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Abstract

   This informational document defines and explains the specification of
   the queue protection algorithm used in DOCSIS 3.1.  It is believed
   this algorithm will be useful in scenarios other than DOCSIS.  A
   shared low latency queue relies on the non-queue-building behaviour
   of every traffic flow using it.  However, some flows might not take
   such care, either accidentally or maliciously.  If a queue is about
   to exceed a threshold level of delay, the queue protection algorithm
   can rapidly detect the flow(s) most likely to be responsible.  It can
   then prevent selected packets of these flows (or whole flows) from
   harming the queuing delay of other traffic in the low latency queue.
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   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   This informational document defines and explains the specification of
   the queue protection (QProt) algorithm used in DOCSIS 3.1
   [DOCSIS3.1].  It is believed this algorithm will be useful in
   scenarios other than DOCSIS.

   Low queuing delay depends on hosts sending their data smoothly either
   at low rate or responding to explicit congestion notifications (ECN).
   So low latency is something hosts create themselves, not something
   the network gives them.  Therefore, there is no incentive for flows
   to mis-mark their packets for the low latency queue, However, traffic
   from an application that does not behave in a non-queue-building way
   might erroneously be classified into a low latency queue, whether
   accidentally or maliciously.  QProt prevents such erroneous behavior
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   from harming the queuing delay of other traffic in the low latency
   queue.

   In normal scenarios without misclassified traffic, QProt does not
   intervene at all in the classification or forwarding of packets.

   An overview of how low latency support has been added to DOCSIS is
   given in [I-D.white-tsvwg-lld].  In each direction of a DOCSIS link
   (upstream and downstream), there are two queues: one for Low Latency
   and one for Classic traffic, in an arrangement similar to the IETF's
   Coupled DualQ AQM [I-D.ietf-tsvwg-aqm-dualq-coupled].  The Classic
   queue is intended for traffic such as traditional (Reno/Cubic) TCP
   that needs about a round trip of buffering to fully utilize the link,
   and therefore has no incentive to mismark itself as low latency.  The
   QProt function is located at the ingress to the Low Latency queue.
   Therefore, in the upstream QProt is located on the cable modem (CM),
   and in the downstream it is located on the cable CMTS (CM Termination
   System).  If an arriving packet triggers queue protection, the DOCSIS
   algorithm reclassifies the packet from the Low Latency queue into the
   Classic queue.

   If QProt is used in settings other than DOCSIS, it would be a simple
   matter to detect queue-building flows by using slightly different
   conditions, and/or trigger a different action as a consequence, as
   appropriate for the scenario, e.g. dropping instead of reclassifying
   packets or perhaps accumulating a second per-flow score to decide
   whether to redirect a whole flow rather than just certain packets.

   The algorithm is based on a principled approach to quantifying how
   much each user contributes to congestion, which is used in economics
   to allocate responsibility for the cost of one party's behaviour on
   others (the economic externality).  Another important feature of the
   approach is that the metric used for the queuing score is based on
   the same variable that determines the level of ECN signalling seen by
   the sender [RFC8311], [I-D.ietf-tsvwg-ecn-l4s-id].  This transparency
   is necessary to be able to objectively state (in Section 3) how a
   flow can keep on the 'good' side of the algorithm.

1.1.  Document Roadmap

   The core of the document is the walk-through of the DOCSIS QProt
   algorithm's pseudocode in Section 4.

   Prior to that, two brief sections provide a "bluffer's guide to
   QProt" which should suffice for those who do not need the details or
   the insights.  Section 2 summarizes the approach used in the
   algorithm.  Then Section 3 considers QProt from the perspective of
   the end-system, by defining the behaviour that a flow needs to comply

https://datatracker.ietf.org/doc/html/rfc8311
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   with to avoid the QProt algorithm ejecting its packets from the low
   latency queue.

Section 5 gives deeper insight into the principles and rationale
   behind the algorithms.  Then Section 6 explains the limitations of
   the approach, followed by the usual closing sections.

1.2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].  In this
   document, these words will appear with that interpretation only when
   in ALL CAPS.  Lower case uses of these words are not to be
   interpreted as carrying RFC-2119 significance.

   The normative language for the DOCSIS QProt algorithm is in the
   DOCSIS 3.1 specifications [DOCSIS3.1], [DOCSIS3.1-CM-OSS],
   [DOCSIS3.1-CCAP-OSS] not in this informational guide.

