
Transport Area Working Group B. Briscoe, Ed.
Internet-Draft G. White
Intended status: Informational CableLabs
Expires: January 9, 2020 July 8, 2019

Queue Protection to Preserve Low Latency
draft-briscoe-docsis-q-protection-00

Abstract

 This informational document defines and explains the specification of
 the queue protection algorithm used in DOCSIS 3.1. It is believed
 this algorithm will be useful in scenarios other than DOCSIS. A
 shared low latency queue relies on the non-queue-building behaviour
 of every traffic flow using it. However, some flows might not take
 such care, either accidentally or maliciously. If a queue is about
 to exceed a threshold level of delay, the queue protection algorithm
 can rapidly detect the flow(s) most likely to be responsible. It can
 then prevent selected packets of these flows (or whole flows) from
 harming the queuing delay of other traffic in the low latency queue.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Briscoe & White Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Document Roadmap . 3
1.2. Terminology . 4

2. Approach - In Brief . 4
2.1. Mechanism . 5
2.2. Policy . 6

3. Necessary Flow Behaviour 6
4. Pseudocode Walk-Through 7
4.1. Input Parameters, Constants and Variables 8
4.2. Queue Protection Data Path 9

5. Rationale . 14
5.1. Rationale: Blame for Queuing, not for Rate in Itself . . 14
5.2. Rationale for Aging the Queuing Score 17
5.3. Rationale for Normalized Queuing Score 17
5.4. Rationale for Policy Conditions 18

6. Limitations . 20
7. IANA Considerations . 21
8. Security Considerations 21
9. Comments Solicited . 21
10. Acknowledgements . 21
11. References . 21
11.1. Normative References 21
11.2. Informative References 22

 Authors' Addresses . 24

1. Introduction

 This informational document defines and explains the specification of
 the queue protection (QProt) algorithm used in DOCSIS 3.1
 [DOCSIS3.1]. It is believed this algorithm will be useful in
 scenarios other than DOCSIS.

 Low queuing delay depends on hosts sending their data smoothly either
 at low rate or responding to explicit congestion notifications (ECN).
 So low latency is something hosts create themselves, not something
 the network gives them. Therefore, there is no incentive for flows
 to mis-mark their packets for the low latency queue, However, traffic
 from an application that does not behave in a non-queue-building way
 might erroneously be classified into a low latency queue, whether
 accidentally or maliciously. QProt prevents such erroneous behavior

Briscoe & White Expires January 9, 2020 [Page 2]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 from harming the queuing delay of other traffic in the low latency
 queue.

 In normal scenarios without misclassified traffic, QProt does not
 intervene at all in the classification or forwarding of packets.

 An overview of how low latency support has been added to DOCSIS is
 given in [I-D.white-tsvwg-lld]. In each direction of a DOCSIS link
 (upstream and downstream), there are two queues: one for Low Latency
 and one for Classic traffic, in an arrangement similar to the IETF's
 Coupled DualQ AQM [I-D.ietf-tsvwg-aqm-dualq-coupled]. The Classic
 queue is intended for traffic such as traditional (Reno/Cubic) TCP
 that needs about a round trip of buffering to fully utilize the link,
 and therefore has no incentive to mismark itself as low latency. The
 QProt function is located at the ingress to the Low Latency queue.
 Therefore, in the upstream QProt is located on the cable modem (CM),
 and in the downstream it is located on the cable CMTS (CM Termination
 System). If an arriving packet triggers queue protection, the DOCSIS
 algorithm reclassifies the packet from the Low Latency queue into the
 Classic queue.

 If QProt is used in settings other than DOCSIS, it would be a simple
 matter to detect queue-building flows by using slightly different
 conditions, and/or trigger a different action as a consequence, as
 appropriate for the scenario, e.g. dropping instead of reclassifying
 packets or perhaps accumulating a second per-flow score to decide
 whether to redirect a whole flow rather than just certain packets.

 The algorithm is based on a principled approach to quantifying how
 much each user contributes to congestion, which is used in economics
 to allocate responsibility for the cost of one party's behaviour on
 others (the economic externality). Another important feature of the
 approach is that the metric used for the queuing score is based on
 the same variable that determines the level of ECN signalling seen by
 the sender [RFC8311], [I-D.ietf-tsvwg-ecn-l4s-id]. This transparency
 is necessary to be able to objectively state (in Section 3) how a
 flow can keep on the 'good' side of the algorithm.

1.1. Document Roadmap

 The core of the document is the walk-through of the DOCSIS QProt
 algorithm's pseudocode in Section 4.

 Prior to that, two brief sections provide a "bluffer's guide to
 QProt" which should suffice for those who do not need the details or
 the insights. Section 2 summarizes the approach used in the
 algorithm. Then Section 3 considers QProt from the perspective of
 the end-system, by defining the behaviour that a flow needs to comply

https://datatracker.ietf.org/doc/html/rfc8311

Briscoe & White Expires January 9, 2020 [Page 3]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 with to avoid the QProt algorithm ejecting its packets from the low
 latency queue.

Section 5 gives deeper insight into the principles and rationale
 behind the algorithms. Then Section 6 explains the limitations of
 the approach, followed by the usual closing sections.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. In this
 document, these words will appear with that interpretation only when
 in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

 The normative language for the DOCSIS QProt algorithm is in the
 DOCSIS 3.1 specifications [DOCSIS3.1], [DOCSIS3.1-CM-OSS],
 [DOCSIS3.1-CCAP-OSS] not in this informational guide.

