chunk
 records and may not be capable of handling CDNI summarized records

 - Challenges in defining behavior (and achieving summarization gain)
 in the presence of load-balancing of a given HAS-session across
 multiple Surrogates (in same or different dCDN)

3.4.3. Recommendation

 Because of its benefits (in particular simplicity, universal support
 by CDNs and support by all log-consuming applications), the authors
 recommend that the per-chunk logging of Option 4.1 be supported by

van Brandenburg, et al. Expires July 12, 2013 [Page 28]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 the CDNI Logging interface as a "High Priority" (as defined in
 [I-D.draft-ietf-cdni-requirements]) and be a mandatory capability of
 CDNs implementing CDNI.

 Because of its very low complexity and its benefits in facilitating
 some useful scenarios (e.g. per-session analytics), we recommend that
 the CCID mechanisms and Session-ID mechanism of Option 4.2 be
 supported by the CDNI Metadata interface and the CDNI Logging
 interface as a "Medium Priority" (as defined in
 [I-D.draft-ietf-cdni-requirements]) and be an optional capability of
 CDNs implementing CDNI.

 The authors also recommend that:

 (i) the ability for the uCDN to request that the CCID and Session-ID
 field be included in log entries provided by the dCDN be supported
 by the relevant CDNI interfaces, and

 (ii) the ability for the dCDN to include the CCID field and
 SEssion-ID in CDNI log entries (when the dCDN is capable of doing
 so) and indicate so inside the CDNI Logging interface (in line
 with the "customizable" log format expected to be defined
 independently of HAS),

 be supported as a "Medium Priority" (as defined in
 [I-D.draft-ietf-cdni-requirements]) and be an optional capability of
 CDNs implementing CDNI.

 When performing dCDN selection, an uCDN may want to take into account
 whether a given dCDN is capable of reporting the CCID and session-ID.
 Thus, the authors recommend that the ability for a dCDN to advertise
 its support of the optional CCID and SessionID capability be
 supported by the CDNI request Routing /Footprint and Capabilities
 Advertisment Interface as a "Medium Priority" (as defined in
 [I-D.draft-ietf-cdni-requirements]).

 The authors alos recommend that a generic mechanism (independent of
 HAS) be supported allowing te customization of the fields to be
 reported in logs by CDNs over the CDNI Logging Interface because of
 the reduction of the logging information volume exchanged across CDNs
 by removing the information that is not of interest to teh other CDN.

 Because it can be achieved with very little complexity and it
 provides some clear storage/communication compression benefits, the
 authors recommend that, in line with the concept of Option 4.3, some
 existing very common compression techniques (e.g. gzip) be supported
 by the CDNI Logging interface as a "Medium Priority" (as defined in
 [I-D.draft-ietf-cdni-requirements]) and be an optional capability of

https://datatracker.ietf.org/doc/html/draft-ietf-cdni-requirements
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-requirements
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-requirements
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-requirements
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-requirements

van Brandenburg, et al. Expires July 12, 2013 [Page 29]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 CDNs implementing CDNI.

 Because of its complexity, the time it would take to understand the
 trade-offs of candidate summarization approaches and the time it
 would take to specify the corresponding support in the CDNI Logging
 interface, the authors recommend that the log summarization discussed
 in option 4.4 not be supported by the CDNI Logging interface at this
 stage and be kept as a candidate topic of great interest for a
 rechartering of the CDNI WG once the first set of deliverables is
 produced. When doing so, we suggest to investigate the notion of
 complementing the "push-style" CDNI logging interface supporting
 summarization by an on-demand pull-type of interface allowing an uCDN
 to request the subset of the detailed logging information that it may
 need but is lost in the summarized pushed information.

 The authors note that while a CDN only needs to adhere to the CDNI
 Logging interface on its external interfaces and can perform logging
 in a different format within the CDN, any possible CDNI Logging
 approach effectively places some constraints on the dCDN logging
 format. For example, to support the "Do-Nothing" Approach, a CDN
 need to perform and retain per chunk logs. As another example, to
 support the "Full HAS awareness/per-Session-Logs" Approach, the dCDN
 cannot operate on logging format that summarize "more than" or "in an
 incompatible way with" the summarization specified for CDNI Logging.
 However, the authors feel such constraints are (i) inevitable, (ii)
 outweighed by the benefits of a standardized logging interface and
 (iii) acceptable because in case of incompatible summarization, all/
 most CDNs are capable of reverting to per-chunk logging as per the
 Do-Nothing Approach that we recommend as the base mandatory approach.

