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Abstract

   This specification defines the Prague congestion control scheme,
   which is derived from DCTCP and adapted for Internet traffic by
   implementing the Prague L4S requirements.  Over paths with L4S
   support at the bottleneck, it adapts the DCTCP mechanisms to achieve
   consistently low latency and full throughput.  It is defined
   independently of any particular transport protocol or operating
   system, but notes are added that highlight issues specific to certain
   transports and OSs.  It is mainly based on the current default
   options of the reference Linux implementation of TCP Prague, but it
   includes experience from other implementations where available.  It
   separately describes non-default and optional parts, as well as
   future plans.

   The implementation does not satisfy all the Prague requirements (yet)
   and the IETF might decide that certain requirements need to be
   relaxed as an outcome of the process of trying to satisfy them all.
   In two cases, research code is replaced by placeholders until full
   evaluation is complete.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 10, 2021.
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1.  Introduction

   This document defines the Prague congestion control.  It is defined
   independent of any particular transport protocol or operating system,
   but notes are added that highlight issues specific to certain
   transports and OSs.  The authors are most familiar with the reference
   implementation of Prague on Linux over TCP.  So that forms the basis
   of the large majority of platform-specific notes.  Nonetheless,
   wherever possible, experience from implementers on other platforms is
   included, and the intention is to gather more into this document
   during the drafting process.

   The Prague CC is intended to maintain consistently low queuing delay
   over network paths that offer L4S support at the bottleneck.  Where
   the bottleneck does not support L4S, the Prague CC is intended to
   fall back to behaving like a conventional 'Classic' congestion
   control.  L4S stands for Low Latency, Low Loss Scalable throughput.
   L4S support in the network involves Active Queue Management (AQM)
   with a very shallow target queueing delay (of the order of a
   millisecond) that applies immediate Explicit Congestion Notification
   (ECN).  'Immediate ECN' means that the network applies ECN marking
   based on the instantaneous queue, without any smoothing or filtering,
   The Prague CC takes on the job of smoothing and filtering the
   congestion signals from the network.

   The Prague CC is a particular instance of a scalable congestion
   control, which is defined in Section 1.4.  Scalable congestion
   control is the part of the L4S architecture that does the actual work
   of maintaining low queuing delay and ensuring that the delay and
   throughput properties scale with flow rate.

   The L4S architecture [I-D.ietf-tsvwg-l4s-arch] places the host
   congestion control in the context of the other parts of the system.
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   In particular the different types of L4S AQM in the network and the
   codepoints in the IP-ECN field that convey to the network that the
   host supports the L4S form of ECN.  The architecture document also
   covers other issues such as: incremental deployment; protection of
   low latency queues against accidental or malicious disruption; and
   the relationship of L4S to other low latency technologies.  The
   specification of the L4S ECN Protocol [I-D.ietf-tsvwg-ecn-l4s-id]
   sets down the requirements that the Prague CC has to follow (called
   the Prague L4S Requirements - see Section 2.1 for a summary).

   Links to implementations of the Prague CC and other scalable
   congestion controls (all open source) can be found via the L4S
   landing page [L4S-home], which also links to numerous other L4S-
   related resources.  A (slightly dated) paper on the specific
   implementation of the Prague CC in Linux over TCP is also available
   [PragueLinux].

1.1.  Motivation: Low Queuing Delay /and/ Full Throughput

   The Prague CC is capable of keeping queuing delay consistently low
   while fully utilizing available capacity.  In contrast, Classic
   congestion controls need to induce a reasonably large queue
   (approaching a bandwidth-delay product) in order to fully utilize
   capacity.  Therefore, prior to scalable CCs like DCTCP and Prague, it
   was believed that very low delay was only possible by limiting
   throughput and isolating the low delay traffic from capacity-seeking
   traffic.

   The Prague CC uses additive increase multiplicative decrease (AIMD),
   in which it increases its window until an ECN mark (or loss) is
   detected, then yields in a continual sawtooth pattern.  The key to
   keeping queuing delay low without under-utilizing capacity is to keep
   the sawteeth tiny.  For example the average duration of a Prague CC
   sawtooth is of the order of a round trip, whereas a classic
   congestion control sawtooths over hundreds of round trips.  For
   instance, over an RTT of 36ms, at 100Mb/s Cubic takes about 106 round
   trips to recover, and at 800 Mb/s its recovery time triples to over
   340 round trips, or still more than 12 seconds (Reno would take 57
   seconds.

   Keeping the sawtooth amplitude down keeps queue variation down and
   utilization up.  Keeping the duration of the sawteeth down ensures
   control remains tight.  The definition of a scalable CC is that the
   duration between congestion marks does not increase as flow rate
   scales, all other factors being equal.  This is important, because it
   means that the sawteeth will always stay tiny.  So queue delay will
   remain very low, and control will remain very tight.
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   The tip of each sawtooth occurs when the bottleneck link emits a
   congestion signal.  Therefore such small sawteeth are only feasible
   when ECN is used for the congestion signals.  If loss were used, the
   loss level would be prohibitively high.  This is why L4S-ECN has to
   depart from the requirement of Classic ECN[RFC3168] that an ECN mark
   is equivalent to a loss.  Because otherwise the response to the high
   level of ECN marking would have to be as great as the response to an
   equivalent level of loss.

   The Prague CC is derived from Data Center TCP (DCTCP [RFC8257]).
   DCTCP is confined to controlled environments like data centres
   precisely because it uses such small sawteeth, which induce such a
   high level of congestion marking.  For a CC using Classic ECN, this
   would be interpreted as equivalent to the same, very high, loss
   level.  The Classic CC would then continually drive its own rate down
   in the face of such an apparently high level of congestion.

   This is why coexistence with existing traffic is important for the
   Prague CC.  It has to be able to detect whether it is sharing the
   bottleneck with Classic traffic, and if so fall back to behaving in a
   Classic way.  If the bottleneck does not support ECN at all, that is
   easy - the Prague CC just responds in the Classic way to loss (see

Section 2.4.1).  But if it is sharing the bottleneck with Classic ECN
   traffic, this is more difficult to detect (see Section 3.3).  Because
   the Prague CC removes most of the queue, it also addresses RTT-
   dependence.  Otherwise, at low base RTTs, it would become far more
   RTT-dependent than Classic CCs.

