
TCP Maintenance and Minor Extensions (tcpm) B. Briscoe
Internet-Draft BT
Updates: 793 (if approved) March 09, 2015
Intended status: Experimental
Expires: September 10, 2015

Inner Space for all TCP Options (Kitchen Sink Draft - to be Split Up)
draft-briscoe-tcpm-inspace-mode-tcpbis-00

Abstract

 This document describes an experimental redesign of TCP's
 extensibility mechanism. It aims to traverse most known middleboxes
 including connection splitters, by making it possible to tunnel all
 TCP options within the TCP Data. It provides a choice between in-
 order and out-of-order delivery for TCP options. In-order delivery
 is a useful new facility for options that control datastream
 processing. Out-of-order delivery has been the norm for TCP options
 until now, and is necessary for options involved with acknowledging
 data, otherwise flow control can deadlock. TCP's original design
 limits TCP option space to 40B. In the new design there is no such
 arbitrary limit, other than the maximum size of a segment. The TCP
 client can immediately start to use the extra option space
 optimistically from the very first SYN segment, by using a dual
 handshake. The dual handshake is designed to prevent a legacy server
 from getting confused and sending the control options to the
 application as user-data. The dual handshake is only one strategy -
 a single handshake will usually suffice once deployment is underway.
 In summary, the protocol should allow new TCP options to be
 introduced i) with minimal middlebox traversal problems; ii) with
 incremental deployment from legacy servers; iii) with zero
 handshaking delay iv) with a choice of in-order and out-of-order
 delivery v) without arbitrary limits on available space.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Briscoe Expires September 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Inner Space for all TCP Options March 2015

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
 1.1. Motivation for Adoption Now (to be removed before
 publication) . 7

1.2. Scope . 7
1.3. Experiment Goals . 8
1.4. Wider Implications 8
1.5. Document Roadmap . 9
1.6. Terminology . 10

2. Protocol Specification 11
2.1. Protocol Interaction Model 11
2.1.1. Dual 3-Way Handshake 11
2.1.2. Dual Handshake Retransmission Behaviour 14
2.1.3. Continuing the Upgraded Connection 14

2.2. Upgraded Segment Structure and Format 15
2.2.1. Structure of an Upgraded Segment 15
2.2.2. Format of the InSpace Option 16

2.3. Inner TCP Option Processing 18
2.3.1. Writing Inner TCP Options 19
2.3.1.1. Constraints on TCP Fast Open 19
2.3.1.2. Option Alignment 19
2.3.1.3. Sequence Space Consumption 20
2.3.1.4. Flow Control Coverage 20
2.3.1.5. Presence or Absence of Flow-Controlled Data . . . 21
2.3.1.6. Construction Order for TCP Data 22

2.3.2. Reading Inner TCP Options 22
2.3.2.1. Reading Inner TCP Options (SYN=1) 22

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Briscoe Expires September 10, 2015 [Page 2]

Internet-Draft Inner Space for all TCP Options March 2015

2.3.2.2. Reading Inner TCP Options (SYN=0) 24
2.3.3. Forwarding Inner TCP Options 26

2.4. Exceptions . 26
2.5. SYN Flood Protection 27

3. Design Rationale . 27
3.1. Dual Handshake and Migration to Single Handshake 27
3.2. Inner Option Space 28
3.2.1. Header Extension by Encapsulation 28
3.2.2. Non-Deterministic Magic Number Approach 29
3.2.3. Non-Goal: Security Middlebox Evasion 31
3.2.4. Avoiding the Start of the First Two Segments 32
3.2.5. Framing Segments 32
3.2.6. Control Options Within Data Sequence Space 33
3.2.6.1. In-Order Flow-Controlled Options 33
3.2.6.2. Fire-and-Forget Options 35

3.3. Deployment Approach 38
3.3.1. Substrate Protocol: TCP vs. UDP 38
3.3.2. Kernel-Space vs. User-Space 38

3.4. Rationale for the InSpace Option Format 38
4. Protocol Overhead . 40
5. Interaction with Pre-Existing TCP Implementations 42
5.1. Compatibility with Pre-Existing TCP Variants 42
5.2. Interaction with Middleboxes 44
5.3. Interaction with the Pre-Existing TCP API 45

6. IANA Considerations . 47
7. Security Considerations 47
8. Acknowledgements . 49
9. References . 50
9.1. Normative References 50
9.2. Informative Reference 50

Appendix A. Zero Overhead Message Boundary Insertion (ZOMBI) . . 52
Appendix B. Generic Connection Mode Switching 55
Appendix C. Protocol Extension Specifications 57
C.1. Dual Handshake: The Explicit Variant 57
C.1.1. SYN-O Structure 59
C.1.2. Retransmission Behaviour - Explicit Variant 60
C.1.3. Corner Cases . 60
C.1.4. Workround if Data in SYN is Blocked 61

C.2. Jumbo InSpace TCP Option (only if SYN=0) 62
C.3. Optional Segment Structure to Traverse DPI boxes 63

Appendix D. Comparison of Alternatives 66
D.1. Implicit vs Explicit Dual Handshake 66

Appendix E. Protocol Design Issues (to be Deleted before
 Publication) . 67

Appendix F. Change Log (to be Deleted before Publication) . . . 68
 Author's Address . 72

Briscoe Expires September 10, 2015 [Page 3]

Internet-Draft Inner Space for all TCP Options March 2015

1. Introduction

 TCP has become hard to extend, partly because the option space was
 limited to 40B when TCP was first defined [RFC0793] and partly
 because many middleboxes only forward TCP headers that conform to the
 stereotype they expect.

 In 2011, [Honda11] tested a broad but small set of paths and found
 that there were few if any middlebox traversal problems over
 residential access networks, but the chance of a new option
 traversing other types of access was terrible. Cellular was
 especially bad (stripping options on 40% of paths for port 80 and 20%
 for other ports), but WiFi hotspots, enterprise, and university
 networks were close behind (typically, about 18% of paths blocked new
 extensions). This specification ensures new TCP capabilities can
 traverse most middleboxes by tunnelling TCP options within the TCP
 Data as 'Inner Options' (Figure 1). Then the TCP receiver can
 reconstruct the Inner Options sent by the sender, even if a middlebox
 resegments the datastream and even if it strips 'Outer' options from
 the TCP header that it does not recognise.

 The two words 'Inner Space' are appropriate as a name for the scheme;
 'Inner' because it encapsulates options within the TCP Data and
 'Space' because the space for TCP options within the TCP Data is
 virtually unlimited--constrained only by the maximum segment size.

 ,-----. TCP Payload ,-----.
App	<--->	App		
-----		-----		
	Inner Options within TCP Data			
	<--->			
TCP	TCP Header and TCP header and	TCP		
	Outer Options ,---------. Outer Options			
	<-------------->	Middlebox	<-------------->	
-----		---------		-----
IP		IP		IP
 : : : : : :

 Figure 1: Encapsulation Approach

 Tunnelling options within TCP Data raises two difficult questions: i)
 immediate (out-of-order) delivery of certain options and ii)
 bootstrapping the inner control channel.

 Traditional TCP options [RFC0793] are delivered unreliably and out of
 order, because they are within the main header, outside the TCP
 sequence space. This document calls these 'Outer Options'. When TCP

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793

Briscoe Expires September 10, 2015 [Page 4]

Internet-Draft Inner Space for all TCP Options March 2015

 options are placed within the TCP Data (Inner Options), it is easiest
 to include them within TCP's sequence space. Then TCP naturally
 delivers them reliably and in order without any extra machinery.
 However, in-order delivery is unacceptable for some options.

 TCP options fall into three categories:

 Segment-related (out-of-order): These have to be delivered to the
 receiver's TCP stack as soon as they are received (i.e. not
 necessarily in the order sent). They are generally concerned with
 transmission of each TCP segment, e.g. Timestamps, Selective
 ACKnowledgements (SACK), the Data ACK of Multipath TCP [RFC6824]
 and the message authentication code (MAC) of tcpcrypt
 [I-D.bittau-tcpinc-tcpcrypt].