3.5. URL Signing

 URL Signing is an authorization method for content delivery. This is
 based on embedding the HTTP URL with information that can be
 validated to ensure the request has legitimate access to the content.
 There are two parts: 1) parameters that convey authorization
 restrictions (e.g. source IP address and time period) and/or
 protected URL portion, and 2) message digest that confirms the
 integrity of the URL and authenticates the URL creator. The
 authorization parameters can be anything agreed upon between the
 entity that creates the URL and the entity that validates the URL. A
 key is used to generate the message digest (i.e. sign the URL) and
 validate the message digest. The two functions may or may not use
 the same key.

 There are two types of keys used for URL Signing: asymmetric keys and
 symmetric key. Asymmetric keys always have a key pair made up of a
 public key and private key. The private key and public key are used

van Brandenburg, et al. Expires July 12, 2013 [Page 30]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 for signing and validating the URL, respectively. A symmetric key is
 the same key that is used for both functions. Regardless of the type
 of key, the entity that validates the URL has to obtain the key.
 Distribution for the symmetric key requires security to prevent
 others from taking it. Public key can be distributed freely while
 private key is kept by the URL signer. The method for key
 distribution is out of scope.

 URL Signing operates in the following way. A signed URL is provided
 by the content owner (i.e. URL signer) to the user during website
 navigation. When the user selects the URL, the HTTP request is sent
 to the CDN which validates that URL before delivering the content.

3.5.1. HAS Implications

 The authorization lifetime for URL Signing is affected by HAS. The
 expiration time in the authorization parameters of URL Signing limits
 the period that the content referenced by the URL can be accessed.
 This works for URL that directly access the media content. But for
 HAS content, the Manifest File contains another layer of URL that
 reference the chunks. The chunk URL that's embedded in the content
 may be requested at an indeterminate amount of time later. The time
 period between access to the Manifest File and chunk retrieval may
 vary significantly. The type of content (i.e. Live or VoD) impacts
 the time variance as well. HAS content has this property that needs
 to be addressed for URL Signing.

3.5.2. CDNI Considerations

 For CDNI, the two types of request routing are DNS-based and HTTP-
 based. The use of symmetric vs. asymmetric key for URL Signing has
 implications on the trust model between CSP and CDNs and the key
 distribution method that can be used.

 DNS-based request routing does not change the URL. In the case of
 symmetric key, the CSP and the Authoritative CDN have a business
 relationship that allows them to share a key (or multiple keys) for
 URL Signing. When the user request a content from the Authoritative
 CDN, the URL is signed by the CSP. The Authorititative CDN (as a
 Upstream CDN) redirects the request to a Downstream CDN via DNS.
 There may be more than one level of redirection to reach the
 Delivering CDN. The user would obtain the IP address from DNS and
 send the HTTP request to the Delivering CDN, which needs to validate
 the URL. This requires the key to be distributed from Authoritative
 CDN to the Delivering CDN. This may be problematic when the key is
 exposed to the Delivering CDN that does not have relationship with
 the CSP. The combination of DNS-based request routing and symmetric
 key function is a generic issue for URL Signing and not specific to

van Brandenburg, et al. Expires July 12, 2013 [Page 31]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 HAS content. In the case of asymmetric keys, CSP signs URL with its
 private key. The Delivering CDN validates the URL with the
 associated public key.

 HTTP request routing changes the URL during redirection procedure.
 In the case of symmetric key, CSP signs the original URL with the
 same key used by the Authoritative CDN to validate the URL. The
 Authoritative CDN (as a Upstream CDN) redirects the request to the
 Downstream CDN. The new URL is signed by the Upstream CDN with the
 same key used by the Downstream CDN to validate that URL. The key
 used by the Upstream CDN to validate the original URL is expect to be
 different than the key used to sign the new URL. In the case of
 asymmetric keys, CSP signs the original URL with its private key.
 Authoritative CDN validates that URL with the CSP's public key. The
 Authoritative CDN redirects the request to the Downstream CDN. The
 new URL is signed by the Upstream CDN with its private key. The
 Downstream CDN validates that URL with the Upstream CDN's public key.
 There may be more than one level of redirection to reach the
 Delivering CDN. The URL Signing operation described previously
 applies at each level between the Upstream CDN and Downstream CDN for
 both the symmetric key and asymmetric keys cases.

