
Workgroup: Network Working Group

Internet-Draft:

draft-briscoe-docsis-q-protection-07

Published: 23 November 2023

Intended Status: Informational

Expires: 26 May 2024

Authors: B. Briscoe, Ed.

Independent

G. White

CableLabs

The DOCSIS® Queue Protection Algorithm to Preserve Low Latency

Abstract

This informational document explains the specification of the queue

protection algorithm used in DOCSIS technology since version 3.1. A

shared low latency queue relies on the non-queue-building behaviour

of every traffic flow using it. However, some flows might not take

such care, either accidentally or maliciously. If a queue is about

to exceed a threshold level of delay, the queue protection algorithm

can rapidly detect the flows most likely to be responsible. It can

then prevent harm to other traffic in the low latency queue by

ejecting selected packets (or all packets) of these flows. The

document is designed for four types of audience: a) congestion

control designers who need to understand how to keep on the 'good'

side of the algorithm; b) implementers of the algorithm who want to

understand it in more depth; c) designers of algorithms with similar

goals, perhaps for non-DOCSIS scenarios; and d) researchers

interested in evaluating the algorithm.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 May 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Document Roadmap

1.2. Terminology

1.3. Copyright Material

2. Approach - In Brief

2.1. Mechanism

2.2. Policy

2.2.1. Policy Conditions

2.2.2. Policy Action

3. Necessary Flow Behaviour

4. Pseudocode Walk-Through

4.1. Input Parameters, Constants and Variables

4.2. Queue Protection Data Path

4.2.1. The qprotect() function

4.2.2. The pick_bucket() function

4.2.3. The fill_bucket() function

4.2.4. The calcProbNative() function

5. Rationale

5.1. Rationale: Blame for Queuing, not for Rate in Itself

5.2. Rationale for Constant Aging of the Queuing Score

5.3. Rationale for Transformed Queuing Score

5.4. Rationale for Policy Conditions

5.5. Rationale for Reclassification as the Policy Action

6. Limitations

7. IANA Considerations (to be removed by RFC Editor)

8. Implementation Status

9. Security Considerations

9.1. Resource Exhaustion Attacks

9.1.1. Exhausting Flow-State Storage

9.1.2. Exhausting Processing Resources

10. Comments Solicited

11. Acknowledgements

12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

¶

https://trustee.ietf.org/license-info

1. Introduction

This informational document explains the specification of the queue

protection (QProt) algorithm used in DOCSIS technology since version

3.1 [DOCSIS].

Although the algorithm is defined in annex P of [DOCSIS], it relies

on cross-references to other parts of the set of specs. This

document pulls all the strands together into one self-contained

document. The core of the document is a similar pseudocode walk-

through to that in the DOCSIS spec, but it also includes additional

material: i) a brief overview; ii) a definition of how a data sender

needs to behave to avoid triggering queue protection; and iii) a

section giving the rationale for the design choices.

Low queuing delay depends on hosts sending their data smoothly,

either at low rate or responding to explicit congestion

notifications (ECN [RFC8311], [RFC9331]). So low queuing latency is

something hosts create themselves, not something the network gives

them. This tends to ensure that self-interest alone does not drive

flows to mis-mark their packets for the low latency queue. However,

traffic from an application that does not behave in a non-queue-

building way might erroneously be classified into a low latency

queue, whether accidentally or maliciously. QProt protects other

traffic in the low latency queue from the harm due to excess queuing

that would otherwise be caused by such anomalous behaviour.

In normal scenarios without misclassified traffic, QProt is not

expected to intervene at all in the classification or forwarding of

packets.

An overview of how low latency support has been added to DOCSIS

technology is given in [LLD]. In each direction of a DOCSIS link

(upstream and downstream), there are two queues: one for Low Latency

(LL) and one for Classic traffic, in an arrangement similar to the

IETF's Coupled DualQ AQM [RFC9332]. The two queues enable a

transition from 'Classic' to 'Scalable' congestion control so that

low latency can become the norm for any application, including ones

seeking both full throughput and low latency, not just low-rate

applications that have been more traditionally associated with a low

latency service. The Classic queue is only necessary for traffic

such as traditional (Reno/Cubic) TCP that needs about a round trip

of buffering to fully utilize the link, and therefore has no

incentive to mismark itself as low latency. The QProt function is

located at the ingress to the Low Latency queue. Therefore, in the

upstream QProt is located on the cable modem (CM), and in the

downstream it is located on the cable CMTS (CM Termination System).

If an arriving packet triggers queue protection, the QProt algorithm

¶

¶

¶

¶

CM:

CMTS:

ejects the packet from the Low Latency queue and reclassifies it

into the Classic queue.

If QProt is used in settings other than DOCSIS links, it would be a

simple matter to detect queue-building flows by using slightly

different conditions, and/or to trigger a different action as a

consequence, as appropriate for the scenario, e.g., dropping instead

of reclassifying packets or perhaps accumulating a second per-flow

score to decide whether to redirect a whole flow rather than just

certain packets. Such work is for future study and out of scope of

the present document.

The algorithm is based on a rigorous approach to quantifying how

much each flow contributes to congestion, which is used in economics

to allocate responsibility for the cost of one party's behaviour on

others (the economic externality). Another important feature of the

approach is that the metric used for the queuing score is based on

the same variable that determines the level of ECN signalling seen

by the sender [RFC8311], [RFC9331]. This makes the internal queuing

score visible externally as ECN markings. This transparency is

necessary to be able to objectively state (in Section 3) how a flow

can keep on the 'good' side of the algorithm.

1.1. Document Roadmap

The core of the document is the walk-through of the DOCSIS QProt

algorithm's pseudocode in Section 4.

Prior to that, Section 2 summarizes the approach used in the

algorithm, then Section 3 considers QProt from the perspective of

the end-system, by defining the behaviour that a flow needs to

comply with to avoid the QProt algorithm ejecting its packets from

the low latency queue.

Section 5 gives deeper insight into the principles and rationale

behind the algorithm. Then Section 6 explains the limitations of the

approach, followed by the usual closing sections.

1.2. Terminology

The normative language for the DOCSIS QProt algorithm is in the

DOCSIS specs [DOCSIS], [DOCSIS-CM-OSS], [DOCSIS-CCAP-OSS] not in

this informational guide. If there is any inconsistency, the DOCSIS

specs take precedence.

The following terms and abbreviations are used:

Cable Modem

CM Termination System

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Congestion-rate:

DOCSIS:

Non-queue-building:

Queue-building:

ECN:

QProt:

The transmission rate of bits or bytes contained

within packets of a flow that have the CE codepoint set in the

IP-ECN field [RFC3168] (including IP headers unless specified

otherwise). Congestion-bit-rate and congestion-volume were

introduced in [RFC7713] and [RFC6789].

Data Over Cable System Interface Specification. "DOCSIS" is

a registered trademark of Cable Television Laboratories, Inc.

("CableLabs").

A flow that tends not to build a queue

A flow that builds a queue. If it is classified

into the Low Latency queue, it is therefore a candidate for the

queue protection algorithm to detect and sanction.

