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Abstract

This specification defines the Prague congestion control scheme,

which is derived from DCTCP and adapted for Internet traffic by

implementing the Prague L4S requirements. Over paths with L4S

support at the bottleneck, it adapts the DCTCP mechanisms to achieve

consistently low latency and full throughput. It is defined

independently of any particular transport protocol or operating

system, but notes are added that highlight issues specific to

certain transports and OSs. It is mainly based on the current

default options of the reference Linux implementation of TCP Prague,

but it includes experience from other implementations where

available. It separately describes non-default and optional parts,

as well as future plans.

The implementation does not satisfy all the Prague requirements

(yet) and the IETF might decide that certain requirements need to be

relaxed as an outcome of the process of trying to satisfy them all.

In two cases, research code is replaced by placeholders until full

evaluation is complete.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."
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This Internet-Draft will expire on 12 January 2023.
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1. Introduction

This document defines the Prague congestion control. It is defined

independent of any particular transport protocol or operating

system, but notes are added that highlight issues specific to

certain transports and OSs. The authors are most familiar with the

reference implementation of Prague on Linux over TCP. So that forms

the basis of the large majority of platform-specific notes.

Nonetheless, wherever possible, experience from implementers on

other platforms is included, and the intention is to gather more

into this document during the drafting process.

The Prague CC is intended to maintain consistently low queuing delay

over network paths that offer L4S support at the bottleneck. Where

the bottleneck does not support L4S, the Prague CC is intended to

fall back to behaving like a conventional 'Classic' congestion

control. L4S stands for Low Latency, Low Loss Scalable throughput.

L4S support in the network involves Active Queue Management (AQM)

with a very shallow target queueing delay (of the order of a

millisecond) that applies immediate Explicit Congestion Notification

(ECN). 'Immediate ECN' means that the network applies ECN marking

based on the instantaneous queue, without any smoothing or

filtering, The Prague CC takes on the job of smoothing and filtering

the congestion signals from the network.

The Prague CC is a particular instance of a scalable congestion

control, which is defined in Section 1.4. Scalable congestion

control is the part of the L4S architecture that does the actual

work of maintaining low queuing delay and ensuring that the delay

and throughput properties scale with flow rate.

The L4S architecture [I-D.ietf-tsvwg-l4s-arch] places the host

congestion control in the context of the other parts of the system.

In particular the different types of L4S AQM in the network and the
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codepoints in the IP-ECN field that convey to the network that the

host supports the L4S form of ECN. The architecture document also

covers other issues such as: incremental deployment; protection of

low latency queues against accidental or malicious disruption; and

the relationship of L4S to other low latency technologies. The

specification of the L4S ECN Protocol [I-D.ietf-tsvwg-ecn-l4s-id]

sets down the requirements that the Prague CC has to follow (called

the Prague L4S Requirements - see Section 2.1 for a summary).

Links to implementations of the Prague CC and other scalable

congestion controls (all open source) can be found via the L4S

landing page [L4S-home], which also links to numerous other L4S-

related resources. A (slightly dated) paper on the specific

implementation of the Prague CC in Linux over TCP is also available 

[PragueLinux], and the code is at [linux-code].

1.1. Motivation: Low Queuing Delay /and/ Full Throughput

The Prague CC is capable of keeping queuing delay consistently low

while fully utilizing available capacity. In contrast, Classic

congestion controls need to induce a reasonably large queue

(approaching a bandwidth-delay product) in order to fully utilize

capacity. Therefore, prior to scalable CCs like DCTCP and Prague, it

was believed that very low delay was only possible by limiting

throughput and isolating the low delay traffic from capacity-seeking

traffic.

The Prague CC uses additive increase multiplicative decrease (AIMD),

in which it increases its window until an ECN mark (or loss) is

detected, then yields in a continual sawtooth pattern. The key to

keeping queuing delay low without under-utilizing capacity is to

keep the sawteeth tiny. For example the average duration of a Prague

CC sawtooth is of the order of a round trip, whereas a classic

congestion control sawtooths over hundreds of round trips. For

instance, over an RTT of 36ms, at 100Mb/s CUBIC takes about 106

round trips to recover, and at 800 Mb/s its recovery time triples to

over 340 round trips, or still more than 12 seconds (Reno would take

57 seconds.

Keeping the sawtooth amplitude down keeps queue variation down and

utilization up. Keeping the duration of the sawteeth down ensures

control remains tight. The definition of a scalable CC is that the

duration between congestion marks does not increase as flow rate

scales, all other factors being equal. This is important, because it

means that the sawteeth will always stay tiny. So queue delay will

remain very low, and control will remain very tight.

The tip of each sawtooth occurs when the bottleneck link emits a

congestion signal. Therefore such small sawteeth are only feasible
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when ECN is used for the congestion signals. If loss were used, the

loss level would be prohibitively high. This is why L4S-ECN has to

depart from the requirement of Classic ECN[RFC3168] that an ECN mark

is equivalent to a loss. Because otherwise the response to the high

level of ECN marking would have to be as great as the response to an

equivalent level of loss.

The Prague CC is derived from Data Center TCP (DCTCP [RFC8257]).

DCTCP is confined to controlled environments like data centres

precisely because it uses such small sawteeth, which induce such a

high level of congestion marking. For a CC using Classic ECN, this

would be interpreted as equivalent to the same, very high, loss

level. The Classic CC would then continually drive its own rate down

in the face of such an apparently high level of congestion.

This is why coexistence with existing traffic is important for the

Prague CC. It has to be able to detect whether it is sharing the

bottleneck with Classic traffic, and if so fall back to behaving in

a Classic way. If the bottleneck does not support ECN at all, that

is easy - the Prague CC just responds in the Classic way to loss

(see Section 2.4.1). But if it is sharing the bottleneck with

Classic ECN traffic, this is more difficult to detect (see Section

3.3). Because the Prague CC removes most of the queue, it also

addresses RTT-dependence. Otherwise, at low base RTTs, its flow rate

would become far more RTT-dependent than Classic CCs.