   The following terms and abbreviations are used:

   CM:  Cable Modem

   CMTS:  CM Termination System

   Congestion-rate:  The rate at which a flow induces ECN-marked (or
      dropped) bytes, where an ECN-mark on a packet is defined as
      marking all the packet's bytes.  Congestion-bit-rate and
      congestion-volume were introduced in [RFC7713] and [RFC6789].

   Non-queue-building:  A flow that tends not to build a queue

   Queue-building:  A flow that builds a queue, and therefore is a
      candidate for the queue protection algorithm to detect and
      sanction

   ECN:  Explicit Congestion Notification

   QProt:  The Queue Protection function

2.  Approach - In Brief

   The algorithm is divided into mechanism and policy.

   o  The mechanism aspects identify flows, maintain flow-state and
      accumulate per-flow queuing scores;

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc6789
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   o  The policy aspects tend to be brief, but more likely to be
      modified in future.  They can be divided into conditions and
      actions:

      *  The conditions are the logic that determines when action should
         be taken to avert the risk of queuing delay becoming excessive;

      *  The actions determine how this risk is averted, e.g. by
         redirecting packets from a flow into another queue, or to
         reclassify a whole flow that seems to be misclassified.

2.1.  Mechanism

   The algorithm maintains per-flow-state, where 'flow' usually means an
   end-to-end (layer-4) 5-tuple.  The flow-state consists of a queuing
   score normalized to also represent the flow-state's own expiry time
   (explained in Section 5.3).  A higher queuing score pushes out the
   expiry time further.

   Non-queue-building flows tend to release their flow-state rapidly ---
   it usually expires reasonably early in the gap between the packets of
   a normal flow.  Then the memory can be recycled for packets from
   other flows that arrive in between.  So only queue-building flows
   hold flow state persistently.

   The simplicity and effectiveness of the algorithm is due to the
   definition of the queuing score.  It uses the internal variable from
   the AQM that determines the ECN marking probability, probNative, of
   the low latency queue.  In floating point arithmetic, (0 <=
   probNative <= 1).  The algorithm scales the size of each arriving
   packet of a flow by the value of probNative.

   The algorithm so far would accumulate a number that would rise at the
   so-called congestion-rate of the flow, i.e. the rate at which the
   flow is contributing to congestion, or the rate at which the AQM is
   forwarding bytes of the flow that are ECN marked.  However, rather
   than growing continually, the queuing score is also aged at a
   constant rate.

   In practice, the queuing score is normalized into time units (to
   represent the expiry time of the flow state, as above).  Then it does
   not need to be explicitly aged, because the natural passage of time
   implicitly 'ages' an expiry time.
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2.2.  Policy

   The algorithm uses the queuing score to determine whether to eject
   each packet as it arrives, rather than allow it to further increase
   queuing delay.  This limits the policies available.  For instance,
   when queueing delay exceeds a threshold, it is not possible to eject
   a packet from the flow with the highest queuing scoring, because that
   would involve searching the queue for such a packet (if indeed there
   was still one in the queue).  Nonetheless, it is still possible to
   develop a policy that protects the low latency of the queue.

   Currently in DOCSIS, when the policy conditions are met, the action
   taken to protect the low latency queue is to reclassify a packet into
   the Classic queue.

3.  Necessary Flow Behaviour

   The QProt algorithm described here can be used for responsive and/or
   unresponsive flows.

   o  It is possible to objectively describe the least responsive way
      that a flow will need to respond to congestion signals in order to
      avoid triggering queue protection, no matter the link capacity and
      no matter how much other traffic there is.

   o  It is not possible to describe how fast or smooth an unresponsive
      flow should be to avoid queue protection, because this depends on
      how much other traffic there is and the capacity of the link,
      which an application is unable to know.  However, the smoother an
      unresponsive flow paces its packets and the lower its rate
      relative to typical broadband link capacities, the less likelihood
      that it will risk causing enough queueing to trigger queue
      protection.

   In DOCSIS, unresponsive flows are classified into the low latency
   queue by a Non-Queue-Building (NQB) Diffserv codepoint
   [I-D.white-tsvwg-nqb], or an operator can use various other
   additional local classifiers.

   Responsive low latency flows have to use L4S ECN
   [I-D.ietf-tsvwg-ecn-l4s-id] to get classified into the low latency
   queue.

   The QProt algorithm is driven from the same variable that drives the
   ECN marking probability in the low latency queue (Annex N of
   [DOCSIS3.1] ).  The algorithm that calculates this internal variable
   is run on the arrival of every packet, whether it is ECN-capable or
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   not, so that it can be used by the QProt algorithm.  But the variable
   is only used to ECN-mark packets that are ECN-capable.

