
Internet Congestion Control Research Group (ICCRG) K. De Schepper
Internet-Draft O. Tilmans
Intended status: Experimental Nokia Bell Labs
Expires: September 10, 2021 B. Briscoe, Ed.
 Independent
 March 9, 2021

Prague Congestion Control
draft-briscoe-iccrg-prague-congestion-control-00

Abstract

 This specification defines the Prague congestion control scheme,
 which is derived from DCTCP and adapted for Internet traffic by
 implementing the Prague L4S requirements. Over paths with L4S
 support at the bottleneck, it adapts the DCTCP mechanisms to achieve
 consistently low latency and full throughput. It is defined
 independently of any particular transport protocol or operating
 system, but notes are added that highlight issues specific to certain
 transports and OSs. It is mainly based on the current default
 options of the reference Linux implementation of TCP Prague, but it
 includes experience from other implementations where available. It
 separately describes non-default and optional parts, as well as
 future plans.

 The implementation does not satisfy all the Prague requirements (yet)
 and the IETF might decide that certain requirements need to be
 relaxed as an outcome of the process of trying to satisfy them all.
 In two cases, research code is replaced by placeholders until full
 evaluation is complete.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2021.

De Schepper, et al. Expires September 10, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Prague Congestion Control March 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Motivation: Low Queuing Delay /and/ Full Throughput . . . 4
1.2. Document Purpose . 5
1.3. Maturity Status (To be Removed Before Publication) . . . 5
1.4. Terminology . 6

2. Prague Congestion Control 8
2.1. The Prague L4S Requirements 8
2.2. Packet Identification 10
2.3. Detecting and Measuring Congestion 10
2.3.1. Accurate ECN Feedback 10
2.3.1.1. Accurate ECN Feedback with TCP & Derivatives . . 11

 2.3.1.2. Accurate ECN Feedback with Other Modern
 Transports 11

2.3.2. Moving Average of ECN Feedback 12
2.3.3. Scaling Loss Detection with Flow Rate 13

2.4. Congestion Response Algorithm 13
2.4.1. Fall-Back on Loss 13
2.4.2. Multiplicative Decrease on ECN Feedback 14
2.4.3. Additive Increase and ECN Feedback 15
2.4.4. Reduced RTT-Dependence 16
2.4.5. Flow Start or Restart 17

2.5. Packet Sending . 18
2.5.1. Packet Pacing . 18
2.5.2. Segmentation Offload 18

3. Variants and Future Work 19
3.1. Getting up to Speed Faster 19
3.1.1. Flow Start (or Restart) 19
3.1.2. Faster than Additive Increase 21
3.1.3. Remove Lag in Congestion Response 21

3.2. Combining Congestion Metrics 22
3.2.1. ECN with Loss . 22

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

De Schepper, et al. Expires September 10, 2021 [Page 2]

Internet-Draft Prague Congestion Control March 2021

3.2.2. ECN with Delay 23
3.3. Fall-Back on Classic ECN 23
3.4. Further Reduced RTT-Dependence 24
3.5. Scaling Down to Fractional Windows 24

4. IANA Considerations . 25
5. Security Considerations 25
6. Acknowledgements . 25

 7. Comments and Contributions Solicited (To be removed before
 Publication) . 25

8. Contributors . 26
9. References . 26
9.1. Normative References 26
9.2. Informative References 27

 Authors' Addresses . 29

1. Introduction

 This document defines the Prague congestion control. It is defined
 independent of any particular transport protocol or operating system,
 but notes are added that highlight issues specific to certain
 transports and OSs. The authors are most familiar with the reference
 implementation of Prague on Linux over TCP. So that forms the basis
 of the large majority of platform-specific notes. Nonetheless,
 wherever possible, experience from implementers on other platforms is
 included, and the intention is to gather more into this document
 during the drafting process.

 The Prague CC is intended to maintain consistently low queuing delay
 over network paths that offer L4S support at the bottleneck. Where
 the bottleneck does not support L4S, the Prague CC is intended to
 fall back to behaving like a conventional 'Classic' congestion
 control. L4S stands for Low Latency, Low Loss Scalable throughput.
 L4S support in the network involves Active Queue Management (AQM)
 with a very shallow target queueing delay (of the order of a
 millisecond) that applies immediate Explicit Congestion Notification
 (ECN). 'Immediate ECN' means that the network applies ECN marking
 based on the instantaneous queue, without any smoothing or filtering,
 The Prague CC takes on the job of smoothing and filtering the
 congestion signals from the network.

 The Prague CC is a particular instance of a scalable congestion
 control, which is defined in Section 1.4. Scalable congestion
 control is the part of the L4S architecture that does the actual work
 of maintaining low queuing delay and ensuring that the delay and
 throughput properties scale with flow rate.

 The L4S architecture [I-D.ietf-tsvwg-l4s-arch] places the host
 congestion control in the context of the other parts of the system.

De Schepper, et al. Expires September 10, 2021 [Page 3]

Internet-Draft Prague Congestion Control March 2021

 In particular the different types of L4S AQM in the network and the
 codepoints in the IP-ECN field that convey to the network that the
 host supports the L4S form of ECN. The architecture document also
 covers other issues such as: incremental deployment; protection of
 low latency queues against accidental or malicious disruption; and
 the relationship of L4S to other low latency technologies. The
 specification of the L4S ECN Protocol [I-D.ietf-tsvwg-ecn-l4s-id]
 sets down the requirements that the Prague CC has to follow (called
 the Prague L4S Requirements - see Section 2.1 for a summary).

 Links to implementations of the Prague CC and other scalable
 congestion controls (all open source) can be found via the L4S
 landing page [L4S-home], which also links to numerous other L4S-
 related resources. A (slightly dated) paper on the specific
 implementation of the Prague CC in Linux over TCP is also available
 [PragueLinux].

1.1. Motivation: Low Queuing Delay /and/ Full Throughput

 The Prague CC is capable of keeping queuing delay consistently low
 while fully utilizing available capacity. In contrast, Classic
 congestion controls need to induce a reasonably large queue
 (approaching a bandwidth-delay product) in order to fully utilize
 capacity. Therefore, prior to scalable CCs like DCTCP and Prague, it
 was believed that very low delay was only possible by limiting
 throughput and isolating the low delay traffic from capacity-seeking
 traffic.

 The Prague CC uses additive increase multiplicative decrease (AIMD),
 in which it increases its window until an ECN mark (or loss) is
 detected, then yields in a continual sawtooth pattern. The key to
 keeping queuing delay low without under-utilizing capacity is to keep
 the sawteeth tiny. For example the average duration of a Prague CC
 sawtooth is of the order of a round trip, whereas a classic
 congestion control sawtooths over hundreds of round trips. For
 instance, over an RTT of 36ms, at 100Mb/s Cubic takes about 106 round
 trips to recover, and at 800 Mb/s its recovery time triples to over
 340 round trips, or still more than 12 seconds (Reno would take 57
 seconds.

 Keeping the sawtooth amplitude down keeps queue variation down and
 utilization up. Keeping the duration of the sawteeth down ensures
 control remains tight. The definition of a scalable CC is that the
 duration between congestion marks does not increase as flow rate
 scales, all other factors being equal. This is important, because it
 means that the sawteeth will always stay tiny. So queue delay will
 remain very low, and control will remain very tight.

De Schepper, et al. Expires September 10, 2021 [Page 4]

Internet-Draft Prague Congestion Control March 2021

 The tip of each sawtooth occurs when the bottleneck link emits a
 congestion signal. Therefore such small sawteeth are only feasible
 when ECN is used for the congestion signals. If loss were used, the
 loss level would be prohibitively high. This is why L4S-ECN has to
 depart from the requirement of Classic ECN[RFC3168] that an ECN mark
 is equivalent to a loss. Because otherwise the response to the high
 level of ECN marking would have to be as great as the response to an
 equivalent level of loss.