 Datastream-related (in-order): These would ideally be applied in the
 order that the sender inserted them into the datastream. They are
 generally concerned with controlling the transmission of the
 ordered datastream, e.g. the options of the TCP AO [RFC5925] that
 control data authentication or the suboptions of tcpcrypt that
 control data encryption [I-D.bittau-tcpinc-tcpcrypt]. At the time
 these were designed, TCP only provided Outer Options, so it was
 complex to apply TCP-AO options reliably and in order and similar
 complexity is being included in tcpcrypt;

 Connection-related (order-agnostic): These are typically applied at
 the start of a connection which is also inherently the start of
 the first segment so the order of segment delivery is not a
 concern, e.g. TCP fast option [I-D.ietf-tcpm-fastopen], the sub-
 options of MPTCP [RFC6824] (except the Data ACK), and most of the
 TCP options that are in common usage;

 The simplest ('default') variant of the Inner Space protocol
 [I-D.briscoe-tcpm-inner-space] delivers all Inner Options reliably
 and in order within the datastream.Therefore the default-mode Inner
 Space protocol can only support segment-related options as Outer
 Options. This is irritating because even though only a few options
 are segment-related, if just one kind of option cannot traverse a
 middlebox, it often prevents a whole set of other extensions from
 being used even though they would have no problem traversing the
 middlebox as Inner Options. For instance, one MPTCP option (the Data
 ACK) and one tcpcrypt option (the MAC) have to be delivered
 immediately (out of order), even though all the other MPTCP and
 tcpcrypt options can be delivered in order.

 The present specification extends the default-mode Inner Space
 protocol to add out-of-order delivery of Inner Options. It can then
 support all TCP options as Inner Options. This offers the prospect

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6824

Briscoe Expires September 10, 2015 [Page 5]

Internet-Draft Inner Space for all TCP Options March 2015

 of completely circumventing middlebox problems and space problems for
 all TCP extensions.

 The second difficult question addressed by the present specification
 is how to bootstrap the inner control channel--without any visible
 difference to the TCP wire protocol that would otherwise be unlikely
 to traverse many middleboxes. Given the Inner Space protocol places
 control options within TCP Data, it is critical that a legacy TCP
 receiver is never confused into passing this mix to an application as
 if it were pure data. Naively, both ends could handshake to check
 they understand the protocol, but this would introduce a round of
 delay.

 The Inner Space protocol will have to use whichever bootstrap
 approach is least bad, because they all involve compromises. For the
 present specification, the dual handshake has been chosen over the
 only other candidate currently in the running
 [I-D.touch-tcpm-tcp-syn-ext-opt], in which the client complements the
 SYN with an out-of-band (OOB) segment. In both approaches the client
 starts the connection with two segments. However, with the OOB
 approach the two segments will always be necessary, whereas the dual
 handshake is only a transition strategy that becomes unnecessary for
 each server as it is upgraded. Both approaches will need to be
 tested for middlebox traversal. It seems likely that many firewalls
 will block the OOB segment and it is also expected that some
 middleboxes will block the data in the SYN used for one of the dual
 handshakes.

 In the dual handshake approach the client sends two SYNs; one for an
 upgraded server, and the other for an ordinary server. Then, if the
 client discovers that the server does not understand the new
 protocol, it can abort the upgraded handshake before the server
 corrupts the application by passing it Inner Options. Otherwise, if
 the server does understand the new protocol, the client can abort the
 ordinary handshake, given it offers no extra option space. Either
 way, zero extra delay is added. Interworking of the dual handshake
 with TCP Fast Open [I-D.ietf-tcpm-fastopen] is carefully defined so
 that either server can pass data to the application as soon as the
 initial SYN arrives.

 Solving the five problems of i) option-space exhaustion; ii)
 middlebox traversal; iii) legacy server confusion; iv) a choice of
 in-order and out-of-order frame delivery; and v) handshake latency;
 does not come without cost:

 o So that the Inner Space protocol is immune to option stripping, it
 avoids a conventional TCP option in the header. Instead it
 signals its presence using a magic number within the TCP Data of

Briscoe Expires September 10, 2015 [Page 6]

Internet-Draft Inner Space for all TCP Options March 2015

 the initial segment in each direction. This introduces a risk
 that payload in an ordinary SYN or SYN/ACK might be mistaken for
 the Inner Space protocol (an initial worst-case estimate of the
 probability is one connection globally every 40 years).
 Nonetheless, the risk is zero in the (currently common) case of an
 ordinary connection without payload during the handshake. There
 is also no risk of a mistake the other way round--an upgraded
 connection cannot be mistaken for an ordinary connection.

 o Although the dual handshake introduces no extra latency, it
 introduces extra connection processing & state, extra traffic and
 extra header processing. Initial estimates put the percentage
 overhead in single digits for connection processing and state, and
 traffic overhead at only a few hundredths of a percent. Once the
 most popular TCP servers have upgraded, only a single handshake
 will be necessary most of the time and overhead should drop to
 vanishingly small proportions.

1.1. Motivation for Adoption Now (to be removed before publication)

 A number of extensions to TCP are in the process of definition and
 experimentation (TCPINC, MPTCP, etc). If a general-purpose middlebox
 traversal solution were available now, each new protocol design would
 not need complex machinery to detect and work round the byzantine
 range of middlebox behaviours. It would also make these extensions
 available to many more users.

 It seems inevitable that ultimately more option space will be needed,
 particularly given that many of the TCP options introduced recently
 consume large numbers of bits in order to provide sufficient
 information entropy, which is not amenable to compression.

 Extension of TCP option space requires support from both ends. This
 means it will take many years before the facility is functional for
 most pairs of end-points. Therefore, given the problem is already
 becoming pressing, a solution needs to start being deployed now.

1.2. Scope

 This experimental specification extends the TCP wire protocol. It is
 independent of the dynamic rate control behaviour of TCP and it is
 independent of (and thus compatible with) any protocol that
 encapsulates TCP, including IPv4 and IPv6.

Briscoe Expires September 10, 2015 [Page 7]

Internet-Draft Inner Space for all TCP Options March 2015

1.3. Experiment Goals

 TCP is critical to the robust functioning of the Internet, therefore
 any proposed modifications to TCP need to be thoroughly tested.

 Success criteria: The experimental protocol will be considered
 successful if it satisfies the following requirements in the
 consensus opinion of the IETF tcpm working group. The protocol
 needs to be sufficiently well specified so that more than one
 implementation can be built in order to test its function,
 robustness, overhead and interoperability (with itself, with
 previous version of TCP, and with various commonly deployed
 middleboxes). Non-functional issues such as recommendations on
 message timing also need to be tested. Various optional
 extensions to the protocol are proposed in Appendix C so
 experiments are also needed to determine whether these extensions
 ought to remain optional, or perhaps be removed or become
 mandatory.

 Duration: To be credible, the experiment will need to last at least
 12 months from publication of the present specification. If
 successful, it would then be appropriate to progress to a
 standards track specification, complemented by a report on the
 experiments.

1.4. Wider Implications

 The implications of this work are more than 'just' a low latency
 incrementally deployable way to extend TCP option space:

 End-to-middle signalling channel: Once endpoints have an end-to-end
 control channel within the TCP Data, they can use authentication
 or even encryption to stop middleboxes interfering with it. Then
 given middleboxes already interfere with Outer TCP Options, they
 can serve a new purpose as a channel for end-system TCP stacks to
 interact with middleboxes, but only if they choose to.

 Multiplexed streams, compression, encryption (transport services):
 The Inner Space protocol has been designed generically, so that
 different delivery modes such as in-order and out-of-order
 delivery can be applied to different frames within the TCP Data.
 An additional mode could be added to extend out-of-order delivery
 to user-data, not just TCP control options. Then a single TCP
 connection could deliver data in multiple independent streams to
 minimise latency while one stream is blocked by a loss without the
 overhead of multiple connections. Inner Space is also structured
 so that data transformations such as compression or encryption can

Briscoe Expires September 10, 2015 [Page 8]

Internet-Draft Inner Space for all TCP Options March 2015

 easily be introduced and controlled by TCP options, as a generic
 facility available to any application layer protocol.