 The following terms and abbreviations are used:

 CM: Cable Modem

 CMTS: CM Termination System

 Congestion-rate: The rate at which a flow induces ECN-marked (or
 dropped) bytes, where an ECN-mark on a packet is defined as
 marking all the packet's bytes. Congestion-bit-rate and
 congestion-volume were introduced in [RFC7713] and [RFC6789].

 Non-queue-building: A flow that tends not to build a queue

 Queue-building: A flow that builds a queue, and therefore is a
 candidate for the queue protection algorithm to detect and
 sanction

 ECN: Explicit Congestion Notification

 QProt: The Queue Protection function

2. Approach - In Brief

 The algorithm is divided into mechanism and policy.

 o The mechanism aspects identify flows, maintain flow-state and
 accumulate per-flow queuing scores;

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/rfc6789

Briscoe & White Expires January 9, 2020 [Page 4]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 o The policy aspects tend to be brief, but more likely to be
 modified in future. They can be divided into conditions and
 actions:

 * The conditions are the logic that determines when action should
 be taken to avert the risk of queuing delay becoming excessive;

 * The actions determine how this risk is averted, e.g. by
 redirecting packets from a flow into another queue, or to
 reclassify a whole flow that seems to be misclassified.

2.1. Mechanism

 The algorithm maintains per-flow-state, where 'flow' usually means an
 end-to-end (layer-4) 5-tuple. The flow-state consists of a queuing
 score normalized to also represent the flow-state's own expiry time
 (explained in Section 5.3). A higher queuing score pushes out the
 expiry time further.

 Non-queue-building flows tend to release their flow-state rapidly ---
 it usually expires reasonably early in the gap between the packets of
 a normal flow. Then the memory can be recycled for packets from
 other flows that arrive in between. So only queue-building flows
 hold flow state persistently.

 The simplicity and effectiveness of the algorithm is due to the
 definition of the queuing score. It uses the internal variable from
 the AQM that determines the ECN marking probability, probNative, of
 the low latency queue. In floating point arithmetic, (0 <=
 probNative <= 1). The algorithm scales the size of each arriving
 packet of a flow by the value of probNative.

 The algorithm so far would accumulate a number that would rise at the
 so-called congestion-rate of the flow, i.e. the rate at which the
 flow is contributing to congestion, or the rate at which the AQM is
 forwarding bytes of the flow that are ECN marked. However, rather
 than growing continually, the queuing score is also aged at a
 constant rate.

 In practice, the queuing score is normalized into time units (to
 represent the expiry time of the flow state, as above). Then it does
 not need to be explicitly aged, because the natural passage of time
 implicitly 'ages' an expiry time.

Briscoe & White Expires January 9, 2020 [Page 5]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

2.2. Policy

 The algorithm uses the queuing score to determine whether to eject
 each packet as it arrives, rather than allow it to further increase
 queuing delay. This limits the policies available. For instance,
 when queueing delay exceeds a threshold, it is not possible to eject
 a packet from the flow with the highest queuing scoring, because that
 would involve searching the queue for such a packet (if indeed there
 was still one in the queue). Nonetheless, it is still possible to
 develop a policy that protects the low latency of the queue.

 Currently in DOCSIS, when the policy conditions are met, the action
 taken to protect the low latency queue is to reclassify a packet into
 the Classic queue.

3. Necessary Flow Behaviour

 The QProt algorithm described here can be used for responsive and/or
 unresponsive flows.

 o It is possible to objectively describe the least responsive way
 that a flow will need to respond to congestion signals in order to
 avoid triggering queue protection, no matter the link capacity and
 no matter how much other traffic there is.

 o It is not possible to describe how fast or smooth an unresponsive
 flow should be to avoid queue protection, because this depends on
 how much other traffic there is and the capacity of the link,
 which an application is unable to know. However, the smoother an
 unresponsive flow paces its packets and the lower its rate
 relative to typical broadband link capacities, the less likelihood
 that it will risk causing enough queueing to trigger queue
 protection.

 In DOCSIS, unresponsive flows are classified into the low latency
 queue by a Non-Queue-Building (NQB) Diffserv codepoint
 [I-D.white-tsvwg-nqb], or an operator can use various other
 additional local classifiers.

 Responsive low latency flows have to use L4S ECN
 [I-D.ietf-tsvwg-ecn-l4s-id] to get classified into the low latency
 queue.

 The QProt algorithm is driven from the same variable that drives the
 ECN marking probability in the low latency queue (Annex N of
 [DOCSIS3.1]). The algorithm that calculates this internal variable
 is run on the arrival of every packet, whether it is ECN-capable or

Briscoe & White Expires January 9, 2020 [Page 6]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 not, so that it can be used by the QProt algorithm. But the variable
 is only used to ECN-mark packets that are ECN-capable.