1.2.  Document Purpose

   There is not 'One True Prague CC'.  L4S is intended to enable
   development of any scalable CC that meets the L4S Prague requirements
   [I-D.ietf-tsvwg-ecn-l4s-id].  This document attempts to describe a
   reference implementation and attempts to generalize it to different
   transports and OS platforms.  The implementation does not satisfy all
   the Prague requirements (yet), and the IETF might decide that certain
   requirements need to be relaxed as an outcome of the process of
   trying to satisfy them all.

1.3.  Maturity Status (To be Removed Before Publication)

   The field of congestion control is always a work in progress.
   However, there are areas of the Prague CC that are still just
   placeholders while separate research code is evaluated.  And in other
   implementations of the Prague CC, other areas are incomplete.  In the
   Linux reference implementation of TCP Prague, interim code is used in
   the incomplete areas, which are:

https://datatracker.ietf.org/doc/html/rfc8257


De Schepper, et al.    Expires September 10, 2021               [Page 5]



Internet-Draft          Prague Congestion Control             March 2021

   o  Flow start and restart (standard slow start is used, even though
      it often exits early in L4S environments were ECN marking tends to
      be frequent);

   o  Faster than additive increase (standard additive increase is used,
      which makes the flow particularly sluggish if it has dropped out
      of slow start early).

   The body of this document describes the Prague CC as implemented.
   Any non-default options or any planned improvements are separated out
   into Section 3 on "Variants and Future Work".  As each of the above
   areas is addressed, it will will be removed from this section and its
   description in the body of the document will be updated.  Once all
   areas are complete, this section will be removed.  Prague CC will
   then still be a work in progress, but only on a similar footing as
   all other congestion controls.

1.4.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119] when, and
   only when, they appear in all capitals, as shown here.

   Definitions of terms:

   Classic Congestion Control:  A congestion control behaviour that can
      co-exist with standard TCP Reno [RFC5681] without causing
      significantly negative impact on its flow rate [RFC5033].  With
      Classic congestion controls, as flow rate scales, the number of
      round trips between congestion signals (losses or ECN marks) rises
      with the flow rate.  So it takes longer and longer to recover
      after each congestion event.  Therefore control of queuing and
      utilization becomes very slack, and the slightest disturbance
      prevents a high rate from being attained [RFC3649].

   Scalable Congestion Control:  A congestion control where the average
      time from one congestion signal to the next (the recovery time)
      remains invariant as the flow rate scales, all other factors being
      equal.  This maintains the same degree of control over queueing
      and utilization whatever the flow rate, as well as ensuring that
      high throughput is robust to disturbances.  For instance, DCTCP
      averages 2 congestion signals per round-trip whatever the flow
      rate.  For the public Internet a Scalable transport has to comply
      with the requirements in Section 4 of [I-D.ietf-tsvwg-ecn-l4s-id]
      (aka. the 'Prague L4S requirements').

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3649
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   Response function:  The relationship between the window (cwnd) of a
      congestion control and the congestion signalling probability, p,
      in steady state.  A general response function has the form cwnd =
      K/p^B, where K and B are constants.  In an approximation of the
      response function of the standard Reno CC, B=1/2.  For a scalable
      congestion control B=1, so its response function takes the form
      cwnd = K/p.  The number of congestion signals per round is p*cwnd,
      which equates to the constant, K, for a scalable CC.  Hence the
      definition of a scalable CC above.

   Reno-friendly:  The subset of Classic traffic that excludes
      unresponsive traffic and excludes experimental congestion controls
      intended to coexist with Reno but without always being strictly
      friendly to it (as allowed by [RFC5033]).  Reno-friendly is used
      in place of 'TCP-friendly', given that the TCP protocol is used
      with many different congestion control behaviours.

   Classic ECN:  The original Explicit Congestion Notification (ECN)
      protocol [RFC3168], which requires ECN signals to be treated the
      same as drops, both when generated in the network and when
      responded to by the sender.

      The names used for the four codepoints of the 2-bit IP-ECN field
      are as defined in [RFC3168]: Not ECT, ECT(0), ECT(1) and CE, where
      ECT stands for ECN-Capable Transport and CE stands for Congestion
      Experienced.

      A packet marked with the CE codepoint is termed 'ECN-marked' or
      sometimes just 'marked' where the context makes ECN obvious.

   CC:  Congestion Control

   ACK:  an ACKnowledgement, or to ACKnowledge

   EWMA:  Exponentially Weighted Moving Average

   RTT:  Round Trip Time

   Definitions of Parameters and Variables:

   MTU_BITS:  Maximum transmission unit [b]

   cwnd:  Congestion window [B]

   ssthresh:  Slow start threshold [B]

   inflight:  The amount of data that the sender has sent but not yet
      received ACKs for [B]

https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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   p: Steady-state probability of drop or marking []

   alpha:  EWMA of the ECN marking fraction []

   acked_sacked:  the amount of new data acknowledged by an ACK [B]

   ece_delta:  the amount of newly acknowledged data that was ECN-marked
      [B]

   ai_per_rtt:  additive increase to apply per RTT [B]

   srtt:  Smoothed round trip time [s]

   MAX_BURST_DELAY:  Maximum allowed bottleneck queuing delay due to
      segmentation offload bursts [s] (default 0.25 ms for the public
      Internet)

2.  Prague Congestion Control

2.1.  The Prague L4S Requirements

   The beneficial properties of L4S traffic (low queuing delay, etc.)
   depend on all L4S sources satisfying a set of conditions called the
   Prague L4S Requirements.  The name is after an ad hoc meeting of
   about thirty people co-located with the IETF in Prague in July 2015,
   the day after the first public demonstration of L4S.

   The meeting agreed a list of modifications to DCTCP [RFC8257] to
   focus activity on a variant that would be safe to use over the public
   Internet. it was suggested that this could be called TCP Prague to
   distinguish it from DCTCP.  This list was adopted by the IETF, and
   has continued to evolve (see section 4 of
   [I-D.ietf-tsvwg-ecn-l4s-id]).  The requirements are no longer TCP-
   specific, applying irrespective of wire-protocol (TCP, QUIC, RTP,
   SCTP, etc).