 All these transport services (multiplexed streams, compression,
 encryption) are sought after by Web applications. However
 attempts to make them available in new transport protocols (e.g.
 SCTP) have proved impossible to deploy over the public Internet
 because too many middleboxes block new protocol identifiers. To
 work round this impasse, these transport services are being
 embedded within the application layer as part of the next
 generation of the HTTP protocol [I-D.ietf-httpbis-http2]. Inner
 Space has been designed so that these transport services would be
 straightforward to add in a structured way at the transport layer,
 using a new TCP mode. A separate document is planned to specify
 this mode. The present document focuses solely on TCP control
 options, which meets specific immediate needs. Nonetheless, the
 similarity is close enough to extrapolate that it will be
 straightforward to provide the transport services that Web
 applications need as well.

1.5. Document Roadmap

 The body of the document starts with a full specification of the
 Inner Space extension to TCP (Section 2). It is rather terse,
 answering 'What?' and 'How?' questions, but deferring 'Why?' to

Section 3. The careful design choices made are not necessarily
 apparent from a superficial read of the specification, so the Design
 Rationale section is fairly extensive. The body of the document ends
 with Section 5 that checks possible interactions between the new
 scheme and pre-existing variants of TCP, including interaction with
 partial implementations of TCP in known middleboxes.

Appendix A defines the encoding that the Inner Space protocol uses
 for TCP Data. Eventually, this appendix is likely to be published
 separately because the encoding is more generally applicable.

Appendix B defines an Inner TCP Option that provides a capability to
 switch the mode of a TCP connection, where the term 'mode' is a very
 general concept that might be used to change the ordering semantics
 of a connection, or switch off the Inner Space capability part way
 through a connection. Eventually this appendix is likely to be
 published separately due to its general applicability. Appendix C
 specifies optional extensions to the protocol that will need to be
 implemented experimentally to determine whether they are useful. And

Appendix D discusses the merits of the chosen design against some of
 the optional extensions.

Briscoe Expires September 10, 2015 [Page 9]

Internet-Draft Inner Space for all TCP Options March 2015

1.6. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. In this
 document, these words will appear with that interpretation only when
 in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

 TCP Header: As defined in [RFC0793]. Even though the present
 specification places TCP options beyond the Data Offset, the term
 'TCP Header' is still used to mean only those fields at the head
 of the segment, delimited by the TCP Data Offset.

 Inner TCP Options (or just Inner Options): TCP options placed in the
 space that the present specification makes available beyond the
 Data Offset.

 Outer TCP Options (or just Outer Options): The TCP options in the
 traditional location directly after the base TCP Header and before
 the TCP Data Offset.

 Prefix TCP Options: Inner Options to be processed before the Outer
 Options.

 Suffix TCP Options: Inner Options to be processed after the Outer
 Options, in sequence with the data.

 TCP options: Any TCP options, whether inner, outer or both. This
 specification makes this term on its own ambiguous so it should be
 qualified if it is intended to mean TCP options in a certain
 location.

 TCP Payload: Data to be passed to the layer above TCP. The present
 specification redefines the TCP Payload so that it does not
 include the Inner TCP Options, the InSpace Option or any inner
 padding, even though they are located beyond the Data Offset.

 TCP Data: The information in a TCP segment after the Data Offset,
 including the TCP Payload, Inner TCP Options, any inner padding
 and the InSpace Option defined in the present specification.

 Pure ACK: A TCP acknowledgement with no TCP Data at all.

 Impure ACK: A TCP acknowledgement with no TCP Payload or Suffix
 Options, but with at least an InSpace Option and possibly padding
 and Prefix Options.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793

Briscoe Expires September 10, 2015 [Page 10]

Internet-Draft Inner Space for all TCP Options March 2015

 Flow-Controlled ACK: A TCP acknowledgement containing at least TCP
 Payload and/or Suffix Options.

 client: The process taking the role of actively opening a TCP
 connection.

 server: The process taking the role of TCP listener.

 Upgraded Segment: A segment that will only be fully understood by a
 host complying with the present specification (even though it
 might appear valid to a pre-existing TCP receiver). Similarly,
 Upgraded SYN, Upgraded SYN/ACK etc.

 Ordinary Segment: A segment complying with pre-existing TCP
 specifications but not the present specification. Similarly,
 Ordinary SYN, Ordinary SYN/ACK etc.

 Upgraded Connection: A connection starting with an Upgraded SYN.

 Ordinary Connection: A connection starting with an Ordinary SYN.

 Upgraded Host: A host complying with the present document as well as
 with pre-existing TCP specifications. Similarly Upgraded TCP
 Client, Upgraded TCP Server, etc.

 Legacy Host: A host complying with pre-existing TCP specifications,
 but not with the present document. Similarly Legacy TCP Client,
 Legacy TCP Server, etc.

 Note that the term 'Ordinary' is used for segments and connections,
 but the term 'Legacy' is used for hosts. This is because, if the
 Inner Space protocol were widely used in future, a host that could
 not open an Upgraded Connection would be considered deficient and
 therefore 'Legacy', whereas an Ordinary Connection would not be
 considered deficient; because it will always be legitimate to open an
 Ordinary Connection if extra option space or middlebox traversal is
 not needed.

2. Protocol Specification

2.1. Protocol Interaction Model

2.1.1. Dual 3-Way Handshake

 During initial deployment, an Upgraded TCP Client sends two
 alternative SYNs: an Ordinary SYN in case the server is legacy and a
 SYN-U in case the server is upgraded. The two SYNs MUST have the
 same network addresses and the same destination port, but different

Briscoe Expires September 10, 2015 [Page 11]

Internet-Draft Inner Space for all TCP Options March 2015

 source ports. Once the client establishes which type of server has
 responded, it continues the connection appropriate to that server
 type and aborts the other without completing the 3-way handshake.

 The format of the SYN-U will be described later (Section 2.2.2). At
 this stage it is only necessary to know that the client can put
 either TCP options or payload (or both) in a SYN-U, in the space
 traditionally intended only for payload. So if the server's response
 shows that it does not recognise the Upgraded SYN-U, the client is
 responsible for aborting the Upgraded Connection. This ensures that
 a Legacy TCP Server will never erroneously confuse the application by
 passing it TCP options as if they were user-data.

Section 3.1 explains various strategies the client can use to send
 the SYN-U first and defer or avoid sending the Ordinary SYN.
 However, such strategies are local optimizations that do not need to
 be standardized. The rules below cover the most aggressive case, in
 which the client sends the SYN-U then the Ordinary SYN back-to-back
 to avoid any extra delay. Nonetheless, the rules are just as
 applicable if the client defers or avoids sending the Ordinary SYN.

 Table 1 summarises the TCP 3-way handshake exchange for each of the
 two SYNs in the two right-hand columns, between an Upgraded TCP
 Client (the active opener) and either:

 1. a Legacy Server, in the top half of the table (steps 2-4), or

 2. an Upgraded Server, in the bottom half of the table (steps 2-4)

 Because the two SYNs come from different source ports, the server
 will treat them as separate connections, probably using separate
 threads (assuming a threaded server). A load balancer might forward
 each SYN to separate replicas of the same logical server. Each
 replica will deal with each incoming SYN independently - it does not
 need to co-ordinate with the other replica.

Briscoe Expires September 10, 2015 [Page 12]

Internet-Draft Inner Space for all TCP Options March 2015

 +------+------------------+--------------------+--------------------+
 | | | Ordinary | Upgraded |
 | | | Connection | Connection |
 +------+------------------+--------------------+--------------------+
1	Upgraded Client	>SYN	>SYN-U
/\/\	/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\
2	Legacy Server	<SYN/ACK	<SYN/ACK
3a	Upgraded Client	Waits for response	
		to both SYNs	
3b	"	>ACK	>RST
4		Cont...	
/\/\	/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\
2	Upgraded Server	<SYN/ACK	<SYN/ACK-U
3a	Upgraded Client	Waits for response	
		to SYN-U	
3b	"	>RST	>ACK
4			Cont...
 +------+------------------+--------------------+--------------------+

 Table 1: Dual 3-Way Handshake in Two Server Scenarios

 Each column of the table shows the required 3-way handshake exchange
 within each connection, using the following symbols:

 > means client to server;

 < means server to client;

 Cont... means the TCP connection continues.