 Not only does this dual use of the variable improve processing
 efficiency, but it also makes the basis of the QProt algorithm
 visible and transparent, at least for responsive ECN-capable flows.
 Then it is possible to state objectively that a flow can avoid
 triggering queue protection by keeping the bit rate of ECN marked
 packets (the congestion-rate) below AGING, which is a configured
 constant of the algorithm (default 2^19 B/s ~= 4.2 Mb/s). Note that
 a congestion controller is advised to keep the average congestion-
 rate well below this level (e.g. ~1 Mb/s), to ensure that queue
 protection is not triggered during transient dynamics.

 If the QProt algorithm is used in other settings, it would need to be
 based on the visible level of congestion signalling, in a similar way
 to DOCSIS. Without transparency of the basis of the algorithm's
 decisions, end-systems would not be able to avoid triggering queue
 protection on an objective basis.

4. Pseudocode Walk-Through

 The algorithm categorizes packets into flows, usually defined by a
 common 5-tuple (or 4-tuple) of:

 o source and destination IP addresses of the innermost IP header
 found;

 o protocol of the layer above this IP header

 o either of:

 * source and destination port numbers, for TCP, UDP, UDP-Lite,
 SCTP, DCCP, etc.

 * Security Parameters Index (SPI) for IPSec Encapsulating
 Security Payload (ESP) [RFC4303].

 Annex P.3 of DOCSIS 3.1 [DOCSIS3.1] defines various strategies to
 find these headers by skipping extension headers or encapsulations.
 If they cannot be found the spec defines various less-specific
 3-tuples that would be used. DOCSIS 3.1 should be referred to for
 all these strategies, which will not be repeated here.

https://datatracker.ietf.org/doc/html/rfc4303

Briscoe & White Expires January 9, 2020 [Page 7]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

4.1. Input Parameters, Constants and Variables

 The operator input parameters that set the parameters in the first
 two blocks of pseudocode below are defined for cable modems (CMs) in
 [DOCSIS3.1-CM-OSS] and for CMTSs in [DOCSIS3.1-CCAP-OSS]. The
 constants below that are derived from them or hard-coded.

 // Input Parameters
 QPROTECT_ON // Queue Protection is enabled if TRUE
 CRITICALqL_us // Threshold delay of L queue [us]
 CRITICALqLSCORE_us // The threshold queuing score [us]
 LG_AGING // The aging rate of the q'ing score, as
 // log base 2 of the congestion-rate [lg(B/s)]

 // Input Parameters for the calcProbNative() algorithm:
 MAXTH_us // Max marking threshold [us] for IAQM
 LG_RANGE // Log base 2 of the range of ramp [lg(ns)]
 // Default: 2^19 = 524288 ns (roughly 525 us)

 // Constants, either derived from input parameters or hard-coded
 AGING = pow(2, (LG_AGING-30)); // Convert lg([B/s]) to [B/ns]
 CRITICALqL = CRITICALqL_us * 1000 // Convert [us] to [ns]
 CRITICALqLSCORE = CRITICALqLSCORE_us * 1000 // Convert [us] to [ns]
 // Threshold for the q'ing score condition
 CRITICALqLPRODUCT = CRITICALqL * CRITICALqLSCORE

 ATTEMPTS = 2; // Max attempts to pick a bucket (vendor-specific)
 BI_SIZE = 5; // Bit-width of index number for non-default buckets
 NBUCKETS = pow(2, BI_SIZE); // No. of non-default buckets
 MASK = NBUCKETS-1; // convenient constant, filled with ones

 // Queue Protection exit states
 EXIT_SUCCESS = 0; // Forward the packet
 EXIT_SANCTION = 1; // Redirect the packet

 MAX_PROB = 1; // For integer arithmetic, would use a large int
 // e.g., 2^31, to allow space for overflow
 MAXTH = MAXTH_us * 1000; // Max marking threshold [ns]
 // Minimum marking threshold of 2 MTU for slow links [ns]
 FLOOR = 2 * 8 * MAX FRAME SIZE * 10^9 / MAX RATE;
 RANGE = (1 << LG_RANGE); // Range of ramp [ns]
 MINTH = max (MAXTH - RANGE, FLOOR);
 MAXTH = MINTH + RANGE; // Max marking threshold [ns]

 The following definitions explain the purpose of important variables
 and functions.

Briscoe & White Expires January 9, 2020 [Page 8]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 // Public variables:
 qdelay // The current queuing delay of the LL queue [ns]
 probNative // The native probability of the LL queue within [0,1]

 // External variables
 packet // The structure holding packet header fields
 packet.size // The size of the current packet [B]
 packet.uflow // The flow identifier of the current packet
 // (e.g. 5-tuple or 4-tuple if IPSec)

 // Irrelevant details of DOCSIS function to return qdelay are removed
 qdelayL(...) // Returns current delay of the low latency Q [ns]

 The array of bucket structures defined below is used by all the Queue
 Protection functions:

 struct bucket { // The leaky bucket structure to hold per-flow state
 id; // identifier (e.g. 5-tuple) of the flow using bucket
 t_exp; // expiry time;
 // (t_exp - now) = flow's normalized q'ing score [ns]
 };
 struct bucket buckets[NBUCKETS+1];

4.2. Queue Protection Data Path

 All the functions of Queue Protection operate on the data path,
 driven by packet arrivals.