 URL Signing requires support in most of the CDNI Interfaces. The
 CDNI Metadata interface should specify the content that is subject to
 URL signing and provide information to perform the function. The
 Downstream CDN should inform the Upstream CDN that it supports URL
 Signing in the asynchronous capabilities information advertisement as
 part of the Request Routing interface. This allows the CDN selection
 function in request routing to choose the Downstream CDN with URL
 signing capability when the CDNI metadata of the content requires
 this authorization method. The Logging interface provides
 information on the authorization method (e.g. URL Signing) and
 related authorization parameters used for content delivery. Having
 the information in the URL is not sufficient to know that the
 surrogate enforced the authorization. URL Signing has no impact on
 the Control interface.

3.5.3. Option 5.1: Do Nothing

 "Do Nothing" approach means that CSP can only perform URL Signing for
 the top level Manifest File. The top level Manifest File contains
 chunk URLs or lower level Manifest File URLs, which are not modified
 (i.e. no URL Signing for the embedded URLs). In essence, the lower
 level Manifest Files and chunks are delivered without content access
 authorization.

 Effect on CDNI interfaces:

van Brandenburg, et al. Expires July 12, 2013 [Page 32]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 o None

 Advantages/Drawbacks:

 + Top level Manifest File access is protected

 + Upstream CDN and Downstream CDN do not need to be aware of HAS
 content

 - Lower level Manifest Files and chunks are not protected, making
 this approach unqualified for content access authorization

3.5.4. Option 5.2: Flexible URL Signing by CSP

 In addition to URL Signing for the top level Manifest File, CSP
 performs flexible URL Signing for the lower level Manifest Files and
 chunks. For each HAS session, the top level Manifest File contains
 signed chunk URLs or signed lower level Manifest File URLs for the
 specific session. The lower level Manifest File contains session-
 based signed chunk URLs. CSP generates the Manifest Files
 dynamically for the session. The chunk (segment/fragment) is
 delivered with content access authorization using flexible URL
 Signing which protects the invariant portion of the URL. Segment URL
 (e.g. HLS) is individually signed for the invariant URL portion
 (Relative URL) or the entire URL (Absolute URL without Redirection)
 in the Manifest File. Fragment URL (e.g. Smooth Streaming) is
 signed for the invariant portion of the template URL in the Manifest
 File. More details are provided later in this section. The URL
 Signing expiration time for the chunk needs to be long enough to play
 the video. There are implications of signing the URLs in the
 Manifest File. For Live content, the Manifest Files are requested at
 a high frequency. For VoD content, the Manifest File may be quite
 large. URL Signing can add more computational load and delivery
 latency in high volume cases.

 For HAS content, the Manifest File contains the Relative Locator,
 Absolute Locator without Redirection, or Absolute Locator with
 Redirection for specifying the chunk location. Signing the chunk URL
 requires CSP to know the portion of the URL that remains when the
 content is requested from the Delivery CDN surrogate.

 For Absolute URL without Redirection, the CSP knows that the chunk
 URL which is explicitly linked with the delivery CDN surrogate and
 can sign the URL based on that information. Since the entire URL is
 set and does not change, the surrogate can validate the URL. The CSP
 and the Delivery CDN are expected to have a business relationship in
 this case. So either symmetric key or asymmetric keys can be used
 for URL Signing.

van Brandenburg, et al. Expires July 12, 2013 [Page 33]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 For Relative URL, the URL of the Manifest File provides the root
 location. The method of request routing affects the URL used to
 ultimately request the chunk from the Delivery CDN surrogate. For
 DNS, the original URL does not change. This allows CSP to sign the
 chunk URL based on the Manifest File URL and the Relative URL. For
 HTTP, the URL changes during redirection. In this case, CSP does not
 know the redirected URL that will be used to request the Manifest
 File. This uncertainty makes it impossible to accurately sign the
 chunk URLs in the Manifest File. Basically, URL Signing using this
 reference method, "as is" for entire URL protection, is not
 supported. However, instead of signing the entire URL, the CSP signs
 the Relative URL (i.e. invariant portion of the URL) and conveys the
 protected portion in the authorization parameters embedded in the
 chunk URL. This approach works the same way as Absolute URL without
 Redirection, except the HOST part and (part of) the PATH part of the
 URL are not signed and validated. The security level should remain
 the same as content access authorization ensures that the user that
 requested the content has the credentials. This scheme does not seem
 to compromise the authorization model since the resource is still
 protected by the authorization parameters and message digest.
 Perhaps, further evaluation on security would be helpful.