   Not only does this dual use of the variable improve processing
   efficiency, but it also makes the basis of the QProt algorithm
   visible and transparent, at least for responsive ECN-capable flows.
   Then it is possible to state objectively that a flow can avoid
   triggering queue protection by keeping the bit rate of ECN marked
   packets (the congestion-rate) below AGING, which is a configured
   constant of the algorithm (default 2^19 B/s ~= 4.2 Mb/s).  Note that
   a congestion controller is advised to keep the average congestion-
   rate well below this level (e.g. ~1 Mb/s), to ensure that queue
   protection is not triggered during transient dynamics.

   If the QProt algorithm is used in other settings, it would need to be
   based on the visible level of congestion signalling, in a similar way
   to DOCSIS.  Without transparency of the basis of the algorithm's
   decisions, end-systems would not be able to avoid triggering queue
   protection on an objective basis.

4.  Pseudocode Walk-Through

   The algorithm categorizes packets into flows, usually defined by a
   common 5-tuple (or 4-tuple) of:

   o  source and destination IP addresses of the innermost IP header
      found;

   o  protocol of the layer above this IP header

   o  either of:

      *  source and destination port numbers, for TCP, UDP, UDP-Lite,
         SCTP, DCCP, etc.

      *  Security Parameters Index (SPI) for IPSec Encapsulating
         Security Payload (ESP) [RFC4303].

   Annex P.3 of DOCSIS 3.1 [DOCSIS3.1] defines various strategies to
   find these headers by skipping extension headers or encapsulations.
   If they cannot be found the spec defines various less-specific
   3-tuples that would be used.  DOCSIS 3.1 should be referred to for
   all these strategies, which will not be repeated here.

https://datatracker.ietf.org/doc/html/rfc4303
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4.1.  Input Parameters, Constants and Variables

   The operator input parameters that set the parameters in the first
   two blocks of pseudocode below are defined for cable modems (CMs) in
   [DOCSIS3.1-CM-OSS] and for CMTSs in [DOCSIS3.1-CCAP-OSS].  The
   constants below that are derived from them or hard-coded.

   // Input Parameters
   QPROTECT_ON         // Queue Protection is enabled if TRUE
   CRITICALqL_us       // Threshold delay of L queue [us]
   CRITICALqLSCORE_us  // The threshold queuing score [us]
   LG_AGING            // The aging rate of the q'ing score, as
                       //  log base 2 of the congestion-rate [lg(B/s)]

   // Input Parameters for the calcProbNative() algorithm:
   MAXTH_us            // Max marking threshold [us] for IAQM
   LG_RANGE            // Log base 2 of the range of ramp [lg(ns)]
                       //  Default: 2^19 = 524288 ns (roughly 525 us)

   // Constants, either derived from input parameters or hard-coded
   AGING = pow(2, (LG_AGING-30) );       // Convert lg([B/s]) to [B/ns]
   CRITICALqL = CRITICALqL_us * 1000             // Convert [us] to [ns]
   CRITICALqLSCORE = CRITICALqLSCORE_us * 1000   // Convert [us] to [ns]
   // Threshold for the q'ing score condition
   CRITICALqLPRODUCT = CRITICALqL * CRITICALqLSCORE

   ATTEMPTS = 2; // Max attempts to pick a bucket (vendor-specific)
   BI_SIZE = 5;  // Bit-width of index number for non-default buckets
   NBUCKETS = pow(2, BI_SIZE);  // No. of non-default buckets
   MASK = NBUCKETS-1;           // convenient constant, filled with ones

                          // Queue Protection exit states
   EXIT_SUCCESS  = 0;     // Forward the packet
   EXIT_SANCTION = 1;     // Redirect the packet

   MAX_PROB      = 1; // For integer arithmetic, would use a large int
                      //  e.g., 2^31, to allow space for overflow
   MAXTH = MAXTH_us * 1000;   // Max marking threshold [ns]
   // Minimum marking threshold of 2 MTU for slow links [ns]
   FLOOR =  2 * 8 * MAX FRAME SIZE * 10^9 / MAX RATE;
   RANGE = (1 << LG_RANGE);      // Range of ramp [ns]
   MINTH = max ( MAXTH - RANGE, FLOOR);
   MAXTH = MINTH + RANGE;           // Max marking threshold [ns]

   The following definitions explain the purpose of important variables
   and functions.
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   // Public variables:
   qdelay         // The current queuing delay of the LL queue [ns]
   probNative     // The native probability of the LL queue within [0,1]