Explicit Congestion Notification

The Queue Protection function

1.3. Copyright Material

Parts of this document are reproduced from [DOCSIS] with kind

permission of the copyright holder, Cable Television Laboratories,

Inc. ("CableLabs").

2. Approach - In Brief

The algorithm is divided into mechanism and policy. There is only a

tiny amount of policy code, but policy might need to be changed in

the future. So, where hardware implementation is being considered,

it would be advisable to implement the policy aspects in firmware or

software:

The mechanism aspects identify flows, maintain flow-state and

accumulate per-flow queuing scores;

The policy aspects can be divided into conditions and actions:

The conditions are the logic that determines when action

should be taken to avert the risk of queuing delay becoming

excessive;

The actions determine how this risk is averted, e.g., by

redirecting packets from a flow into another queue, or to

reclassify a whole flow that seems to be misclassified.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

-

¶

-

¶

2.1. Mechanism

The algorithm maintains per-flow-state, where 'flow' usually means

an end-to-end (layer-4) 5-tuple. The flow-state consists of a

queuing score that decays over time. Indeed it is transformed into

time units so that it represents the flow-state's own expiry time

(explained in Section 5.3). A higher queuing score pushes out the

expiry time further.

Non-queue-building flows tend to release their flow-state rapidly

--- it usually expires reasonably early in the gap between the

packets of a normal flow. Then the memory can be recycled for

packets from other flows that arrive in between. So only queue-

building flows hold flow state persistently.

The simplicity and effectiveness of the algorithm is due to the

definition of the queuing score. The queueing score represents the

share of blame for queuing that each flow bears. The scoring

algorithm uses the same internal variable, probNative, that the AQM

for the low latency queue uses to ECN-mark packets (the other two

forms of marking, Classic and coupled, are driven by Classic traffic

and therefore not relevant to protection of the LL queue). In this

way, the queuing score accumulates the size of each arriving packet

of a flow, but scaled by the value of probNative (in the range 0 to

1) at the instant the packet arrives. So a flow's score accumulates

faster, the higher the degree of queuing and the faster that the

flow's packets arrive when there is queuing. Section 5.1 explains

further why this score represents blame for queuing.

The algorithm as described so far would accumulate a number that

would rise at the so-called congestion-rate of the flow (see

Terminology in Section 1.2), i.e., the rate at which the flow is

contributing to congestion, or the rate at which the AQM is

forwarding bytes of the flow that are ECN marked. However, rather

than growing continually, the queuing score is also reduced (or

'aged') at a constant rate. This is because it is unavoidable for

capacity-seeking flows to induce a continuous low level of

congestion as they track available capacity. Section 5.2 explains

why this allowance can be set to the same constant for any scalable

flow, whatever its bit rate.

For implementation efficiency, the queuing score is transformed into

time units so that it represents the expiry time of the flow state

(as already discussed above). Then it does not need to be explicitly

aged, because the natural passage of time implicitly 'ages' an

expiry time. The transformation into time units simply involves

dividing the queuing score of each packet by the constant aging rate

(explained further in Section 5.3).

¶

¶

¶

¶

¶

2.2. Policy

2.2.1. Policy Conditions

The algorithm uses the queuing score to determine whether to eject

each packet only at the time it first arrives. This limits the

policies available. For instance, when queueing delay exceeds a

threshold, it is not possible to eject a packet from the flow with

the highest queuing scoring, because that would involve searching

the queue for such a packet (if indeed one was still in the queue).

Nonetheless, it is still possible to develop a policy that protects

the low latency of the queue by making the queuing score threshold

stricter the greater the excess of queuing delay relative to the

threshold (explained in Section 5.4).

2.2.2. Policy Action

In the DOCSIS QProt spec at the time of writing, when the policy

conditions are met the action taken to protect the low latency queue

is to reclassify a packet into the Classic queue (justified in

Section 5.5).

3. Necessary Flow Behaviour

The QProt algorithm described here can be used for responsive and/or

unresponsive flows.

It is possible to objectively describe the least responsive way

that a flow will need to respond to congestion signals in order

to avoid triggering queue protection, no matter the link capacity

and no matter how much other traffic there is.

It is not possible to describe how fast or smooth an unresponsive

flow should be to avoid queue protection, because this depends on

how much other traffic there is and the capacity of the link,

which an application is unable to know. However, the more

smoothly an unresponsive flow paces its packets and the lower its

rate relative to typical broadband link capacities, the less

likelihood that it will risk causing enough queueing to trigger

queue protection.

Responsive low latency flows can use an L4S ECN codepoint [RFC9331]

to get classified into the low latency queue.

A sender can arrange for flows that are smooth but do not respond to

ECN marking to be classified into the low latency queue by using the

Non-Queue-Building (NQB) Diffserv codepoint [I-D.ietf-tsvwg-nqb],

which the DOCSIS specs support, or an operator can use various other

local classifiers.

¶

¶

¶

*

¶

*

¶

¶

¶

As already explained in Section 2.1, the QProt algorithm is driven

from the same variable that drives the ECN marking probability in

the low latency or 'LL' queue (the 'Native' AQM of the LL queue is

defined in the Immediate Active Queue Management Annex of [DOCSIS]).

The algorithm that calculates this internal variable is run on the

arrival of every packet, whether it is ECN-capable or not, so that

it can be used by the QProt algorithm. But the variable is only used

to ECN-mark packets that are ECN-capable.

Not only does this dual use of the variable improve processing

efficiency, but it also makes the basis of the QProt algorithm

visible and transparent, at least for responsive ECN-capable flows.

Then it is possible to state objectively that a flow can avoid

triggering queue protection by keeping the bit rate of ECN marked

packets (the congestion-rate) below AGING, which is a configured

constant of the algorithm (default 2^19 B/s ~= 4 Mb/s). Note that it

is in a congestion controller's own interest to keep its average

congestion-rate well below this level (e.g., ~1 Mb/s), to ensure

that it does not trigger queue protection during transient dynamics.

If the QProt algorithm is used in other settings, it would still

need to be based on the visible level of congestion signalling, in a

similar way to the DOCSIS approach. Without transparency of the

basis of the algorithm's decisions, end-systems would not be able to

avoid triggering queue protection on an objective basis.

4. Pseudocode Walk-Through

4.1. Input Parameters, Constants and Variables

The operator input parameters that set the parameters in the first

two blocks of pseudocode below are defined for cable modems (CMs) in

[DOCSIS-CM-OSS] and for CMTSs in [DOCSIS-CCAP-OSS]. Then, further

constants are either derived from the input parameters or hard-

coded.

Defaults and units are shown in square brackets. Defaults (or indeed

any aspect of the algorithm) are subject to change, so the latest

DOCSIS specs are the definitive references. Also any operator might

set certain parameters to non-default values.