 The Prague CC is derived from Data Center TCP (DCTCP [RFC8257]).
 DCTCP is confined to controlled environments like data centres
 precisely because it uses such small sawteeth, which induce such a
 high level of congestion marking. For a CC using Classic ECN, this
 would be interpreted as equivalent to the same, very high, loss
 level. The Classic CC would then continually drive its own rate down
 in the face of such an apparently high level of congestion.

 This is why coexistence with existing traffic is important for the
 Prague CC. It has to be able to detect whether it is sharing the
 bottleneck with Classic traffic, and if so fall back to behaving in a
 Classic way. If the bottleneck does not support ECN at all, that is
 easy - the Prague CC just responds in the Classic way to loss (see

Section 2.4.1). But if it is sharing the bottleneck with Classic ECN
 traffic, this is more difficult to detect (see Section 3.3). Because
 the Prague CC removes most of the queue, it also addresses RTT-
 dependence. Otherwise, at low base RTTs, it would become far more
 RTT-dependent than Classic CCs.

1.2. Document Purpose

 There is not 'One True Prague CC'. L4S is intended to enable
 development of any scalable CC that meets the L4S Prague requirements
 [I-D.ietf-tsvwg-ecn-l4s-id]. This document attempts to describe a
 reference implementation and attempts to generalize it to different
 transports and OS platforms. The implementation does not satisfy all
 the Prague requirements (yet), and the IETF might decide that certain
 requirements need to be relaxed as an outcome of the process of
 trying to satisfy them all.

1.3. Maturity Status (To be Removed Before Publication)

 The field of congestion control is always a work in progress.
 However, there are areas of the Prague CC that are still just
 placeholders while separate research code is evaluated. And in other
 implementations of the Prague CC, other areas are incomplete. In the
 Linux reference implementation of TCP Prague, interim code is used in
 the incomplete areas, which are:

https://datatracker.ietf.org/doc/html/rfc8257

De Schepper, et al. Expires September 10, 2021 [Page 5]

Internet-Draft Prague Congestion Control March 2021

 o Flow start and restart (standard slow start is used, even though
 it often exits early in L4S environments were ECN marking tends to
 be frequent);

 o Faster than additive increase (standard additive increase is used,
 which makes the flow particularly sluggish if it has dropped out
 of slow start early).

 The body of this document describes the Prague CC as implemented.
 Any non-default options or any planned improvements are separated out
 into Section 3 on "Variants and Future Work". As each of the above
 areas is addressed, it will will be removed from this section and its
 description in the body of the document will be updated. Once all
 areas are complete, this section will be removed. Prague CC will
 then still be a work in progress, but only on a similar footing as
 all other congestion controls.

1.4. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] when, and
 only when, they appear in all capitals, as shown here.

 Definitions of terms:

 Classic Congestion Control: A congestion control behaviour that can
 co-exist with standard TCP Reno [RFC5681] without causing
 significantly negative impact on its flow rate [RFC5033]. With
 Classic congestion controls, as flow rate scales, the number of
 round trips between congestion signals (losses or ECN marks) rises
 with the flow rate. So it takes longer and longer to recover
 after each congestion event. Therefore control of queuing and
 utilization becomes very slack, and the slightest disturbance
 prevents a high rate from being attained [RFC3649].

 Scalable Congestion Control: A congestion control where the average
 time from one congestion signal to the next (the recovery time)
 remains invariant as the flow rate scales, all other factors being
 equal. This maintains the same degree of control over queueing
 and utilization whatever the flow rate, as well as ensuring that
 high throughput is robust to disturbances. For instance, DCTCP
 averages 2 congestion signals per round-trip whatever the flow
 rate. For the public Internet a Scalable transport has to comply
 with the requirements in Section 4 of [I-D.ietf-tsvwg-ecn-l4s-id]
 (aka. the 'Prague L4S requirements').

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3649

De Schepper, et al. Expires September 10, 2021 [Page 6]

Internet-Draft Prague Congestion Control March 2021

 Response function: The relationship between the window (cwnd) of a
 congestion control and the congestion signalling probability, p,
 in steady state. A general response function has the form cwnd =
 K/p^B, where K and B are constants. In an approximation of the
 response function of the standard Reno CC, B=1/2. For a scalable
 congestion control B=1, so its response function takes the form
 cwnd = K/p. The number of congestion signals per round is p*cwnd,
 which equates to the constant, K, for a scalable CC. Hence the
 definition of a scalable CC above.

 Reno-friendly: The subset of Classic traffic that excludes
 unresponsive traffic and excludes experimental congestion controls
 intended to coexist with Reno but without always being strictly
 friendly to it (as allowed by [RFC5033]). Reno-friendly is used
 in place of 'TCP-friendly', given that the TCP protocol is used
 with many different congestion control behaviours.

 Classic ECN: The original Explicit Congestion Notification (ECN)
 protocol [RFC3168], which requires ECN signals to be treated the
 same as drops, both when generated in the network and when
 responded to by the sender.

 The names used for the four codepoints of the 2-bit IP-ECN field
 are as defined in [RFC3168]: Not ECT, ECT(0), ECT(1) and CE, where
 ECT stands for ECN-Capable Transport and CE stands for Congestion
 Experienced.

 A packet marked with the CE codepoint is termed 'ECN-marked' or
 sometimes just 'marked' where the context makes ECN obvious.

 CC: Congestion Control

 ACK: an ACKnowledgement, or to ACKnowledge

 EWMA: Exponentially Weighted Moving Average

 RTT: Round Trip Time

 Definitions of Parameters and Variables:

 MTU_BITS: Maximum transmission unit [b]

 cwnd: Congestion window [B]

 ssthresh: Slow start threshold [B]

 inflight: The amount of data that the sender has sent but not yet
 received ACKs for [B]

https://datatracker.ietf.org/doc/html/rfc5033
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

De Schepper, et al. Expires September 10, 2021 [Page 7]

Internet-Draft Prague Congestion Control March 2021

 p: Steady-state probability of drop or marking []

 alpha: EWMA of the ECN marking fraction []

 acked_sacked: the amount of new data acknowledged by an ACK [B]

 ece_delta: the amount of newly acknowledged data that was ECN-marked
 [B]

 ai_per_rtt: additive increase to apply per RTT [B]

 srtt: Smoothed round trip time [s]

 MAX_BURST_DELAY: Maximum allowed bottleneck queuing delay due to
 segmentation offload bursts [s] (default 0.25 ms for the public
 Internet)

2. Prague Congestion Control

2.1. The Prague L4S Requirements

 The beneficial properties of L4S traffic (low queuing delay, etc.)
 depend on all L4S sources satisfying a set of conditions called the
 Prague L4S Requirements. The name is after an ad hoc meeting of
 about thirty people co-located with the IETF in Prague in July 2015,
 the day after the first public demonstration of L4S.

 The meeting agreed a list of modifications to DCTCP [RFC8257] to
 focus activity on a variant that would be safe to use over the public
 Internet. it was suggested that this could be called TCP Prague to
 distinguish it from DCTCP. This list was adopted by the IETF, and
 has continued to evolve (see section 4 of
 [I-D.ietf-tsvwg-ecn-l4s-id]). The requirements are no longer TCP-
 specific, applying irrespective of wire-protocol (TCP, QUIC, RTP,
 SCTP, etc).

 This unusual start to the life of the project led to the unusual
 development process of a reference implementation that had to resolve
 a number of ambitious requirements, already known to be in tension
 [Tensions17].

 DCTCP already implements a scalable congestion control. So most of
 the changes to make it usable over the Internet seemed trivial, some
 'merely' involving adoption of other parallel developments like
 Accurate ECN TCP feedback or RACK. Others have been more challenging
 (e.g. RTT-independence). And others that seemed trivial became
 challenging given the complex set of bugs and behaviours that
 characterize today's Internet and the Linux stack.

https://datatracker.ietf.org/doc/html/rfc8257

De Schepper, et al. Expires September 10, 2021 [Page 8]

Internet-Draft Prague Congestion Control March 2021

 The more critical implementation challenges are highlighted in the
 following sections, in the hope we can prevent mistakes being
 repeated (see for instance Section 2.3.2, Section 2.4.2). There was
 also a set of five intertwined 'bugs' - all masking each other, but
 causing unpredictable or poor performance as different code
 modifications unmasked them. A draft write-up about these has been
 prepared, which is longer than the whole of the present document, so
 it will be included by reference once published.