   // External variables
   packet             // The structure holding packet header fields
   packet.size        // The size of the current packet [B]
   packet.uflow       // The flow identifier of the current packet
                      //  (e.g. 5-tuple or 4-tuple if IPSec)

   // Irrelevant details of DOCSIS function to return qdelay are removed
   qdelayL(...)      // Returns current delay of the low latency Q [ns]

   The array of bucket structures defined below is used by all the Queue
   Protection functions:

   struct bucket { // The leaky bucket structure to hold per-flow state
      id;          // identifier (e.g. 5-tuple) of the flow using bucket
      t_exp;       // expiry time;
                   // (t_exp - now) = flow's normalized q'ing score [ns]
   };
   struct bucket buckets[NBUCKETS+1];

4.2.  Queue Protection Data Path

   All the functions of Queue Protection operate on the data path,
   driven by packet arrivals.

   The following functions that maintain per-flow queuing scores and
   manage per-flow state are considered primarily as mechanism:

      pick_bucket(uflow_id); // Returns bucket identifier

      fill_bucket(bucket_id, pkt_size, probNative); // Returns queuing
      score

      calcProbNative(qdelay) // Returns probability of ECN-marking

   The following function is primarily concerned with policy:

      qprotect(packet, ...); // Returns exit status to either forward or
      redirect the packet

   It is more likely that there might be future modifications to policy
   aspects.  Therefore, policy aspects would be less appropriate
   candidates for any hardware acceleration.
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   The entry point to these functions is qprotect(), which would be
   called from packet classification as follows:

   classifier(packet) {
      // ...
      // Classify packet
         // if packet classified to Low Latency Service Flow
         if (QPROTECT_ON) {
            if (qprotect(packet, qL.byte_length) == EXIT_SANCTION) {
               // redirect packet to    Classic Service Flow
            }
         }
         // Forward packet to Low Latency Service Flow
      // Continue...
   }

   On each packet arrival, qprotect() measures the current queue delay
   and derives the native probability from it.  Then it uses pick_bucket
   to find the bucket already holding the flow's state, or to allocate a
   new bucket if the flow is new or its state has expired (the most
   likely case).  Then the queuing score is updated by the fill_bucket()
   function.  That completes the mechanism aspects.

   The comments against the subsequent policy conditions and actions
   should be self-explanatory at a superficial level.  The deeper
   rationale for these conditions is given in Section 5.4.



Briscoe & White          Expires January 9, 2020               [Page 10]



Internet-Draft  Queue Protection to Preserve Low Latency       July 2019

   // Per packet queue protection
   qprotect(packet, ...) {

      bckt_id;   // bucket index
      qLscore;   // queuing score of pkt's flow [ns]

      qdelay = qL.qdelay(...);
      probNative = calcProbNative(qdelay);

      bckt_id = pick_bucket(packet.uflow);
      // Not shown: if (bckt_id->t_exp risks overflow) EXIT_SANCTION
      qLscore = fill_bucket(buckets[bckt_id], packet.size, probNative);

      // Determine whether to sanction packet
      if (  ( qdelay > CRITICALqL )  // Test if qdelay over threshold...
         // ...and if flow's q'ing score scaled by qdelay/CRITICALqL
         // ...exceeds CRITICALqLSCORE
         && ( qdelay * qLscore > CRITICALqLPRODUCT ) )

         return EXIT_SANCTION;

      else
         return EXIT_SUCCESS;
   }

   The pick_bucket() function is optimized for flow-state that will
   normally have expired from packet to packet of the same flow. it is
   just one way of finding the bucket associated with the flow ID of
   each packet - it might be possible to develop more efficient
   alternatives.

   The algorithm is arranged so that the bucket holding any live (non-
   expired) flow-state associated with a packet will always be found
   before a new bucket is allocated.  The constant ATTEMPTS, defined
   earlier, determines how many hashes are used to find a bucket for
   each flow (actually, only one hash is generated; then, by default, 5
   bits of it at a time are used as the hash value, because by default
   there are 2^5 = 32 buckets).

   The algorithm stores the flow's own ID in its flow-state.  So, when
   the next packet of a flow arrives, if it finds its own ID, but the
   flow-state has expired, the algorithm just adds the packet's queuing
   score to 'now', as a new flow would, If it does not find the flow's
   ID, and the expiry time is still current, the algorithm can tell that
   another flow is using that bucket, and it continues to look for a
   bucket for the flow.  Even if it finds a bucket where the expiry time
   has passed, it doesn't immediately use it.  It merely remembers it as
   the potential bucket to use.  But first it runs through all the
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   ATTEMPTS hashes to check for another bucket assigned to the flow, in
   case it is still live.