   This unusual start to the life of the project led to the unusual
   development process of a reference implementation that had to resolve
   a number of ambitious requirements, already known to be in tension
   [Tensions17].

   DCTCP already implements a scalable congestion control.  So most of
   the changes to make it usable over the Internet seemed trivial, some
   'merely' involving adoption of other parallel developments like
   Accurate ECN TCP feedback or RACK.  Others have been more challenging
   (e.g.  RTT-independence).  And others that seemed trivial became
   challenging given the complex set of bugs and behaviours that
   characterize today's Internet and the Linux stack.

https://datatracker.ietf.org/doc/html/rfc8257
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   The more critical implementation challenges are highlighted in the
   following sections, in the hope we can prevent mistakes being
   repeated (see for instance Section 2.3.2, Section 2.4.2).  There was
   also a set of five intertwined 'bugs' - all masking each other, but
   causing unpredictable or poor performance as different code
   modifications unmasked them.  A draft write-up about these has been
   prepared, which is longer than the whole of the present document, so
   it will be included by reference once published.

   During the development process, we have unearthed fundamental aspects
   of the implementation and indeed the design of DCTCP and Prague that
   have still not caught up with the paradigm shift from existence to
   extent-based congestion response.  Some have been implemented by
   default, e.g. not suppressing additive increase for a round trip
   after a congestion event (Section 2.4.3).  Others have been
   implemented but not fully evaluated, e.g. removing the 1-2
   unnecessary round trips of lag in feedback processing (Section 3.1.3)
   and yet others are still future plans, e.g. further RTT-independence
   (Section 3.4) and exploiting combined congestion metrics in more
   cases (Section 3.2).

   The requirements are categorized into those that would impact other
   flows if not handled properly and performance optimizations that are
   important but optional from the IETF's point of view, because they
   only affect the flow itself.  The list below maps the order of the
   requirements in [I-D.ietf-tsvwg-ecn-l4s-id] to the order in this
   document (which is by functional categories and code status):

   Mandatory or Advisory Requirements:

      *  L4S-ECN packet identification: use of ECT(1) (Section 2.2)

      *  Accurate ECN feedback (Section 2.3.1)

      *  Reno-friendly response to a loss (Section 2.4.1)

      *  Detection of a classic ECN AQM (Section 3.3)

      *  Reduced RTT dependence (Section 2.4.4)

      *  Scaling down to a fractional window (no longer mandatory, see
Section 3.5)

      *  Detecting loss in units of time (Section 2.3.3)

      *  Minimizing bursts (Section 2.5.1

   Optional performance optimizations:
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      *  ECN-capable control packets (Section 2.2)

      *  Faster flow start (Section 3.1.1)

      *  Faster than additive increase (Section 3.1.2)

      *  Segmentation offload (Section 2.5.2)

2.2.  Packet Identification

   On the public Internet, a sender using the Prague CC MUST set the
   ECT(1) codepoint on all the packets it sends, in order to identify
   itself as an L4S-capable congestion control (Req 4.1
   [I-D.ietf-tsvwg-ecn-l4s-id]).

   This applies whatever the transport protocol, whether TCP, QUIC, RTP,
   etc.  In the case of TCP, unlike an RFC 3168 TCP ECN transport, a
   sender can set all packets as ECN-capable, including TCP control
   packets and retransmissions [RFC8311],
   [I-D.ietf-tcpm-generalized-ecn].

   The Prague CC SHOULD optionally be configurable to use the ECT(0)
   codepoint in private networks, such as data centres, which might be
   necessary for backward compatibility with DCTCP deployments where
   ECT(1) might already have another usage.

   Implementation note:

   TCP Prague in Linux  kernel:  The kernel was updated to allow the
      ECT(1) flag to be set from within a CC module.  The Prague CC then
      has full control over the ECN code point it uses at any one time.
      In this way it enforces the use of ECT(1) (or optionally ECT(0))
      and non-ECT when required.

2.3.  Detecting and Measuring Congestion

2.3.1.  Accurate ECN Feedback

   When feedback of ECN markings was added to TCP [RFC3168], it was
   decided not to report any more than one mark per RTT.  L4S-capable
   congestion controls need to know the extent, not just the existence
   of congestion (Req 4.2.  [I-D.ietf-tsvwg-ecn-l4s-id]).  Recently
   defined transports (DCCP, QUIC, etc) typically already satisfy this
   requirement.  So they are dealt with separately below, while TCP and
   derivatives such as SCTP [RFC4960] are covered first.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4960
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2.3.1.1.  Accurate ECN Feedback with TCP & Derivatives

   The TCP wire protocol is being updated to allow more accurate
   feedback (AccECN [I-D.ietf-tcpm-accurate-ecn]).  Therefore, in the
   case where a sender uses the Prague CC over TCP, whether as client or
   server:

   o  it MUST itself support AccECN;

   o  to support AccECN it also has to check that its peer supports
      AccECN during the handshake.

   If the peer does not support accurate ECN feedback, the sender MUST
   fall back to a Reno-friendly CC behaviour for the rest of the
   connection.  The non-Prague TCP sender MUST then no longer set ECT(1)
   on the packets it sends.  Note that the peer only needs to support
   AccECN; there is no need (and no way) to find out whether the peer is
   using an L4S-capable congestion control.

   Note that a sending TCP client that uses the Prague CC can set ECT(1)
   on the SYN prior to checking whether the other peer supports AccECN
   (as long as it follows the procedure in
   [I-D.ietf-tcpm-generalized-ecn] if it discovers the peer does not
   support AccECN).

   Implementation note:

   TCP Prague in Linux  kernel:  The kernel had been updated to support
      AccECN Independent of the CC module in use.  So the kernel tries
      to negotiate AccECN exchange whichever congestion control module
      is selected.  An additional check is provided to verify that the
      kernel actually does support AccECN, based on which the Prague CC
      module will decide to proceed using scalable CC or fall back to a
      Classic CC (Reno in the current implementation).

      A system wide option is available to disable AccECN negotiation,
      but the Prague CC module will always override this setting, as it
      depends on AccECN.  Then, solely in this case, AccECN will only be
      active for TCP flows using the Prague CC.