 For Absolute URL with Redirection, the method of request routing
 affects the URL used to ultimately request the chunk from the
 Delivery CDN surrogate. This case has the same conditions as the
 Relative URL. The difference is that the URL is for the chunk
 instead of the Manifest File. For DNS, the chunk URL does not change
 and can be signed by the CSP. For HTTP, the URL used to deliver the
 chunk is unknown to the CSP. In this case, CSP cannot sign the URL
 and this method of reference for the chunk is not supported.

 Effect on CDNI interfaces:

 o Requires the ability to exclude the variant portion of URL in the
 signing process (NOTE: Issue is specific to URL Signing support
 for HAS content and not CDNI?)

 Advantages/Drawbacks:

 + Manifest File and chunks are protected

 + Upstream CDN and Downstream CDN do not need to be aware of HAS
 content

 + DNS-based request routing with asymmetric keys and HTTP-based
 request routing for Relative URL and Absolute URL without
 Redirection works

van Brandenburg, et al. Expires July 12, 2013 [Page 34]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 - CSP has to generate Manifest Files with session-based signed URLs
 and becomes involved in content access authorization for every HAS
 session

 - Manifest Files are not cacheable

 - DNS-based request routing with symmetric key may be problematic
 due to need for transitive trust between CSP and Delivery CDN

 - HTTP-based request routing for Absolute URL with Redirection does
 not work because the URL used Delivery CDN surrogate is unknown to
 the CSP

3.5.5. Option 5.3: Flexible URL Signing by Upstream CDN

 This is similar to the previous section, with the exception that the
 Upstream CDN performs flexible URL for the lower level Manifest Files
 and chunks. URL Signing for the top level Manifest File is still
 provided by the CSP.

 Effect on CDNI interfaces:

 o Requires the ability to exclude the variant portion of URL in the
 signing process (NOTE: Issue is specific to URL Signing support
 for HAS content and not CDNI?)

 Advantages/Drawbacks:

 + Manifest File and chunks are protected

 + CSP does not need to be involved in content access authorization
 for every HAS session

 + Downstream CDN does not need to be aware of HAS content

 + DNS-based request routing with asymmetric keys and HTTP-based
 request routing for Relative URL and Absolute URL without
 Redirection works

 - Upstream CDN has to generate Manifest Files with session-based
 signed URLs and becomes involved in content access authorization
 for every HAS session

 - Manifest Files are not cacheable

van Brandenburg, et al. Expires July 12, 2013 [Page 35]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 - Manifest File needs to be distributed through the uCDN

 - DNS-based request routing with symmetric key may be problematic
 due to need for transitive trust between uCDN and non-adjacent
 Delivery CDN

 - HTTP-based request routing for Absolute URL with Redirection does
 not work because the URL used Delivery CDN surrogate is unknown to
 the uCDN

3.5.6. Option 5.4: Authorization Group ID and HTTP Cookie

 Based on the Authorization Group ID metadata, CDN validates the URL
 Signing or validates the HTTP cookie for request of content in the
 group. CSP performs URL Signing for the top level Manifest File.
 The top level Manifest File contains lower level Manifest File URLs
 or chunk URLs. The lower level Manifest Files and chunks are
 delivered with content access authorization using HTTP cookie that
 contains session state associated with authorization of the top level
 Manifest File. The Group ID Metadata is used to associate the
 related content (i.e. Manifest Files and chunks). It also specifies
 content (e.g. regexp method) that needs to be validated by either URL
 Signing or HTTP cookie. Note that the creator of the metadata is
 HAS-aware. Duration of the chunk access may be included in the URL
 Signing of the top level Manifest File and set in the cookie.
 Alternatively, the access control duration could be provided by the
 CDNI Metadata interface.