 The connection that starts with an Ordinary SYN is called the
 'Ordinary Connection' and the one that starts with a SYN-U is called
 the 'Upgraded Connection'. An Upgraded Server MUST respond to a
 SYN-U with an Upgraded SYN/ACK (termed a SYN/ACK-U and defined in

Section 2.2.2). Then the client recognises that it is talking to an
 Upgraded Server. The client's behaviour depends on which response it
 receives first, as follows:

Briscoe Expires September 10, 2015 [Page 13]

Internet-Draft Inner Space for all TCP Options March 2015

 o If the client first receives a SYN/ACK response on the Ordinary
 Connection, it MUST wait for the response on the Upgraded
 Connection. It then proceeds as follows:

 * If the response on the Upgraded Connection is an Ordinary SYN/
 ACK, the client MUST reset (RST) the Upgraded Connection and it
 can continue with the Ordinary Connection.

 * If the response on the Upgraded Connection is an Upgraded SYN/
 ACK-U, the client MUST reset (RST) the Ordinary Connection and
 it can continue with the Upgraded Connection.

 o If the client first receives an Ordinary SYN/ACK response on the
 Upgraded Connection, it MUST reset (RST) the Upgraded Connection
 immediately. It can then wait for the response on the Ordinary
 Connection and, once it arrives, continue as normal.

 o If the client first receives an Upgraded SYN/ACK-U response on the
 Upgraded Connection, it MUST reset (RST) the Ordinary Connection
 immediately and continue with the Upgraded Connection.

2.1.2. Dual Handshake Retransmission Behaviour

 If the client receives a response to the SYN, but a short while after
 that {ToDo: duration TBA} the response to the SYN-U has not arrived,
 it SHOULD retransmit the SYN-U. If latency is more important than
 the extra TCP option space, in parallel to any retransmission, or
 instead of any retransmission, the client MAY give up on the Upgraded
 (SYN-U) Connection by sending a reset (RST) and completing the 3-way
 handshake of the Ordinary Connection.

 If the client receives no response at all to either the SYN or the
 SYN-U, it SHOULD solely retransmit one or the other, not both. If
 latency is more important than the extra TCP option space, it will
 retransmit the SYN. Otherwise it will retransmit the SYN-U. It MUST
 NOT retransmit both segments, because the lack of response could be
 due to severe congestion.

2.1.3. Continuing the Upgraded Connection

 Once an Upgraded Connection has been successfully negotiated in the
 SYN, SYN/ACK exchange, either host can allocate any amount of the TCP
 Data space in any subsequent segment for extra TCP options. In fact,
 the sender has to use the upgraded segment structure in every
 subsequent segment of the connection that contains non-zero TCP
 Payload. The sender can use the upgraded structure in a segment
 carrying no TCP Payload, but it does not have to (see

Section 2.3.1.5).

Briscoe Expires September 10, 2015 [Page 14]

Internet-Draft Inner Space for all TCP Options March 2015

 As well as extra option space, the facility offers other advantages,
 such as reliable ordered delivery of Inner TCP Options on empty
 segments and more robust middlebox traversal. If none of these
 features is needed, at any point the facility can be disabled for the
 rest of the connection, using the ModeSwitch TCP option in

Appendix B. Interestingly, the ModeSwitch options itself can be very
 simple because it uses the reliable ordered delivery property of
 Inner Options, rather than having to cater for the possibility that a
 message to switch modes might be lost or reordered.

2.2. Upgraded Segment Structure and Format

2.2.1. Structure of an Upgraded Segment

 An Upgraded Segment is structured as shown in Figure 2. Up to the
 TCP Data Offset, the structure is identical to an Ordinary TCP
 Segment, with a base TCP Header (BaseHdr) and the usual facility to
 set the Data Offset (DO) to allow space for TCP options. These
 regular TCP options are renamed by this specification to Outer TCP
 Options or just Outer Options, and labelled as OuterOpts in the
 figure.

 | SDS |
 |--->|
 |P| | SOO | | |
 |a| ,--------->| |
 | DO |d| Len+1 | InOO | |
 ,------------------>| ,------->,-------------------->| |
 +--------+----------+-+--------+----------+----------+-------------+
 | BaseHdr| OuterOpts| | InSpace|PrefixOpts|SuffixOpts| Payload |
 +--------+----------+-+--------+----------+----------+-------------+
 | '----------.----------' |
 | Inner Options |
 `-----------------------.----------------------'
 TCP Data

 All offsets are specified in 4-octet (32-bit) words, except SDS and
 Pad, which are in octets.

 Figure 2: The Structure of an Upgraded Segment (not to scale)

 Unlike an Ordinary TCP Segment, the Payload of an Upgraded Segment
 does not start straight after the TCP Data Offset. Instead, Figure 2
 shows that space is provided for additional Inner TCP Options before
 the TCP Payload. The size of this space is termed the Inner Options
 Offset (InOO). The TCP receiver reads the InOO field from the Inner
 Option Space (InSpace) option defined in Section 2.2.2.

Briscoe Expires September 10, 2015 [Page 15]

Internet-Draft Inner Space for all TCP Options March 2015

 Padding might have to be included at the start of the TCP Data to
 align the InSpace option on a 4-octet boundary from the start of the
 datastream (see Section 2.3.1.2).

 Because the InSpace Option is only ever located in a standardized
 location it does not need to follow the RFC 793 format of a TCP
 option. Therefore, although we call InSpace an 'option', we do not
 describe it as a 'TCP option'. The Length (Len) of the InSpace
 option itself is read from a fixed location within the InSpace
 option.

 The Sent Data Size (SDS) is also read from within the InSpace Option.
 If the datastream has been resegmented, it allows the receiver to
 know the size of the segment as it was when it was sent, even if the
 InSpace Options are no longer at the start of each segment (see

Section 2.3).

 The Suffix Options Offset (SOO) is also read from within the InSpace
 Option. It delineates the end of the Prefix TCP Options (PrefixOpts
 in the figure) and the start of the Suffix TCP Options (SuffixOpts).
 The receiver processes PrefixOpts before OuterOpts, then SuffixOpts
 afterwards in order with the datastream. Full details of option
 processing are given in Section 2.3.

 The first segment in each direction (i.e. the SYN or the SYN/ACK) is
 identifiable as upgraded by the presence of 6-octets of magic number
 at the start of the TCP Data. The probability that an Upgraded
 Server will mistake arbitrary data at the beginning of the payload of
 an Ordinary Segment for the Magic Number has to be allowed for, but
 it is vanishingly small (see Section 3.2.2). Once an Upgraded
 Connection has been negotiated during the SYN - SYN/ACK exchange, a
 magic number is not needed to identify Upgraded Segments, because
 both ends then know the protocol that determines where subsequent
 InSpace options will be located.

2.2.2. Format of the InSpace Option

 The internal structure of the InSpace Option for an Upgraded SYN or
 SYN/ACK segment (SYN=1) is defined in Figure 3a) and for a segment
 with SYN=0 in Figure 3b) or an abbreviated form in Figure 3c).

https://datatracker.ietf.org/doc/html/rfc793

Briscoe Expires September 10, 2015 [Page 16]

Internet-Draft Inner Space for all TCP Options March 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 a) +---+
 | Magic Number A |
 +-------------------------------+---------------------------+---+
 | Sent TCP Data Size (SDS) |Inner Options Offset (InOO)|Len|
 +-------------------------------+---------------------------+---+
 | Magic Number B |Suffix Options Offset (SOO)|CU |
 +-------------------------------+---------------------------+---+

 b) +-------------------------------+-----------------------------+-+
 | Marker | ZOMBI |CU
 +-------------------------------+---------------------------+-+-+
 | Sent TCP Data Size (SDS) |Inner Options Offset (InOO)|Len|
 +-------------------------------+---------------------------+---+
 | Currently Unused (CU) |Suffix Options Offset (SOO)|CU |
 +-------------------------------+---------------------------+---+

 c) +-------------------------------+-----------------------------+-+
 | Marker | ZOMBI |P|
 +-------------------------------+---------------------------+-+-+
 | Sent TCP Data Size (SDS) |Inner Options Offset (InOO)|Len|
 +-------------------------------+---------------------------+---+

 Figure 3: InSpace Option Format a) SYN=1; b) SYN=0, Len=2; c) SYN=0,
 Len=1

 The fields are defined as follows (see Section 3.4 for the rationale
 behind these format choices):

 Option Length (Len): The 2-bit Len field specifies the length of the
 InSpace Option in 4-octets words excluding the first 4-octet word.
 In other words, the option is (Len + 1) * 4 octets long. For this
 experimental specification:

 When SYN=1: the sender MUST use Len=2 (12 octets);

 When SYN=0: the sender MUST use either Len = 2 (12 octets) or
 Len=1 (8 octets). If Len = 1, the fields in the last 4-octet
 word (CU and InOO) are omitted.