¶

¶

¶

¶

¶

Throughout the pseudocode, most variables are integers. The only

exceptions are floating point variables representing probabilities

<CODE BEGINS>

// Input Parameters

MAX_RATE; // Configured maximum sustained rate [b/s]

QPROTECT_ON; // Queue Protection is enabled [Default: TRUE]

CRITICALqL_us; // LL queue threshold delay [us] Default: MAXTH_us

CRITICALqLSCORE_us;// The threshold queuing score [Default: 4000us]

LG_AGING; // The aging rate of the q'ing score [Default: 19]

 // as log base 2 of the congestion-rate [lg(B/s)]

// Input Parameters for the calcProbNative() algorithm:

MAXTH_us; // Max LL AQM marking threshold [Default: 1000us]

LG_RANGE; // Log base 2 of the range of ramp [lg(ns)]

 // Default: 2^19 = 524288 ns (roughly 525 us)

<CODE ENDS>

¶

<CODE BEGINS>

// Constants, either derived from input parameters or hard-coded

T_RES; // Resolution of t_exp [ns]

 // Convert units (approx)

AGING = pow(2, (LG_AGING-30)) * T_RES; // lg([B/s]) to [B/T_RES]

CRITICALqL = CRITICALqL_us * 1000; // [us] to [ns]

CRITICALqLSCORE = CRITICALqLSCORE_us * 1000/T_RES; // [us] to [T_RES]

// Threshold for the q'ing score condition

CRITICALqLPRODUCT = CRITICALqL * CRITICALqLSCORE;

qLSCORE_MAX = 5E9 / T_RES; // Max queuing score = 5 s

ATTEMPTS = 2; // Max attempts to pick a bucket (vendor-specific)

BI_SIZE = 5; // Bit-width of index number for non-default buckets

NBUCKETS = pow(2, BI_SIZE); // No. of non-default buckets

MASK = NBUCKETS-1; // convenient constant, with BI_SIZE LSBs set

 // Queue Protection exit states

EXIT_SUCCESS = 0; // Forward the packet

EXIT_SANCTION = 1; // Redirect the packet

MAX_PROB = 1; // For integer arithmetic, would use a large int

 // e.g., 2^31, to allow space for overflow

MAXTH = MAXTH_us * 1000; // Max marking threshold [ns]

MAX_FRAME_SIZE = 2000; // DOCSIS-wide constant [B]

// Minimum marking threshold of 2 MTU for slow links [ns]

FLOOR = 2 * 8 * MAX_FRAME_SIZE * 10^9 / MAX_RATE;

RANGE = (1 << LG_RANGE); // Range of ramp [ns]

MINTH = max (MAXTH - RANGE, FLOOR);

MAXTH = MINTH + RANGE; // Max marking threshold [ns]

<CODE ENDS>

¶

(MAX_PROB and probNative) and the AGING parameter. The actual DOCSIS

QProt algorithm is defined using integer arithmetic, but in the

floating point arithmetic used in this document, (0 <= probNative <=

1). Also, the pseudocode omits overflow checking and it would need

to be made robust to non-default input parameters.

The resolution for expressing time, T_RES, needs to be chosen to

ensure that expiry times for buckets can represent times that are a

fraction (e.g., 1/10) of the expected packet interarrival time for

the system.

The following definitions explain the purpose of important variables

and functions.

Pseudocode for how the algorithm categorizes packets by flow ID to

populate the variable packet.uflow is not given in detail here. The

application's flow ID is usually defined by a common 5-tuple (or 4-

tuple) of:

source and destination IP addresses of the innermost IP header

found;

the protocol (IPv4) or next header (IPv6) field in this IP header

either of:

source and destination port numbers, for TCP, UDP, UDP-Lite,

SCTP, DCCP, etc.

Security Parameters Index (SPI) for IPSec Encapsulating

Security Payload (ESP) [RFC4303].

The Microflow Classification section of the Queue Protection Annex

of the DOCSIS spec [DOCSIS] defines various strategies to find these

¶

¶

¶

<CODE BEGINS>

// Public variables:

qdelay; // The current queuing delay of the LL queue [ns]

probNative; // Native marking probability of LL queue within [0,1]

// External variables

packet; // The structure holding packet header fields

packet.size; // The size of the current packet [B]

packet.uflow; // The flow identifier of the current packet

 // (e.g., 5-tuple or 4-tuple if IPSec)

// Irrelevant details of DOCSIS function to return qdelay are removed

qdelayL(...) // Returns current delay of the low latency Q [ns]

<CODE ENDS>

¶

¶

*

¶

* ¶

* ¶

-

¶

-

¶

headers by skipping extension headers or encapsulations. If they

cannot be found, the spec defines various less-specific 3-tuples

that would be used. The DOCSIS spec should be referred to for all

these strategies, which will not be repeated here.

The array of bucket structures defined below is used by all the

Queue Protection functions:

4.2. Queue Protection Data Path

All the functions of Queue Protection operate on the data path,

driven by packet arrivals.

The following functions that maintain per-flow queuing scores and

manage per-flow state are considered primarily as mechanism:

pick_bucket(uflow_id); // Returns bucket identifier

fill_bucket(bucket_id, pkt_size, probNative); // Returns queuing

score

calcProbNative(qdelay) // Returns ECN-marking probability of the

native LL AQM

The following function is primarily concerned with policy:

qprotect(packet, ...); // Returns exit status to either forward

or redirect the packet

('...' suppresses distracting detail.)

Future modifications to policy aspects are more likely than to

mechanisms. Therefore, policy aspects would be less appropriate

candidates for any hardware acceleration.

The entry point to these functions is qprotect(), which is called

from packet classification before each packet is enqueued into the

appropriate queue, queue_id, as follows:

¶

¶

<CODE BEGINS>

struct bucket { // The leaky bucket structure to hold per-flow state

 id; // identifier (e.g., 5-tuple) of flow using bucket

 t_exp; // expiry time in units of T_RES

 // (t_exp - now) = flow's transformed q'ing score

};

struct bucket buckets[NBUCKETS+1];

<CODE ENDS>

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.2.1. The qprotect() function

On each packet arrival at the LL queue, qprotect() measures the

current delay of the LL queue and derives the native LL marking

probability from it. Then it uses pick_bucket to find the bucket

already holding the flow's state, or to allocate a new bucket if the

flow is new or its state has expired (the most likely case). Then

the queuing score is updated by the fill_bucket() function. That

completes the mechanism aspects.

The comments against the subsequent policy conditions and actions

should be self-explanatory at a superficial level. The deeper

rationale for these conditions is given in Section 5.4.

<CODE BEGINS>

classifier(packet) {

 // Determine which queue using ECN, DSCP and any local-use fields

 queue_id = classify(packet);

 // LQ & CQ are macros for valid queue IDs returned by classify()

 if (queue_id == LQ) {

 // if packet classified to Low Latency Service Flow

 if (QPROTECT_ON) {

 if (qprotect(packet, ...) == EXIT_SANCTION) {

 // redirect packet to Classic Service Flow

 queue_id = CQ;

 }

 }

 return queue_id;

}

<CODE ENDS>

¶

¶

¶

4.2.2. The pick_bucket() function

The pick_bucket() function is optimized for flow-state that will

normally have expired from packet to packet of the same flow. It is

just one way of finding the bucket associated with the flow ID of

each packet - it might be possible to develop more efficient

alternatives.

The algorithm is arranged so that the bucket holding any live (non-

expired) flow-state associated with a packet will always be found

before a new bucket is allocated. The constant ATTEMPTS, defined

earlier, determines how many hashes are used to find a bucket for

each flow (actually, only one hash is generated; then, by default, 5

bits of it at a time are used as the hash value, because by default

there are 2^5 = 32 buckets).