1.2. Document Purpose

There is not 'One True Prague CC'. L4S is intended to enable

development of any scalable CC that meets the L4S Prague

requirements [I-D.ietf-tsvwg-ecn-l4s-id]. This document attempts to

describe a reference implementation and attempts to generalize it to

different transports and OS platforms. The implementation does not

satisfy all the Prague requirements (yet), and the IETF might decide

that certain requirements need to be relaxed as an outcome of the

process of trying to satisfy them all.

1.3. Maturity Status (To be Removed Before Publication)

The field of congestion control is always a work in progress.

However, there are areas of the Prague CC that are still just

placeholders while separate research code is evaluated. And in other

implementations of the Prague CC, other areas are incomplete. In the

Linux reference implementation of TCP Prague, interim code is used

in the incomplete areas, which are:

Flow start and restart (standard slow start is used, even though

it often exits early in L4S environments were ECN marking tends

to be frequent);
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Classic Congestion Control:

Scalable Congestion Control:

Response function:

Faster than additive increase (standard additive increase is

used, which makes the flow particularly sluggish if it has

dropped out of slow start early).

The body of this document describes the Prague CC as implemented.

Any non-default options or any planned improvements are separated

out into Section 3 on "Variants and Future Work". As each of the

above areas is addressed, it will will be removed from this section

and its description in the body of the document will be updated.

Once all areas are complete, this section will be removed. Prague CC

will then still be a work in progress, but only on a similar footing

as all other congestion controls.

1.4. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119] when, and

only when, they appear in all capitals, as shown here.

Definitions of terms:

A congestion control behaviour that can

co-exist with standard TCP Reno [RFC5681] without causing

significantly negative impact on its flow rate [RFC5033]. With

Classic congestion controls, as flow rate scales, the number of

round trips between congestion signals (losses or ECN marks)

rises with the flow rate. So it takes longer and longer to

recover after each congestion event. Therefore control of queuing

and utilization becomes very slack, and the slightest disturbance

prevents a high rate from being attained [RFC3649].

A congestion control where the average

time from one congestion signal to the next (the recovery time)

remains invariant as the flow rate scales, all other factors

being equal. This maintains the same degree of control over

queueing and utilization whatever the flow rate, as well as

ensuring that high throughput is robust to disturbances. For

instance, DCTCP averages 2 congestion signals per round-trip

whatever the flow rate. For the public Internet a Scalable

transport has to comply with the requirements in Section 4 of [I-

D.ietf-tsvwg-ecn-l4s-id] (aka. the 'Prague L4S requirements').

The relationship between the window (cwnd) of a

congestion control and the congestion signalling probability, p,

in steady state. A general response function has the form cwnd =

K/p^B, where K and B are constants. In an approximation of the

response function of the standard Reno CC, B=1/2. For a scalable

congestion control B=1, so its response function takes the form
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Reno-friendly:

Classic ECN:

CC:

ACK:

EWMA:

RTT:

cwnd = K/p. The number of congestion signals per round is p*cwnd,

which equates to the constant, K, for a scalable CC. Hence the

definition of a scalable CC above.

The subset of Classic traffic that excludes

unresponsive traffic and excludes experimental congestion

controls intended to coexist with Reno but without always being

strictly friendly to it (as allowed by [RFC5033]). Reno-friendly

is used in place of 'TCP-friendly', given that the TCP protocol

is used with many different congestion control behaviours.

The original Explicit Congestion Notification (ECN)

protocol [RFC3168], which requires ECN signals to be treated the

same as drops, both when generated in the network and when

responded to by the sender.

The names used for the four codepoints of the 2-bit IP-ECN field

are as defined in [RFC3168]: Not ECT, ECT(0), ECT(1) and CE,

where ECT stands for ECN-Capable Transport and CE stands for

Congestion Experienced.

A packet marked with the CE codepoint is termed 'ECN-marked' or

sometimes just 'marked' where the context makes ECN obvious.

Congestion Control

an ACKnowledgement, or to ACKnowledge

Exponentially Weighted Moving Average

Round Trip Time

Definitions of Parameters and Variables:
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MTU_BITS:

cwnd:

ssthresh:

inflight:

p:

alpha:

acked_sacked:

ece_delta:

ai_per_rtt:

srtt:

MAX_BURST_DELAY:

Maximum transmission unit [b]

Congestion window [B]

Slow start threshold [B]

The amount of data that the sender has sent but not yet

received ACKs for [B]

Steady-state probability of drop or marking []

EWMA of the ECN marking fraction []

the amount of new data acknowledged by an ACK [B]

the amount of newly acknowledged data that was ECN-

marked [B]

additive increase to apply per RTT [B]

Smoothed round trip time [s]

Maximum allowed bottleneck queuing delay due to

segmentation offload bursts [s] (default 0.25 ms for the public

Internet)

2. Prague Congestion Control

2.1. The Prague L4S Requirements

The beneficial properties of L4S traffic (low queuing delay, etc.)

depend on all L4S sources satisfying a set of conditions called the

Prague L4S Requirements. The name is after an ad hoc meeting of

about thirty people co-located with the IETF in Prague in July 2015,

the day after the first public demonstration of L4S.

The meeting agreed a list of modifications to DCTCP [RFC8257] to

focus activity on a variant that would be safe to use over the

public Internet. it was suggested that this could be called TCP

Prague to distinguish it from DCTCP. This list was adopted by the

IETF, and has continued to evolve (see section 4 of [I-D.ietf-tsvwg-

ecn-l4s-id]). The requirements are no longer TCP-specific, applying

irrespective of wire-protocol (TCP, QUIC, RTP, SCTP, etc).

This unusual start to the life of the project led to the unusual

development process of a reference implementation that had to

resolve a number of ambitious requirements, already known to be in

tension [Tensions17].
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Mandatory or Advisory Requirements:

DCTCP already implements a scalable congestion control. So most of

the changes to make it usable over the Internet seemed trivial, some

'merely' involving adoption of other parallel developments like

Accurate ECN TCP feedback [I-D.ietf-tcpm-accurate-ecn] or RACK 

[RFC8985]. Others have been more challenging (e.g. RTT-

independence). And others that seemed trivial became challenging

given the complex set of bugs and behaviours that characterize

today's Internet and the Linux stack.