 The following functions that maintain per-flow queuing scores and
 manage per-flow state are considered primarily as mechanism:

 pick_bucket(uflow_id); // Returns bucket identifier

 fill_bucket(bucket_id, pkt_size, probNative); // Returns queuing
 score

 calcProbNative(qdelay) // Returns probability of ECN-marking

 The following function is primarily concerned with policy:

 qprotect(packet, ...); // Returns exit status to either forward or
 redirect the packet

 It is more likely that there might be future modifications to policy
 aspects. Therefore, policy aspects would be less appropriate
 candidates for any hardware acceleration.

Briscoe & White Expires January 9, 2020 [Page 9]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 The entry point to these functions is qprotect(), which would be
 called from packet classification as follows:

 classifier(packet) {
 // ...
 // Classify packet
 // if packet classified to Low Latency Service Flow
 if (QPROTECT_ON) {
 if (qprotect(packet, qL.byte_length) == EXIT_SANCTION) {
 // redirect packet to Classic Service Flow
 }
 }
 // Forward packet to Low Latency Service Flow
 // Continue...
 }

 On each packet arrival, qprotect() measures the current queue delay
 and derives the native probability from it. Then it uses pick_bucket
 to find the bucket already holding the flow's state, or to allocate a
 new bucket if the flow is new or its state has expired (the most
 likely case). Then the queuing score is updated by the fill_bucket()
 function. That completes the mechanism aspects.

 The comments against the subsequent policy conditions and actions
 should be self-explanatory at a superficial level. The deeper
 rationale for these conditions is given in Section 5.4.

Briscoe & White Expires January 9, 2020 [Page 10]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 // Per packet queue protection
 qprotect(packet, ...) {

 bckt_id; // bucket index
 qLscore; // queuing score of pkt's flow [ns]

 qdelay = qL.qdelay(...);
 probNative = calcProbNative(qdelay);

 bckt_id = pick_bucket(packet.uflow);
 // Not shown: if (bckt_id->t_exp risks overflow) EXIT_SANCTION
 qLscore = fill_bucket(buckets[bckt_id], packet.size, probNative);

 // Determine whether to sanction packet
 if ((qdelay > CRITICALqL) // Test if qdelay over threshold...
 // ...and if flow's q'ing score scaled by qdelay/CRITICALqL
 // ...exceeds CRITICALqLSCORE
 && (qdelay * qLscore > CRITICALqLPRODUCT))

 return EXIT_SANCTION;

 else
 return EXIT_SUCCESS;
 }

 The pick_bucket() function is optimized for flow-state that will
 normally have expired from packet to packet of the same flow. it is
 just one way of finding the bucket associated with the flow ID of
 each packet - it might be possible to develop more efficient
 alternatives.

 The algorithm is arranged so that the bucket holding any live (non-
 expired) flow-state associated with a packet will always be found
 before a new bucket is allocated. The constant ATTEMPTS, defined
 earlier, determines how many hashes are used to find a bucket for
 each flow (actually, only one hash is generated; then, by default, 5
 bits of it at a time are used as the hash value, because by default
 there are 2^5 = 32 buckets).

 The algorithm stores the flow's own ID in its flow-state. So, when
 the next packet of a flow arrives, if it finds its own ID, but the
 flow-state has expired, the algorithm just adds the packet's queuing
 score to 'now', as a new flow would, If it does not find the flow's
 ID, and the expiry time is still current, the algorithm can tell that
 another flow is using that bucket, and it continues to look for a
 bucket for the flow. Even if it finds a bucket where the expiry time
 has passed, it doesn't immediately use it. It merely remembers it as
 the potential bucket to use. But first it runs through all the

Briscoe & White Expires January 9, 2020 [Page 11]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 ATTEMPTS hashes to check for another bucket assigned to the flow, in
 case it is still live.

 If a live bucket is not already associated with the packet's flow,
 the algorithm should then have already set aside an existing bucket
 with a score that has aged out. Given this bucket is no longer
 necessary to hold state for its previous flow, it can be recycled for
 use by the present packet's flow.

 If all else fails, there is one additional bucket (called the dregs)
 that can be used. If the dregs is still in live use by another flow,
 subsequent flows that cannot find a bucket of their own all share it,
 adding their score to the one in the dregs. A flow might get away
 with using the dregs on its own, but when there are many mis-marked
 flows, multiple flows are more likely to collide in the dregs,
 including innocent flows. The choice of number of buckets and number
 of hash attempts determines how likely it will be that this
 undesirable scenario will occur.

Briscoe & White Expires January 9, 2020 [Page 12]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 // Pick the bucket associated with flow uflw
 pick_bucket(uflw) {

 now; // current time [ns]
 j; // loop counter
 h32; // holds hash of the packet's flow IDs
 h; // bucket index being checked
 hsav; // interim chosen bucket index

 h32 = hash32(uflw); // 32-bit hash of flow ID
 hsav = NBUCKETS; // Default bucket
 now = get_time_now();