The algorithm stores the flow's own ID in its flow-state. So, when a

packet of a flow arrives, the algorithm tries up to ATTEMPTS times

to hash to a bucket, looking for the flow's own ID. If found, it

uses that bucket, first resettings the expiry time to 'now' if it

has expired.

<CODE BEGINS>

// Per packet queue protection

qprotect(packet, ...) {

 bckt_id; // bucket index

 qLscore; // queuing score of pkt's flow in units of T_RES

 qdelay = qL.qdelay(...);

 probNative = calcProbNative(qdelay);

 bckt_id = pick_bucket(packet.uflow);

 qLscore = fill_bucket(buckets[bckt_id], packet.size, probNative);

 // Determine whether to sanction packet

 if (((qdelay > CRITICALqL) // Test if qdelay over threshold...

 // ...and if flow's q'ing score scaled by qdelay/CRITICALqL

 // ...exceeds CRITICALqLSCORE

 && (qdelay * qLscore > CRITICALqLPRODUCT))

 // or qLSCORE_MAX reached

 || (qLscore >= qLSCORE_MAX))

 return EXIT_SANCTION;

 else

 return EXIT_SUCCESS;

}

<CODE ENDS>

¶

¶

¶

¶

If it does not find the flow's ID, and the expiry time is still

current, the algorithm can tell that another flow is using that

bucket, and it continues to look for a bucket for the flow. Even if

it finds another flow's bucket where the expiry time has passed, it

doesn't immediately use it. It merely remembers it as the potential

bucket to use. But first it runs through all the ATTEMPTS hashes to

look for a bucket assigned to the flow ID. Then, if a live bucket is

not already associated with the packet's flow, the algorithm should

have already set aside an existing bucket with a score that has aged

out. Given this bucket is no longer necessary to hold state for its

previous flow, it can be recycled for use by the present packet's

flow.

If all else fails, there is one additional bucket (called the dregs)

that can be used. If the dregs is still in live use by another flow,

subsequent flows that cannot find a bucket of their own all share

it, adding their score to the one in the dregs. A flow might get

away with using the dregs on its own, but when there are many mis-

marked flows, multiple flows are more likely to collide in the

dregs, including innocent flows. The choice of number of buckets and

number of hash attempts determines how likely it will be that this

undesirable scenario will occur.

¶

¶

<CODE BEGINS>

// Pick the bucket associated with flow uflw

pick_bucket(uflw) {

 now; // current time

 j; // loop counter

 h32; // holds hash of the packet's flow IDs

 h; // bucket index being checked

 hsav; // interim chosen bucket index

 h32 = hash32(uflw); // 32-bit hash of flow ID

 hsav = NBUCKETS; // Default bucket

 now = get_time_now(); // in units of T_RES

 // The for loop checks ATTEMPTS buckets for ownership by flow-ID

 // It also records the 1st bucket, if any, that could be recycled

 // because it's expired.

 // Must not recycle a bucket until all ownership checks completed

 for (j=0; j<ATTEMPTS; j++) {

 // Use least signif. BI_SIZE bits of hash for each attempt

 h = h32 & MASK;

 if (buckets[h].id == uflw) { // Once uflw's bucket found...

 if (buckets[h].t_exp <= now) // ...if bucket has expired...

 buckets[h].t_exp = now; // ...reset it

 return h; // Either way, use it

 }

 else if ((hsav == NBUCKETS) // If not seen expired bucket yet

 // and this bucket has expired

 && (buckets[h].t_exp <= now)) {

 hsav = h; // set it as the interim bucket

 }

 h32 >>= BI_SIZE; // Bit-shift hash for next attempt

 }

 // If reached here, no tested bucket was owned by the flow-ID

 if (hsav != NBUCKETS) {

 // If here, found an expired bucket within the above for loop

 buckets[hsav].t_exp = now; // Reset expired bucket

 } else {

 // If here, we're having to use the default bucket (the dregs)

 if (buckets[hsav].t_exp <= now) { // If dregs has expired...

 buckets[hsav].t_exp = now; // ...reset it

 }

 }

 buckets[hsav].id = uflw; // In either case, claim for recycling

 return hsav;

}

<CODE ENDS>

¶

4.2.3. The fill_bucket() function

The fill_bucket() function both accumulates and ages the queuing

score over time, as outlined in Section 2.1. To make aging the score

efficient, the increment of the queuing score is transformed into

units of time by dividing by AGING, so that the result represents

the new expiry time of the flow.

Given that probNative is already used to select which packets to

ECN-mark, it might be thought that the queuing score could just be

incremented by the full size of each selected packet, instead of

incrementing it by the product of every packet's size (pkt_sz) and

probNative. However, the unpublished experience of one of the

authors with other congestion policers has found that the score then

increments far too jumpily, particularly when probNative is low.

A deeper explanation of the queuing score is given in Section 5.

4.2.4. The calcProbNative() function

To derive this queuing score, the QProt algorithm uses the linear

ramp function calcProbNative() to normalize instantaneous queuing

delay of the LL queue into a probability in the range [0,1], which

it assigns to probNative.

¶

¶

¶

<CODE BEGINS>

fill_bucket(bckt_id, pkt_sz, probNative) {

 now; // current time

 now = get_time_now(); // in units of T_RES

 // Add packet's queuing score

 // For integer arithmetic, a bit-shift can replace the division

 qLscore = min(buckets[bckt_id].t_exp - now

 + probNative * pkt_sz / AGING, qLSCORE_MAX);

 buckets[bckt_id].t_exp = now + qLscore;

 return qLscore;

}

<CODE ENDS>

¶

¶

5. Rationale

5.1. Rationale: Blame for Queuing, not for Rate in Itself

Figure 1 shows the bit rates of two flows as stacked areas. It poses

the question of which flow is more to blame for queuing delay; the

unresponsive constant bit rate flow (c) that is consuming about 80%

of the capacity, or the flow sending regular short unresponsive

bursts (b)? The smoothness of c seems better for avoiding queuing,

but its high rate does not. However, if flow c was not there, or ran

slightly more slowly, b would not cause any queuing.

Figure 1: Which is More to Blame for Queuing Delay?

To explain queuing scores, in the following it will initially be

assumed that the QProt algorithm is accumulating queuing scores, but

not taking any action as a result.

To quantify the responsibility that each flow bears for queuing

delay, the QProt algorithm accumulates the product of the rate of

each flow and the level of congestion, both measured at the instant

each packet arrives. The instantaneous flow rate is represented at

<CODE BEGINS>

calcProbNative(qdelay){

 if (qdelay >= MAXTH) {

 probNative = MAX_PROB;

 } else if (qdelay > MINTH) {

 probNative = MAX_PROB * (qdelay - MINTH)/RANGE;

 // In practice, the * and the / would use a bit-shift

 } else {

 probNative = 0;

 }

 return probNative;

}

<CODE ENDS>

¶

¶

^ bit rate (stacked areas)

| ,-. ,-. ,-. ,-. ,-.

|--|b|----------|b|----------|b|----------|b|----------|b|---Capacity

|__|_|__________|_|__________|_|__________|_|__________|_|_____

|

| c

|

|

|

+-->

 time

¶

each discrete event when a packet arrives by the packet's size,

which accumulates faster the more packets arrive within each unit of

time. The level of congestion is normalized to a dimensionless

number between 0 and 1 (probNative). This fractional congestion

level is used in preference to a direct dependence on queuing delay

for two reasons:

to be able to ignore very low levels of queuing that contribute

insignificantly to delay

to be able to erect a steep barrier against excessive queuing

delay

The unit of the resulting queue score is "congested-bytes" per

second, which distinguishes it from just bytes per second.