The more critical implementation challenges are highlighted in the

following sections, in the hope we can prevent mistakes being

repeated (see for instance Section 2.3.2, Section 2.4.2). There was

also a set of five intertwined 'bugs' - all masking each other, but

causing unpredictable or poor performance as different code

modifications unmasked them. A draft write-up about these has been

prepared, which is longer than the whole of the present document, so

it will be included by reference once published.

During the development process, we have unearthed fundamental

aspects of the implementation and indeed the design of DCTCP and

Prague that have still not caught up with the paradigm shift from

existence to extent-based congestion response. Some have been

implemented by default, e.g. not suppressing additive increase for a

round trip after a congestion event (Section 2.4.3). Others have

been implemented but not fully evaluated, e.g. removing the 1-2

unnecessary round trips of lag in feedback processing (Section

3.1.3) and yet others are still future plans, e.g. further RTT-

independence (Section 3.4) and exploiting combined congestion

metrics in more cases (Section 3.2).

The requirements are categorized into those that would impact other

flows if not handled properly and performance optimizations that are

important but optional from the IETF's point of view, because they

only affect the flow itself. The list below maps the order of the

requirements in [I-D.ietf-tsvwg-ecn-l4s-id] to the order in this

document (which is by functional categories and code status):

L4S-ECN packet identification:

use of ECT(1) (Section 2.2)

Accurate ECN feedback (Section 2.3.1)

Reno-friendly response to a loss (Section 2.4.1)

Detection of a classic ECN AQM (Section 3.3)

Reduced RTT dependence (Section 2.4.4)

Scaling down to a fractional window (no longer mandatory,

see Section 3.5)
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Optional performance optimizations:

TCP Prague in Linux kernel:

Detecting loss in units of time (Section 2.3.3)

Minimizing bursts (Section 2.5.1

ECN-capable control packets

(Section 2.2)

Faster flow start (Section 3.1.1)

Faster than additive increase (Section 3.1.2)

Segmentation offload (Section 2.5.2)

2.2. Packet Identification

On the public Internet, a sender using the Prague CC MUST set the

ECT(1) codepoint on all the packets it sends, in order to identify

itself as an L4S-capable congestion control (Req 4.1 [I-D.ietf-

tsvwg-ecn-l4s-id]).

This applies whatever the transport protocol, whether TCP, QUIC,

RTP, etc. In the case of TCP, unlike an RFC 3168 TCP ECN transport,

a sender can set all packets as ECN-capable, including TCP control

packets and retransmissions [RFC8311], [I-D.ietf-tcpm-generalized-

ecn].

The Prague CC SHOULD optionally be configurable to use the ECT(0)

codepoint in private networks, such as data centres, which might be

necessary for backward compatibility with DCTCP deployments where

ECT(1) might already have another usage.

Implementation note:

The kernel was updated to allow the

ECT(1) flag to be set from within a CC module. The Prague CC then

has full control over the ECN code point it uses at any one time.

In this way it enforces the use of ECT(1) (or optionally ECT(0))

and non-ECT when required.

2.3. Detecting and Measuring Congestion

2.3.1. Accurate ECN Feedback

When feedback of ECN markings was added to TCP [RFC3168], it was

decided not to report any more than one mark per RTT. L4S-capable

congestion controls need to know the extent, not just the existence

of congestion (Req 4.2. [I-D.ietf-tsvwg-ecn-l4s-id]). Recently

defined transports (DCCP, QUIC, etc) typically already satisfy this

requirement. So they are dealt with separately below, while TCP and

derivatives such as SCTP [RFC4960] are covered first.
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TCP Prague in Linux kernel:

2.3.1.1. Accurate ECN Feedback with TCP & Derivatives

The TCP wire protocol is being updated to allow more accurate

feedback (AccECN [I-D.ietf-tcpm-accurate-ecn]). Therefore, in the

case where a sender uses the Prague CC over TCP, whether as client

or server:

it MUST itself support AccECN;

to support AccECN it also has to check that its peer supports

AccECN during the handshake.

If the peer does not support accurate ECN feedback, the sender MUST

fall back to a Reno-friendly CC behaviour for the rest of the

connection. The non-Prague TCP sender MUST then no longer set ECT(1)

on the packets it sends. Note that the peer only needs to support

AccECN; there is no need (and no way) to find out whether the peer

is using an L4S-capable congestion control.

Note that a sending TCP client that uses the Prague CC can set

ECT(1) on the SYN prior to checking whether the other peer supports

AccECN (as long as it follows the procedure in [I-D.ietf-tcpm-

generalized-ecn] if it discovers the peer does not support AccECN).

Implementation note:

The kernel had been updated to support

AccECN Independent of the CC module in use. So the kernel tries

to negotiate AccECN exchange whichever congestion control module

is selected. An additional check is provided to verify that the

kernel actually does support AccECN, based on which the Prague CC

module will decide to proceed using scalable CC or fall back to a

Classic CC (Reno in the current implementation).

A system wide option is available to disable AccECN negotiation,

but the Prague CC module will always override this setting, as it

depends on AccECN. Then, solely in this case, AccECN will only be

active for TCP flows using the Prague CC.

2.3.1.2. Accurate ECN Feedback with Other Modern Transports

Transport protocols specified recently, .e.g. DCCP [RFC4340], QUIC 

[RFC9000], are unambiguously suitable for Prague CCs, because they

were designed from the start with accurate ECN feedback.

In the case of RTP/RTCP, ECN feedback was added in [RFC6679], which

is sufficient for the Prague CC. However, it is preferable to use

the most recent improvements to ECN feedback in [RFC8888], as used

in the implementation of the L4S variant of SCReAM [RFC8298].
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Rounding problems in DCTCP:

Upscaled alpha in Prague CC:

2.3.2. Moving Average of ECN Feedback

The Prague CC currently maintains a moving average of ECN feedback

in a similar way to DCTCP. This section is provided mainly because

performance has proved to be sensitive to implementation precision

in this area. So first, some background is necessary.