 Sent Data Size (SDS): In this 16-bit field the sender MUST record
 the size in octets of the TCP Data when it was sent. This
 specification defines the TCP Data as all the octets after the TCP
 Data Offset, including Inner TCP options, the InSpace Option and
 any padding.

Briscoe Expires September 10, 2015 [Page 17]

Internet-Draft Inner Space for all TCP Options March 2015

 Inner Options Offset (InOO): This 14-bit field defines the total
 size of the Inner TCP Options in 4-octet words.

 Suffix Options Offset (SOO): The 14-bit SOO field defines the offset
 in 4-octet words from the start of the Inner Options to the start
 of the Suffix Options. It represents the size of the Prefix
 Options (see Section 2.3.2).

 Prefix (P) flag: The P flag is only defined if Len=1 and SYN=0. In
 this case the SOO field is not present. Then If P=1, SOO = InOO
 (i.e. there are only Prefix Options), and if P=0, SOO=0 (i.e.
 there are only Suffix Options).

 Currently Unused (CU): The sender MUST fill the CU fields with zeros
 and they MUST be ignored and forwarded unchanged by other nodes,
 even if their value is different.

 The following field is only defined within a segment with SYN=1 (i.e.
 a SYN or SYN/ACK):

 Magic Numbers A & B: The sizes of these fields are respectively 32 &
 16 bits. The sender MUST fill them with Magic Numbers A & B
 {ToDo: Values TBA}.

 The following fields are only defined within a segment with SYN=0:

 Marker: The sender must fill this 16-bit field with zeros (0x00).

 ZOMBI: This 15-bit field is used to start encoding or decoding the
 ZOMBI encoding (respectively see Section 2.3.1.6 or

Section 2.3.2.2).

2.3. Inner TCP Option Processing

 The objects that Inner Space places within the TCP Data can be
 divided into two types:

 In-Order Flow-Controlled Objects: The receiver processes Suffix
 Options and the TCP Payload in order, so it might have to buffer
 them while waiting for a gap in the datastream to be filled by a
 retransmission. Buffering requires flow control, therefore these
 will be called In-Order Flow-Controlled objects.

 Fire-and-Forget Objects: In contrast, when a segment arrives at the
 receiver, it never buffers the padding, InSpace Option and any
 Prefix Options; it immediately processes and removes them. The
 sender does not need to retransmit these objects if they do not
 arrive; it creates them on-the-fly to complement each sent

Briscoe Expires September 10, 2015 [Page 18]

Internet-Draft Inner Space for all TCP Options March 2015

 segment. If it has to re-send a segment, it will create new ones
 relevant to the re-sent segment. Therefore, these will be called
 fire-and-forget objects.

 The rationale for these choices is given in Section 3.2.6. The
 following two subsections lay out the order in which these options
 are processed respectively when the sender writes them and when the
 receiver reads them.

2.3.1. Writing Inner TCP Options

2.3.1.1. Constraints on TCP Fast Open

 If an Upgraded TCP Client uses a TCP Fast Open (TFO) cookie
 [I-D.ietf-tcpm-fastopen] in an Upgraded SYN-U, it MUST place the TFO
 option within the Inner TCP Options, beyond the Data Offset.

 This rule is specific to TFO, but it can be generalised to any
 capability similar to TFO as follows: An Upgraded TCP Client MUST NOT
 place any TCP option in the Outer TCP Options of a SYN if it might
 cause a TCP server to pass user-data directly to the application
 before its own 3-way handshake completes.

 If a client uses TCP Fast Open cookies on both the parallel
 connection attempts of a dual handshake, an Upgraded Server will
 deliver the TCP Payload to the application twice before the client
 aborts the Ordinary Connection. This is not a problem, because
 [I-D.ietf-tcpm-fastopen] requires that TFO is only used for
 applications that are robust to duplicate requests.

2.3.1.2. Option Alignment

 The sender MUST add ("3 - ((seqno - isn - 1) % 4")) octets of non-
 zero padding ("Pad" in Figure 2) to align the start of the InSpace
 option on a 4-octet word boundary from the start of the datastream,
 where "seqno" is the TCP sequence number of the segment, "isn" is the
 initial sequence number and '%' is the modulo operation.

 If the end of the last Inner TCP Option does not align on a 4-octet
 boundary, the sender MUST append sufficient no-op TCP options. The
 end of the Prefix TCP Options MUST be similarly aligned.

 If the sending TCP is applying a block-mode transformation to the TCP
 Data (e.g. compression or encryption), the sender might have to add
 some padding options to align the end of the Inner Options with the
 end of a block. Any yet-to-be-written encryption specification will
 need to carefully define this padding in order not to weaken the
 cipher.

Briscoe Expires September 10, 2015 [Page 19]

Internet-Draft Inner Space for all TCP Options March 2015

2.3.1.3. Sequence Space Consumption

 The sender MUST include all the TCP Data in TCP's sequence number and
 acknowledgement number space, i.e. any padding, the InSpace Option
 and any Inner Options as well as the TCP Payload.

 Whenever the sender includes non-zero TCP Payload in a segment, it
 MUST also include an InSpace Option, whether or not there are any
 Inner Options (to enable reconstruction in case of resegmentation).

 On the other hand, if the sender includes no TCP Payload in a segment
 (e.g. ACKs, RSTs), it SHOULD NOT include an InSpace Option unless it
 is necessary to send an Inner Option. {ToDo: Consider whether there
 is any reason to preclude Inner Options on a RST, FIN or FIN-ACK.}

 A sender MUST consider the sequence space consumed by InSpace
 options, any padding and any Prefix Options as implicitly
 acknowledged. Therefore, the sender has no need to hold these items
 in its retransmit buffer. A sender MUST hold Suffix Options (and TCP
 Payload, of course) in its retransmit buffer until they are
 acknowledged.

 These rules and those below concerning flow control and pure ACKs
 have significant implications, which are discussed alongside their
 rationale in Section 3.2.6.

2.3.1.4. Flow Control Coverage

 The sender MUST count Suffix Options and the TCP Payload towards
 consumption of the receive window advertised by the remote host.
 Nonetheless, the sender MUST NOT count any padding, the InSpace
 Option and any Prefix Options towards consumption of the advertised
 receive window.

 There might be a legacy middlebox on the path that discards segments
 containing out-of-window data but does not understand the way the
 Inner Space protocol modifies flow control. To traverse such a
 middlebox, a sending implementation SHOULD use a modified flow
 control algorithm that avoids the send window dropping below a
 minimum threshold Snd.Wind.Min (instead of zero). Each sender
 unilaterally chooses Snd.Wind.Min to allow for Fire-and-Forget
 Objects it might need in flight on its half-connection. The
 receiving sides of both half-connections play no part in this
 allowance. Section Section 3.2.6.2 discusses the rationale for this
 approach.

 A reasonable value for the sender to choose for "Snd.Wind.Min" would
 be twice the size of the fire-and-forget objects currently in flight.

Briscoe Expires September 10, 2015 [Page 20]

Internet-Draft Inner Space for all TCP Options March 2015

 This would ensure that a middlebox still considers all the fire-and-
 forget objects are in-window, even if a whole window were lost and
 retransmitted.

2.3.1.5. Presence or Absence of Flow-Controlled Data

 There are three types of acknowledgement segment:

 1. An ACK containing no TCP Data is called a Pure ACK;

 2. An ACK with no Flow-Controlled Objects (no TCP Payload and no
 Suffix Options) but some Fire-and-Forget Objects (i.e. an InSpace
 Option and possibly some padding and Prefix Options) is called an
 Impure ACK

 3. An ACK can be piggy-backed on a segment containing Flow-
 Controlled In-Order Objects (either TCP Payload or Suffix
 Options).

 It is expected that impure ACKs will rarely be necessary. An example
 of an Impure ACK is a segment containing no TCP Payload, but still
 carrying a message authentication code (MAC) in a Prefix Option in
 order to authenticate and protect the integrity of the TCP header of
 the ACK.