 During the development process, we have unearthed fundamental aspects
 of the implementation and indeed the design of DCTCP and Prague that
 have still not caught up with the paradigm shift from existence to
 extent-based congestion response. Some have been implemented by
 default, e.g. not suppressing additive increase for a round trip
 after a congestion event (Section 2.4.3). Others have been
 implemented but not fully evaluated, e.g. removing the 1-2
 unnecessary round trips of lag in feedback processing (Section 3.1.3)
 and yet others are still future plans, e.g. further RTT-independence
 (Section 3.4) and exploiting combined congestion metrics in more
 cases (Section 3.2).

 The requirements are categorized into those that would impact other
 flows if not handled properly and performance optimizations that are
 important but optional from the IETF's point of view, because they
 only affect the flow itself. The list below maps the order of the
 requirements in [I-D.ietf-tsvwg-ecn-l4s-id] to the order in this
 document (which is by functional categories and code status):

 Mandatory or Advisory Requirements:

 * L4S-ECN packet identification: use of ECT(1) (Section 2.2)

 * Accurate ECN feedback (Section 2.3.1)

 * Reno-friendly response to a loss (Section 2.4.1)

 * Detection of a classic ECN AQM (Section 3.3)

 * Reduced RTT dependence (Section 2.4.4)

 * Scaling down to a fractional window (no longer mandatory, see
Section 3.5)

 * Detecting loss in units of time (Section 2.3.3)

 * Minimizing bursts (Section 2.5.1

 Optional performance optimizations:

De Schepper, et al. Expires September 10, 2021 [Page 9]

Internet-Draft Prague Congestion Control March 2021

 * ECN-capable control packets (Section 2.2)

 * Faster flow start (Section 3.1.1)

 * Faster than additive increase (Section 3.1.2)

 * Segmentation offload (Section 2.5.2)

2.2. Packet Identification

 On the public Internet, a sender using the Prague CC MUST set the
 ECT(1) codepoint on all the packets it sends, in order to identify
 itself as an L4S-capable congestion control (Req 4.1
 [I-D.ietf-tsvwg-ecn-l4s-id]).

 This applies whatever the transport protocol, whether TCP, QUIC, RTP,
 etc. In the case of TCP, unlike an RFC 3168 TCP ECN transport, a
 sender can set all packets as ECN-capable, including TCP control
 packets and retransmissions [RFC8311],
 [I-D.ietf-tcpm-generalized-ecn].

 The Prague CC SHOULD optionally be configurable to use the ECT(0)
 codepoint in private networks, such as data centres, which might be
 necessary for backward compatibility with DCTCP deployments where
 ECT(1) might already have another usage.

 Implementation note:

 TCP Prague in Linux kernel: The kernel was updated to allow the
 ECT(1) flag to be set from within a CC module. The Prague CC then
 has full control over the ECN code point it uses at any one time.
 In this way it enforces the use of ECT(1) (or optionally ECT(0))
 and non-ECT when required.

2.3. Detecting and Measuring Congestion

2.3.1. Accurate ECN Feedback

 When feedback of ECN markings was added to TCP [RFC3168], it was
 decided not to report any more than one mark per RTT. L4S-capable
 congestion controls need to know the extent, not just the existence
 of congestion (Req 4.2. [I-D.ietf-tsvwg-ecn-l4s-id]). Recently
 defined transports (DCCP, QUIC, etc) typically already satisfy this
 requirement. So they are dealt with separately below, while TCP and
 derivatives such as SCTP [RFC4960] are covered first.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4960

De Schepper, et al. Expires September 10, 2021 [Page 10]

Internet-Draft Prague Congestion Control March 2021

2.3.1.1. Accurate ECN Feedback with TCP & Derivatives

 The TCP wire protocol is being updated to allow more accurate
 feedback (AccECN [I-D.ietf-tcpm-accurate-ecn]). Therefore, in the
 case where a sender uses the Prague CC over TCP, whether as client or
 server:

 o it MUST itself support AccECN;

 o to support AccECN it also has to check that its peer supports
 AccECN during the handshake.

 If the peer does not support accurate ECN feedback, the sender MUST
 fall back to a Reno-friendly CC behaviour for the rest of the
 connection. The non-Prague TCP sender MUST then no longer set ECT(1)
 on the packets it sends. Note that the peer only needs to support
 AccECN; there is no need (and no way) to find out whether the peer is
 using an L4S-capable congestion control.

 Note that a sending TCP client that uses the Prague CC can set ECT(1)
 on the SYN prior to checking whether the other peer supports AccECN
 (as long as it follows the procedure in
 [I-D.ietf-tcpm-generalized-ecn] if it discovers the peer does not
 support AccECN).

 Implementation note:

 TCP Prague in Linux kernel: The kernel had been updated to support
 AccECN Independent of the CC module in use. So the kernel tries
 to negotiate AccECN exchange whichever congestion control module
 is selected. An additional check is provided to verify that the
 kernel actually does support AccECN, based on which the Prague CC
 module will decide to proceed using scalable CC or fall back to a
 Classic CC (Reno in the current implementation).

 A system wide option is available to disable AccECN negotiation,
 but the Prague CC module will always override this setting, as it
 depends on AccECN. Then, solely in this case, AccECN will only be
 active for TCP flows using the Prague CC.

2.3.1.2. Accurate ECN Feedback with Other Modern Transports

 Transport protocols specified recently, .e.g. DCCP [RFC4340], QUIC
 [I-D.ietf-quic-transport], are unambiguously suitable for Prague CCs,
 because they were designed from the start with accurate ECN feedback.

 In the case of RTP/RTCP, ECN feedback was added in [RFC6679], which
 is sufficient for the Prague CC. However, it is preferable to use

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc6679

De Schepper, et al. Expires September 10, 2021 [Page 11]

Internet-Draft Prague Congestion Control March 2021

 the most recent improvements to ECN feedback in
 [I-D.ietf-avtcore-cc-feedback-message], as used in the implementation
 of the L4S variant of SCReAM [RFC8298].

2.3.2. Moving Average of ECN Feedback

 The Prague CC currently maintains a moving average of ECN feedback in
 a similar way to DCTCP. This section is provided mainly because
 performance has proved to be sensitive to implementation precision in
 this area. So first, some background is necessary.

 The Prague CC triggers update of its moving average once per RTT by
 recording the packet it sent after the previous update, then watching
 for the ACK of that packet to return. To maintain its moving
 average, it measures the fraction, frac, of ACKed bytes that carried
 ECN feedback over the previous round trip. It then updates an
 exponentially weighted moving average (EWMA) of this fraction, called
 alpha, using the following algorithm:

 alpha += g * (frac - alpha);

 where g is the gain of the EWMA (default 1/16).

 Implementation notes:

 Rounding problems in DCTCP: Alpha is a fraction between 0 and 1, and
 it needs to be represented with high resolution because the larger
 the bandwidth-delay product (BDP) of a flow, the smaller the value
 that alpha converges to (in steady state alpha = 2/cwnd). In
 principle, Linux DCTCP maintains the moving average 'alpha' using
 the same formula as Prague CC uses (as above). Linux represents
 alpha with a 10-bit integer (with resolution 1/1024). However, up
 to kernel release 3.19, Linux used integer arithmetic that could
 not reduce alpha below 15/1024. Then it was patched so that any
 value below 16/1024 was rounded down to zero [patch-alpha-zero].
 For a flow with a higher BDP than 128 segments, this means that,
 alpha flip-flops. Once it has flopped down to zero DCTCP becomes
 unresponsive until it has built sufficient queue to flip up to
 16/1024. For larger BDPs, this causes DCTCP to induce larger
 sawteeth, which loses the low-queuing-delay and high-utilization
 intent of the algorithm.