2.3.1.2.  Accurate ECN Feedback with Other Modern Transports

   Transport protocols specified recently, .e.g.  DCCP [RFC4340], QUIC
   [I-D.ietf-quic-transport], are unambiguously suitable for Prague CCs,
   because they were designed from the start with accurate ECN feedback.

   In the case of RTP/RTCP, ECN feedback was added in [RFC6679], which
   is sufficient for the Prague CC.  However, it is preferable to use

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc6679
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   the most recent improvements to ECN feedback in
   [I-D.ietf-avtcore-cc-feedback-message], as used in the implementation
   of the L4S variant of SCReAM [RFC8298].

2.3.2.  Moving Average of ECN Feedback

   The Prague CC currently maintains a moving average of ECN feedback in
   a similar way to DCTCP.  This section is provided mainly because
   performance has proved to be sensitive to implementation precision in
   this area.  So first, some background is necessary.

   The Prague CC triggers update of its moving average once per RTT by
   recording the packet it sent after the previous update, then watching
   for the ACK of that packet to return.  To maintain its moving
   average, it measures the fraction, frac, of ACKed bytes that carried
   ECN feedback over the previous round trip.  It then updates an
   exponentially weighted moving average (EWMA) of this fraction, called
   alpha, using the following algorithm:

      alpha += g * (frac - alpha);

   where g is the gain of the EWMA (default 1/16).

   Implementation notes:

   Rounding problems in DCTCP:  Alpha is a fraction between 0 and 1, and
      it needs to be represented with high resolution because the larger
      the bandwidth-delay product (BDP) of a flow, the smaller the value
      that alpha converges to (in steady state alpha = 2/cwnd).  In
      principle, Linux DCTCP maintains the moving average 'alpha' using
      the same formula as Prague CC uses (as above).  Linux represents
      alpha with a 10-bit integer (with resolution 1/1024).  However, up
      to kernel release 3.19, Linux used integer arithmetic that could
      not reduce alpha below 15/1024.  Then it was patched so that any
      value below 16/1024 was rounded down to zero [patch-alpha-zero].
      For a flow with a higher BDP than 128 segments, this means that,
      alpha flip-flops.  Once it has flopped down to zero DCTCP becomes
      unresponsive until it has built sufficient queue to flip up to
      16/1024.  For larger BDPs, this causes DCTCP to induce larger
      sawteeth, which loses the low-queuing-delay and high-utilization
      intent of the algorithm.

   Upscaled alpha in Prague CC:  To resolve the above problem the
      implementation of TCP Prague in Linux maintains upscaled_alpha =
      alpha/g instead of alpha:

         upscaled_alpha += frac - g * upscaled_alpha;

https://datatracker.ietf.org/doc/html/rfc8298
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      This technique is the same as Linux uses for the retransmission
      timer variables, srtt and mdev.  Prague CC also uses 20 bits for
      alpha,

   Currently the above per-RTT update to the moving average, which was
   inherited from DCTCP, is the default in the Prague CC.  However,
   another approach is being investigated because these per-RTT updates
   introduce 1--2 rounds of delay into the congestion response on top of
   the inherent round of feedback delay (see Section 3.1.3 in the
   section on variants and future work).

2.3.3.  Scaling Loss Detection with Flow Rate

   After an ACK leaves a gap in the sequence space, a Prague CC is meant
   to deem that a loss has occurred using 'time-based units' (Req 4.3.
   [I-D.ietf-tsvwg-ecn-l4s-id]).  This is in contrast to the traditional
   approach that counts a hard-coded number of duplicate ACKs, e.g. the
   3 Dup-ACKs specified in [RFC5681].  Counting packets rather than time
   unnecessarily tightens the time within which parallelized links have
   to keep packets in sequence as flow rate scales over the years.

   To satsify this requirement, a Prague CC SHOULD wait until a certain
   fraction of the RTT has elapsed before it deems that the gap is due
   to packet loss.  The reference implementation of TCP Prague in Linux
   uses RACK [I-D.ietf-tcpm-rack] to address this requirement.  An
   approach similar to TCP RACK is also used in QUIC.

   At the start of a connection, RACK counts 3 DupACKs to detect loss
   because the initial smoothed RTT estimate can be inaccurate.  This
   would depend indirectly on time as long as the initial window (IW) is
   paced over a round trip (see Section 2.4.5).  For instance, if the
   initial window of 10 segments was paced evenly across the initial RTT
   then, in the next round, an implementation that deems there has been
   a loss after (say) 1/4 of an RTT can count 1/4 of 10 = 3 DupACKs
   (rounded up).  Subsequently, as the window grows, RACK shifts to
   using a fraction of the RTT for loss detection.

2.4.  Congestion Response Algorithm

   In congestion avoidance phase, a Prague CC uses a similar additive
   increase multiplicative decrease (AIMD) algorithm to DCTCP, but with
   the following differences:

2.4.1.  Fall-Back on Loss

   A Prague CC has to fall back to Reno-friendly behaviour on detection
   of a loss (Req 4.3.  [I-D.ietf-tsvwg-ecn-l4s-id]).  DCTCP falls back

https://datatracker.ietf.org/doc/html/rfc5681
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   to Reno for the round trip after a loss, and the Linux reference
   implementation of TCP Prague inherits this behaviour.

   If a Prague CC has already reduced the congestion window due to ECN
   feedback less than a round trip before it detects a loss, it MAY
   reduce the congestion window by a smaller amount due to the loss, as
   long as the reductions due to ECN and the loss are Reno-friendly when
   taken together.

   See Section 3.2 for discussion of future work on congestion control
   using a combination of delay, ECN and loss.

   Implementation note:

   DCTCP bug prior to v5.1:  A Prague CC cannot rely on the fall-back-
      on-loss behaviour of the DCTCP code in the Linux kernel prior to
      v5.1, due to a previous bug in the fast retransmit code (but not
      in the retransmission timeout code) [patch-loss-react].

2.4.2.  Multiplicative Decrease on ECN Feedback

   The Prague CC currently responds to ECN feedback in a similar way to
   DCTCP.  This section is provided mainly because performance has
   proved to be sensitive to implementation details in this area.  So
   the following recap of the congestion response is needed first.