 Effect on CDNI interfaces:

 o CDNI Metadata Interface - Authorization Group ID metadata
 identifies the content that is subject to validation of URL
 Signing or validation of HTTP cookie associated with the URL
 Signing

 o CDNI Logging Interface - Report the authorization method used to
 validate the request for content delivery

 Advantages/Drawbacks:

 + Manifest File and chunks are protected

 + CDN does not need to be aware of HAS content

 + CSP does not need to change the Manifest Files

van Brandenburg, et al. Expires July 12, 2013 [Page 36]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 - Authorization Group ID metadata is required (i.e. CDNI Metadata
 Interface enhancement)

 - Requires the use of HTTP cookie which may not be acceptable in
 some environments (e.g. where some targeted User-Agents do not
 support HTTP Cookie)

 - Manifest File has to be delivered by surrogate

3.5.7. Option 5.5: HAS-awareness with HTTP Cookie in CDN

 CDN is aware of HAS content and uses URL Signing and HTTP cookie for
 content access authorization. URL Signing is fundamentally about
 authorizing access to a Content Item or its specific Content
 Collections (representations) for a specific user during a time
 period with possibly some other criteria. A chunk is an instance of
 the sets of chunks referenced by the Manifest File for the Content
 Item or its specific Content Collections. This relationship means
 that once the Downstream CDN has authorized the Manifest File, it can
 assume that the associated chunks are implicitly authorized. The new
 function for the CDN is to link the Manifest File with the chunks for
 the HTTP session. This can be accomplished by using an HTTP cookie
 for the HAS session.

 After validating the URL and detecting that the requested content is
 a top level Manifest File, the delivery CDN surrogate sets a HTTP
 cookie with a signed session token for the HTTP session. When a
 request for a lower level Manifest File or chunk arrives, the
 surrogate confirms that the HTTP cookie value contains the correct
 session token. If so, the lower level Manifest File or chunk is
 delivered due to transitive authorization property. Duration of the
 chunk access may be included in the URL Signing of the top level
 Manifest File and set in the cookie. The details of the operation
 are left to be determined later.

 Effect on CDNI interfaces:

 o CDNI Metadata Interface - New metadata identifies the content that
 is subject to validation of URL Signing and information in the
 cookie for the type of HAS content

 o Request Routing interface - Downstream CDN should inform the
 Upstream CDN that it supports URL Signing for known HAS content
 types in the asynchronous capabilities information advertisement.
 This allows the CDN selection function in request routing to
 choose the appropriate Downstream CDN when the CDNI metadata
 identifies the content

van Brandenburg, et al. Expires July 12, 2013 [Page 37]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 o CDNI Logging Interface - Report the authorization method used to
 validate the request for content delivery

 Advantages/Drawbacks:

 + Manifest File and chunks are protected

 + CSP does not need to change the Manifest Files

 - Requires full HAS awareness on part of Upstream CDN and Downstream
 CDN

 - Requires CDNI Interfaces extensions

 - Requires the use of HTTP cookie which may not be acceptable in
 some environments (e.g. where some targeted User-Agents do not
 support HTTP Cookie)

 - Manifest File has to be delivered by surrogate

3.5.8. Option 5.6: HAS-awareness with Manifest in CDN

 CDN is aware of HAS content and uses URL Signing for content access
 authorization of Manifest File and chunk. CDN generates or rewrites
 the Manifest Files and learns about the chunks based on the Manifest
 File. The embedded URLs in the Manifest File are signed by the CDN.
 Duration of the chunk access may be included in the URL Signing. The
 details of the operation are left to be determined later. Since this
 approach is based on signing the URLs in the Manifest File, the
 implications for Live and VoD content mentioned in Section 3.5.4
 apply.

 Effect on CDNI interfaces:

 o CDNI Metadata Interface - New metadata identifies the content that
 is subject to validation of URL Signing and information in the
 cookie for the type of HAS content

 o Request Routing interface - Downstream CDN should inform the
 Upstream CDN that it supports URL Signing for known HAS content
 types in the asynchronous capabilities information advertisement.
 This allows the CDN selection function in request routing to
 choose the appropriate Downstream CDN when the CDNI metadata
 identifies the content

 o CDNI Logging Interface - Report the authorization method used to
 validate the request for content delivery

van Brandenburg, et al. Expires July 12, 2013 [Page 38]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 Advantages/Drawbacks:

 + Manifest File and chunks are protected

 + CSP does not need to change the Manifest Files

 - Requires full HAS awareness on part of Upstream CDN and Downstream
 CDN

 - Requires CDNI Interfaces extensions

 - Requires CDN to generate or rewrite the Manifest File

 - Manifest File has to be delivered by surrogate

3.5.9. Recommendation

 The authors consider that Option 5.1 (Do Nothing) is not suitable for
 access control of HAS content.