 Upscaled alpha in Prague CC: To resolve the above problem the
 implementation of TCP Prague in Linux maintains upscaled_alpha =
 alpha/g instead of alpha:

 upscaled_alpha += frac - g * upscaled_alpha;

https://datatracker.ietf.org/doc/html/rfc8298

De Schepper, et al. Expires September 10, 2021 [Page 12]

Internet-Draft Prague Congestion Control March 2021

 This technique is the same as Linux uses for the retransmission
 timer variables, srtt and mdev. Prague CC also uses 20 bits for
 alpha,

 Currently the above per-RTT update to the moving average, which was
 inherited from DCTCP, is the default in the Prague CC. However,
 another approach is being investigated because these per-RTT updates
 introduce 1--2 rounds of delay into the congestion response on top of
 the inherent round of feedback delay (see Section 3.1.3 in the
 section on variants and future work).

2.3.3. Scaling Loss Detection with Flow Rate

 After an ACK leaves a gap in the sequence space, a Prague CC is meant
 to deem that a loss has occurred using 'time-based units' (Req 4.3.
 [I-D.ietf-tsvwg-ecn-l4s-id]). This is in contrast to the traditional
 approach that counts a hard-coded number of duplicate ACKs, e.g. the
 3 Dup-ACKs specified in [RFC5681]. Counting packets rather than time
 unnecessarily tightens the time within which parallelized links have
 to keep packets in sequence as flow rate scales over the years.

 To satsify this requirement, a Prague CC SHOULD wait until a certain
 fraction of the RTT has elapsed before it deems that the gap is due
 to packet loss. The reference implementation of TCP Prague in Linux
 uses RACK [I-D.ietf-tcpm-rack] to address this requirement. An
 approach similar to TCP RACK is also used in QUIC.

 At the start of a connection, RACK counts 3 DupACKs to detect loss
 because the initial smoothed RTT estimate can be inaccurate. This
 would depend indirectly on time as long as the initial window (IW) is
 paced over a round trip (see Section 2.4.5). For instance, if the
 initial window of 10 segments was paced evenly across the initial RTT
 then, in the next round, an implementation that deems there has been
 a loss after (say) 1/4 of an RTT can count 1/4 of 10 = 3 DupACKs
 (rounded up). Subsequently, as the window grows, RACK shifts to
 using a fraction of the RTT for loss detection.

2.4. Congestion Response Algorithm

 In congestion avoidance phase, a Prague CC uses a similar additive
 increase multiplicative decrease (AIMD) algorithm to DCTCP, but with
 the following differences:

2.4.1. Fall-Back on Loss

 A Prague CC has to fall back to Reno-friendly behaviour on detection
 of a loss (Req 4.3. [I-D.ietf-tsvwg-ecn-l4s-id]). DCTCP falls back

https://datatracker.ietf.org/doc/html/rfc5681

De Schepper, et al. Expires September 10, 2021 [Page 13]

Internet-Draft Prague Congestion Control March 2021

 to Reno for the round trip after a loss, and the Linux reference
 implementation of TCP Prague inherits this behaviour.

 If a Prague CC has already reduced the congestion window due to ECN
 feedback less than a round trip before it detects a loss, it MAY
 reduce the congestion window by a smaller amount due to the loss, as
 long as the reductions due to ECN and the loss are Reno-friendly when
 taken together.

 See Section 3.2 for discussion of future work on congestion control
 using a combination of delay, ECN and loss.

 Implementation note:

 DCTCP bug prior to v5.1: A Prague CC cannot rely on the fall-back-
 on-loss behaviour of the DCTCP code in the Linux kernel prior to
 v5.1, due to a previous bug in the fast retransmit code (but not
 in the retransmission timeout code) [patch-loss-react].

2.4.2. Multiplicative Decrease on ECN Feedback

 The Prague CC currently responds to ECN feedback in a similar way to
 DCTCP. This section is provided mainly because performance has
 proved to be sensitive to implementation details in this area. So
 the following recap of the congestion response is needed first.

 As explained in Section 2.3.2, the Prague CC (like DCTCP) clocks its
 moving average of ECN-marking, alpha, once per round trip throughout
 a connection. Nonetheless, it only triggers a multiplicative
 decrease to its congestion window when it actually receives an ACK
 carrying ECN feedback. Then it suppresses any further decreases for
 one round trip, even if it receives further ECN feedback. This is
 termed Congestion Window Reduced or CWR state.

 The Prague CC (like DCTCP) ensures that the average recovery time
 remains invariant as flow rate scales (Req 4.3 of
 [I-D.ietf-tsvwg-ecn-l4s-id]) by making the multiplicative decrease
 depend on the prevailing value of alpha as follows:

 ssthresh = (1 - alpha/2) * cwnd;

 Implementation notes:

 Upscaled alpha: With reference to the earlier discussion of integer
 arithmetic precision (Section 2.3.2), alpha = g * upscaled_alpha.

 Carry of fractional cwnd remainder: Typically the absolute reduction
 in the window is only a small number of segments. So, if the

De Schepper, et al. Expires September 10, 2021 [Page 14]

Internet-Draft Prague Congestion Control March 2021

 Prague CC implementation counts the window in integer segments (as
 in the Linux reference code), delay can be made significantly less
 jumpy by tracking a fractional value alongside the integer window
 and carrying over any fractional remainder to the next reduction.
 Also, integer rounding bias ought to be removed from the
 multiplicative decrease calculation.

 In dynamic scenarios, as flows find a new operating point, alpha will
 have often tailed away to near-nothing before the onset of
 congestion. Then DCTCP's tiny reduction followed by no further
 response for a round is precisely the wrong way for a CC to respond.
 A solution to this problem is being evaluated as part of the work
 already mentioned to improve Prague's responsiveness (see

Section 3.1.3 in the section on variants and future work).

2.4.3. Additive Increase and ECN Feedback

 Unlike DCTCP, the Prague CC does not suppress additive increase for
 one round trip after a congestion window reduction (while in CWR
 state). Instead, a Prague CC applies additive increase irrespective
 of its CWR state, but only for bytes that have been ACK'd without ECN
 feedback. Specifically, on each ACK,

 cwnd += (acked_sacked - ece_delta) * ai_per_rtt / cwnd;

 where:

 acked_sacked is the number of new bytes acknowledged by the ACK;

 ece_delta is the number of newly acknowledge ECN-marked bytes;

 ai_per_rtt is a scaling factor that is typically 1 SMSS except for
 small RTTs (see Section 2.4.4)

 Superficially, the traditional suppression of additive increase for
 the round after a decrease seems to make sense. However, DCTCP and
 Prague are designed to induce an average of 2 congestion marks per
 RTT in steady state, which leaves very little space for any increase
 between the end of one round of CWR and the next mark. In tests,
 when a test version of Prague CC is configured to completely suppress
 additive increase during CWR (like Reno and DCTCP), it sawteeth
 become more irregular, which is its way of making some decreases
 large enough to open up enough space for an increase. This
 irregularity tends to reduce link utilization. Therefore, the
 reference Prague CC continues additive increase irrespective of CWR
 state.

De Schepper, et al. Expires September 10, 2021 [Page 15]

Internet-Draft Prague Congestion Control March 2021

 Nonetheless, rather than continue additive increase regardless of
 congestion, it is safer to only increase on those ACKs that do not
 feed back congestion. This approach reduces additive increase as the
 marking probability increases, which tends to keep the marking level
 unsaturated (below 100%) (see Section 3.1 of [Tensions17]). Under
 stable conditions, Prague's congestion window then becomes
 proportional to (1-p)/p, rather than 1/p.

 See also 'Faster than Additive Increase' (Section 3.1.2)

2.4.4. Reduced RTT-Dependence

 The window-based AIMD described so far was inherited from Reno via
 DCTCP. When many long-running Reno flows share a link, their
 relative packet rates become roughly inversely proportional to RTT
 (packet rate =~ 1/RTT). Then a flow with very small RTT will
 dominate any flows with larger RTTs.