 If an Inner Space TCP implementation currently has no further TCP
 Payload or Suffix Options to send, and it receives Impure ACKs, it
 MUST NOT itself respond with further impure ACKs, i.e. it MUST NOT
 consume further sequence space solely to acknowledge impure ACKs.

 Nonetheless, while it has no further TCP Payload or Suffix Options to
 send, it MAY cumulatively acknowledge the TCP Data in the impure ACKs
 it has received by emitting a pure ACK, but no more often than once
 per round trip time (see Section 3.2.6.2 for rationale). If it later
 starts sending further Payload Data and/or Suffix Options, it will
 cumulatively acknowledge the sequence space of all the TCP Data in
 the intervening impure ACKs it has received, as would be expected.

 If a sequence of one or more Impure ACKs is dropped, the receiver
 will not know whether they were impure. The receiver's normal ACK
 feedback will request a retransmission of the missing sequence space.
 By definition, the sender does not hold fire-and-forget options in
 its retransmit buffer. Therefore, the sender MUST reconstruct a new
 impure ACK of at least the same size as the gap in fire-and-forget
 options (if SACK has not been negotiated the sender will only know
 the size of the gap up to any subsequent in-order objects). The
 sender will include whatever Prefix options are relevant at the time
 of retransmission (which might be none). If the size of the new

Briscoe Expires September 10, 2015 [Page 21]

Internet-Draft Inner Space for all TCP Options March 2015

 Prefix Options is less than the gap to be filled, the sender MUST
 make up the shortfall with noop Prefix Options. If the size of the
 new Prefix Options is greater than the gap to be filled, no harm will
 be done. This is because the receiver discards fire-and-forget
 options after processing them, so any overflow will not overwrite
 flow-controlled in-order data already in the receive buffer.

2.3.1.6. Construction Order for TCP Data

 The sender constructs the TCP Data in the following order:

 1. It writes any padding, the Inspace Option, Prefix Options, Suffix
 Options and Payload Data into the TCP Data of the segment.

 2. It applies any transformation of the data that might be required,
 e.g. compression or encryption initiated by a previous control
 message applied at the TCP layer.

 If SYN=0, and if any such transformation is sensitive to the
 delivery order of segments, the padding, InSpace Option and
 Prefix Option MUST remain unaltered (because they need to be
 processed as soon as they arrive, without waiting to fill gaps
 in the sequence space).

 3. If SYN=0, the sender MUST apply the zero overhead message
 boundary insertion (ZOMBI) encoding to the segment (see

Appendix A).

2.3.2. Reading Inner TCP Options

 The rules for reading Inner TCP Options are divided between the
 following two subsections, depending on whether SYN=1 or SYN=0.

2.3.2.1. Reading Inner TCP Options (SYN=1)

 This subsection applies when TCP receives a segment with SYN=1, e.g.
 when the server receives a SYN or the client receives a SYN/ACK.

 Before processing any TCP options, unless the size of the TCP Data is
 less than 12 octets, an Upgraded Receiver MUST determine whether the
 segment is an Upgraded Segment by checking that all the following
 conditions apply:

 o The first 4 octets of the segment match Magic Number A;

 o The value of the Length field of the InSpace Option is 2;

 o The value of Magic Number B in the InSpace Option is correct;

Briscoe Expires September 10, 2015 [Page 22]

Internet-Draft Inner Space for all TCP Options March 2015

 o The value of the Sent Data Size matches the size of the TCP Data.

 If all these conditions pass, the receiver MAY walk the sequence of
 Inner TCP Options, using the length of each to check that the sum of
 their lengths equals InOO. The receiver then concludes that the
 received segment is an Upgraded Segment.

 The receiver then processes the TCP Options in the following order:

 1. Any Prefix TCP options (PrefixOpts in Figure 2)

 2. Any Outer TCP options (OuterOpts in Figure 2);

 3. Any Suffix TCP options (SuffixOpts in Figure 2)

 The receiver removes the magic number, the InSpace Option and each
 TCP Option from the TCP Data as it processes each.

 The receiver MUST NOT count the size of Prefix Options against the
 receive window. Strictly it ought to subtract the size of Suffix
 Options from the receive window on arrival, then add the size back
 again as it removes them. However, when SYN=1, the Suffix Options
 will never have to be buffered, so these redundant steps can be
 skipped.

 Once only the TCP Payload (if any) remains, the receiver holds it
 ready to pass to the application. It then emits the appropriate
 Upgraded Acknowledgement to progress the handshake (see

Section 2.1.1).

 If any of the above tests to find the InSpace Option fails:

 1. the receiver concludes that the received segment is an Ordinary
 Segment. It MUST then proceed by processing any Outer TCP
 options in the TCP Header in the normal order (OuterOpts in
 Figure 2).

 2. If some previous control message causes the TCP receiver to alter
 the TCP Data (e.g. decompression, decryption), it reruns the
 above tests to check whether the altered TCP Data now looks like
 an Upgraded Segment.

 3. If it finds an InSpace Option, it suspends processing the Outer
 TCP Options and instead processes and removes TCP Options in the
 following order:

 1. Any Prefix Inner Options;

Briscoe Expires September 10, 2015 [Page 23]

Internet-Draft Inner Space for all TCP Options March 2015

 2. Any remaining Outer TCP Options;

 3. Any Suffix Inner Options.

 4. If it does not find an InSpace Option, it continues processing
 the remaining Outer TCP Options as normal.

 For the avoidance of doubt the above rules imply that, as long as an
 InSpace Option has not been found in the segment, the receiver might
 rerun the tests for it multiple times if multiple Outer TCP Options
 alter the TCP Data. However, once the receiver has found an InSpace
 Option, it MUST NOT rerun the tests for an Upgraded Segment in the
 same segment.

 If the receiver has not found an InSpace Option after processing all
 the Outer Options, it emits the appropriate Ordinary Acknowledgement
 to progress the handshake (see Section 2.1.1). As normal, it holds
 any TCP Payload ready to pass to the application.

2.3.2.2. Reading Inner TCP Options (SYN=0)

 This subsection applies once the TCP connection has successfully
 negotiated to use the upgraded InSpace structure.

 The receiver processes Prefix Options and Outer Options in the order
 they are received. But it processes Suffix Options in the order they
 were sent, which is not necessarily the order in which they are
 received. The receiver achieves this by processing an arriving
 segment with SYN=0 in the following order. (Steps 3 & 6 are included
 for completeness even though no current TCP options apply data
 transformations):

 1. It buffers the TCP Data in sequence space order along with any
 previously buffered data. There might be sequence gaps at this
 stage.

 2. It MUST then ZOMBI decode the buffered data Appendix A. If the
 stream has not been resegmented, the process is straightforward,
 but the following steps also check for the more general case
 where resegmentation might have occurred:

 A. When it finished ZOMBI decoding the immediately preceding TCP
 Data, the receiver might have run out of data in the middle
 of a segment and stored the outstanding segment length to
 decode. If so, the receiver simply continues the unfinished.
 ZOMBI decoding as long as there is contiguous data to decode.

Briscoe Expires September 10, 2015 [Page 24]

Internet-Draft Inner Space for all TCP Options March 2015

 B. Otherwise, the receiver checks for a 0x0000 marker in the new
 segment. It starts at the first 4-octet-aligned word in the
 segment (counting from the ISN). If not present, it scans
 the TCP Data for the first occurence of such a marker. It
 classifies any data before the marker as undecoded
 (conceivably it could find no marker, then the whole arriving
 segment would remain buffered for later decoding).

 C. Starting from the first marker found, the receiver reads the
 SDS field from the InSpace option and runs the ZOMBI decode
 algorithm over the extent of the sent data segment. It
 repeats this for any following sent segments (which might be
 present due to segment coalescing).

 The receiver uses each InSpace Option to calculate the extent of
 the associated Inner Options (using SOO and InOO).

 3. It applies any order-insensitive transformation of the TCP Data
 that might be required, e.g. counter-mode decryption initiated by
 a previous control message applied at the TCP layer:

 4. It MUST then remove the InSpace Option and it MUST process and
 remove TCP options in the following order:

 A. It processes and removes any Prefix TCP Options. (During the
 decoding process the receiver might find Prefix Options on
 multiple sent segments within a single newly arrived segment,
 due to prior resegmentation.) Note: it does not subtract the
 size of Fire-and-Forget Objects from the receive window.