 Where the HTTP Cookie mechanism is supported by the targeted User-
 Agents and the security requirements can be addressed through proper
 use of HTTP Cookies, the authors recommend use of Option 5.4
 (Authorization Group ID with HTTP Cookie) and therefore be supported
 by the CDNI solution. This method does not require manifest file
 manipulation which may be a significant deployment obstacle.
 Otherwise, the authors recommend that Option 5.2 (Flexible URL
 Signing by the CSP) or Option 5.3 (Flexible URI Signing by the
 Upstream CDN) be used and therefore that flexible URI be supported by
 the CDNI solution. Option 5.2 and Option 5.3 protect all the
 content, does not require Downstream CDN to be aware of HAS, does not
 impact CDNI interfaces, supports all different types of devices, and
 supports the common cases of request routing for HAS content (i.e.
 DNS-based request routing with asymmetric keys and HTTP-based request
 routing for Relative URL).

 HAS-awareness in CDN (Option 5.5 and Option 5.6) have some advantages
 that should be considered for future support (e.g. CDN that is aware
 of HAS content can manage the content more efficiently at a broader
 context. Content distribution, storage, delivery, deletion, access
 authorization, etc. can all benefit.). Including HAS-awareness as
 part of the current CDNI charter, however, would almost certainly
 delay the CDNI WG's milestones, and the authors therefore do not
 recommend it right now.

van Brandenburg, et al. Expires July 12, 2013 [Page 39]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

3.6. Content Purge

 At some point in time, a uCDN might want to remove content from a
 dCDN. With regular content, this process can be relatively
 straightforward; a uCDN will typically send the request for content
 removal to the dCDN including a reference to the content which it
 wants to remove (e.g. in the form of a URL). Due to the fact that
 HAS content consists of large groups of files however, things might
 be more complex. Section 3.1 describes a number of different
 scenarios for doing file management on these groups of files, while

Section 3.2 list the options for performing Content Acquisition on
 these Content Collections. This section will present the options for
 requesting a Content Purge for the removal of a Content Collection
 from a dCDN.

3.6.1. Option 6.1: No HAS awareness

 The most straightforward way to signal content purge requests is to
 just send a single purge request for every file that makes up the
 Content Collection. While this method is very simple and does not
 require HAS awareness, it obviously creates a signaling overhead
 between the uCDN and dCDN since a reference is to be provided for
 each content chunk to be purged.

 Effect on CDNI interfaces:

 o None

 Advantages/Drawbacks (apart from those listed under Option 3.3):

 + Does not require changes to the CDNI Interfaces or HAS awareness

 - Requires individual purge request for every file making up a
 Content Collection (or, alternatively, requires the ability to
 convey references to all the chunks making up a Content Collection
 inside a purge request) which creates signaling overhead

3.6.2. Option 6.2: Purge Identifiers

 There exists a potentially more efficient method for performing
 content removal of large numbers of files simultaneously. By
 including a "Purge IDentifier (Purge-ID)" in the metadata of a
 particular file, it is possible to virtually group together different
 files making up a Content Collection. A Purge-ID can take the form
 of an arbitrary number or string which is communicated as part of the
 CDNI Metadata Interface and which is the same for all files making up
 a particular Content Item, and different across different Content
 Items. If a uCDN wants to request the dCDN to remove a Content

van Brandenburg, et al. Expires July 12, 2013 [Page 40]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 Collection, it can send a purge request containing this Purge-ID.
 The dCDN can then remove all files that share the corresponding
 Purge-ID.

 The advantage of this method is that it is relatively simple to use
 by both the dCDN and uCDN and requiring only limited additions to the
 CDNI Metadata Interface and CDNI Control Interface.

 The Purge-ID is similar to the Content Collection ID discussed in
Section 3.4.2.2 for handling HAS Logging and we note that further

 thought is needed to determine whether the CCID and Purge-ID should
 be collapsed into a single element or remain separate elements.