   If a live bucket is not already associated with the packet's flow,
   the algorithm should then have already set aside an existing bucket
   with a score that has aged out.  Given this bucket is no longer
   necessary to hold state for its previous flow, it can be recycled for
   use by the present packet's flow.

   If all else fails, there is one additional bucket (called the dregs)
   that can be used.  If the dregs is still in live use by another flow,
   subsequent flows that cannot find a bucket of their own all share it,
   adding their score to the one in the dregs.  A flow might get away
   with using the dregs on its own, but when there are many mis-marked
   flows, multiple flows are more likely to collide in the dregs,
   including innocent flows.  The choice of number of buckets and number
   of hash attempts determines how likely it will be that this
   undesirable scenario will occur.



Briscoe & White          Expires January 9, 2020               [Page 12]



Internet-Draft  Queue Protection to Preserve Low Latency       July 2019

   // Pick the bucket associated with flow uflw
   pick_bucket(uflw) {

      now;                      // current time [ns]
      j;                        // loop counter
      h32;                      // holds hash of the packet's flow IDs
      h;                        // bucket index being checked
      hsav;                     // interim chosen bucket index

      h32   = hash32(uflw);     // 32-bit hash of flow ID
      hsav  = NBUCKETS;         // Default bucket
      now   = get_time_now();

      // The for loop checks ATTEMPTS buckets for ownership by flow-ID
      // It also records the 1st bucket, if any, that could be recycled
      // because it's expired.
      // Must not recycle a bucket until all ownership checks completed
      for (j=0; j<ATTEMPTS; j++) {
         // Use least signif. BI_SIZE bits of hash for each attempt
         h = h32 & MASK;
         if (buckets[h].id == uflw) {    // Once uflw's bucket found...
            if (buckets[h].t_exp <= now) // ...if bucket has expired...
               buckets[h].t_exp = now;   // ...reset it
            return h;                    // ...use it
         }
         else if ( (hsav == NBUCKETS)  // If not seen expired bucket yet
                                       //  and this bucket has expired
              && (buckets[h].t_exp <= now) ) {
            hsav = h;                  // set it as the interim bucket
         }
         h32 >>= BI_SIZE;          // Bit-shift hash for next attempt
      }
      // If reached here, no tested bucket was owned by the flow-ID
      if (hsav != NBUCKETS) {
         // If here, found an expired bucket within the above for loop
         buckets[hsav].t_exp = now;              // Reset expired bucket
      } else {
         // If here, we're having to use the default bucket (the dregs)
         if (buckets[hsav].t_exp <= now) {   // If dregs has expired...
            buckets[hsav].t_exp = now;       // ...reset it
         }
      }
      buckets[hsav].id = uflw; // In either case, claim for recycling
      return hsav;
   }

   The fill_bucket() function both accumulates and ages the queuing
   score over time, as outlined in Section 2.1.  To make aging the score
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   efficient, the increment of the queuing score is normalized to units
   of time by dividing by AGING, so that the result represents the new
   expiry time of the flow.

   It might be thought that, instead of multiplying the packet size
   (pkt_sz) by probNative, packets could be selected by the AQM with
   probability probNative, as they are for ECN-marking.  Then the full
   size of those selected packets would be used to increment the queuing
   score.  However, experience with other congestion policers has found
   that the score then increments far too jumpily, particularly when
   probNative is low.

   A deeper explanation of the queuing score is given in Section 5.

   fill_bucket(bckt_id, pkt_sz, probNative) {
      // Add packet's queuing score
      // For integer arithmetic, a bit-shift can replace the division
      buckets[bckt_id].t_exp += probNative * pkt_sz / AGING;
      return  (buckets[bckt_id].t_exp - now);
   }

   To derive this queuing score, the QProt algorithm uses the linear
   ramp function calcProbNative() to normalize instantaneous queuing
   delay into a probability in the range [0,1], which it assigns to
   probNative.

   calcProbNative(qdelay){
         if ( qdelay >= MAXTH ) {
            probNative = MAX_PROB;
         } else if ( qdelay > MINTH ) {
            probNative = MAX_PROB * (qdelay - MINTH)/RANGE;
            // In practice, the * and the / would use a bit-shift
         } else {
            probNative = 0;
         }
         return probNative;
   }

5.  Rationale

5.1.  Rationale: Blame for Queuing, not for Rate in Itself

   Figure 1 poses the question of which flow is more to blame for
   queuing delay; the unresponsive constant bit rate flow (c) that is
   consuming about 80% of the capacity, or the flow sending regular
   short unresponsive bursts (b)?  The smoothness of c seems better for
   avoiding queuing, but its high rate does not.  However, if flow c was
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   not there, or ran slightly more slowly, b would not cause any
   queuing.