 Queuing delay sets a lower limit to the smallest possible RTT. So,
 prior to the extremely low queuing delay of L4S, extreme cases of RTT
 dependence had never been apparent. Now that L4S has removed most of
 the queuing delay, we have to address the root-cause of RTT-
 dependence, which the Prague CC is required to do, at least when the
 RTT is small (see the 'Reduced RTT bias' aspect of Req 4.3.
 [I-D.ietf-tsvwg-ecn-l4s-id]). Here, a small RTT is defined as below
 the typical RTT for the intended deployment environment.

 A Prague CC reduces RTT bias by using a reference RTT (RTT_ref)
 rather than the actual round trip (RTT) for all three of: the window
 update period; the EWMA update period; and the duration of CWR state
 after a decrease. As the actual window (cwnd) is still sent within 1
 actual RTT, we also need to use a (conceptual) reference window,
 cwnd_ref. For instance, if RTT_ref = 25 ms then, when the actual RTT
 is 5 ms, there are RTT_ref/RTT = 5 times more packets in cwnd_ref,
 than in the actual window, cwnd, because it spans 5 actual round
 trips. We define M as the ratio RTT_ref/RTT.

 In the Linux implementation of TCP Prague, RTT_ref is a function of
 the actual RTT. 3 functions have been implemented: RTT_ref = max(RTT,
 RTT_REF_MIN); RTT_ref = RTT + AdditionalRTT; RTT_ref = ... {ToDo}.
 The current default is RTT_ref = max(RTT, 25ms), which addresses the
 main Prague requirement for when the RTT is smaller than typical.

 In Reno or DCTCP, additive increase is implemented by dividing the
 desired increase of 1 segment per round over the cwnd packets in the
 round. This requires an increase of 1/cwnd per packet. In the Linux
 implementation of TCP Prague, the aim is to increase the reference
 window by 1 segment over a reference round. However, in practice the

De Schepper, et al. Expires September 10, 2021 [Page 16]

Internet-Draft Prague Congestion Control March 2021

 increase is applied to the actual window, cwnd, which is M times
 smaller than cwnd_ref. So cwnd has to be increased by only 1/M
 segments over RTT_ref. But again, in practice, the increase is
 applied over an actual window of packets spanning an actual RTT,
 which is also M times smaller than the reference RTT. So the desired
 increase in cwnd is only 1/M^2 segments over an actual round trip
 containing cwnd packets. Therefore, the increase in cwnd per packet
 has to be (1/M^2) * (1/cwnd).

 Unless a flow lasts long enough for rates to converge, equal rates
 will not be relevant. So, the Reduced RTT-Dependence algorithm only
 comes into effect after D rounds, where D is configurable (current
 default 500). Continuing the previous example, if actual RTT=5 ms
 and RTT_ref = 25 ms, then Prague would stop using its RTT-dependent
 algorithm after 500*5ms = 2.5s and instead it would start to converge
 to equal rates using the Reduced RTT-Dependence algorithm. If the
 actual RTT were higher (e.g. 20ms), it would stay in RTT-dependent
 mode for longer (10s), but this would be mitigated by its RTT being
 closer to the reference (20ms vs. 25ms).

 This approach prevents reduced RTT-dependence from making the flow
 less responsive at start-up and ensures that its early throughput
 share is based on its actual RTT. The benefit is that short flows
 (mice) give themselves priority over longer flows (elephants), and
 shorter RTTs will still converge faster than longer RTTs.
 Nonetheless, the throughput still converges to equal rates after D
 rounds.

 It is planned to reset the algorithm to be RTT-dependent after an
 idle, not just at flow start, as discussed under Future Work in

Section 3.4.

Section 3.4 also discusses extending the reduction in RTT-dependence
 to longer RTTs than than RTT_ref. The current Prague implementation
 does not support this.

2.4.5. Flow Start or Restart

 Currently the Linux reference implementation of TCP Prague uses the
 standard Linux slow start code. Slow start is exited once a single
 mark is detected.

 When other flows are actively filling the link, regular marks are
 expected, causing slow start of new flows to end prematurely. This
 is clearly not ideal, so other approaches are being worked on (see

Section 3.1.1). However, slow start has been left as the default
 until a properly matured solution is completed.

De Schepper, et al. Expires September 10, 2021 [Page 17]

Internet-Draft Prague Congestion Control March 2021

2.5. Packet Sending

2.5.1. Packet Pacing

 The Prague CC SHOULD pace the packets it sends to avoid the queuing
 delay and under-utilization that would otherwise be caused by bursts
 of packets that can occur, for example, when a jump in the
 acknowledgement number opens up cwnd. Prague does this in a similar
 way to the base Linux TCP stack, by spacing out the window of packets
 evenly over the round trip time, using the following calculation of
 the pacing rate [b/s]:

 pacing_rate = MTU_BITS * max(cwnd, inflight) / srtt;

 During slow start, as in the base Linux TCP stack, Prague factors up
 pacing_rate by 2, so that it paces out packets twice as fast as they
 are acknowledged. This keeps up with the doubling of cwnd, but still
 prevents bursts in response to any larger transient jumps in cwnd.

 if (cwnd < ssthresh / 2)
 pacing_rate *= 2;

 During congestion avoidance, the Linux TCP Prague implementation does
 not factor up pacing_rate at all. This contrasts with the base Linux
 TCP stack, which currently factors up pacing_rate by a ratio
 parameter set to 1.2. The developers of the base Linux stack
 confirmed that this factor of 1.2 was only introduced in case it
 improved performance, but there were no scenarios where it was known
 to be needed. In testing of Prague, this factor was found to cause
 queue delay spikes whenever cwnd jumped more than usual. And
 throughput was no worse without it. So it was removed from the TCP
 Prague CC.

 The Prague CC can use alternatives to the traditional slow-start
 algorithm, which use different pacing (see Section 2.4.5).

2.5.2. Segmentation Offload

 In the absence of hardware pacing, it becomes increasingly difficult
 for a machine to scale to higher flow rates unless it is allowed to
 send packets in larger bursts, for instance using segmentation
 offload. Happily, as flow rate scales up, proportionately more
 packets can be allowed in a burst for the same amount of queuing
 delay at the bottleneck.

 Therefore, the Prague CC sends packets in a burst as long as it will
 not induce more than MAX_BURST_DELAY of queuing at the bottleneck.

De Schepper, et al. Expires September 10, 2021 [Page 18]

Internet-Draft Prague Congestion Control March 2021

 From this constant and the current pacing_rate, it calculates how
 many MTU-sized packets to allow in a burst:

 max_burst = pacing_rate * MAX_BURST_DELAY / MTU_BITS

 The current default in the Linux TCP Prague for MAX_BURST_DELAY is
 250us which supports marking thresholds starting from about 500us
 without underutilization. This approach is similar to that in the
 Linux TCP stack, except there MAX_BURST_DELAY is 1ms.

3. Variants and Future Work

3.1. Getting up to Speed Faster

Appendix A.2. of [I-D.ietf-tsvwg-ecn-l4s-id] outlines the performance
 optimizations needed when transplanting DCTCP from a DC environment
 to a wide area network. The following subsections address two of
 those points: faster flow startup and faster than additive increase.
 Then Section 3.1.3 covers the flip side, in which established flows
 have to yield faster to make room, otherwise queuing will result.

3.1.1. Flow Start (or Restart)

 The Prague performance For faster flow start, two approaches are
 currently being investigated in parallel:

 Modified Slow Start: The traditional exponential slow start can be
 modified both at the start and the end, with the aim of reducing
 the risk of queuing due to bursts and overshoot:

 Pacing IW: A Prague CC can use an initial window of 10 (IW10
 [RFC6928]), but pacing of this Initial Window is recommended to
 try to avoid the pulse of queuing that could otherwise occur.
 Pacing IW10 also spreads the ACKs over the round trip so that
 subsequent rounds consist of ten subsets of packets (with 2, 4,
 8 etc. per round in each subset), rather than a single set
 with 20, 40, 80 etc. in each round. Then, if a queue builds
 during a round (e.g. due to other unexpected traffic arriving)
 it can drain in the gap before the next subset, rather than the
 whole set backing up in a much larger queue.