The Prague CC triggers update of its moving average once per RTT by

recording the packet it sent after the previous update, then

watching for the ACK of that packet to return. To maintain its

moving average, it measures the fraction, frac, of ACKed bytes that

carried ECN feedback over the previous round trip. It then updates

an exponentially weighted moving average (EWMA) of this fraction,

called alpha, using the following algorithm:

alpha += g * (frac - alpha);

where g is the gain of the EWMA (default 1/16).

The moving average, alpha, is initialized to 1 at the first sign of

ECN feedback, which ensures the maximum congestion response to the

first appearance of congestion at a bottleneck supporting ECN.

Implementation notes:

Alpha is a fraction between 0 and 1,

and it needs to be represented with high resolution because the

larger the bandwidth-delay product (BDP) of a flow, the smaller

the value that alpha converges to (in steady state alpha = 2/

cwnd). In principle, Linux DCTCP maintains the moving average

'alpha' using the same formula as Prague CC uses (as above).

Linux represents alpha with a 10-bit integer (with resolution

1/1024). However, up to kernel release 3.19, Linux used integer

arithmetic that could not reduce alpha below 15/1024. Then it was

patched so that any value below 16/1024 was rounded down to zero 

[patch-alpha-zero]. For a flow with a higher BDP than 128

segments, this means that, alpha flip-flops. Once it has flopped

down to zero DCTCP becomes unresponsive until it has built

sufficient queue to flip up to 16/1024. For larger BDPs, this

causes DCTCP to induce larger sawteeth, which loses the low-

queuing-delay and high-utilization intent of the algorithm.

To resolve the above problem the

implementation of TCP Prague in Linux maintains upscaled_alpha =

alpha/g instead of alpha:

upscaled_alpha += frac - g * upscaled_alpha;
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This technique is the same as Linux uses for the retransmission

timer variables, srtt and mdev. Prague CC also uses 20 bits for

alpha,

Currently the above per-RTT update to the moving average, which was

inherited from DCTCP, is the default in the Prague CC. However,

another approach is being investigated because these per-RTT updates

introduce 1--2 rounds of delay into the congestion response on top

of the inherent round of feedback delay (see Section 3.1.3 in the

section on variants and future work).

2.3.3. Scaling Loss Detection with Flow Rate

After an ACK leaves a gap in the sequence space, a Prague CC is

meant to deem that a loss has occurred using 'time-based units' (Req

4.3. [I-D.ietf-tsvwg-ecn-l4s-id]). This is in contrast to the

traditional approach that counts a hard-coded number of duplicate

ACKs, e.g. the 3 Dup-ACKs specified in [RFC5681]. Counting packets

rather than time unnecessarily tightens the time within which

parallelized links have to keep packets in sequence as flow rate

scales over the years.

To satsify this requirement, a Prague CC SHOULD wait until a certain

fraction of the RTT has elapsed before it deems that the gap is due

to packet loss. The reference implementation of TCP Prague in Linux

uses RACK [RFC8985] to address this requirement. An approach similar

to TCP RACK is also used in QUIC.

At the start of a connection, RACK counts 3 DupACKs to detect loss

because the initial smoothed RTT estimate can be inaccurate. This

would depend indirectly on time as long as the initial window (IW)

is paced over a round trip (see Section 2.4.5). For instance, if the

initial window of 10 segments was paced evenly across the initial

RTT then, in the next round, an implementation that deems there has

been a loss after (say) 1/4 of an RTT can count 1/4 of 10 = 3

DupACKs (rounded up). Subsequently, as the window grows, RACK shifts

to using a fraction of the RTT for loss detection.

2.4. Congestion Response Algorithm

In congestion avoidance phase, a Prague CC uses a similar additive

increase multiplicative decrease (AIMD) algorithm to DCTCP, but with

the following differences:

2.4.1. Loss behaviour

A Prague CC MUST use a Reno-friendly congestion response (such as

that of CUBIC [I-D.ietf-tcpm-rfc8312bis] or Reno [RFC5681]) on

detection of a loss (Req 2 in section 4.3. of [I-D.ietf-tsvwg-ecn-

l4s-id]). DCTCP falls back to Reno for the round trip after a loss,
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DCTCP bug prior to v5.1:

Upscaled alpha:

and the Linux reference implementation of TCP Prague currently

inherits this behaviour. On detection of loss, an implementation can

use CUBIC's behaviour instead of Reno's for both the reduction after

the loss and the subsequent growth of cwnd until the next congestion

event.

If a Prague CC has already reduced the congestion window due to ECN

feedback less than a round trip before it detects a loss, it MAY

reduce the congestion window by a smaller amount due to the loss, as

long as the reductions, due to ECN and the loss, when multiplied

together result in the reduction that the implementation usually

makes in response to loss (e.g. 50% to emulate Reno or 30% to

emulate CUBIC).

See Section 3.2 for discussion of future work on congestion control

using a combination of delay, ECN and loss.

Implementation note:

A Prague CC cannot rely on inheriting the

fall-back-on-loss behaviour of the DCTCP code in the Linux kernel

prior to v5.1, due to a previous bug in the fast retransmit code

(but not in the retransmission timeout code) [patch-loss-react].

2.4.2. Multiplicative Decrease on ECN Feedback

The Prague CC currently responds to ECN feedback in a similar way to

DCTCP. This section is provided mainly because performance has

proved to be sensitive to implementation details in this area. So

the following recap of the congestion response is needed first.

As explained in Section 2.3.2, the Prague CC (like DCTCP) clocks its

moving average of ECN-marking, alpha, once per round trip throughout

a connection. Nonetheless, it only triggers a multiplicative

decrease to its congestion window when it actually receives an ACK

carrying ECN feedback. Then it suppresses any further decreases for

one round trip, even if it receives further ECN feedback. This is

termed Congestion Window Reduced or CWR state.