 // The for loop checks ATTEMPTS buckets for ownership by flow-ID
 // It also records the 1st bucket, if any, that could be recycled
 // because it's expired.
 // Must not recycle a bucket until all ownership checks completed
 for (j=0; j<ATTEMPTS; j++) {
 // Use least signif. BI_SIZE bits of hash for each attempt
 h = h32 & MASK;
 if (buckets[h].id == uflw) { // Once uflw's bucket found...
 if (buckets[h].t_exp <= now) // ...if bucket has expired...
 buckets[h].t_exp = now; // ...reset it
 return h; // ...use it
 }
 else if ((hsav == NBUCKETS) // If not seen expired bucket yet
 // and this bucket has expired
 && (buckets[h].t_exp <= now)) {
 hsav = h; // set it as the interim bucket
 }
 h32 >>= BI_SIZE; // Bit-shift hash for next attempt
 }
 // If reached here, no tested bucket was owned by the flow-ID
 if (hsav != NBUCKETS) {
 // If here, found an expired bucket within the above for loop
 buckets[hsav].t_exp = now; // Reset expired bucket
 } else {
 // If here, we're having to use the default bucket (the dregs)
 if (buckets[hsav].t_exp <= now) { // If dregs has expired...
 buckets[hsav].t_exp = now; // ...reset it
 }
 }
 buckets[hsav].id = uflw; // In either case, claim for recycling
 return hsav;
 }

 The fill_bucket() function both accumulates and ages the queuing
 score over time, as outlined in Section 2.1. To make aging the score

Briscoe & White Expires January 9, 2020 [Page 13]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 efficient, the increment of the queuing score is normalized to units
 of time by dividing by AGING, so that the result represents the new
 expiry time of the flow.

 It might be thought that, instead of multiplying the packet size
 (pkt_sz) by probNative, packets could be selected by the AQM with
 probability probNative, as they are for ECN-marking. Then the full
 size of those selected packets would be used to increment the queuing
 score. However, experience with other congestion policers has found
 that the score then increments far too jumpily, particularly when
 probNative is low.

 A deeper explanation of the queuing score is given in Section 5.

 fill_bucket(bckt_id, pkt_sz, probNative) {
 // Add packet's queuing score
 // For integer arithmetic, a bit-shift can replace the division
 buckets[bckt_id].t_exp += probNative * pkt_sz / AGING;
 return (buckets[bckt_id].t_exp - now);
 }

 To derive this queuing score, the QProt algorithm uses the linear
 ramp function calcProbNative() to normalize instantaneous queuing
 delay into a probability in the range [0,1], which it assigns to
 probNative.

 calcProbNative(qdelay){
 if (qdelay >= MAXTH) {
 probNative = MAX_PROB;
 } else if (qdelay > MINTH) {
 probNative = MAX_PROB * (qdelay - MINTH)/RANGE;
 // In practice, the * and the / would use a bit-shift
 } else {
 probNative = 0;
 }
 return probNative;
 }

5. Rationale

5.1. Rationale: Blame for Queuing, not for Rate in Itself

 Figure 1 poses the question of which flow is more to blame for
 queuing delay; the unresponsive constant bit rate flow (c) that is
 consuming about 80% of the capacity, or the flow sending regular
 short unresponsive bursts (b)? The smoothness of c seems better for
 avoiding queuing, but its high rate does not. However, if flow c was

Briscoe & White Expires January 9, 2020 [Page 14]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 not there, or ran slightly more slowly, b would not cause any
 queuing.

 ^ bit-rate
 | ,-. ,-. ,-. ,-. ,-.
 |--|b|----------|b|----------|b|----------|b|----------|b|---Capacity
 |__|_|__________|_|__________|_|__________|_|__________|_|_____
 |
 | c
 |
 |
 |
 +-->
 time

 Figure 1: Which is More to Blame for Queuing Delay?

 To explain queuing scores, in the following it will initially be
 assumed that the QProt algorithm is accumulating queuing scores, but
 not taking any action as a result.

 To quantify the responsibility that each flow bears for queuing
 delay, the QProt algorithm accumulates the product of the level of
 congestion and the rate of each flow, both measured at the instant
 each packet arrives. The level of congestion is normalized to a
 dimensionless number between 0 and 1 (nativeProb). The instantaneous
 flow rate is represented at each discrete event when a packet arrives
 by the packet's size, which accumulates faster the more packets
 arrive within each unit of time. The unit of the resulting queue
 score is "congested-bytes" per second, which distinguishes it from
 just bytes per second.

 Then, during the periods between bursts (b), neither flow accumulates
 any queuing score - the high rate of c is benign. But, during each
 burst, if we say the rate of c and b are 80% and 45% of capacity,
 thus causing 125% overload, they each bear (80/125)% and (45/125)% of
 the responsibility for the queuing delay (64% and 36%). The
 algorithm does not explicit calculate these percentages. They are
 just the outcome of the number of packets arriving from each flow
 during the burst.

 To summarize, the queuing score never sanctions rate solely on its
 own account. It only sanctions rate inasmuch as it causes queuing.

Briscoe & White Expires January 9, 2020 [Page 15]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 ^ bit-rate ,
 | ,-. |\ ,-
 |------Capacity-|b|----------,-.----------|b|----------|b\-----
 | __|_|_______ |b| /``\| _...-._-' \| ,.--
 | ,-. __/ __|_|_ _/ |/ |/
 | |b| ___/ ___/ __ r
 | |_|/ v __/ _______ _/____/
 | _/ __/
 |
 +-->
 time

 Figure 2: Responsibility for Queuing: More Complex Scenario

 Figure 1 gives a more complex illustration of the way the queuing
 score assigns responsibility for queuing (limited to the precision
 that ASCII art can illustrate). The unresponsive bursts (b) are the
 same as in the previous example, but a variable rate video (v)
 replaces flow c. It's rate varies as the complexity of the video
 scene varies. Also on a slower timescale, in response to the level
 of congestion, the video adapts its quality. However, on a short
 time-scale it appears to be unresponsive to small amounts of queuing.
 Also, part-way through, a low latency responsive flow (r) joins in,
 aiming to fill the balance of capacity left by the other two.