   As explained in Section 2.3.2, the Prague CC (like DCTCP) clocks its
   moving average of ECN-marking, alpha, once per round trip throughout
   a connection.  Nonetheless, it only triggers a multiplicative
   decrease to its congestion window when it actually receives an ACK
   carrying ECN feedback.  Then it suppresses any further decreases for
   one round trip, even if it receives further ECN feedback.  This is
   termed Congestion Window Reduced or CWR state.

   The Prague CC (like DCTCP) ensures that the average recovery time
   remains invariant as flow rate scales (Req 4.3 of
   [I-D.ietf-tsvwg-ecn-l4s-id]) by making the multiplicative decrease
   depend on the prevailing value of alpha as follows:

      ssthresh = (1 - alpha/2) * cwnd;

   Implementation notes:

   Upscaled alpha:  With reference to the earlier discussion of integer
      arithmetic precision (Section 2.3.2), alpha = g * upscaled_alpha.

   Carry of fractional cwnd remainder:  Typically the absolute reduction
      in the window is only a small number of segments.  So, if the
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      Prague CC implementation counts the window in integer segments (as
      in the Linux reference code), delay can be made significantly less
      jumpy by tracking a fractional value alongside the integer window
      and carrying over any fractional remainder to the next reduction.
      Also, integer rounding bias ought to be removed from the
      multiplicative decrease calculation.

   In dynamic scenarios, as flows find a new operating point, alpha will
   have often tailed away to near-nothing before the onset of
   congestion.  Then DCTCP's tiny reduction followed by no further
   response for a round is precisely the wrong way for a CC to respond.
   A solution to this problem is being evaluated as part of the work
   already mentioned to improve Prague's responsiveness (see

Section 3.1.3 in the section on variants and future work).

2.4.3.  Additive Increase and ECN Feedback

   Unlike DCTCP, the Prague CC does not suppress additive increase for
   one round trip after a congestion window reduction (while in CWR
   state).  Instead, a Prague CC applies additive increase irrespective
   of its CWR state, but only for bytes that have been ACK'd without ECN
   feedback.  Specifically, on each ACK,

       cwnd += (acked_sacked - ece_delta) * ai_per_rtt / cwnd;

   where:

      acked_sacked is the number of new bytes acknowledged by the ACK;

      ece_delta is the number of newly acknowledge ECN-marked bytes;

      ai_per_rtt is a scaling factor that is typically 1 SMSS except for
      small RTTs (see Section 2.4.4)

   Superficially, the traditional suppression of additive increase for
   the round after a decrease seems to make sense.  However, DCTCP and
   Prague are designed to induce an average of 2 congestion marks per
   RTT in steady state, which leaves very little space for any increase
   between the end of one round of CWR and the next mark.  In tests,
   when a test version of Prague CC is configured to completely suppress
   additive increase during CWR (like Reno and DCTCP), it sawteeth
   become more irregular, which is its way of making some decreases
   large enough to open up enough space for an increase.  This
   irregularity tends to reduce link utilization.  Therefore, the
   reference Prague CC continues additive increase irrespective of CWR
   state.
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   Nonetheless, rather than continue additive increase regardless of
   congestion, it is safer to only increase on those ACKs that do not
   feed back congestion.  This approach reduces additive increase as the
   marking probability increases, which tends to keep the marking level
   unsaturated (below 100%) (see Section 3.1 of [Tensions17]).  Under
   stable conditions, Prague's congestion window then becomes
   proportional to (1-p)/p, rather than 1/p.

   See also 'Faster than Additive Increase' (Section 3.1.2)

2.4.4.  Reduced RTT-Dependence

   The window-based AIMD described so far was inherited from Reno via
   DCTCP.  When many long-running Reno flows share a link, their
   relative packet rates become roughly inversely proportional to RTT
   (packet rate =~ 1/RTT).  Then a flow with very small RTT will
   dominate any flows with larger RTTs.

   Queuing delay sets a lower limit to the smallest possible RTT.  So,
   prior to the extremely low queuing delay of L4S, extreme cases of RTT
   dependence had never been apparent.  Now that L4S has removed most of
   the queuing delay, we have to address the root-cause of RTT-
   dependence, which the Prague CC is required to do, at least when the
   RTT is small (see the 'Reduced RTT bias' aspect of Req 4.3.
   [I-D.ietf-tsvwg-ecn-l4s-id]).  Here, a small RTT is defined as below
   the typical RTT for the intended deployment environment.

   A Prague CC reduces RTT bias by using a reference RTT (RTT_ref)
   rather than the actual round trip (RTT) for all three of: the window
   update period; the EWMA update period; and the duration of CWR state
   after a decrease.  As the actual window (cwnd) is still sent within 1
   actual RTT, we also need to use a (conceptual) reference window,
   cwnd_ref.  For instance, if RTT_ref = 25 ms then, when the actual RTT
   is 5 ms, there are RTT_ref/RTT = 5 times more packets in cwnd_ref,
   than in the actual window, cwnd, because it spans 5 actual round
   trips.  We define M as the ratio RTT_ref/RTT.

   In the Linux implementation of TCP Prague, RTT_ref is a function of
   the actual RTT. 3 functions have been implemented: RTT_ref = max(RTT,
   RTT_REF_MIN); RTT_ref = RTT + AdditionalRTT; RTT_ref = ...  {ToDo}.
   The current default is RTT_ref = max(RTT, 25ms), which addresses the
   main Prague requirement for when the RTT is smaller than typical.

   In Reno or DCTCP, additive increase is implemented by dividing the
   desired increase of 1 segment per round over the cwnd packets in the
   round.  This requires an increase of 1/cwnd per packet.  In the Linux
   implementation of TCP Prague, the aim is to increase the reference
   window by 1 segment over a reference round.  However, in practice the
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   increase is applied to the actual window, cwnd, which is M times
   smaller than cwnd_ref.  So cwnd has to be increased by only 1/M
   segments over RTT_ref.  But again, in practice, the increase is
   applied over an actual window of packets spanning an actual RTT,
   which is also M times smaller than the reference RTT.  So the desired
   increase in cwnd is only 1/M^2 segments over an actual round trip
   containing cwnd packets.  Therefore, the increase in cwnd per packet
   has to be (1/M^2) * (1/cwnd).