Then, during the periods between bursts (b), neither flow

accumulates any queuing score - the high rate of c is benign. But,

during each burst, if we say the rate of c and b are 80% and 45% of

capacity, thus causing 25% overload, they each bear (80/125)% and

(45/125)% of the responsibility for the queuing delay (64% and 36%).

The algorithm does not explicitly calculate these percentages. They

are just the outcome of the number of packets arriving from each

flow during the burst.

To summarize, the queuing score never sanctions rate solely on its

own account. It only sanctions rate inasmuch as it causes queuing.

Figure 2: Responsibility for Queuing: More Complex Scenario

Figure 2 gives a more complex illustration of the way the queuing

score assigns responsibility for queuing (limited to the precision

that ASCII art can illustrate). The figure shows the bit rates of

three flows represented as stacked areas labelled b, v and r. The

unresponsive bursts (b) are the same as in the previous example, but

a variable rate video (v) replaces flow c. It's rate varies as the

complexity of the video scene varies. Also on a slower timescale, in

¶

*

¶

*

¶

¶

¶

¶

^ bit rate (stacked areas) ,

| ,-. |\ ,-

|------Capacity-|b|----------,-.----------|b|----------|b\-----

| __|_|_______ |b| /``\| _...-._-': | ,.--

| ,-. __/ __|_|_ _/ |/ \|/

| |b| ___/ ___/ __ r

| |_|/ v __/ _______ _/____/

| _/ __/

|

+-->

 time

response to the level of congestion, the video adapts its quality.

However, on a short time-scale it appears to be unresponsive to

small amounts of queuing. Also, part-way through, a low latency

responsive flow (r) joins in, aiming to fill the balance of capacity

left by the other two.

The combination of the first burst and the low application-limited

rate of the video causes neither flow to accumulate queuing score.

In contrast, the second burst causes similar excessive overload

(125%) to the example in Figure 1. Then, the video happens to reduce

its rate (probably due to a less complex scene) so the third burst

causes only a little congestion. Let us assume the resulting queue

causes probNative to rise to just 1%, then the queuing score will

only accumulate 1% of the size of each packet of flows v and b

during this burst.

The fourth burst happens to arrive just as the new responsive flow

(r) has filled the available capacity, so it leads to very rapid

growth of the queue. After a round trip the responsive flow rapidly

backs off, and the adaptive video also backs off more rapidly than

it would normally, because of the very high congestion level. The

rapid response to congestion of flow r reduces the queuing score

that all three flows accumulate, but they each still bear the cost

in proportion to the product of the rates at which their packets

arrive at the queue and the value of probNative when they do so.

Thus, during the fifth burst, they all accumulate less score than

the fourth, because the queuing delay is not as excessive.

5.2. Rationale for Constant Aging of the Queuing Score

Even well-behaved flows will not always be able to respond fast

enough to dynamic events. Also well-behaved flows, e.g., DCTCP

[RFC8257], TCP Prague [I-D.briscoe-iccrg-prague-congestion-control],

BBRv3 [BBRv3] or the L4S variant of SCReAM [SCReAM] for real-time

media [RFC8298], can maintain a very shallow queue by continual

careful probing for more while also continually subtracting a little

from their rate (or congestion window) in response to low levels of

ECN signalling. Therefore, the QProt algorithm needs to continually

offer a degree of forgiveness to age out the queuing score as it

accumulates.

Scalable congestion controllers such as those above maintain their

congestion window in inverse proportion to the congestion level,

probNative. That leads to the important property that on average a

scalable flow holds the product of its congestion window and the

congestion level constant, no matter the capacity of the link or how

many other flows it competes with. For instance, if the link

capacity doubles, a scalable flow induces half the congestion

probability. Or if three scalable flows compete for the capacity,

¶

¶

¶

¶

each flow will reduce to one third of the capacity they would use on

their own and increase the congestion level by 3x. Therefore, in

steady state, a scalable flow will induce the same constant amount

of "congested-bytes" per round trip, whatever the link capacity, and

no matter how many flows are sharing the capacity.

This suggests that the QProt algorithm will not sanction a well-

behaved scalable flow if it ages out the queuing score at a

sufficient constant rate. The constant will need to be somewhat

above the average of a well-behaved scalable flow to allow for

normal dynamics.

Relating QProt's aging constant to a scalable flow does not mean

that a flow has to behave like a scalable flow. It can be less

aggressive, but not more. For instance, a longer RTT flow can run at

a lower congestion-rate than the aging rate, but it can also

increase its aggressiveness to equal the rate of short RTT scalable

flows [ScalingCC]. The constant aging of QProt also means that a

long-running unresponsive flow will be prone to trigger QProt if it

runs faster than a competing responsive scalable flow would. And, of

course, if a flow causes excessive queuing in the short-term, its

queuing score will still rise faster than the constant aging process

will decrease it. Then QProt will still eject the flow's packets

before they harm the low latency of the shared queue.

5.3. Rationale for Transformed Queuing Score

The QProt algorithm holds a flow's queuing score state in a

structure called a bucket, because of its similarity to a classic

leaky bucket (except the contents of the bucket does not represent

bytes).

Figure 3: Transformation of Queuing Score

The accumulation and aging of the queuing score is shown on the left

of Figure 3 in token bucket form. Dt is the difference between the

¶

¶

¶

¶

probNative * pkt_sz probNative * pkt_sz / AGING

 | |

 | V | | V |

 | : | ___ | : |

 |_____| ___ |_____|

 | | ___ | |

 |__ __| |__ __|

 | |

 V V

 AGING * Dt Dt

times when the scores of the current and previous packets were

processed.

A transformed equivalent of this token bucket is shown on the right

of Figure 3, dividing both the input and output by the constant

AGING rate. The result is a bucket-depth that represents time and it

drains at the rate that time passes.

As a further optimization, the time the bucket was last updated is

not stored with the flow-state. Instead, when the bucket is

initialized the queuing score is added to the system time 'now' and

the resulting expiry time is written into the bucket. Subsequently,

if the bucket has not expired, the incremental queuing score is

added to the time already held in the bucket. Then the queuing score

always represents the expiry time of the flow-state itself. This

means that the queuing score does not need to be aged explicitly

because it ages itself implicitly.

5.4. Rationale for Policy Conditions

Pseudocode for the QProt policy conditions is given in Section 4.1

within the second half of the qprotect() function. When each packet

arrives, after finding its flow state and updating the queuing score

of the packet's flow, the algorithm checks whether the shared queue

delay exceeds a constant threshold CRITICALqL (e.g., 2 ms), as

repeated below for convenience:

If the queue delay threshold is exceeded, the flow's queuing score

is temporarily scaled up by the ratio of the current queue delay to

the threshold queuing delay, CRITICALqL (the reason for the scaling

is given next). If this scaled up score exceeds another constant

threshold CRITICALqLSCORE, the packet is ejected. The actual last

line of code above multiplies both sides of the second condition by

CRITICALqL to avoid a costly division.