   ^ bit-rate
   |  ,-.          ,-.          ,-.          ,-.          ,-.
   |--|b|----------|b|----------|b|----------|b|----------|b|---Capacity
   |__|_|__________|_|__________|_|__________|_|__________|_|_____
   |
   |                       c
   |
   |
   |
   +---------------------------------------------------------------->
                                                                 time

            Figure 1: Which is More to Blame for Queuing Delay?

   To explain queuing scores, in the following it will initially be
   assumed that the QProt algorithm is accumulating queuing scores, but
   not taking any action as a result.

   To quantify the responsibility that each flow bears for queuing
   delay, the QProt algorithm accumulates the product of the level of
   congestion and the rate of each flow, both measured at the instant
   each packet arrives.  The level of congestion is normalized to a
   dimensionless number between 0 and 1 (nativeProb).  The instantaneous
   flow rate is represented at each discrete event when a packet arrives
   by the packet's size, which accumulates faster the more packets
   arrive within each unit of time.  The unit of the resulting queue
   score is "congested-bytes" per second, which distinguishes it from
   just bytes per second.

   Then, during the periods between bursts (b), neither flow accumulates
   any queuing score - the high rate of c is benign.  But, during each
   burst, if we say the rate of c and b are 80% and 45% of capacity,
   thus causing 125% overload, they each bear (80/125)% and (45/125)% of
   the responsibility for the queuing delay (64% and 36%).  The
   algorithm does not explicit calculate these percentages.  They are
   just the outcome of the number of packets arriving from each flow
   during the burst.

   To summarize, the queuing score never sanctions rate solely on its
   own account.  It only sanctions rate inasmuch as it causes queuing.
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   ^ bit-rate                                ,
   |               ,-.                       |\           ,-
   |------Capacity-|b|----------,-.----------|b|----------|b\-----
   |             __|_|_______   |b|        /``\| _...-._-' \| ,.--
   |  ,-.     __/            \__|_|_     _/    |/           |/
   |  |b| ___/                      \___/   __       r
   |  |_|/                v             \__/  \_______    _/\____/
   | _/                                               \__/
   |
   +---------------------------------------------------------------->
                                                                 time

        Figure 2: Responsibility for Queuing: More Complex Scenario

   Figure 1 gives a more complex illustration of the way the queuing
   score assigns responsibility for queuing (limited to the precision
   that ASCII art can illustrate).  The unresponsive bursts (b) are the
   same as in the previous example, but a variable rate video (v)
   replaces flow c.  It's rate varies as the complexity of the video
   scene varies.  Also on a slower timescale, in response to the level
   of congestion, the video adapts its quality.  However, on a short
   time-scale it appears to be unresponsive to small amounts of queuing.
   Also, part-way through, a low latency responsive flow (r) joins in,
   aiming to fill the balance of capacity left by the other two.

   The combination of the first burst and the low application-limited
   rate of the video causes neither flow to accumulate queuing score.
   In contrast, the second burst causes similar excessive overload
   (125%) to the example in Figure 1.  Then, the video happens to reduce
   its rate (probably due to a less complex scene) so the third burst
   causes only a little congestion.  Let us assume the resulting queue
   causes probNative to rise to just 1%, then the queuing score will
   only accumulate 1% of the size of each packet of flows v and b during
   this burst.

   The fourth burst happens to arrive just as the new responsive flow
   (r) has filled the available capacity, so it leads to very rapid
   growth of the queue.  After a round trip the responsive flow rapidly
   backs off, and the adaptive video also backs off more rapidly than it
   would normally, because of the very high congestion level.  The rapid
   response to congestion of flow r reduces the queuing score that all
   three flows accumulate, but they each still bear the cost in
   proportion to the product of the rates at which their packets arrive
   at the queue and the value of probNative when they do so.  Thus,
   during the fifth burst, they all accumulate less score than the
   fourth, because the queuing delay is not as excessive.
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5.2.  Rationale for Aging the Queuing Score

   Even well-behaved flows will not always be able to respond fast
   enough to dynamic events.  Also well-behaved flow(s), e.g.  DCTCP
   [RFC8257], TCP Prague [PragueLinux] or the L4S variant of SCReAM for
   real-time media [RFC8298], can maintain a very shallow queue by
   continual careful probing for more while also continually subtracting
   a little from their rate (or congestion window) in response to low
   levels of ECN signalling.  Therefore, the QProt algorithm needs to
   continually offer a degree of forgiveness to age out the queuing
   score as it accumulates.