 Effect on CDNI interfaces:

 o CDNI Metadata Interface: Add metadata field for indicating
 Purge-ID

 o CDNI Control Interface: Add functionality to convey a Purge-ID in
 purge requests

 Advantages/Drawbacks:

 + Allows for efficient purging of content from a dCDN

 + Does not require HAS awareness on part of dCDN

3.6.3. Recommendation

 Based on the listed pros and cons, the authors recommend the WG to
 have mandatory support Option 1.1, the 'Do Nothing'-approach. In
 addition, because of its very low complexity and its benefit in
 facilitating low-overhead purge of large numbers of content items
 simultaneously, the authors recommend that the Purge IDdentifier of
 Option 6.2 be supported as an optional feature by the CDNI Metadata
 interface and the CDNI Control interface.

3.7. Other issues

 This section includes some HAS-specific issues that came up during
 the discussion of this draft and which do not fall under any of the
 categories discussed in the previous sections.

 - As described in Section 2.2, a Manifest File might either be
 delivered by a CDN or by the CSP, thereby being invisible to the
 CDN delivering the chunks. Obviously, the decision on whether the
 CDN or CSP delivers the Manifest File is made between the uCDN and
 CSP, and the dCDN has no choice in the matter. However, some

van Brandenburg, et al. Expires July 12, 2013 [Page 41]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 dCDNs might only want to offer their services in the cases where
 they have access to the Manifest File (e.g. because their internal
 architecture is based around the knowledge inside the Manifest
 File). For these cases, it might be useful to include a field in
 the CDNI Capability Advertisement to allow dCDNs to advertise the
 fact that they require access to the Manifest File.

4. IANA Considerations

 This document makes no request of IANA.

5. Security Considerations

 This document does not discuss security issues around HTTP or HAS
 delivery. Those are expected to be discussed in the CDNI WG
 documents including [I-D.ietf-cdni-framework].

6. Acknowledgements

 The authors would like to thank Kevin Ma, Stef van der Ziel, Bhaskar
 Bhupalam, Mahesh Viveganandhan, Larry Peterson, Ben Niven-Jenkins and
 Matt Caulfield for their valuable contributions to this document.

7. References

7.1. Normative References

 [RFC6707] Niven-Jenkins, B., Le Faucheur, F., and N. Bitar, "Content
 Distribution Network Interconnection (CDNI) Problem
 Statement", RFC 6707, September 2012.

7.2. Informative References

 [I-D.draft-bertrand-cdni-logging]
 Bertrand, G., Ed. and E. Stephan, "CDNI Logging
 Interface".

 [I-D.draft-ietf-cdni-requirements]
 Leung, K. and Y. Lee, "Content Distribution Network
 Interconnection (CDNI) Requirements,

draft-ietf-cdni-requirements-03", June 2012.

 [I-D.ietf-cdni-framework]
 Peterson, L. and B. Davie, "Framework for CDN

https://datatracker.ietf.org/doc/html/rfc6707
https://datatracker.ietf.org/doc/html/draft-bertrand-cdni-logging
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-requirements
https://datatracker.ietf.org/doc/html/draft-ietf-cdni-requirements-03

van Brandenburg, et al. Expires July 12, 2013 [Page 42]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 Interconnection", draft-ietf-cdni-framework-02 (work in
 progress), December 2012.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax, RFC3986",
 January 2005.

Authors' Addresses

 Ray van Brandenburg
 TNO
 Brassersplein 2
 Delft 2612CT
 the Netherlands

 Phone: +31-88-866-7000
 Email: ray.vanbrandenburg@tno.nl

 Oskar van Deventer
 TNO
 Brassersplein 2
 Delft 2612CT
 the Netherlands

 Phone: +31-88-866-7000
 Email: oskar.vandeventer@tno.nl

 Francois Le Faucheur
 Cisco Systems
 Greenside, 400 Avenue de Roumanille
 Sophia Antipolis 06410
 France

 Phone: +33 4 97 23 26 19
 Email: flefauch@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-cdni-framework-02
https://datatracker.ietf.org/doc/html/rfc3986

van Brandenburg, et al. Expires July 12, 2013 [Page 43]

Internet-Draft HTTP Adaptive streaming and CDNI January 2013

 Kent Leung
 Cisco Systems
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Phone: +1 408-526-5030
 Email: kleung@cisco.com

van Brandenburg, et al. Expires July 12, 2013 [Page 44]