This approach allows each packet to be assessed once, as it arrives.

Once queue delay exceeds the threshold, it has two implications:

The current packet might be ejected even though there are packets

already in the queue from flows with higher queuing scores.

However, any flow that continues to contribute to the queue will

¶

¶

¶

¶

<CODE BEGINS>

 if ((qdelay > CRITICALqL) // Test if qdelay over threshold...

 // ...and if flow's q'ing score scaled by qdelay/CRITICALqL

 // ...exceeds CRITICALqLSCORE

 && (qdelay * qLscore > CRITICALqLPRODUCT))

 // Recall that CRITICALqLPRODUCT = CRITICALqL * CRITICALqLSCORE

<CODE ENDS>

¶

¶

¶

*

have to send further packets, giving an opportunity to eject them

as well, as they subsequently arrive.

The next packets to arrive might not be ejected, because they

might belong to flows with low queuing scores. In this case,

queue delay could continue to rise with no opportunity to eject a

packet. This is why the queuing score is scaled up by the current

queue delay. Then, the more the queue has grown without ejecting

a packet, the more the algorithm 'raises the bar' to further

packets.

The above approach is preferred over the extra per-packet processing

cost of searching the buckets for the flow with the highest queuing

score and searching the queue for one of its packets to eject (if

one is still in the queue).

Note that by default CRITICALqL_us is set to the maximum threshold

of the ramp marking algorithm, MAXTH_us. However, there is some

debate as to whether setting it to the minimum threshold instead

would improve QProt performance. This would roughly double the ratio

of qdelay to CRITICALqL, which is compared against the

CRITICALqLSCORE threshold. So the threshold would have to be roughly

doubled accordingly.

Figure 4 explains this approach graphically. On the horizontal axis

it shows actual harm, meaning the queuing delay in the shared queue.

On the vertical axis it shows the behaviour record of the flow

associated with the currently arriving packet, represented in the

algorithm by the flow's queuing score. The shaded region represents

the combination of actual harm and behaviour record that will lead

to the packet being ejected.

¶

*

¶

¶

¶

¶

Figure 4: Graphical Explanation of the Policy Conditions

The regions labelled 'N' represent cases where the first condition

is not met - no actual harm - queue delay is below the critical

threshold, CRITICALqL.

The region labelled 'E' represents cases where there is actual harm

(queue delay exceeds CRITICALqL) and the queuing score associated

with the arriving packet is high enough to be able to eject it with

certainty.

The region labelled 'P' represents cases where there is actual harm,

but the queuing score of the arriving packet is insufficient to

eject it, so it has to be Passed over. This adds to queuing delay,

but the alternative would be to sanction an innocent flow. It can be

seen that, as actual harm increases, the judgement of innocence

becomes increasingly stringent; the behaviour record of the next

packet's flow does not have to be as bad to eject it.

Conditioning ejection on actual harm helps prevent VPN packets being

ejected unnecessarily. VPNs consisting of multiple flows can tend to

accumulate queuing score faster than it is aged out, because the

aging rate is intended for a single flow. However, whether or not

some traffic is in a VPN, the queue delay threshold (CRITICALqL)

will be no more likely to be exceeded. So conditioning ejection on

actual harm helps reduce the chance that VPN traffic will be ejected

by the QProt function.

Behaviour Record:

Queueing Score of

Arriving Packet's Flow

^

| + |/ / / / / / / / / / / / / / / / / / /

| + N | / / / / / / / / / / / / / / / / / / /

| + |/ / / / / / / / / /

| + | / / / / E (Eject packet) / / / / /

| + |/ / / / / / / / / /

| + | / / / / / / / / / / / / / / / / / / /

| + |/ / / / / / / / / / / / / / / / / / /

| +| / / / / / / / / / / / / / / / / / / /

| |+ / / / / / / / / / / / / / / / / / /

| N | + / / / / / / / / / / / / / / / / /

| (No actual | +/ / / / / / / / / / / / / / /

| harm) | + / / / / / / / / / / / /

| | P (Pass over) + ,/ / / / / / / /

| | ^ + /./ /_/

+--------------+-->

 CRITICALqL Actual Harm: Shared Queue Delay

¶

¶

¶

¶

5.5. Rationale for Reclassification as the Policy Action

When the DOCSIS QProt algorithm deems that it is necessary to eject

a packet to protect the Low Latency queue, it redirects the packet

to the Classic queue. In the Low Latency DOCSIS architecture (as in

Coupled DualQ AQMs generally), the Classic queue is expected to

frequently have a larger backlog of packets, caused by classic

congestion controllers interacting with a classic AQM (which has a

latency target of 10ms) as well as other bursty traffic.

Therefore, typically, an ejected packet will experience higher

queuing delay than it would otherwise, and it could be re-ordered

within its flow (assuming QProt does not eject all packets of an

anomalous flow). The mild harm caused to the performance of the

ejected packet's flow is deliberate. It gives senders a slight

incentive to identify their packets correctly.

If there were no such harm, there would be nothing to prevent all

flows from identifying themselves as suitable for classification

into the low latency queue, and just letting QProt sort the

resulting aggregate into queue-building and non-queue-building

flows. This might seem like a useful alternative to requiring

senders to correctly identify their flows. However, handling of mis-

classified flows is not without a cost. The more packets that have

to be reclassified, the more often the delay of the low latency

queue would exceed the threshold. Also more memory would be required

to hold the extra flow state.

When a packet is redirected into the Classic queue, an operator

might want to alter the identifier(s) that originally caused it to

be classified into the Low Latency queue, so that the packet will

not be classified into another low latency queue further downstream.

However, redirection of occasional packets can be due to unusually

high transient load just at the specific bottleneck, not necessarily

at any other bottleneck, and not necessarily due to bad flow

behaviour. Therefore, Section 5.4.1.2 of [RFC9331] precludes a

network node from altering the end-to-end ECN field to exclude

traffic from L4S treatment. Instead a local-use identifier ought to

be used (e.g., Diffserv Codepoint or VLAN tag), so that each

operator can apply its own policy, without prejudging what other

operators ought to do.

Although not supported in the DOCSIS specs, QProt could be extended

to recognize that large numbers of redirected packets belong to the

same flow. This might be detected when the bucket expiry time t_exp

exceeds a threshold. Depending on policy and implementation

capabilities, QProt could then install a classifier to redirect a

whole flow into the Classic queue, with an idle timeout to remove

stale classifiers. In these 'persistent offender' cases, QProt might

¶

¶

¶

¶

also overwrite each redirected packet's DSCP or clear its ECN field

to Not-ECT, in order to protect other potential L4S queues

downstream. The DOCSIS specs do not discuss sanctioning whole flows,

so further discussion is beyond the scope of the present document.

6. Limitations

The QProt algorithm groups packets with common layer-4 flow

identifiers. It then uses this grouping to accumulate queuing scores

and to sanction packets.