 In the Linux reference implementation of TCP Prague, IW pacing
 can be optionally enabled, but it is off by default, because it
 is yet to be fully evaluated. It currently paces IW over half
 the initial smoothed round trip time (SRTT) measured during the
 handshake. SRTT is halved because the RTT often reduces after
 the initial handshake. For example: i) some CDNs move the flow
 to a closer server after establishment; ii) the initial RTT

https://datatracker.ietf.org/doc/html/rfc6928

De Schepper, et al. Expires September 10, 2021 [Page 19]

Internet-Draft Prague Congestion Control March 2021

 from a server can include the time to wake a sleeping handset
 battery; iii) some uplink technologies take a link-level round
 trip to request a scheduling slot.

 It is planned to exploit any cached knowledge of the path RTT
 to improve the initial estimate, for instance using the Linux
 per-destination cache. it is also planned to allow the
 application to give an RTT hint (by setting sk_max_pacing_rate
 in Linux) if the developer has reason to believe that the
 application has a better estimate.

 Exiting slow start more gracefully: In the wide area Internet (in
 contrast to data centres), bottleneck access links tend to have
 much less capacity than the line rate of the sender. With a
 shallow immediate ECN threshold at this bottleneck, the
 slightest burst can tend to induce an ECN mark, which
 traditionally causes slow start to exit. A more gradual exit
 is being investigated for a Prague CC using the extent of
 marking, not just the existence of a single mark. This will be
 more consistent with the extent-based marking that scalable
 congestion controls use during congestion avoidance. Delay
 measurements (similar to Hystart++
 [I-D.ietf-tcpm-hystartplusplus]) can also be used to complement
 the ECN signals.

 Paced Chirping: In this approach, the aim is to both increase more
 rapidly than exponential slow-start and to greatly reduce any
 overshoot. It is primarily a delay-based approach, but the aim is
 also to exploit ECN signals when present (while not forgetting
 loss either). Therefore Paced Chirping is generally usable for
 any congestion control - not solely for Prague CC and L4S.

 Instead of only aiming to detect capacity overshoot at the end of
 flow-start, brief trains of rapidly decreasing inter-packet
 spacing called chirps are used to test many rates with as few
 packets and as little load as possible. A full description is
 beyond the scope of this document. [LinuxPacedChirping]
 introduces the concepts and the code as well as citing the main
 papers on Paced Chirping.

 Paced chirping works well over continuous links such as Ethernet
 and DSL. But better averaging and noise filtering are necessary
 over discontinuous link technologies such as WiFi, LTE cellular
 radio, passive optical networks (PON) and data over cable
 (DOCSIS). This is the current focus of this work.

De Schepper, et al. Expires September 10, 2021 [Page 20]

Internet-Draft Prague Congestion Control March 2021

 The current Linux implementation of TCP Prague does not include
 Paced Chirping, but research code is available separately in Linux
 and ns3. it is accessible via the L4S landing page [L4S-home].

3.1.2. Faster than Additive Increase

 The Prague CC has a startup phase and congestion avoidance phase like
 traditional CCs. In steady-state during congestion avoidance, like
 all scalable congestion controls, it induces frequent ECN marks, with
 the same average recovery time between ECN marks, no matter how much
 the flow rate scales.

 If available capacity suddenly increases, e.g. other flow(s) depart
 or the link capacity increases, these regular ECN marks will stop.
 Therefore after a few rounds of silence (no ECN marks) in congestion
 avoidance phase, the Prague CC can assume that available capacity has
 increased, and switch to using the techniques from its startup phase
 (Section 3.1.1) to rapidly find the new, faster operating point.
 Then it can shift back into its congestion avoidance behaviour.

 That is the theory. But, as explained in Section 3.1.1, the startup
 techniques, specifically paced chirping, are still being developed
 for discontinuous link types. Once the startup behaviour is
 available, the Linux implementation of the Prague CC will also have a
 faster than additive increase behaviour. S.3.2.3 of [PragueLinux])
 gives a brief preview of the performance of this approach over an
 Ethernet link type in ns3.

3.1.3. Remove Lag in Congestion Response

 To keep queuing delay low, new flows can only push in fast if
 established flows yield fast. It has recently been realized that the
 design of the Prague EWMA and congestion response introduces 1-2
 rounds of lag (on top of the inherent round of feedback delay due to
 the speed of light). These lags were inherited from the design of
 DCTCP (see Section 2.3.2 and Section 2.4.2), where a couple of extra
 hundred microseconds was less noticeable. But congestion control in
 the wide area Internet cannot afford up to 2 rounds trips of extra
 lag.

 To be clear, lag means delay before any response at all starts. That
 is qualititatively different from the smoothing gain of an EWMA,
 which /reduces/ the response by the gain factor (1/16 by default) in
 case a change in congestion does not persist. Smoothing gain can
 always be increased. But 1-2 rounds of lag means that, when a new
 flow tries to push in, the sender of an established flow will not
 respond /at all/ for 1-2 rounds after it first receives congestion
 feedback.

De Schepper, et al. Expires September 10, 2021 [Page 21]

Internet-Draft Prague Congestion Control March 2021

 The Prague CC spends the first round trip of this lag gathering
 feedback to measure frac before it is input into the EWMA algorithm
 (see Section 2.3.2). Then there is up to one further round of delay
 because the implementations of DCTCP and Prague did not fully adopt
 the paradigm shift to extent-based marking - the timing of the
 decrease is still based on Reno.

 Both Reno and DCTCP/Prague respond immediately on the first sign of
 congestion. Reno's response is large, so it waits a round in CWR
 state to allow the response to take effect. DCTCP's response is tiny
 (extent-based), but then it still waits a round in CWR state. So it
 does next-to-nothing for a round.

 New EWMA and resposne algorithms to remove these 1-2 extra rounds of
 lag are described in [PerAckEWMA]. They have been implemented in
 Linux and an iterative process of evaluation and redesign is in
 progress. The EWMA is updated per-ACK, but it still changes as if it
 is clocked per round trip. The congestion response is still
 triggered by the first indication of ECN feedback, but it proceeds
 over the subsequent round trip so that it can take into account
 further incoming feedback as the EWMA evolves. The reduction is
 applied per-ACK but sized to result as if it had been a single
 response per round trip,

3.2. Combining Congestion Metrics

 Ultimately, it would be preferable to take an integrated approach and
 use a combination of ECN, loss and delay metrics to drive congestion
 control. For instance, using a downward trend in ECN marking and/or
 delay as a heuristic to temper the response to loss. Such ideas are
 not in the immediate plans for the Linux TCP Prague, but some more
 specific ideas are highlighted in the following subsections.

3.2.1. ECN with Loss

 If the bottleneck is ECN-capable, a loss due to congestion is very
 likely to have been preceded by a period of ECN marking. When the
 current Linux TCP Prague CC detects a loss, like DCTCP, it halves
 cwnd, even if it has already reduced cwnd in the same round trip due
 to ECN marking. This double reduction can end up factoring down cwnd
 to as little as 1/4 in one round trip.

 On a loss while in CWR state following an ECN reduction, it would be
 possible to factor down cwnd by 1/(2-alpha), which would compound
 with the previous decrease factor of (1-alpha/2) to result in: (1 -
 alpha/2) / (2-alpha)) = 1/2. In integer arithmetic, this division
 would be possible but relatively expensive. A less expensive
 alternative would be multiplication by (2+alpha)/4, which

De Schepper, et al. Expires September 10, 2021 [Page 22]

Internet-Draft Prague Congestion Control March 2021

 approximates to a compounded decrease factor of 1/2 for typical low
 values of alpha, even up to 30%. The compound decrease factor is
 never greater than 1/2 and in the worst case, if alpha was 100%, it
 would factor cwnd down by 3/8.