The Prague CC (like DCTCP) ensures that the average recovery time

remains invariant as flow rate scales (Req 4.3 of [I-D.ietf-tsvwg-

ecn-l4s-id]) by making the multiplicative decrease depend on the

prevailing value of alpha as follows:

ssthresh = (1 - alpha/2) * cwnd;

Implementation notes:

With reference to the earlier discussion of integer

arithmetic precision (Section 2.3.2), alpha = g * upscaled_alpha.
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Carry of fractional cwnd remainder:
Typically the absolute

reduction in the window is only a small number of segments. So,

if the Prague CC implementation counts the window in integer

segments (as in the Linux reference code), delay can be made

significantly less jumpy by tracking a fractional value alongside

the integer window and carrying over any fractional remainder to

the next reduction. Also, integer rounding bias ought to be

removed from the multiplicative decrease calculation.

In dynamic scenarios, as flows find a new operating point, alpha

will have often tailed away to near-nothing before the onset of

congestion. Then DCTCP's tiny reduction followed by no further

response for a round is precisely the wrong way for a CC to respond.

A solution to this problem is being evaluated as part of the work

already mentioned to improve Prague's responsiveness (see Section

3.1.3 in the section on variants and future work).

2.4.3. Additive Increase and ECN Feedback

Unlike DCTCP, the Prague CC does not suppress additive increase for

one round trip after a congestion window reduction (while in CWR

state). Instead, a Prague CC applies additive increase irrespective

of its CWR state, but only for bytes that have been ACK'd without

ECN feedback. Specifically, on each ACK,

where:

acked_sacked is the number of new bytes acknowledged by the ACK;

ece_delta is the number of newly acknowledge ECN-marked bytes;

ai_per_rtt is a scaling factor that is typically 1 SMSS except

for small RTTs (see Section 2.4.4)

Superficially, the traditional suppression of additive increase for

the round after a decrease seems to make sense. However, DCTCP and

Prague are designed to induce an average of 2 congestion marks per

RTT in steady state, which leaves very little space for any increase

between the end of one round of CWR and the next mark. In tests,

when a test version of Prague CC is configured to completely

suppress additive increase during CWR (like Reno and DCTCP), it

sawteeth become more irregular, which is its way of making some

decreases large enough to open up enough space for an increase. This

irregularity tends to reduce link utilization. Therefore, the

reference Prague CC continues additive increase irrespective of CWR

state.
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    cwnd += (acked_sacked - ece_delta) * ai_per_rtt / cwnd;¶
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Nonetheless, rather than continue additive increase regardless of

congestion, it is safer to only increase on those ACKs that do not

feed back congestion. This approach reduces additive increase as the

marking probability increases, which tends to keep the marking level

unsaturated (below 100%) (see Section 3.1 of [Tensions17]). Under

stable conditions, Prague's congestion window then becomes

proportional to (1-p)/p, rather than 1/p.

See also 'Faster than Additive Increase' (Section 3.1.2)

2.4.4. Reduced RTT-Dependence

The window-based AIMD described so far was inherited from Reno via

DCTCP. When many long-running Reno flows share a link, their

relative packet rates become roughly inversely proportional to RTT

(packet rate =~ 1/RTT). Then a flow with very small RTT will

dominate any flows with larger RTTs.

Queuing delay sets a lower limit to the smallest possible RTT. So,

prior to the extremely low queuing delay of L4S, extreme cases of

RTT dependence had never been apparent. Now that L4S has removed

most of the queuing delay, we have to address the root-cause of RTT-

dependence, which the Prague CC is required to do, at least when the

RTT is small (see the 'Reduced RTT bias' aspect of Req 4.3. [I-

D.ietf-tsvwg-ecn-l4s-id]). Here, a small RTT is defined as below the

typical RTT for the intended deployment environment.

The reference Prague CC reduces RTT bias by using a virtual RTT

(rtt_virt) rather than the actual smoothed RTT (srtt) for all three

of: i) the period of additive window increase; ii) the EWMA update

period; and iii) the duration of CWR state after a decrease.

rtt_virt is calculated as a function of the actual smoothed RTT,

chosen so that, when the srtt is high, the virtual RTT is

essentially the same; but for lower actual RTTs, the virtual RTT is

increasingly larger than the actual RTT. Example functions for the

virtual RTT are:

rtt_virt = max(srtt, RTT_VIRT_MIN);

rtt_virt = srtt + AdditionalRTT;

where RTT_VIRT_MIN and AdditionalRTT are constants. The current

default is rtt_virt = max(srtt, 25ms), which addresses the main

Prague requirement for when the RTT is smaller than typical.

As the actual window (cwnd) is still sent within 1 actual RTT, we

also need to use a (conceptual) virtual window, cwnd_virt. For

instance, if rtt_virt = 25 ms then, when the actual RTT is 5 ms,

there are rtt_virt/srtt = 5 times more packets in cwnd_virt, than in
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the actual window, cwnd, because it spans 5 actual round trips. We

define M as the ratio rtt_virt/srtt.

In Reno or DCTCP, additive increase is implemented by dividing the

desired increase of 1 segment per round over the cwnd packets in the

round. This requires an increase of 1/cwnd per packet. In the Linux

implementation of TCP Prague, the aim is to increase the reference

window by 1 segment over a virtual RTT. However, in practice the

increase is applied to the actual window, cwnd, which is M times

smaller than cwnd_virt. So cwnd has to be increased by only 1/M

segments over rtt_virt. But again, in practice, the increase is

applied over an actual window of packets spanning an actual RTT,

which is also M times smaller than the virtual RTT. So the desired

increase in cwnd is only 1/M^2 segments over an actual round trip

containing cwnd packets. Therefore, the increase in cwnd per packet

has to be (1/M^2) * (1/cwnd).

Unless a flow lasts long enough for rates to converge, aiming for

equal rates will not be relevant. So, the Reduced RTT-Dependence

algorithm only comes into effect after D rounds, where D is

configurable (current default 500). Continuing the previous example,

if actual srtt=5 ms and rtt_virt = 25 ms, then Prague would use the

regular RTT-dependent algorithm for the first 500*5ms = 2.5s. Then

it would start to converge to more equal rates using its Reduced

RTT-Dependence algorithm. If the actual RTT were higher (e.g. 20ms),

it would stay in the regular RTT-dependent mode for longer (500

rounds = 10s), but this would be mitigated by the actual RTT it uses

at the start being closer to the virtual RTT it eventually uses

(20ms and 25ms resp.).