This choice of identifier for grouping is pragmatic with no

scientific basis. All the packets of a flow certainly pass between

the same two endpoints. But some applications might initiate

multiple flows between the same end-points, e.g., for media,

control, data, etc. Others might use common flow identifiers for all

these streams. Also, a user might group multiple application flows

within the same encrypted VPN between the same layer-4 tunnel end-

points. And even if there were a one-to-one mapping between flows

and applications, there is no reason to believe that the rate at

which congestion can be caused ought to be allocated on a per

application flow basis.

The use of a queuing score that excludes those aspects of flow rate

that do not contribute to queuing (Section 5.1) goes some way to

mitigating this limitation, because the algorithm does not judge

responsibility for queuing delay primarily on the combined rate of a

set of flows grouped under one flow ID.

7. IANA Considerations (to be removed by RFC Editor)

This specification contains no IANA considerations.

8. Implementation Status

Implementation

name:
DOCSIS models for ns-3

Organization CableLabs

Web page https://apps.nsnam.org/app/docsis-ns3/

Description

ns-3 simulation models developed and used in support

of the Low Latency DOCSIS development, including

models of Dual Queue Coupled AQM, Queue Protection,

and the DOCSIS MAC

Maturity
Simulation models that can also be used in emulation

mode in a testbed context

Coverage Complete implementation of Annex P of DOCSIS 3.1

Version
DOCSIS 3.1, version I21; https://www.cablelabs.com/

specifications/CM-SP-MULPIv3.1?v=I21

Licence GPLv2

¶

¶

¶

¶

¶

Implementation

name:
DOCSIS models for ns-3

Contact via web page

Last Impl'n

update
Mar 2022

Information

valid at
7 Mar 2022

Table 1

There are also a number of closed source implementations, including

2 cable modem implementations written by different chipset

manufacturers, and one CMTS implementation by a third manufacturer.

These, as well as the ns-3 implementation, have passed the full

suite of compliance tests developed by CableLabs.

9. Security Considerations

The whole of this document concerns traffic security. It considers

the security question of how to identify and eject traffic that does

not comply with the non-queue-building behaviour required to use a

shared low latency queue, whether accidentally or maliciously.

Section 8.2 of the L4S architecture [RFC9330] introduces the problem

of maintaining low latency by either self-restraint or enforcement,

and places DOCSIS queue protection in context within a wider set of

approaches to the problem.

9.1. Resource Exhaustion Attacks

The algorithm has been designed to fail gracefully in the face of

traffic crafted to overrun the resources used for the algorithm's

own processing and flow state. This means that non-queue-building

flows will always be less likely to be sanctioned than queue-

building flows. But an attack could be contrived to deplete

resources in such a way that the proportion of innocent (non-queue-

building) flows that are incorrectly sanctioned could increase.

Incorrect sanctioning is intended not to be catastrophic; it results

in more packets from well-behaved flows being redirected into the

Classic queue; thus introducing more reordering into innocent flows.

9.1.1. Exhausting Flow-State Storage

To exhaust the number of buckets, the most efficient attack is to

send enough long-running attack flows to increase the chance that an

arriving flow will not find an available bucket, and therefore have

to share the 'dregs' bucket. For instance, if ATTEMPTS=2 and

NBUCKETS=32, it requires about 94 attack flows, each using different

port numbers, to increase the probability to 99% that an arriving

¶

¶

¶

¶

¶

flow will have to share the dregs, where it will share a high degree

of redirection into the C queue with the remainder of the attack

flows.

For an attacker to keep buckets busy, it is more efficient to hold

onto them by cycling regularly through a set of port numbers (94 in

the above example), rather than to keep occupying and releasing

buckets with single packet flows across a much larger number of

ports.

During such an attack, the coupled marking probability will have

saturated at 100%. So, to hold a bucket, the rate of an attack flow

needs to be no less than the AGING rate of each bucket; 4Mb/s by

default. However, for an attack flow to be sure to hold on to its

bucket, it would need to send somewhat faster. Thus an attack with

100 flows would need a total force of more than 100 * 4Mb/s = 400Mb/

s.

This attack can be mitigated (but not prevented) by increasing the

number of buckets. The required attack force scales linearly with

the number of buckets, NBUCKETS. So, if NBUCKETS were doubled to 64,

twice as many 4Mb/s flows would be needed to maintain the same

impact on innocent flows.

Probably the most effective mitigation would be to implement

redirection of whole-flows once enough of the individual packets of

a certain offending flow had been redirected. This would free up the

buckets used to maintain the per-packet queuing score of persistent

offenders. Whole-flow redirection is outside the scope of the

current version of the QProt algorithm specified here, but it is

briefly discussed at the end of Section 5.5.

It might be considered that all the packets of persistently

offending flows ought to be discarded rather than redirected.

However, this is not recommended, because attack flows might be able

to pervert whole-flow discard, turning it onto at least some

innocent flows, thus amplifying an attack that causes reordering

into total deletion of some innocent flows.

9.1.2. Exhausting Processing Resources

The processing time needed to apply the QProt algorithm to each LL

packet is small and intended not to take all the time available

between each of a run of fairly small packets. However, an attack

could use minimum size packets launched from multiple input

interfaces into a lower capacity output interface. Whether the QProt

algorithm is vulnerable to processor exhaustion will depend on the

specific implementation.

¶

¶

¶

¶

¶

¶

¶

[DOCSIS]

[DOCSIS-CCAP-OSS]

[DOCSIS-CM-OSS]

[I-D.ietf-tsvwg-nqb]

Addition of a capability to redirect persistently offending flows

from LL to C would be the most effective way to reduce the per-

packet processing cost of the QProt algorithm, when under attack. As

already mentioned in Section 9.1.1, this would also be an effective

way to mitigate flow-state exhaustion attacks. Further discussion of

whole-flow redirection is outside the scope of the present document,

but briefly discussed at the end of Section 5.5.

10. Comments Solicited

Evaluation and assessment of the algorithm by researchers is

solicited. Comments and questions are also encouraged and welcome.

They can be addressed to the authors.

11. Acknowledgements

Thanks to Tom Henderson, Magnus Westerlund, David Black, Adrian

Farrel and Gorry Fairhurst for their reviews of this document. The

design of the QProt algorithm and the settings of the parameters

benefited from discussion and critique from the participants of the

cable industry working group on Low Latency DOCSIS. CableLabs funded

Bob Briscoe's initial work on this document.

12. References

12.1. Normative References

CableLabs, "MAC and Upper Layer Protocols Interface

(MULPI) Specification, CM-SP-MULPIv3.1", Data-Over-Cable

Service Interface Specifications DOCSIS® 3.1 Version I17

or later, 21 January 2019, <https://specification-

search.cablelabs.com/CM-SP-MULPIv3.1>.

CableLabs, "CCAP Operations Support System

Interface Spec", Data-Over-Cable Service Interface

Specifications DOCSIS® 3.1 Version I14 or later, 21

January 2019, <https://specification-

search.cablelabs.com/CM-SP-CM-OSSIv3.1>.