   Unless a flow lasts long enough for rates to converge, equal rates
   will not be relevant.  So, the Reduced RTT-Dependence algorithm only
   comes into effect after D rounds, where D is configurable (current
   default 500).  Continuing the previous example, if actual RTT=5 ms
   and RTT_ref = 25 ms, then Prague would stop using its RTT-dependent
   algorithm after 500*5ms = 2.5s and instead it would start to converge
   to equal rates using the Reduced RTT-Dependence algorithm.  If the
   actual RTT were higher (e.g. 20ms), it would stay in RTT-dependent
   mode for longer (10s), but this would be mitigated by its RTT being
   closer to the reference (20ms vs. 25ms).

   This approach prevents reduced RTT-dependence from making the flow
   less responsive at start-up and ensures that its early throughput
   share is based on its actual RTT.  The benefit is that short flows
   (mice) give themselves priority over longer flows (elephants), and
   shorter RTTs will still converge faster than longer RTTs.
   Nonetheless, the throughput still converges to equal rates after D
   rounds.

   It is planned to reset the algorithm to be RTT-dependent after an
   idle, not just at flow start, as discussed under Future Work in

Section 3.4.

Section 3.4 also discusses extending the reduction in RTT-dependence
   to longer RTTs than than RTT_ref.  The current Prague implementation
   does not support this.

2.4.5.  Flow Start or Restart

   Currently the Linux reference implementation of TCP Prague uses the
   standard Linux slow start code.  Slow start is exited once a single
   mark is detected.

   When other flows are actively filling the link, regular marks are
   expected, causing slow start of new flows to end prematurely.  This
   is clearly not ideal, so other approaches are being worked on (see

Section 3.1.1).  However, slow start has been left as the default
   until a properly matured solution is completed.
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2.5.  Packet Sending

2.5.1.  Packet Pacing

   The Prague CC SHOULD pace the packets it sends to avoid the queuing
   delay and under-utilization that would otherwise be caused by bursts
   of packets that can occur, for example, when a jump in the
   acknowledgement number opens up cwnd.  Prague does this in a similar
   way to the base Linux TCP stack, by spacing out the window of packets
   evenly over the round trip time, using the following calculation of
   the pacing rate [b/s]:

      pacing_rate = MTU_BITS * max(cwnd, inflight) / srtt;

   During slow start, as in the base Linux TCP stack, Prague factors up
   pacing_rate by 2, so that it paces out packets twice as fast as they
   are acknowledged.  This keeps up with the doubling of cwnd, but still
   prevents bursts in response to any larger transient jumps in cwnd.

       if (cwnd < ssthresh / 2)
           pacing_rate *= 2;

   During congestion avoidance, the Linux TCP Prague implementation does
   not factor up pacing_rate at all.  This contrasts with the base Linux
   TCP stack, which currently factors up pacing_rate by a ratio
   parameter set to 1.2.  The developers of the base Linux stack
   confirmed that this factor of 1.2 was only introduced in case it
   improved performance, but there were no scenarios where it was known
   to be needed.  In testing of Prague, this factor was found to cause
   queue delay spikes whenever cwnd jumped more than usual.  And
   throughput was no worse without it.  So it was removed from the TCP
   Prague CC.

   The Prague CC can use alternatives to the traditional slow-start
   algorithm, which use different pacing (see Section 2.4.5).

2.5.2.  Segmentation Offload

   In the absence of hardware pacing, it becomes increasingly difficult
   for a machine to scale to higher flow rates unless it is allowed to
   send packets in larger bursts, for instance using segmentation
   offload.  Happily, as flow rate scales up, proportionately more
   packets can be allowed in a burst for the same amount of queuing
   delay at the bottleneck.

   Therefore, the Prague CC sends packets in a burst as long as it will
   not induce more than MAX_BURST_DELAY of queuing at the bottleneck.
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   From this constant and the current pacing_rate, it calculates how
   many MTU-sized packets to allow in a burst:

      max_burst = pacing_rate * MAX_BURST_DELAY / MTU_BITS

   The current default in the Linux TCP Prague for MAX_BURST_DELAY is
   250us which supports marking thresholds starting from about 500us
   without underutilization.  This approach is similar to that in the
   Linux TCP stack, except there MAX_BURST_DELAY is 1ms.

3.  Variants and Future Work

3.1.  Getting up to Speed Faster

Appendix A.2. of [I-D.ietf-tsvwg-ecn-l4s-id] outlines the performance
   optimizations needed when transplanting DCTCP from a DC environment
   to a wide area network.  The following subsections address two of
   those points: faster flow startup and faster than additive increase.
   Then Section 3.1.3 covers the flip side, in which established flows
   have to yield faster to make room, otherwise queuing will result.

3.1.1.  Flow Start (or Restart)

   The Prague performance For faster flow start, two approaches are
   currently being investigated in parallel:

   Modified Slow Start:  The traditional exponential slow start can be
      modified both at the start and the end, with the aim of reducing
      the risk of queuing due to bursts and overshoot:

      Pacing IW:  A Prague CC can use an initial window of 10 (IW10
         [RFC6928]), but pacing of this Initial Window is recommended to
         try to avoid the pulse of queuing that could otherwise occur.
         Pacing IW10 also spreads the ACKs over the round trip so that
         subsequent rounds consist of ten subsets of packets (with 2, 4,
         8 etc.  per round in each subset), rather than a single set
         with 20, 40, 80 etc. in each round.  Then, if a queue builds
         during a round (e.g. due to other unexpected traffic arriving)
         it can drain in the gap before the next subset, rather than the
         whole set backing up in a much larger queue.

         In the Linux reference implementation of TCP Prague, IW pacing
         can be optionally enabled, but it is off by default, because it
         is yet to be fully evaluated.  It currently paces IW over half
         the initial smoothed round trip time (SRTT) measured during the
         handshake.  SRTT is halved because the RTT often reduces after
         the initial handshake.  For example: i) some CDNs move the flow
         to a closer server after establishment; ii) the initial RTT

https://datatracker.ietf.org/doc/html/rfc6928
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         from a server can include the time to wake a sleeping handset
         battery; iii) some uplink technologies take a link-level round
         trip to request a scheduling slot.

         It is planned to exploit any cached knowledge of the path RTT
         to improve the initial estimate, for instance using the Linux
         per-destination cache. it is also planned to allow the
         application to give an RTT hint (by setting sk_max_pacing_rate
         in Linux) if the developer has reason to believe that the
         application has a better estimate.