This approach prevents reduced RTT-dependence from making the flow

less responsive at start-up and ensures that its early throughput

share is based on its actual RTT. The benefit is that short flows

(mice) give themselves priority over longer flows (elephants), and

shorter RTTs will still converge faster than longer RTTs.

Nonetheless, the throughput still converges to equal rates after D

rounds.

It is planned to reset the algorithm to the regular RTT-dependent

behaviour after an idle, not just at flow start, as discussed under

Future Work in Section 3.4.

Section 3.4 also discusses extending the reduction in RTT-dependence

to longer RTTs than RTT_VIRT_MIN (i.e. longer than 25ms). The

current Prague implementation does not support this.
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2.4.5. Flow Start or Restart

Currently the Linux reference implementation of TCP Prague uses the

standard Linux slow start code. Slow start is exited once a single

mark is detected.

When other flows are actively filling the link, regular marks are

expected, causing slow start of new flows to end prematurely. This

is clearly not ideal, so other approaches are being worked on (see 

Section 3.1.1). However, slow start has been left as the default

until a properly matured solution is completed.

2.5. Packet Sending

2.5.1. Packet Pacing

The Prague CC SHOULD pace the packets it sends to avoid the queuing

delay and under-utilization that would otherwise be caused by bursts

of packets that can occur, for example, when a jump in the

acknowledgement number opens up cwnd. Prague does this in a similar

way to the base Linux TCP stack, by spacing out the window of

packets evenly over the round trip time, using the following

calculation of the pacing rate [b/s]:

pacing_rate = MTU_BITS * max(cwnd, inflight) / srtt;

During slow start, as in the base Linux TCP stack, Prague factors up

pacing_rate by 2, so that it paces out packets twice as fast as they

are acknowledged. This keeps up with the doubling of cwnd, but still

prevents bursts in response to any larger transient jumps in cwnd.

During congestion avoidance, the Linux TCP Prague implementation

does not factor up pacing_rate at all. This contrasts with the base

Linux TCP stack, which currently factors up pacing_rate by a ratio

parameter set to 1.2. The developers of the base Linux stack

confirmed that this factor of 1.2 was only introduced in case it

improved performance, but there were no scenarios where it was known

to be needed. In testing of Prague, this factor was found to cause

queue delay spikes whenever cwnd jumped more than usual. And

throughput was no worse without it. So it was removed from the TCP

Prague CC.

The Prague CC can use alternatives to the traditional slow-start

algorithm, which use different pacing (see Section 2.4.5).
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    if (cwnd < ssthresh / 2)

        pacing_rate *= 2;
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Modified Slow Start:

Pacing IW:

2.5.2. Segmentation Offload

In the absence of hardware pacing, it becomes increasingly difficult

for a machine to scale to higher flow rates unless it is allowed to

send packets in larger bursts, for instance using segmentation

offload. Happily, as flow rate scales up, proportionately more

packets can be allowed in a burst for the same amount of queuing

delay at the bottleneck.

Therefore, the Prague CC sends packets in a burst as long as it will

not induce more than MAX_BURST_DELAY of queuing at the bottleneck.

From this constant and the current pacing_rate, it calculates how

many MTU-sized packets to allow in a burst:

max_burst = pacing_rate * MAX_BURST_DELAY / MTU_BITS

The current default in the Linux TCP Prague for MAX_BURST_DELAY is

250us which supports marking thresholds starting from about 500us

without underutilization. This approach is similar to that in the

Linux TCP stack, except there MAX_BURST_DELAY is 1ms.

3. Variants and Future Work

3.1. Getting up to Speed Faster

Appendix A.2. of [I-D.ietf-tsvwg-ecn-l4s-id] outlines the

performance optimizations needed when transplanting DCTCP from a DC

environment to a wide area network. The following subsections

address two of those points: faster flow startup and faster than

additive increase. Then Section 3.1.3 covers the flip side, in which

established flows have to yield faster to make room, otherwise

queuing will result.

3.1.1. Flow Start (or Restart)

The Prague performance For faster flow start, two approaches are

currently being investigated in parallel:

The traditional exponential slow start can be

modified both at the start and the end, with the aim of reducing

the risk of queuing due to bursts and overshoot:

A Prague CC can use an initial window of 10 (IW10 

[RFC6928]), but pacing of this Initial Window is recommended

to try to avoid the pulse of queuing that could otherwise

occur. Pacing IW10 also spreads the ACKs over the round trip

so that subsequent rounds consist of ten subsets of packets

(with 2, 4, 8 etc. per round in each subset), rather than a

single set with 20, 40, 80 etc. in each round. With IW paced,

if a queue builds during a round (e.g. due to other unexpected
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Exiting slow start more gracefully:

Paced Chirping:

traffic arriving) it can drain in the gap before the next

subset, rather than the whole set backing up into a much

larger queue. As smoothed RTT is unknown or inaccurate at the

start of a flow, an implementation can pace IW over a fraction

of the initial smoothed RTT (perhaps also clamped between

hard-coded sanity limits). The implementation could also

initialize SRTT with a value it had previously cached per

destination (as long as it is sufficiently fresh). The safety

factor could depend on whether a cached value was available

and how recent it was.

In the Linux reference implementation of TCP Prague, IW pacing

can be optionally enabled, but it is off by default, because

it is yet to be fully evaluated. It currently paces IW over

half the initial smoothed round trip time (SRTT) measured

during the handshake. SRTT is halved because the RTT often

reduces after the initial handshake. For example: i) some CDNs

move the flow to a closer server after establishment; ii) the

initial RTT from a server can include the time to wake a

sleeping handset battery; iii) some uplink technologies take a

link-level round trip to request a scheduling slot.