3.2.2. ECN with Delay

Section 3.1.2 described the plans to shift between using ECN when
 close to the operating point and using delay by injecting paced
 chirps to find a new operating after the ECN signal goes silent for a
 few rounds. Paced chirping shifts more slowly to the new operating
 point the more noise there is in the delay measurements. Work is
 ongoing on treating any ECN marking as a complementary metric. The
 resulting less noisy combined metric should then allow the controller
 to shift more rapidly to each new operating point.

 An alternative would be to combine ECN with the BBR approach, which
 induces a much less noisy delay signal by using less frequent but
 more pronounced delay spikes. The approach currently being taken is
 to adapt the chirp length to the degree of noise, so the chirps only
 become longer and/or more pronounced when necessary, for instance
 when faced with a discontinuous link technology such as WiFi. With
 multiple chirps per round, the noise can still be filtered out by
 averaging over them all, rather than trying to remove noise from each
 spike. This keeps the 'self-harm' to the minimum necessary, and
 ensures that capacity is always being sampled, which removes the risk
 of going stale.

3.3. Fall-Back on Classic ECN

 The implementation of TCP Prague CC in Linux includes an algorithm to
 detect a Classic ECN AQM and fall back to Reno as a result, as
 required by the 'Coexistence with Classic ECN' aspect of the Prague
 Req 4.3. [I-D.ietf-tsvwg-ecn-l4s-id].

 The algorithm currently used (v2) is relatively simple, but rather
 than describe it here, full rationale, pseudocode and explanation can
 be found in the technical report about it [ecn-fallback]. This also
 includes a selection of the evaluation results and a link to
 visualizations of the full results online. The current algorithm
 nearly always detects a Classic ECN AQM, and in the majority of the
 wide range of scenarios tested it is good at detecting an L4S AQM.
 However, it wrongly identifies and L4S AQM as Classic in a
 significant minority of cases when the link rate is low, or the RTT
 is high. The report gives ideas on how to improve detection in these
 scenarios, but in the mean time the algorithm has been disabled by
 default.

De Schepper, et al. Expires September 10, 2021 [Page 23]

Internet-Draft Prague Congestion Control March 2021

 Recently, the report has been updated to include new ideas on other
 ways to distinguish Classic from L4S AQMs. The interested reader can
 access it themselves, so this living document will not be further
 summarized here.

3.4. Further Reduced RTT-Dependence

 The algorithm to reduce RTT dependence is only relevant for long-
 running flows. So in the current TCP Prague implementation it
 remains disabled for a certain number of round trips after the start
 of a flow, as explained in Section 2.4.4. It would be possible to
 make RTT_ref gradually move from the actual RTT to the target
 reference RTT, or peerhaps depend on other parameters of the flow.
 Nonetheless, just switching in the algorithm after a number of rounds
 works well enough. It is planned to also disable the algorithm for a
 similar duration if a flow becomes idle then restarts, but this is
 yet to be evaluated.

 Prague Req 4.3. in [I-D.ietf-tsvwg-ecn-l4s-id]) only requires reduced
 RTT bias "in the range between the minimum likely RTT and typical
 RTTs expected in the intended deployment scenario". The current TCP
 Prague implementation satisfies this requirement (Section 2.4.4).
 Nonetheless, it would be preferable to be able to reduce the RTT bias
 for high RTT flows as well.

 If a step AQM is used, the congestion episodes of flows with
 different RTTs tend to synchronize, which exacerbates RTT bias. To
 prevent this two candidate approaches will need to be investigated:
 i) It might be sufficient to deprecate step AQMs for L4S (they are
 not the preferred recommendation in
 [I-D.ietf-tsvwg-aqm-dualq-coupled]); or ii) the reference RTT
 approach of Section 2.4.4 might be usable for higher than typical
 RTTs as well as lower. In this latter case, (RTT/RTT_ref)^2 segments
 would need to be added to the window per actual RTT. The current TCP
 Prague implementation does not support this faster AI for RTTs higher
 than RTT_ref, due to the expected (but unverified) impact on latency
 overshoot and responsiveness.

3.5. Scaling Down to Fractional Windows

 A modification to v5.0 of the Linux TCP stack that scales down to
 sub-packet windows is available for research purposes via the L4S
 landing page [L4S-home]. The L4S Prague Requirements in section 4.3
 of [I-D.ietf-tsvwg-ecn-l4s-id] recommend but no longer mandate
 scaling down to sub-packet windows. This is because becoming
 unresponsive at a minimum window is a tradeoff between protecting
 against other unresponsive flows and the extra queue you induce by

De Schepper, et al. Expires September 10, 2021 [Page 24]

Internet-Draft Prague Congestion Control March 2021

 becoming unresponsive yourself. So this code is not maintained as
 part of the Linux implementation of TCP Prague.

 Firstly, the stack ahs to be modifed to maintain a fractional
 congestion window. The because the ACK clock cannot work below 1
 packet per RTT, the code sets the time to send each packet, then
 readjusts the timing as each ACK arrives (otherwise any queuing
 accumulates a burst in subsequent rounds). Also, additive increase
 of one segment does not scale below a 1-segment window. So instead
 of a constant additive increase, the code uses a logarithmically
 scaled additive increase that slowly adapts the additive increase
 constant to the slow start threshold. Despite these quite radical
 changes, the diff is surprisingly small. The design and
 implementation is explained in [Ahmed19], which also includes
 evaluation results.

4. IANA Considerations

 This specification contains no IANA considerations.

5. Security Considerations

Section 3.5 on scaling down to fractional windows discusses the
 tradeoff in becoming unresponsive at a minium window, which causes a
 queue to build (harm to self and to others) but protects oneself
 against other unresponsive flows (whether malicious or accidental).

 This draft inherits the security considerations discussed in
 [I-D.ietf-tsvwg-ecn-l4s-id] and in the L4S architecture
 [I-D.ietf-tsvwg-l4s-arch]. In particular, the self-interest
 incentive to be responsive and minimize queuing delay, and
 protections against those interested in disrupting the low queuing
 delay of others.

6. Acknowledgements

 Bob Briscoe's contribution was part-funded by the Comcast Innovation
 Fund. The views expressed here are solely those of the authors.

7. Comments and Contributions Solicited (To be removed before
 Publication)

 Comments and questions are encouraged and very welcome. They can be
 addressed to the IRTF Internet Congestion Control Research Group's
 mailing list <iccrg@irtf.org>, and/or to the authors via <draft-

briscoe-iccrg-congestion-control@ietf.org>. Contributions of design
 ideas and/or code are also encouraged and welcome.

https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-congestion-control
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-congestion-control

De Schepper, et al. Expires September 10, 2021 [Page 25]

Internet-Draft Prague Congestion Control March 2021

8. Contributors

 The following contributed implementations and evaluations that
 validated and helped to improve this specification:

 Olivier Tilmans <olivier.tilmans@nokia-bell-labs.com> of Nokia
 Bell Labs, Belgium, prepared and maintains the Linux
 implementation of TCP Prague.

 Koen De Schepper <koen.de_schepper@nokia-bell-labs.com> of Nokia
 Bell Labs, Belgium, contributed to the Linux implementation of TCP
 Prague.

 Joakim Misund <joakim.misund@gmail.com> of Uni Oslo, Norway, wrote
 the Linux paced chirping code.

 Asad Sajjad Ahmed <me@asadsa.com>, Independent, Norway, wrote the
 Linux code that maintains a sub-packet window.

9. References

9.1. Normative References

 [I-D.ietf-tcpm-accurate-ecn]
 Briscoe, B., Kuehlewind, M., and R. Scheffenegger, "More
 Accurate ECN Feedback in TCP", draft-ietf-tcpm-accurate-

ecn-13 (work in progress), November 2020.