      Exiting slow start more gracefully:  In the wide area Internet (in
         contrast to data centres), bottleneck access links tend to have
         much less capacity than the line rate of the sender.  With a
         shallow immediate ECN threshold at this bottleneck, the
         slightest burst can tend to induce an ECN mark, which
         traditionally causes slow start to exit.  A more gradual exit
         is being investigated for a Prague CC using the extent of
         marking, not just the existence of a single mark.  This will be
         more consistent with the extent-based marking that scalable
         congestion controls use during congestion avoidance.  Delay
         measurements (similar to Hystart++
         [I-D.ietf-tcpm-hystartplusplus]) can also be used to complement
         the ECN signals.

   Paced Chirping:  In this approach, the aim is to both increase more
      rapidly than exponential slow-start and to greatly reduce any
      overshoot.  It is primarily a delay-based approach, but the aim is
      also to exploit ECN signals when present (while not forgetting
      loss either).  Therefore Paced Chirping is generally usable for
      any congestion control - not solely for Prague CC and L4S.

      Instead of only aiming to detect capacity overshoot at the end of
      flow-start, brief trains of rapidly decreasing inter-packet
      spacing called chirps are used to test many rates with as few
      packets and as little load as possible.  A full description is
      beyond the scope of this document.  [LinuxPacedChirping]
      introduces the concepts and the code as well as citing the main
      papers on Paced Chirping.

      Paced chirping works well over continuous links such as Ethernet
      and DSL.  But better averaging and noise filtering are necessary
      over discontinuous link technologies such as WiFi, LTE cellular
      radio, passive optical networks (PON) and data over cable
      (DOCSIS).  This is the current focus of this work.
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      The current Linux implementation of TCP Prague does not include
      Paced Chirping, but research code is available separately in Linux
      and ns3. it is accessible via the L4S landing page [L4S-home].

3.1.2.  Faster than Additive Increase

   The Prague CC has a startup phase and congestion avoidance phase like
   traditional CCs.  In steady-state during congestion avoidance, like
   all scalable congestion controls, it induces frequent ECN marks, with
   the same average recovery time between ECN marks, no matter how much
   the flow rate scales.

   If available capacity suddenly increases, e.g. other flow(s) depart
   or the link capacity increases, these regular ECN marks will stop.
   Therefore after a few rounds of silence (no ECN marks) in congestion
   avoidance phase, the Prague CC can assume that available capacity has
   increased, and switch to using the techniques from its startup phase
   (Section 3.1.1) to rapidly find the new, faster operating point.
   Then it can shift back into its congestion avoidance behaviour.

   That is the theory.  But, as explained in Section 3.1.1, the startup
   techniques, specifically paced chirping, are still being developed
   for discontinuous link types.  Once the startup behaviour is
   available, the Linux implementation of the Prague CC will also have a
   faster than additive increase behaviour.  S.3.2.3 of [PragueLinux])
   gives a brief preview of the performance of this approach over an
   Ethernet link type in ns3.

3.1.3.  Remove Lag in Congestion Response

   To keep queuing delay low, new flows can only push in fast if
   established flows yield fast.  It has recently been realized that the
   design of the Prague EWMA and congestion response introduces 1-2
   rounds of lag (on top of the inherent round of feedback delay due to
   the speed of light).  These lags were inherited from the design of
   DCTCP (see Section 2.3.2 and Section 2.4.2), where a couple of extra
   hundred microseconds was less noticeable.  But congestion control in
   the wide area Internet cannot afford up to 2 rounds trips of extra
   lag.

   To be clear, lag means delay before any response at all starts.  That
   is qualititatively different from the smoothing gain of an EWMA,
   which /reduces/ the response by the gain factor (1/16 by default) in
   case a change in congestion does not persist.  Smoothing gain can
   always be increased.  But 1-2 rounds of lag means that, when a new
   flow tries to push in, the sender of an established flow will not
   respond /at all/ for 1-2 rounds after it first receives congestion
   feedback.
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   The Prague CC spends the first round trip of this lag gathering
   feedback to measure frac before it is input into the EWMA algorithm
   (see Section 2.3.2).  Then there is up to one further round of delay
   because the implementations of DCTCP and Prague did not fully adopt
   the paradigm shift to extent-based marking - the timing of the
   decrease is still based on Reno.

   Both Reno and DCTCP/Prague respond immediately on the first sign of
   congestion.  Reno's response is large, so it waits a round in CWR
   state to allow the response to take effect.  DCTCP's response is tiny
   (extent-based), but then it still waits a round in CWR state.  So it
   does next-to-nothing for a round.

   New EWMA and resposne algorithms to remove these 1-2 extra rounds of
   lag are described in [PerAckEWMA].  They have been implemented in
   Linux and an iterative process of evaluation and redesign is in
   progress.  The EWMA is updated per-ACK, but it still changes as if it
   is clocked per round trip.  The congestion response is still
   triggered by the first indication of ECN feedback, but it proceeds
   over the subsequent round trip so that it can take into account
   further incoming feedback as the EWMA evolves.  The reduction is
   applied per-ACK but sized to result as if it had been a single
   response per round trip,

3.2.  Combining Congestion Metrics

   Ultimately, it would be preferable to take an integrated approach and
   use a combination of ECN, loss and delay metrics to drive congestion
   control.  For instance, using a downward trend in ECN marking and/or
   delay as a heuristic to temper the response to loss.  Such ideas are
   not in the immediate plans for the Linux TCP Prague, but some more
   specific ideas are highlighted in the following subsections.

3.2.1.  ECN with Loss

   If the bottleneck is ECN-capable, a loss due to congestion is very
   likely to have been preceded by a period of ECN marking.  When the
   current Linux TCP Prague CC detects a loss, like DCTCP, it halves
   cwnd, even if it has already reduced cwnd in the same round trip due
   to ECN marking.  This double reduction can end up factoring down cwnd
   to as little as 1/4 in one round trip.