It is also planned to exploit any cached knowledge of the path

RTT to improve the initial estimate, for instance using the

Linux per-destination cache. it is also planned to allow the

application to give an RTT hint (by setting sk_max_pacing_rate

in Linux) if the developer has reason to believe that the

application has a better estimate.

In the wide area Internet

(in contrast to data centres), bottleneck access links tend to

have much less capacity than the line rate of the sender. With

a shallow immediate ECN threshold at this bottleneck, the

slightest burst can tend to induce an ECN mark, which

traditionally causes slow start to exit. A more gradual exit

is being investigated for a Prague CC using the extent of

marking, not just the existence of a single mark. This will be

more consistent with the extent-based marking that scalable

congestion controls use during congestion avoidance. Delay

measurements (similar to Hystart++ [I-D.ietf-tcpm-

hystartplusplus]) can also be used to complement the ECN

signals.

In this approach, the aim is to both increase more

rapidly than exponential slow-start and to greatly reduce any

overshoot. It is primarily a delay-based approach, but the aim is

also to exploit ECN signals when present (while not forgetting

loss either). Therefore Paced Chirping is generally usable for

any congestion control - not solely for Prague CC and L4S.
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Instead of only aiming to detect capacity overshoot at the end of

flow-start, brief trains of rapidly decreasing inter-packet

spacing called chirps are used to test many rates with as few

packets and as little load as possible. A full description is

beyond the scope of this document. [LinuxPacedChirping]

introduces the concepts and the code as well as citing the main

papers on Paced Chirping.

Paced chirping works well over continuous links such as Ethernet

and DSL. But better averaging and noise filtering are necessary

over discontinuous link technologies such as WiFi, LTE cellular

radio, passive optical networks (PON) and data over cable

(DOCSIS). This is the current focus of this work.

The current Linux implementation of TCP Prague does not include

Paced Chirping, but research code is available separately in

Linux and ns3. it is accessible via the L4S landing page [L4S-

home].

3.1.2. Faster than Additive Increase

The Prague CC has a startup phase and congestion avoidance phase

like traditional CCs. In steady-state during congestion avoidance,

like all scalable congestion controls, it induces frequent ECN

marks, with the same average recovery time between ECN marks, no

matter how much the flow rate scales.

If available capacity suddenly increases, e.g. other flow(s) depart

or the link capacity increases, these regular ECN marks will stop.

Therefore after a few rounds of silence (no ECN marks) in congestion

avoidance phase, the Prague CC can assume that available capacity

has increased, and switch to using the techniques from its startup

phase (Section 3.1.1) to rapidly find the new, faster operating

point. Then it can shift back into its congestion avoidance

behaviour.

That is the theory. But, as explained in Section 3.1.1, the startup

techniques, specifically paced chirping, are still being developed

for discontinuous link types. Once the startup behaviour is

available, the Linux implementation of the Prague CC will also have

a faster than additive increase behaviour. S.3.2.3 of [PragueLinux])

gives a brief preview of the performance of this approach over an

Ethernet link type in ns3.

3.1.3. Remove Lag in Congestion Response

To keep queuing delay low, new flows can only push in fast if

established flows yield fast. It has recently been realized that the

design of the Prague EWMA and congestion response introduces 1-2

rounds of lag (on top of the inherent round of feedback delay due to
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the speed of light). These lags were inherited from the design of

DCTCP (see Section 2.3.2 and Section 2.4.2), where a couple of extra

hundred microseconds was less noticeable. But congestion control in

the wide area Internet cannot afford up to 2 rounds trips of extra

lag.

To be clear, lag means delay before any response at all starts. That

is qualititatively different from the smoothing gain of an EWMA,

which /reduces/ the response by the gain factor (1/16 by default) in

case a change in congestion does not persist. Smoothing gain can

always be increased. But 1-2 rounds of lag means that, when a new

flow tries to push in, the sender of an established flow will not

respond /at all/ for 1-2 rounds after it first receives congestion

feedback.

The Prague CC spends the first round trip of this lag gathering

feedback to measure frac before it is input into the EWMA algorithm

(see Section 2.3.2). Then there is up to one further round of delay

because the implementations of DCTCP and Prague did not fully adopt

the paradigm shift to extent-based marking - the timing of the

decrease is still based on Reno.

Both Reno and DCTCP/Prague respond immediately on the first sign of

congestion. Reno's response is large, so it waits a round in CWR

state to allow the response to take effect. DCTCP's response is tiny

(extent-based), but then it still waits a round in CWR state. So it

does next-to-nothing for a round.

New EWMA and resposne algorithms to remove these 1-2 extra rounds of

lag are described in [PerAckEWMA]. They have been implemented in

Linux and an iterative process of evaluation and redesign is in

progress. The EWMA is updated per-ACK, but it still changes as if it

is clocked per round trip. The congestion response is still

triggered by the first indication of ECN feedback, but it proceeds

over the subsequent round trip so that it can take into account

further incoming feedback as the EWMA evolves. The reduction is

applied per-ACK but sized to result as if it had been a single

response per round trip.

3.2. Combining Congestion Metrics

Ultimately, it would be preferable to take an integrated approach

and use a combination of ECN, loss and delay metrics to drive

congestion control. For instance, using a downward trend in ECN

marking and/or delay as a heuristic to temper the response to loss.

Such ideas are not in the immediate plans for the Linux TCP Prague,

but some more specific ideas are highlighted in the following

subsections.
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3.2.1. ECN with Loss

If the bottleneck is ECN-capable, a loss due to congestion is very

likely to have been preceded by a period of ECN marking. When the

current Linux TCP Prague CC detects a loss, like DCTCP, it halves

cwnd, even if it has already reduced cwnd in the same round trip due

to ECN marking. This double reduction can end up factoring down cwnd

to as little as 1/4 in one round trip.

On a loss while in CWR state following an ECN reduction, for an

implementation that uses Reno response, it would be possible to use

a decrease factor of 1/(2-alpha), which would compound with the

previous decrease factor of (1-alpha/2) to result in a factor of: (1

- alpha/2) / (2-alpha)) = 1/2. In integer arithmetic, this division

would be possible but relatively expensive. A less expensive

alternative would be a decrease factor of (2+alpha)/4, which

approximates to a compounded decrease factor of 1/2 for typical low

values of alpha, even up to 30%. The compound decrease factor is

never greater than 1/2 and in the worst case, if alpha were 100%, it

is 3/8.