 B. It processes and removes any Outer TCP Options of the newly
 arrived segment (note that if an arriving segment contains
 multiple sent segments, the receiver processes all the Prefix
 Options within it before processing any Outer Options).

 C. It buffers Suffix Options and TCP Payload, subtracting from
 the receive window ("Rcv.Wind") accordingly.

 5. It emits an ACK if appropriate (typically using regular TCP ACK
 behaviour, but see Section 2.3.1.5 concerning Impure ACKs).

 6. Once gaps (if any) in the datastream have been filled, the
 receiver applies any order-sensitive transformation of the TCP
 data that might be required, e.g. decompression or decryption
 initiated by a previous control message applied at the TCP layer:

 A. The TCP receiver MUST apply an order-sensitive transformation
 progressively, to one sent segment at a time in sequence

Briscoe Expires September 10, 2015 [Page 25]

Internet-Draft Inner Space for all TCP Options March 2015

 order from the start of one Payload up to the end of the next
 set of Suffix Options (which might change the way it
 transforms the next segment, e.g. a rekey option).

 B. Having established the extent of the next sent segment, The
 receiver returns to step 6A.

 7. It processes and removes any Suffix Options strictly in
 datastream order, as illustrated in Figure 4a) in Section 3.2.6.
 It adds to "Rcv.Wind" accordingly.

 Once only the TCP Payload remains, the TCP receiver passes it to the
 application as normal.

2.3.3. Forwarding Inner TCP Options

 Middleboxes exist that process some aspects of the TCP Header. The
 present specification defines a new location for Inner TCP Options
 beyond the Data Offset, this is intended for the exclusive use of the
 destination TCP implementation. Therefore:

 o A middlebox MUST treat any octets beyond the Data Offset as
 immutable user-data. Section 3.2.3 explains how the endpoints
 will be able to force middleboxes to comply with this rule once
 they can authenticate of even encrypt TCP options within the TCP
 Data, whereas if they tried to enforce this rule today they would
 only damage their own transmissions. Legacy Middleboxes already
 do not expect to find options beyond the Data Offset anyway.

 o A middlebox MUST NOT defer data in a segment with SYN=1 to a
 subsequent segment.

 A TCP implementation is not necessarily aware whether it is deployed
 in a middlebox or in a destination, e.g. a split TCP connection might
 use a regular off-the-shelf TCP implementation. Therefore, a
 general-purpose TCP that implements the present specification will
 need a configuration switch to disable any search for options beyond
 the Data Offset and to enable immediate forwarding of data in a SYN.

2.4. Exceptions

 {ToDo: Define behaviour of forwarding or receiving nodes if the
 structure or format of an Upgraded Segment is not as specified.}

 If an Upgraded TCP Receiver receives an InSpace Option with a Length
 it does not recognise as valid, it MUST drop the packet and
 acknowledge the octets up to the start of the unrecognised option.

Briscoe Expires September 10, 2015 [Page 26]

Internet-Draft Inner Space for all TCP Options March 2015

 Values of Sent Data Size greater than 2^16 - 21 (=65,515 = 0xFFEB)
 octets in a regular (non-jumbo) InSpace Option MUST be treated as the
 distance to the next InSpace option, but they MUST NOT be taken as
 indicative of the size of the TCP Data when it was sent. This is
 because the TCP Data in a regular IPv6 packet cannot be greater than
 (2^16 -1 - 20) octets (given the minimum TCP header is 20 octets).
 If the size of the TCP Data is greater than 0xFFEB octets, the sender
 MUST use a Jumbo InSpace Option (Appendix C.2).

 A Sent Data Size of 0xFFFF octets MAY be used to minimise the
 occurrence of empty InSpace options without permanently disabling the
 Inner Space protocol for the rest of the connection.

2.5. SYN Flood Protection

 An implementation of the Inner Space protocol MUST support the
 EchoCookie TCP option [I-D.briscoe-tcpm-echo-cookie]. To indicate
 its support for EchoCookie, an Ordinary Client would send an empty
 EchoCookie TCP option on the SYN. Support for the Inner Space
 protocol makes this redundant. Therefore an Inner Space client MUST
 NOT send an empty EchoCookie TCP option on a SYN-U.

 The EchoCookie TCP option replaces the SYN Cookie mechanism
 [RFC4987], which only has sufficient space to hold the result of one
 TCP option negotiation (the MSS), and then only a subset of the
 possible values (see the discussion under Security Considerations

Section 7).

3. Design Rationale

 This section is informative, not normative.

3.1. Dual Handshake and Migration to Single Handshake

 In traditional [RFC0793] TCP, the space for options is limited to 40B
 by the maximum possible Data Offset. Before a TCP sender places
 options beyond that, it has to be sure that the receiver will
 understand the upgraded protocol, otherwise it will confuse and
 potentially crash the application by passing it TCP options as if
 they were payload data.

 The Dual Handshake (Section 2.1.1) ensures that a Legacy TCP Server
 will never pass on TCP options as if they were user-data. If a SYN
 carries TCP Data, a TCP server typically holds it back from the
 application until the 3-way handshake completes. This gives the
 client the opportunity to abort the Upgraded Connection if the
 response from the server shows it does not recognise an Upgraded SYN.

https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc0793

Briscoe Expires September 10, 2015 [Page 27]

Internet-Draft Inner Space for all TCP Options March 2015

 The strategy of sending two SYNs in parallel is not essential to the
 Alternative SYN approach. It is merely an initial strategy that
 minimises latency when the client does not know whether the server
 has been upgraded. Evolution to a single SYN with greater option
 space could proceed as follows:

 o Clients could maintain a white-list of upgraded servers discovered
 by experience and send just the Upgraded SYN-U in these cases.

 o Then, for white-listed servers, the client could send an Ordinary
 SYN only in the rare cases when an attempt to use an Upgraded
 Connection had previously failed (perhaps a mobile client
 encountering a new blockage on a new path to a server that it had
 previously accessed over a good path).

 o In the longer term, once it can be assumed that most servers are
 upgraded and the risk of having to fall back to legacy has dropped
 to near-zero, clients could send just the Upgraded SYN first,
 without maintaining a white-list, but still be prepared to send an
 Ordinary SYN in the rare cases when that might fail.

 There is concern that, although dual handshake approaches might well
 eventually migrate to a single handshake, they do not scale when
 there are numerous choices to be made simultaneously. For instance:

 o trying IPv6 then IPv4 [RFC6555];

 o and trying SCTP and TCP in parallel
 [I-D.wing-tsvwg-happy-eyeballs-sctp];

 o and trying ECN and non-ECN in parallel;

 o and so on.

 Nonetheless, it is not necessary to try every possible combination of
 N choices, which would otherwise require 2^N handshakes (assuming
 each choice is between two options). Instead, a selection of the
 choices could be attempted together. At the extreme, two handshakes
 could be attempted, one with all the new features, and one without
 all the new features.

3.2. Inner Option Space

3.2.1. Header Extension by Encapsulation

 It has been proposed [Briscoe14] that extension of a header (as
 opposed to options) at layer X ought not to be located within the
 header at layer X, but instead within the layer encapsulated by that

https://datatracker.ietf.org/doc/html/rfc6555

Briscoe Expires September 10, 2015 [Page 28]

Internet-Draft Inner Space for all TCP Options March 2015

 header (layer X+1), for a selection of principled and pragmatic
 reasons:

 1. Implementations of layer X that have not implemented or are not
 interested in an extension to layer X need not be bothered with
 walking over a load of extensions they do not know or care about.

 2. An extension always requires a new implementation, which can be
 coded to know where to look for the extensions it implements;
 extensions never need to be located where unmodified code can
 find them.

 3. Layer-X middleboxes that do not correctly forward layer-X
 extensions are common, but they do tend to forward their layer-
 X+1 payload correctly. Therefore extending layer-X within an
 encapsulation is more likely to traverse badly designed
 middleboxes.

 4. Extension by encapsulation is not a manifesto for extending layer
 X at layer X+1, X+2,... and ever-deeper. Usually a base protocol
 design is sound, and an an extension is not permanently necessary
 to make it fit for purpose; the extension merely adds something
 needed in circumstances not originally conceived. Therefore it
 is rare that an extension becomes so ubiquitous that extensions
 to the extension become necessary.