 [I-D.ietf-tsvwg-ecn-l4s-id]
 Schepper, K. and B. Briscoe, "Identifying Modified
 Explicit Congestion Notification (ECN) Semantics for
 Ultra-Low Queuing Delay (L4S)", draft-ietf-tsvwg-ecn-l4s-

id-12 (work in progress), November 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC8311] Black, D., "Relaxing Restrictions on Explicit Congestion
 Notification (ECN) Experimentation", RFC 8311,
 DOI 10.17487/RFC8311, January 2018,
 <https://www.rfc-editor.org/info/rfc8311>.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-13
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-13
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-12
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-l4s-id-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc8311
https://www.rfc-editor.org/info/rfc8311

De Schepper, et al. Expires September 10, 2021 [Page 26]

Internet-Draft Prague Congestion Control March 2021

9.2. Informative References

 [Ahmed19] Ahmed, A., "Extending TCP for Low Round Trip Delay",
 Masters Thesis, Uni Oslo , August 2019,
 <https://www.duo.uio.no/handle/10852/70966>.

 [ecn-fallback]
 Briscoe, B. and A. Ahmed, "TCP Prague Fall-back on
 Detection of a Classic ECN AQM", bobbriscoe.net Technical
 Report TR-BB-2019-002, April 2020,
 <https://arxiv.org/abs/1911.00710>.

 [I-D.ietf-avtcore-cc-feedback-message]
 Sarker, Z., Perkins, C., Singh, V., and M. Ramalho, "RTP
 Control Protocol (RTCP) Feedback for Congestion Control",

draft-ietf-avtcore-cc-feedback-message-09 (work in
 progress), November 2020.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-34 (work
 in progress), January 2021.

 [I-D.ietf-tcpm-generalized-ecn]
 Bagnulo, M. and B. Briscoe, "ECN++: Adding Explicit
 Congestion Notification (ECN) to TCP Control Packets",

draft-ietf-tcpm-generalized-ecn-06 (work in progress),
 October 2020.

 [I-D.ietf-tcpm-hystartplusplus]
 Balasubramanian, P., Huang, Y., and M. Olson, "HyStart++:
 Modified Slow Start for TCP", draft-ietf-tcpm-

hystartplusplus-01 (work in progress), January 2021.

 [I-D.ietf-tcpm-rack]
 Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha, "The
 RACK-TLP loss detection algorithm for TCP", draft-ietf-

tcpm-rack-15 (work in progress), December 2020.

 [I-D.ietf-tsvwg-aqm-dualq-coupled]
 Schepper, K., Briscoe, B., and G. White, "DualQ Coupled
 AQMs for Low Latency, Low Loss and Scalable Throughput
 (L4S)", draft-ietf-tsvwg-aqm-dualq-coupled-13 (work in
 progress), November 2020.

https://www.duo.uio.no/handle/10852/70966
https://arxiv.org/abs/1911.00710
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-cc-feedback-message-09
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-generalized-ecn-06
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-hystartplusplus-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-hystartplusplus-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-15
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rack-15
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-aqm-dualq-coupled-13

De Schepper, et al. Expires September 10, 2021 [Page 27]

Internet-Draft Prague Congestion Control March 2021

 [I-D.ietf-tsvwg-l4s-arch]
 Briscoe, B., Schepper, K., Bagnulo, M., and G. White, "Low
 Latency, Low Loss, Scalable Throughput (L4S) Internet
 Service: Architecture", draft-ietf-tsvwg-l4s-arch-08 (work
 in progress), November 2020.

 [L4S-home]
 "L4S: Ultra-Low Queuing Delay for All",
 <https://riteproject.eu/dctth/#code>.

 [LinuxPacedChirping]
 Misund, J. and B. Briscoe, "Paced Chirping - Rethinking
 TCP start-up", Proc. Linux Netdev 0x13 , March 2019,
 <https://www.netdevconf.org/0x13/session.html?talk-chirp>.

 [patch-alpha-zero]
 Shewmaker, A., "tcp: allow dctcp alpha to drop to zero",
 Linux GitHub patch; Commit: c80dbe0, October 2015,
 <https://github.com/torvalds/linux/commits/master/net/

ipv4/tcp_dctcp.c>.

 [patch-loss-react]
 De Schepper, K., "tcp: Ensure DCTCP reacts to losses",
 Linux GitHub patch; Commit: aecfde2, April 2019,
 <https://github.com/torvalds/linux/commits/master/net/

ipv4/tcp_dctcp.c>.

 [PerAckEWMA]
 Briscoe, B., "Improving DCTCP/Prague Congestion Control
 Responsiveness", Technical Report TR-BB-2020-002, January
 2021, <https://arxiv.org/abs/2101.07727>.

 [PragueLinux]
 Briscoe, B., De Schepper, K., Albisser, O., Misund, J.,
 Tilmans, O., Kuehlewind, M., and A. Ahmed, "Implementing
 the `TCP Prague' Requirements for Low Latency Low Loss
 Scalable Throughput (L4S)", Proc. Linux Netdev 0x13 ,
 March 2019, <https://www.netdevconf.org/0x13/

session.html?talk-tcp-prague-l4s>.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
RFC 3649, DOI 10.17487/RFC3649, December 2003,

 <https://www.rfc-editor.org/info/rfc3649>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <https://www.rfc-editor.org/info/rfc4340>.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4s-arch-08
https://riteproject.eu/dctth/#code
https://www.netdevconf.org/0x13/session.html?talk-chirp
https://github.com/torvalds/linux/commits/master/net/ipv4/tcp_dctcp.c
https://github.com/torvalds/linux/commits/master/net/ipv4/tcp_dctcp.c
https://github.com/torvalds/linux/commits/master/net/ipv4/tcp_dctcp.c
https://github.com/torvalds/linux/commits/master/net/ipv4/tcp_dctcp.c
https://arxiv.org/abs/2101.07727
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://datatracker.ietf.org/doc/html/rfc3649
https://www.rfc-editor.org/info/rfc3649
https://datatracker.ietf.org/doc/html/rfc4340
https://www.rfc-editor.org/info/rfc4340

De Schepper, et al. Expires September 10, 2021 [Page 28]

Internet-Draft Prague Congestion Control March 2021

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5033] Floyd, S. and M. Allman, "Specifying New Congestion
 Control Algorithms", BCP 133, RFC 5033,
 DOI 10.17487/RFC5033, August 2007,
 <https://www.rfc-editor.org/info/rfc5033>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC6679] Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
 and K. Carlberg, "Explicit Congestion Notification (ECN)
 for RTP over UDP", RFC 6679, DOI 10.17487/RFC6679, August
 2012, <https://www.rfc-editor.org/info/rfc6679>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP's Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013,
 <https://www.rfc-editor.org/info/rfc6928>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [RFC8298] Johansson, I. and Z. Sarker, "Self-Clocked Rate Adaptation
 for Multimedia", RFC 8298, DOI 10.17487/RFC8298, December
 2017, <https://www.rfc-editor.org/info/rfc8298>.

 [Tensions17]
 Briscoe, B. and K. De Schepper, "Resolving Tensions
 between Congestion Control Scaling Requirements", Simula
 Technical Report TR-CS-2016-001; arXiv:1904.07605, July
 2017, <https://arxiv.org/abs/1904.07605>.

Authors' Addresses

 Koen De Schepper
 Nokia Bell Labs
 Antwerp
 Belgium

 Email: koen.de_schepper@nokia.com
 URI: https://www.bell-labs.com/usr/koen.de_schepper

https://datatracker.ietf.org/doc/html/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/bcp133
https://datatracker.ietf.org/doc/html/rfc5033
https://www.rfc-editor.org/info/rfc5033
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc6679
https://www.rfc-editor.org/info/rfc6679
https://datatracker.ietf.org/doc/html/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://datatracker.ietf.org/doc/html/rfc8298
https://www.rfc-editor.org/info/rfc8298
https://arxiv.org/abs/1904.07605
https://www.bell-labs.com/usr/koen.de_schepper

De Schepper, et al. Expires September 10, 2021 [Page 29]

Internet-Draft Prague Congestion Control March 2021

 Olivier Tilmans
 Nokia Bell Labs
 Antwerp
 Belgium

 Email: olivier.tilmans@nokia-bell-labs.com

 Bob Briscoe (editor)
 Independent
 UK

 Email: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

http://bobbriscoe.net/

De Schepper, et al. Expires September 10, 2021 [Page 30]