 The combination of the first burst and the low application-limited
 rate of the video causes neither flow to accumulate queuing score.
 In contrast, the second burst causes similar excessive overload
 (125%) to the example in Figure 1. Then, the video happens to reduce
 its rate (probably due to a less complex scene) so the third burst
 causes only a little congestion. Let us assume the resulting queue
 causes probNative to rise to just 1%, then the queuing score will
 only accumulate 1% of the size of each packet of flows v and b during
 this burst.

 The fourth burst happens to arrive just as the new responsive flow
 (r) has filled the available capacity, so it leads to very rapid
 growth of the queue. After a round trip the responsive flow rapidly
 backs off, and the adaptive video also backs off more rapidly than it
 would normally, because of the very high congestion level. The rapid
 response to congestion of flow r reduces the queuing score that all
 three flows accumulate, but they each still bear the cost in
 proportion to the product of the rates at which their packets arrive
 at the queue and the value of probNative when they do so. Thus,
 during the fifth burst, they all accumulate less score than the
 fourth, because the queuing delay is not as excessive.

Briscoe & White Expires January 9, 2020 [Page 16]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

5.2. Rationale for Aging the Queuing Score

 Even well-behaved flows will not always be able to respond fast
 enough to dynamic events. Also well-behaved flow(s), e.g. DCTCP
 [RFC8257], TCP Prague [PragueLinux] or the L4S variant of SCReAM for
 real-time media [RFC8298], can maintain a very shallow queue by
 continual careful probing for more while also continually subtracting
 a little from their rate (or congestion window) in response to low
 levels of ECN signalling. Therefore, the QProt algorithm needs to
 continually offer a degree of forgiveness to age out the queuing
 score as it accumulates.

 Scalable congestion controllers such as those above maintain their
 congestion window in inverse proportion to the congestion level,
 probNative, That leads to the important property that on average a
 scalable flow holds the product of its congestion window and the
 congestion level constant, no matter the capacity of the link or how
 many other flows it competes with. For instance, if the link
 capacity doubles, a scalable flow induces half the congestion
 probability. Or if three scalable flows compete for the capacity,
 each flow will reduce to one third of the capacity and increase the
 congestion level by 3x.

 This suggests that the QProt algorithm will not sanction a well-
 behaved scalable flow if it ages out the queuing score at a
 sufficient constant rate. The constant will need to be somewhat
 about the average of a well-behaved scalable flow to allow for normal
 dynamics.

 Relating QProt's aging constant to a scalable flow does not mean that
 a flow has to behave like a scalable flow. It can be less
 aggressive, but not more. For instance, a longer RTT flow can run at
 a lower congestion-rate than the aging rate, but it can also increase
 its aggressiveness to equal the rate of short RTT scalable flows
 [ScalingCC]. The constant aging of QProt also means that a long-
 running unresponsive flow will be prone to trigger QProt if it runs
 faster than a competing responsive scalable flow would. And, of
 course, if a flow causes excessive queuing in the short-term, its
 queuing score will still rise faster than the constant aging process
 will decrease it. Then QProt will still eject the flow's packets
 before they harm the low latency of the shared queue.

5.3. Rationale for Normalized Queuing Score

 The QProt algorithm holds a flow's queuing score state in a structure
 called a bucket, because of its similarity to a classic leaky bucket
 (except the contents of the bucket does not represent bytes).

https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298

Briscoe & White Expires January 9, 2020 [Page 17]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 probNative * pkt_sz probNative * pkt_sz / AGING
 | |
 | V | | V |
 | : | ___ | : |
 |_____| ___ |_____|
 | | ___ | |
 |__ __| |__ __|
 | |
 V V
 AGING * Dt Dt

 Figure 3: Normalization of Queuing Score

 The accumulation and aging of the queuing score is shown on the left
 of Figure 3 in token bucket form. Dt is the difference between the
 times when the scores of the current and previous packets were
 processed.

 A normalized equivalent of this token bucket is shown on the right of
 Figure 3, dividing both the input and output by the constant AGING
 rate. The result is a bucket-depth that represents time and it
 drains at the rate that time passes.

 As a further optimization, the time the bucket was last updated is
 not stored with the flow-state. Instead, when the bucket is
 initialized the queuing score is added to the system time 'now' and
 the resulting expiry time is written into the bucket. Subsequently,
 if the bucket has not expired, the incremental queuing score is added
 to the time already held in the bucket. Then the queuing score
 always represents the expiry time of the flow-state itself. This
 means that the queuing score does not need to be aged explicitly
 because it ages itself implicitly.