   Scalable congestion controllers such as those above maintain their
   congestion window in inverse proportion to the congestion level,
   probNative, That leads to the important property that on average a
   scalable flow holds the product of its congestion window and the
   congestion level constant, no matter the capacity of the link or how
   many other flows it competes with.  For instance, if the link
   capacity doubles, a scalable flow induces half the congestion
   probability.  Or if three scalable flows compete for the capacity,
   each flow will reduce to one third of the capacity and increase the
   congestion level by 3x.

   This suggests that the QProt algorithm will not sanction a well-
   behaved scalable flow if it ages out the queuing score at a
   sufficient constant rate.  The constant will need to be somewhat
   about the average of a well-behaved scalable flow to allow for normal
   dynamics.

   Relating QProt's aging constant to a scalable flow does not mean that
   a flow has to behave like a scalable flow.  It can be less
   aggressive, but not more.  For instance, a longer RTT flow can run at
   a lower congestion-rate than the aging rate, but it can also increase
   its aggressiveness to equal the rate of short RTT scalable flows
   [ScalingCC].  The constant aging of QProt also means that a long-
   running unresponsive flow will be prone to trigger QProt if it runs
   faster than a competing responsive scalable flow would.  And, of
   course, if a flow causes excessive queuing in the short-term, its
   queuing score will still rise faster than the constant aging process
   will decrease it.  Then QProt will still eject the flow's packets
   before they harm the low latency of the shared queue.

5.3.  Rationale for Normalized Queuing Score

   The QProt algorithm holds a flow's queuing score state in a structure
   called a bucket, because of its similarity to a classic leaky bucket
   (except the contents of the bucket does not represent bytes).

https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298
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   probNative * pkt_sz   probNative * pkt_sz / AGING
             |                        |
          |  V  |                  |  V  |
          |  :  |        ___       |  :  |
          |_____|        ___       |_____|
          |     |        ___       |     |
          |__ __|                  |__ __|
             |                        |
             V                        V
        AGING * Dt                    Dt

                 Figure 3: Normalization of Queuing Score

   The accumulation and aging of the queuing score is shown on the left
   of Figure 3 in token bucket form.  Dt is the difference between the
   times when the scores of the current and previous packets were
   processed.

   A normalized equivalent of this token bucket is shown on the right of
   Figure 3, dividing both the input and output by the constant AGING
   rate.  The result is a bucket-depth that represents time and it
   drains at the rate that time passes.

   As a further optimization, the time the bucket was last updated is
   not stored with the flow-state.  Instead, when the bucket is
   initialized the queuing score is added to the system time 'now' and
   the resulting expiry time is written into the bucket.  Subsequently,
   if the bucket has not expired, the incremental queuing score is added
   to the time already held in the bucket.  Then the queuing score
   always represents the expiry time of the flow-state itself.  This
   means that the queuing score does not need to be aged explicitly
   because it ages itself implicitly.

5.4.  Rationale for Policy Conditions

   Pseudocode for the QProt policy conditions is given in Section 4.1
   within the second half of the qprotect() function.  When each packet
   arrives, after finding its flow state and updating the queuing score
   of the packet's flow, the algorithm checks whether the shared queue
   delay exceeds a constant threshold CRITICALqL (e.g. 2 ms), as
   repeated below for convenience:

      if (  ( qdelay > CRITICALqL )  // Test if qdelay over threshold...
         // ...and if flow's q'ing score scaled by qdelay/CRITICALqL
         // ...exceeds CRITICALqLSCORE
         && ( qdelay * qLscore > CRITICALqLPRODUCT ) )
         // Recall that CRITICALqLPRODUCT = CRITICALqL * CRITICALqLSCORE
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   If the queue delay threshold is exceeded, the flow's queuing score is
   temporarily scaled up by the current queue delay normalized as a
   ratio of the threshold queuing delay CRITICALqL.  If this scaled up
   score exceeds another constant threshold CRITICALqLSCORE, the packet
   is ejected.  The actual last line of code above multiplies both sides
   of the second condition by CRITICALqLSCORE to avoid a costly
   division.