CableLabs, "Cable Modem Operations Support System

Interface Spec", Data-Over-Cable Service Interface

Specifications DOCSIS® 3.1 Version I14 or later, 21

January 2019, <https://specification-

search.cablelabs.com/CM-SP-CM-OSSIv3.1>.

White, G., Fossati, T., and R. Geib, "A Non-

Queue-Building Per-Hop Behavior (NQB PHB) for

Differentiated Services", Work in Progress, Internet-

Draft, draft-ietf-tsvwg-nqb-21, 7 November 2023,

¶

¶

¶

https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1
https://specification-search.cablelabs.com/CM-SP-CM-OSSIv3.1

[RFC3168]

[RFC8311]

[RFC9331]

[BBRv3]

[I-D.briscoe-iccrg-prague-congestion-control]

[LLD]

[RFC4303]

[RFC6789]

[RFC7713]

<https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-

nqb-21>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/info/rfc3168>.

Black, D., "Relaxing Restrictions on Explicit Congestion

Notification (ECN) Experimentation", RFC 8311, DOI

10.17487/RFC8311, January 2018, <https://www.rfc-

editor.org/info/rfc8311>.

De Schepper, K. and B. Briscoe, Ed., "The Explicit

Congestion Notification (ECN) Protocol for Low Latency,

Low Loss, and Scalable Throughput (L4S)", RFC 9331, DOI

10.17487/RFC9331, January 2023, <https://www.rfc-

editor.org/info/rfc9331>.

12.2. Informative References

Cardwell, N., "TCP BBR v3 Release", github repository;

Linux congestion control module, <https://github.com/

google/bbr/blob/v3/README.md>.

De Schepper, K.,

Tilmans, O., Briscoe, B., and V. Goel, "Prague Congestion

Control", Work in Progress, Internet-Draft, draft-

briscoe-iccrg-prague-congestion-control-03, 14 October

2023, <https://datatracker.ietf.org/doc/html/draft-

briscoe-iccrg-prague-congestion-control-03>.

White, G., Sundaresan, K., and B. Briscoe, "Low Latency

DOCSIS: Technology Overview", CableLabs White Paper ,

February 2019, <https://cablela.bs/low-latency-docsis-

technology-overview-february-2019>.

Kent, S., "IP Encapsulating Security Payload (ESP)", RFC

4303, DOI 10.17487/RFC4303, December 2005, <https://

www.rfc-editor.org/info/rfc4303>.

Briscoe, B., Ed., Woundy, R., Ed., and A. Cooper, Ed.,

"Congestion Exposure (ConEx) Concepts and Use Cases", RFC

6789, DOI 10.17487/RFC6789, December 2012, <https://

www.rfc-editor.org/info/rfc6789>.

Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)

Concepts, Abstract Mechanism, and Requirements", RFC

7713, DOI 10.17487/RFC7713, December 2015, <https://

www.rfc-editor.org/info/rfc7713>.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-21
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-21
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc9331
https://www.rfc-editor.org/info/rfc9331
https://github.com/google/bbr/blob/v3/README.md
https://github.com/google/bbr/blob/v3/README.md
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-03
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-03
https://cablela.bs/low-latency-docsis-technology-overview-february-2019
https://cablela.bs/low-latency-docsis-technology-overview-february-2019
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc6789
https://www.rfc-editor.org/info/rfc6789
https://www.rfc-editor.org/info/rfc7713
https://www.rfc-editor.org/info/rfc7713

[RFC8257]

[RFC8298]

[RFC9330]

[RFC9332]

[ScalingCC]

[SCReAM]

Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,

and G. Judd, "Data Center TCP (DCTCP): TCP Congestion

Control for Data Centers", RFC 8257, DOI 10.17487/

RFC8257, October 2017, <https://www.rfc-editor.org/info/

rfc8257>.

Johansson, I. and Z. Sarker, "Self-Clocked Rate

Adaptation for Multimedia", RFC 8298, DOI 10.17487/

RFC8298, December 2017, <https://www.rfc-editor.org/info/

rfc8298>.

Briscoe, B., Ed., De Schepper, K., Bagnulo, M., and G.

White, "Low Latency, Low Loss, and Scalable Throughput

(L4S) Internet Service: Architecture", RFC 9330, DOI

10.17487/RFC9330, January 2023, <https://www.rfc-

editor.org/info/rfc9330>.

De Schepper, K., Briscoe, B., Ed., and G. White, "Dual-

Queue Coupled Active Queue Management (AQM) for Low

Latency, Low Loss, and Scalable Throughput (L4S)", RFC

9332, DOI 10.17487/RFC9332, January 2023, <https://

www.rfc-editor.org/info/rfc9332>.

Briscoe, B. and K. De Schepper, "Resolving Tensions

between Congestion Control Scaling Requirements", Simula

Technical Report TR-CS-2016-001 arXiv:1904.07605, July

2017, <https://arxiv.org/abs/1904.07605>.

Johansson, I., "SCReAM", github repository; , <https://

github.com/EricssonResearch/scream/blob/master/

README.md>.

Authors' Addresses

Bob Briscoe (editor)

Independent

United Kingdom

Email: ietf@bobbriscoe.net

URI: http://bobbriscoe.net/

Greg White

CableLabs

United States of America

Email: G.White@CableLabs.com

https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc8298
https://www.rfc-editor.org/info/rfc8298
https://www.rfc-editor.org/info/rfc9330
https://www.rfc-editor.org/info/rfc9330
https://www.rfc-editor.org/info/rfc9332
https://www.rfc-editor.org/info/rfc9332
https://arxiv.org/abs/1904.07605
https://github.com/EricssonResearch/scream/blob/master/README.md
https://github.com/EricssonResearch/scream/blob/master/README.md
https://github.com/EricssonResearch/scream/blob/master/README.md
mailto:ietf@bobbriscoe.net
http://bobbriscoe.net/
mailto:G.White@CableLabs.com

	The DOCSIS® Queue Protection Algorithm to Preserve Low Latency
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Document Roadmap
	1.2. Terminology
	1.3. Copyright Material

	2. Approach - In Brief
	2.1. Mechanism
	2.2. Policy
	2.2.1. Policy Conditions
	2.2.2. Policy Action

	3. Necessary Flow Behaviour
	4. Pseudocode Walk-Through
	4.1. Input Parameters, Constants and Variables
	4.2. Queue Protection Data Path
	4.2.1. The qprotect() function
	4.2.2. The pick_bucket() function
	4.2.3. The fill_bucket() function
	4.2.4. The calcProbNative() function

	5. Rationale
	5.1. Rationale: Blame for Queuing, not for Rate in Itself
	5.2. Rationale for Constant Aging of the Queuing Score
	5.3. Rationale for Transformed Queuing Score
	5.4. Rationale for Policy Conditions
	5.5. Rationale for Reclassification as the Policy Action

	6. Limitations
	7. IANA Considerations (to be removed by RFC Editor)
	8. Implementation Status
	9. Security Considerations
	9.1. Resource Exhaustion Attacks
	9.1.1. Exhausting Flow-State Storage
	9.1.2. Exhausting Processing Resources

	10. Comments Solicited
	11. Acknowledgements
	12. References
	12.1. Normative References
	12.2. Informative References

	Authors' Addresses