5.4. Rationale for Policy Conditions

 Pseudocode for the QProt policy conditions is given in Section 4.1
 within the second half of the qprotect() function. When each packet
 arrives, after finding its flow state and updating the queuing score
 of the packet's flow, the algorithm checks whether the shared queue
 delay exceeds a constant threshold CRITICALqL (e.g. 2 ms), as
 repeated below for convenience:

 if ((qdelay > CRITICALqL) // Test if qdelay over threshold...
 // ...and if flow's q'ing score scaled by qdelay/CRITICALqL
 // ...exceeds CRITICALqLSCORE
 && (qdelay * qLscore > CRITICALqLPRODUCT))
 // Recall that CRITICALqLPRODUCT = CRITICALqL * CRITICALqLSCORE

Briscoe & White Expires January 9, 2020 [Page 18]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 If the queue delay threshold is exceeded, the flow's queuing score is
 temporarily scaled up by the current queue delay normalized as a
 ratio of the threshold queuing delay CRITICALqL. If this scaled up
 score exceeds another constant threshold CRITICALqLSCORE, the packet
 is ejected. The actual last line of code above multiplies both sides
 of the second condition by CRITICALqLSCORE to avoid a costly
 division.

 This approach allows each packet to be assessed once, as it arrives.
 Once queue delay exceeds the threshold, it has two implications:

 o The current packet might be ejected even though there are packets
 already in the queue from flows with higher queuing scores.
 However, any flow that continues to contribute to the queue will
 have to send further packets, giving an opportunity to eject them
 as well, as they subsequently arrive.

 o The next packets to arrive might not be ejected, because they
 might belong to flows with low queuing scores. In this case,
 queue delay could continue to rise with no opportunity to eject a
 packet. This is why the queuing score is scaled up by the current
 queue delay. Then, the more the queue has grown without ejecting
 a packet, the more the algorithm 'raises the bar' to further
 packets.

 The above approach is preferred over searching for the flow with the
 highest queuing score and searching for one of its packets to eject
 from the queue (if one is still there).

 Figure 4 explains this approach graphically. On the horizontal axis
 it shows actual harm, meaning the queuing delay in the shared queue.
 On the vertical axis it shows the behaviour record of the flow
 associated with the currently arriving packet, represented in the
 algorithm by the flow's queuing score. The shaded region represents
 the combination of actual harm and behaviour record that will lead to
 the packet being ejected.

Briscoe & White Expires January 9, 2020 [Page 19]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 Behaviour Record:
 Queueing Score of
 Arriving Packet's Flow
 ^
 | + |/ / / / / / / / / / / / / / / / / / /
 | + N | / / / / / / / / / / / / / / / / / / /
 | + |/ / / / / / / / / /
 | + | / / / / E (Eject packet) / / / / /
 | + |/ / / / / / / / / /
 | + | / / / / / / / / / / / / / / / / / / /
 | + |/ / / / / / / / / / / / / / / / / / /
 | +| / / / / / / / / / / / / / / / / / / /
 | |+ / / / / / / / / / / / / / / / / / /
 | N | + / / / / / / / / / / / / / / / / /
 | (No actual | +/ / / / / / / / / / / / / / /
 | harm) | + / / / / / / / / / / / /
 | | P (Pass over) + ,/ / / / / / / /
 | | ^ + /./ /_/
 +--------------+-->
 CRITICALqL Actual Harm: Shared Queue Delay

 Figure 4: Graphical Explanation of the Policy Conditions

 The region labelled 'N' represents cases where the first condition is
 not met - No actual harm - queue delay is below the critical
 threshold, CRITICALqL.

 The region labelled 'E' represents cases where there is actual harm
 (queue delay exceeds CRITICALqL) and the queuing score associated
 with the arriving packet is high enough to be able to eject it with
 certainty.

 The region labelled 'P' represents cases where there is actual harm,
 but the queuing score of the arriving packet is insufficient to eject
 it, so it has to be Passed over. This adds to queuing delay, but the
 alternative would be to sanction an innocent flow. It can be seen
 that, as actual harm increases, the judgement of innocence becomes
 increasingly stringent; the behaviour record of the next packet's
 flow does not have to be as bad to eject it.

6. Limitations

 The QProt algorithm groups packets with common layer-4 flow
 identifiers. It then uses this grouping to accumulate queuing scores
 and to sanction packets.

 Some applications might initiate multiple flows between the same end-
 points, e.g. for media, control, data, etc. Others might use common

Briscoe & White Expires January 9, 2020 [Page 20]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 flow identifiers for all these streams. Also, a user might group
 multiple application flows within the same encrypted VPN between the
 same layer-4 tunnel end-points.

 The use of a queuing score that excludes those aspects of flow rate
 that do not contribute to queuing Section 5.1 goes some way to
 mitigating this limitation. However, ultimately this choice of flow
 identifiers is pragmatic and not particularly principled.

7. IANA Considerations

 This specification contains no IANA considerations.

8. Security Considerations

 The whole of this document considers the security concern of how to
 identify traffic that does not comply with the non-queue-building
 behaviour required to use a shared low latency queue, whether
 accidentally or maliciously.

 The algorithm has been designed to be fail gracefully in the face of
 traffic crafted to overrun the resources of the algorithm. This
 means that non-queue-building flows will always be less likely to be
 sanctioned than queue-building flows. But an attack could be
 contrived to deplete resources in such as way that the proportion of
 innocent (non-queue-building) flows that are incorrectly sanctioned
 could increase.