If an implementation uses a CUBIC response on loss after an ECN

reduction in the same round trip, it can use a multiplicative

decrease factor of 7/(5*(2-alpha)) which would result in a combined

reduction to 7/10 of the previous cwnd, as intended for CUBIC.

3.2.2. ECN with Delay

Section 3.1.2 described the plans to shift between using ECN when

close to the operating point and using delay by injecting paced

chirps to find a new operating after the ECN signal goes silent for

a few rounds. Paced chirping shifts more slowly to the new operating

point the more noise there is in the delay measurements. Work is

ongoing on treating any ECN marking as a complementary metric. The

resulting less noisy combined metric should then allow the

controller to shift more rapidly to each new operating point.

An alternative would be to combine ECN with the BBR approach, which

induces a much less noisy delay signal by using less frequent but

more pronounced delay spikes. The approach currently being taken is

to adapt the chirp length to the degree of noise, so the chirps only

become longer and/or more pronounced when necessary, for instance

when faced with a discontinuous link technology such as WiFi. With

multiple chirps per round, the noise can still be filtered out by

averaging over them all, rather than trying to remove noise from

each spike. This keeps the 'self-harm' to the minimum necessary, and

ensures that capacity is always being sampled, which removes the

risk of going stale.
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3.3. Fall-Back on Classic ECN

The implementation of TCP Prague CC in Linux includes an algorithm

to detect a Classic ECN AQM and fall back to Reno as a result, as

required by the 'Coexistence with Classic ECN' aspect of the Prague

Req 4.3. [I-D.ietf-tsvwg-ecn-l4s-id].

The algorithm currently used (v2) is relatively simple, but rather

than describe it here, full rationale, pseudocode and explanation

can be found in the technical report about it [ecn-fallback]. This

also includes a selection of the evaluation results and a link to

visualizations of the full results online. The current algorithm

nearly always detects a Classic ECN AQM, and in the majority of the

wide range of scenarios tested it is good at detecting an L4S AQM.

However, it wrongly identifies and L4S AQM as Classic in a

significant minority of cases when the link rate is low, or the RTT

is high. The report gives ideas on how to improve detection in these

scenarios, but in the mean time the algorithm has been disabled by

default.

Recently, the report has been updated to include new ideas on other

ways to distinguish Classic from L4S AQMs. The interested reader can

access it themselves, so this living document will not be further

summarized here.

3.4. Further Reduced RTT-Dependence

The algorithm to reduce RTT dependence is only relevant for long-

running flows. So in the current TCP Prague implementation it

remains disabled for a certain number of round trips after the start

of a flow, as explained in Section 2.4.4. Instead, it would be

possible to make rtt_virt gradually move from the actual RTT to the

target virtual RTT, or perhaps depend on other parameters of the

flow. Nonetheless, just switching in the algorithm after a number of

rounds works well enough. It is planned to also disable the

algorithm for a similar duration if a flow becomes idle then

restarts, but this is yet to be evaluated.

Prague Req 4.3. in [I-D.ietf-tsvwg-ecn-l4s-id]) only requires

reduced RTT bias "in the range between the minimum likely RTT and

typical RTTs expected in the intended deployment scenario".

Nonetheless, in future it would be preferable to be able to reduce

the RTT bias for high RTT flows as well.

If a step AQM is used, the congestion episodes of flows with

different RTTs tend to synchronize, which exacerbates RTT bias. To

prevent this two candidate approaches will need to be investigated:

i) It might be sufficient to deprecate step AQMs for L4S (they are

not the preferred recommendation in [I-D.ietf-tsvwg-aqm-dualq-
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coupled]); or ii) the virtual RTT approach of Section 2.4.4 might be

usable for higher than typical RTTs as well as lower. In this latter

case, (srtt/rtt_virt)^2 segments would need to be added to the

window per actual RTT. The current TCP Prague implementation does

not support this faster AI for RTTs longer than RTT_VIRT_MIN (25ms),

due to the expected (but unverified) impact on latency overshoot and

responsiveness.

3.5. Scaling Down to Fractional Windows

A modification to v5.0 of the Linux TCP stack that scales down to

sub-packet windows is available for research purposes via the L4S

landing page [L4S-home]. The L4S Prague Requirements in section 4.3

of [I-D.ietf-tsvwg-ecn-l4s-id] recommend but no longer mandate

scaling down to sub-packet windows. This is because becoming

unresponsive at a minimum window is a tradeoff between protecting

against other unresponsive flows and the extra queue you induce by

becoming unresponsive yourself. So this code is not maintained as

part of the Linux implementation of TCP Prague.

Firstly, the stack ahs to be modifed to maintain a fractional

congestion window. The because the ACK clock cannot work below 1

packet per RTT, the code sets the time to send each packet, then

readjusts the timing as each ACK arrives (otherwise any queuing

accumulates a burst in subsequent rounds). Also, additive increase

of one segment does not scale below a 1-segment window. So instead

of a constant additive increase, the code uses a logarithmically

scaled additive increase that slowly adapts the additive increase

constant to the slow start threshold. Despite these quite radical

changes, the diff is surprisingly small. The design and

implementation is explained in [Ahmed19], which also includes

evaluation results.

4. IANA Considerations

This specification contains no IANA considerations.

5. Security Considerations

Section 3.5 on scaling down to fractional windows discusses the

tradeoff in becoming unresponsive at a minium window, which causes a

queue to build (harm to self and to others) but protects oneself

against other unresponsive flows (whether malicious or accidental).

This draft inherits the security considerations discussed in [I-

D.ietf-tsvwg-ecn-l4s-id] and in the L4S architecture [I-D.ietf-

tsvwg-l4s-arch]. In particular, the self-interest incentive to be

responsive and minimize queuing delay, and protections against those

interested in disrupting the low queuing delay of others.

¶

¶

¶

¶

¶

¶
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