   On a loss while in CWR state following an ECN reduction, it would be
   possible to factor down cwnd by 1/(2-alpha), which would compound
   with the previous decrease factor of (1-alpha/2) to result in: (1 -
   alpha/2) / (2-alpha)) = 1/2.  In integer arithmetic, this division
   would be possible but relatively expensive.  A less expensive
   alternative would be multiplication by (2+alpha)/4, which
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   approximates to a compounded decrease factor of 1/2 for typical low
   values of alpha, even up to 30%. The compound decrease factor is
   never greater than 1/2 and in the worst case, if alpha was 100%, it
   would factor cwnd down by 3/8.

3.2.2.  ECN with Delay

Section 3.1.2 described the plans to shift between using ECN when
   close to the operating point and using delay by injecting paced
   chirps to find a new operating after the ECN signal goes silent for a
   few rounds.  Paced chirping shifts more slowly to the new operating
   point the more noise there is in the delay measurements.  Work is
   ongoing on treating any ECN marking as a complementary metric.  The
   resulting less noisy combined metric should then allow the controller
   to shift more rapidly to each new operating point.

   An alternative would be to combine ECN with the BBR approach, which
   induces a much less noisy delay signal by using less frequent but
   more pronounced delay spikes.  The approach currently being taken is
   to adapt the chirp length to the degree of noise, so the chirps only
   become longer and/or more pronounced when necessary, for instance
   when faced with a discontinuous link technology such as WiFi.  With
   multiple chirps per round, the noise can still be filtered out by
   averaging over them all, rather than trying to remove noise from each
   spike.  This keeps the 'self-harm' to the minimum necessary, and
   ensures that capacity is always being sampled, which removes the risk
   of going stale.

3.3.  Fall-Back on Classic ECN

   The implementation of TCP Prague CC in Linux includes an algorithm to
   detect a Classic ECN AQM and fall back to Reno as a result, as
   required by the 'Coexistence with Classic ECN' aspect of the Prague
   Req 4.3.  [I-D.ietf-tsvwg-ecn-l4s-id].

   The algorithm currently used (v2) is relatively simple, but rather
   than describe it here, full rationale, pseudocode and explanation can
   be found in the technical report about it [ecn-fallback].  This also
   includes a selection of the evaluation results and a link to
   visualizations of the full results online.  The current algorithm
   nearly always detects a Classic ECN AQM, and in the majority of the
   wide range of scenarios tested it is good at detecting an L4S AQM.
   However, it wrongly identifies and L4S AQM as Classic in a
   significant minority of cases when the link rate is low, or the RTT
   is high.  The report gives ideas on how to improve detection in these
   scenarios, but in the mean time the algorithm has been disabled by
   default.
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   Recently, the report has been updated to include new ideas on other
   ways to distinguish Classic from L4S AQMs.  The interested reader can
   access it themselves, so this living document will not be further
   summarized here.

3.4.  Further Reduced RTT-Dependence

   The algorithm to reduce RTT dependence is only relevant for long-
   running flows.  So in the current TCP Prague implementation it
   remains disabled for a certain number of round trips after the start
   of a flow, as explained in Section 2.4.4.  It would be possible to
   make RTT_ref gradually move from the actual RTT to the target
   reference RTT, or peerhaps depend on other parameters of the flow.
   Nonetheless, just switching in the algorithm after a number of rounds
   works well enough.  It is planned to also disable the algorithm for a
   similar duration if a flow becomes idle then restarts, but this is
   yet to be evaluated.

   Prague Req 4.3. in [I-D.ietf-tsvwg-ecn-l4s-id]) only requires reduced
   RTT bias "in the range between the minimum likely RTT and typical
   RTTs expected in the intended deployment scenario".  The current TCP
   Prague implementation satisfies this requirement (Section 2.4.4).
   Nonetheless, it would be preferable to be able to reduce the RTT bias
   for high RTT flows as well.

   If a step AQM is used, the congestion episodes of flows with
   different RTTs tend to synchronize, which exacerbates RTT bias.  To
   prevent this two candidate approaches will need to be investigated:
   i) It might be sufficient to deprecate step AQMs for L4S (they are
   not the preferred recommendation in
   [I-D.ietf-tsvwg-aqm-dualq-coupled]); or ii) the reference RTT
   approach of Section 2.4.4 might be usable for higher than typical
   RTTs as well as lower.  In this latter case, (RTT/RTT_ref)^2 segments
   would need to be added to the window per actual RTT.  The current TCP
   Prague implementation does not support this faster AI for RTTs higher
   than RTT_ref, due to the expected (but unverified) impact on latency
   overshoot and responsiveness.

3.5.  Scaling Down to Fractional Windows

   A modification to v5.0 of the Linux TCP stack that scales down to
   sub-packet windows is available for research purposes via the L4S
   landing page [L4S-home].  The L4S Prague Requirements in section 4.3
   of [I-D.ietf-tsvwg-ecn-l4s-id] recommend but no longer mandate
   scaling down to sub-packet windows.  This is because becoming
   unresponsive at a minimum window is a tradeoff between protecting
   against other unresponsive flows and the extra queue you induce by
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   becoming unresponsive yourself.  So this code is not maintained as
   part of the Linux implementation of TCP Prague.

   Firstly, the stack ahs to be modifed to maintain a fractional
   congestion window.  The because the ACK clock cannot work below 1
   packet per RTT, the code sets the time to send each packet, then
   readjusts the timing as each ACK arrives (otherwise any queuing
   accumulates a burst in subsequent rounds).  Also, additive increase
   of one segment does not scale below a 1-segment window.  So instead
   of a constant additive increase, the code uses a logarithmically
   scaled additive increase that slowly adapts the additive increase
   constant to the slow start threshold.  Despite these quite radical
   changes, the diff is surprisingly small.  The design and
   implementation is explained in [Ahmed19], which also includes
   evaluation results.

4.  IANA Considerations

   This specification contains no IANA considerations.

5.  Security Considerations

Section 3.5 on scaling down to fractional windows discusses the
   tradeoff in becoming unresponsive at a minium window, which causes a
   queue to build (harm to self and to others) but protects oneself
   against other unresponsive flows (whether malicious or accidental).

   This draft inherits the security considerations discussed in
   [I-D.ietf-tsvwg-ecn-l4s-id] and in the L4S architecture
   [I-D.ietf-tsvwg-l4s-arch].  In particular, the self-interest
   incentive to be responsive and minimize queuing delay, and
   protections against those interested in disrupting the low queuing
   delay of others.
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