   This approach allows each packet to be assessed once, as it arrives.
   Once queue delay exceeds the threshold, it has two implications:

   o  The current packet might be ejected even though there are packets
      already in the queue from flows with higher queuing scores.
      However, any flow that continues to contribute to the queue will
      have to send further packets, giving an opportunity to eject them
      as well, as they subsequently arrive.

   o  The next packets to arrive might not be ejected, because they
      might belong to flows with low queuing scores.  In this case,
      queue delay could continue to rise with no opportunity to eject a
      packet.  This is why the queuing score is scaled up by the current
      queue delay.  Then, the more the queue has grown without ejecting
      a packet, the more the algorithm 'raises the bar' to further
      packets.

   The above approach is preferred over searching for the flow with the
   highest queuing score and searching for one of its packets to eject
   from the queue (if one is still there).

   Figure 4 explains this approach graphically.  On the horizontal axis
   it shows actual harm, meaning the queuing delay in the shared queue.
   On the vertical axis it shows the behaviour record of the flow
   associated with the currently arriving packet, represented in the
   algorithm by the flow's queuing score.  The shaded region represents
   the combination of actual harm and behaviour record that will lead to
   the packet being ejected.
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   Behaviour Record:
   Queueing Score of
   Arriving Packet's Flow
   ^
   |   +          |/ / / / / / / / / / / / / / / / / / /
   |    +   N     | / / / / / / / / / / / / / / / / / / /
   |     +        |/ / / / /                   / / / / /
   |      +       | / / / /  E (Eject packet)   / / / / /
   |       +      |/ / / / /                   / / / / /
   |         +    | / / / / / / / / / / / / / / / / / / /
   |           +  |/ / / / / / / / / / / / / / / / / / /
   |             +| / / / / / / / / / / / / / / / / / / /
   |              |+ / / / / / / / / / / / / / / / / / /
   |    N         |   + / / / / / / / / / / / / / / / / /
   | (No actual   |       +/ / / / / / / / / / / / / / /
   |   harm)      |            +  / / / / / / / / / / / /
   |              | P (Pass over)   +   ,/ / / / / / / /
   |              |                           ^ + /./ /_/
   +--------------+------------------------------------------>
             CRITICALqL        Actual Harm: Shared Queue Delay

         Figure 4: Graphical Explanation of the Policy Conditions

   The region labelled 'N' represents cases where the first condition is
   not met - No actual harm - queue delay is below the critical
   threshold, CRITICALqL.

   The region labelled 'E' represents cases where there is actual harm
   (queue delay exceeds CRITICALqL) and the queuing score associated
   with the arriving packet is high enough to be able to eject it with
   certainty.

   The region labelled 'P' represents cases where there is actual harm,
   but the queuing score of the arriving packet is insufficient to eject
   it, so it has to be Passed over.  This adds to queuing delay, but the
   alternative would be to sanction an innocent flow.  It can be seen
   that, as actual harm increases, the judgement of innocence becomes
   increasingly stringent; the behaviour record of the next packet's
   flow does not have to be as bad to eject it.

6.  Limitations

   The QProt algorithm groups packets with common layer-4 flow
   identifiers.  It then uses this grouping to accumulate queuing scores
   and to sanction packets.

   Some applications might initiate multiple flows between the same end-
   points, e.g. for media, control, data, etc.  Others might use common
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   flow identifiers for all these streams.  Also, a user might group
   multiple application flows within the same encrypted VPN between the
   same layer-4 tunnel end-points.

   The use of a queuing score that excludes those aspects of flow rate
   that do not contribute to queuing Section 5.1 goes some way to
   mitigating this limitation.  However, ultimately this choice of flow
   identifiers is pragmatic and not particularly principled.

7.  IANA Considerations

   This specification contains no IANA considerations.

8.  Security Considerations

   The whole of this document considers the security concern of how to
   identify traffic that does not comply with the non-queue-building
   behaviour required to use a shared low latency queue, whether
   accidentally or maliciously.

   The algorithm has been designed to be fail gracefully in the face of
   traffic crafted to overrun the resources of the algorithm.  This
   means that non-queue-building flows will always be less likely to be
   sanctioned than queue-building flows.  But an attack could be
   contrived to deplete resources in such as way that the proportion of
   innocent (non-queue-building) flows that are incorrectly sanctioned
   could increase.

9.  Comments Solicited

   Comments and questions are encouraged and very welcome.  They can be
   addressed to the IETF Transport Area mailing list <tsv-
   area@ietf.org>, and/or to the authors.
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