9. Comments Solicited

 Comments and questions are encouraged and very welcome. They can be
 addressed to the IETF Transport Area mailing list <tsv-
 area@ietf.org>, and/or to the authors.

10. Acknowledgements

 Thanks to Tom Henderson for his review of this document. The design
 of the QProt algorithm and the settings of the parameters benefited
 from discussion and critique from the participants of the cable
 industry working group on Low Latency DOCSIS.

11. References

11.1. Normative References

Briscoe & White Expires January 9, 2020 [Page 21]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 [DOCSIS3.1]
 CableLabs, "MAC and Upper Layer Protocols Interface
 (MULPI) Specification, CM-SP-MULPIv3.1", Data-Over-Cable
 Service Interface Specifications DOCSIS(R) 3.1 Version i17
 or later, January 2019, <https://specification-

search.cablelabs.com/CM-SP-MULPIv3.1>.

 [DOCSIS3.1-CCAP-OSS]
 CableLabs, "CCAP Operations Support System Interface
 Spec", Data-Over-Cable Service Interface Specifications
 DOCSIS(R) 3.1 Version i14 or later, January 2019,
 <https://specification-search.cablelabs.com/

CM-SP-CM-OSSIv3.1>.

 [DOCSIS3.1-CM-OSS]
 CableLabs, "Cable Modem Operations Support System
 Interface Spec", Data-Over-Cable Service Interface
 Specifications DOCSIS(R) 3.1 Version i14 or later, January
 2019, <https://specification-search.cablelabs.com/

CM-SP-CM-OSSIv3.1>.

 [I-D.ietf-tsvwg-ecn-l4s-id]
 Schepper, K. and B. Briscoe, "Identifying Modified
 Explicit Congestion Notification (ECN) Semantics for
 Ultra-Low Queuing Delay (L4S)", draft-ietf-tsvwg-ecn-l4s-

id-06 (work in progress), March 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

11.2. Informative References

 [I-D.ietf-tsvwg-aqm-dualq-coupled]
 Schepper, K., Briscoe, B., and G. White, "DualQ Coupled
 AQMs for Low Latency, Low Loss and Scalable Throughput
 (L4S)", draft-ietf-tsvwg-aqm-dualq-coupled-09 (work in
 progress), July 2019.

https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-06
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-06
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-aqm-dualq-coupled-09

Briscoe & White Expires January 9, 2020 [Page 22]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

 [I-D.white-tsvwg-lld]
 White, G., Sundaresan, K., and B. Briscoe, "Low Latency
 DOCSIS - Technology Overview", draft-white-tsvwg-lld-00
 (work in progress), March 2019.

 [I-D.white-tsvwg-nqb]
 White, G. and T. Fossati, "Identifying and Handling Non
 Queue Building Flows in a Bottleneck Link", draft-white-

tsvwg-nqb-02 (work in progress), June 2019.

 [PragueLinux]
 Briscoe, B., De Schepper, K., Albisser, O., Misund, J.,
 Tilmans, O., Kuehlewind, M., and A. Ahmed, "Implementing
 the `TCP Prague' Requirements for Low Latency Low Loss
 Scalable Throughput (L4S)", Proc. Linux Netdev 0x13 ,
 March 2019, <https://www.netdevconf.org/0x13/

session.html?talk-tcp-prague-l4s>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC6789] Briscoe, B., Ed., Woundy, R., Ed., and A. Cooper, Ed.,
 "Congestion Exposure (ConEx) Concepts and Use Cases",

RFC 6789, DOI 10.17487/RFC6789, December 2012,
 <https://www.rfc-editor.org/info/rfc6789>.

 [RFC7713] Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)
 Concepts, Abstract Mechanism, and Requirements", RFC 7713,
 DOI 10.17487/RFC7713, December 2015,
 <https://www.rfc-editor.org/info/rfc7713>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [RFC8298] Johansson, I. and Z. Sarker, "Self-Clocked Rate Adaptation
 for Multimedia", RFC 8298, DOI 10.17487/RFC8298, December
 2017, <https://www.rfc-editor.org/info/rfc8298>.

 [ScalingCC]
 Briscoe, B. and K. De Schepper, "Resolving Tensions
 between Congestion Control Scaling Requirements", Simula
 Technical Report TR-CS-2016-001 arXiv:1904.07605, July
 2017, <https://arxiv.org/abs/1904.07605>.

https://datatracker.ietf.org/doc/html/draft-white-tsvwg-lld-00
https://datatracker.ietf.org/doc/html/draft-white-tsvwg-nqb-02
https://datatracker.ietf.org/doc/html/draft-white-tsvwg-nqb-02
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://datatracker.ietf.org/doc/html/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc6789
https://www.rfc-editor.org/info/rfc6789
https://datatracker.ietf.org/doc/html/rfc7713
https://www.rfc-editor.org/info/rfc7713
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298
https://www.rfc-editor.org/info/rfc8298
https://arxiv.org/abs/1904.07605

Briscoe & White Expires January 9, 2020 [Page 23]

Internet-Draft Queue Protection to Preserve Low Latency July 2019

Authors' Addresses

 Bob Briscoe (editor)
 CableLabs
 UK

 Email: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

 Greg White
 CableLabs
 US

 Email: G.White@CableLabs.com

http://bobbriscoe.net/

Briscoe & White Expires January 9, 2020 [Page 24]