 5. Extending layer X within a layer-X+1 encapsulation should not be
 confused with an attempt to evade security middleboxes. If an
 attack on layer X is encapsulated in layer X+1, security
 middleboxes will be reprogrammed to block it. Whereas, if a
 useful extension to layer X were encapsulated in layer X+1,
 security middleboxes would not be reprogrammed to block it.

 6. If the endpoints of layer X don't want layer-X middleboxes to
 intervene in their layer-X extension, they can encapsulate it
 within layer X+1. In contrast, if they want an extension for co-
 operation with layer-X middleboxes, they can place it in the
 layer-X header. Then everything at layer X+1 can be
 authenticated and/or encrypted to structure and enforce the
 distinction between the types of extension, without having to
 selectively authenticate and/or encrypt parts of the layer X
 header.

3.2.2. Non-Deterministic Magic Number Approach

 This section justifies the magic number approach by contrasting it
 with a more 'conventional' approach. A conventional approach would

Briscoe Expires September 10, 2015 [Page 29]

Internet-Draft Inner Space for all TCP Options March 2015

 use a regular (Outer) TCP option to point to the dividing line within
 the TCP Data between the extra Inner Options and the TCP Payload.

 This 'conventional' approach cannot provide extra option space over a
 path on which a middlebox strips TCP options that it does not
 recognise. [Honda11] quantifies the prevalence of such paths. It
 reports on experiments conducted in 2010-2011 that found unknown
 options were stripped from the SYN-SYN/ACK exchange on 14% of paths
 to port 80 (HTTP), 6% of paths to port 443 (HTTPS) and 4% of paths to
 port 34343 (unassigned). Further analysis found that the option-
 stripping middleboxes fell into two main categories:

 o about a quarter appeared to actively remove options that they did
 not recognise (perhaps assuming they might be indicative of an
 attack?);

 o the rest were some type of higher layer proxy that split the TCP
 connection, unwittingly failing to pass unknown options between
 the two connections.

 The magic number approach ensures that all the TCP Headers and
 options up to the Data Offset are completely indistinguishable from
 an Ordinary Segment. Therefore, it will be highly likely (but not
 certain--see Appendix C.1.4) that the extra Inner Options will always
 be forwarded, while the conventional approach would fall far short of
 ths ideal.

 The magic number approach also ensures that the Inner Options and the
 option that points to them are both tucked away beyond the Data
 Offset (see Section 2.2.1). This makes it highly likely that the two
 will share the same fate--it would be extremely unusual for a
 middlebox to treat different parts of the TCP Data selectively.

 Typically, if a TCP option were stripped, the concern would only be
 lack of function, not safety. But with option space extension, the
 concern is serious application corruption. If control options are
 placed beyond the Data Offset, and the option that says they are
 there gets stripped, it risks control options being passed to the
 application as (corrupt) data. Although option stripping can be
 detected during the handshake, this consumes round trips and it is
 does not guarantee that option stripping will not start part-way
 through a connection (e.g. due to a path change). In contrast the
 magic number approach is inherently safe.

 The downside of the magic number approach is that it is slightly non-
 deterministic, quantified as follows:

Briscoe Expires September 10, 2015 [Page 30]

Internet-Draft Inner Space for all TCP Options March 2015

 o The probability that an Upgraded SYN=1 segment will be mistaken
 for an Ordinary Segment is precisely zero.

 o In the currently common case of a SYN with zero payload, the
 probability that it will be mistaken for an Upgraded Segment is
 also precisely zero.

 o However, there will be a very small probability (roughly 2^{-66}
 or 1 in 74 billion billion (74 * 10^18)) that payload data in an
 Ordinary SYN=1 segment could be mistaken for an Upgraded SYN or
 SYN/ACK, if it happens to contain a pattern in exactly the right
 place that matches the correct Sent Data Size, Length and Magic
 Numbers of an InSpace Option. {ToDo: Estimate how often a
 collision will occur globally. Rough estimate: 1 connection
 collision globally every 40 years.}

 The above probability is based on the assumptions that:

 o the magic numbers will be chosen randomly (in reality they will
 not--for instance, a magic number that looked just like the start
 of an HTTP connection would be rejected)

 o data at the start of Ordinary SYN=1 segments is random (in reality
 it is not--the first few bytes of most payloads are very
 predictable).

 Therefore even though 2^{-66} is a vanishingly small probability, the
 actual probability of a collision will be much lower.

 If a perfect collision does occur, it will result in TCP removing a
 number of 32-bit words of data from the start of a byte-stream before
 passing it to the application.

3.2.3. Non-Goal: Security Middlebox Evasion

 The purpose of locating control options within the TCP Data is not to
 evade security. Security middleboxes can be expected to evolve to
 examine control options in the new inner location. Instead, the
 purpose is to traverse middleboxes that block new TCP options
 unintentionally--as a side effect of their main purpose--merely
 because their designers were too careless to consider that TCP might
 evolve. This category of middleboxes tends to forward the TCP
 Payload unaltered.

 By sitting within the TCP Data, the Inner Space protocol should
 traverse enough existing middleboxes to reach critical mass and prove
 itself useful. In turn, this will open an opportunity to introduce
 integrity protection for the TCP Data (which includes Inner Options).

Briscoe Expires September 10, 2015 [Page 31]

Internet-Draft Inner Space for all TCP Options March 2015

 Whereas today, no operating system would introduce integrity
 protection of Outer TCP options, because in too many cases it would
 fail and abort the connection.

 Once the integrity of Inner Options is protected, it will raise the
 stakes. Any attempt to meddle with control options within the TCP
 Data will not just close off the theoretical potential benefit of a
 protocol advance that no-one knows they want yet; it will fail
 integrity checks and therefore completely break any communication.
 It is unlikely that a network operator will buy a middlebox that does
 that.

 Then middlebox designers will be on the back foot. To completely
 block communications they will need a sound justification. If they
 block an attack, that will be fine. But if they want to block
 everything abnormal, they will have to block the whole communication,
 or nothing. So the operator will want to choose middlebox vendors
 who take much more care to ensure their policies track the latest
 protocol advances--to avoid costly support calls.

3.2.4. Avoiding the Start of the First Two Segments

 Some middleboxes discard a segment sent to a well-known port
 (particularly port 80) if the TCP Data does not conform to the
 expected app-layer protocol (particularly HTTP). Often such
 middleboxes only parse the start of the app-layer header (e.g. Web
 filters only continue until they find the URL being accessed, or DPI
 boxes only continue until they have identified the application-layer
 protocol).

 The segment structure defined in Section 2.2.1 would not traverse
 such middleboxes. An alternative segment structure that avoids the
 start of the first two segments in each direction is defined in

Appendix C.3. It is not mandatory to implement in the present
 specification. However, it is hoped that it will be included in some
 experimental implementations so that it can be decided whether it is
 worth making mandatory.

3.2.5. Framing Segments

 A middlebox that splits a TCP connection can coalesce and/or divide
 the original segments. Segmentation offload hardware is another
 common cause of resegmentation. Inclusion of the marker in the
 InSpace Option allows the receiver to reconstruct the original
 segment boundaries. The ZOMBI encoding Appendix A removes any
 occurrences of the marker other than those at the start of each
 segment.

Briscoe Expires September 10, 2015 [Page 32]

Internet-Draft Inner Space for all TCP Options March 2015

 Superficially, the receiver does not need the sent data size (SDS)
 field to find the end of each sent segment; it could scan for the
 marker at the start of the next segment instead. However, in the
 common case when a stream has _not_ been resegmented, the receiver
 will find the marker at the start of the segment, but the next marker
 will not have been received yet. The SDS field allows the receiver
 to know immediately whether a whole segment has been received as
 sent. For the same reason, Minion [I-D.iyengar-minion-protocol] uses
 a (different) marker to tag the end of each message. In contrast,
 the Inner Space approach uses 2B to declare the original segment
 size, which saves having to scan the stream for an end marker.

 Equally, one could argue that markers are unnecessary, because the
 sequence of sent data size fields from the start of the stream seem
 sufficient to find all the segment boundaries. Using markers ensures
 that the receiver can pick out segment boundaries immediately on
 arrival, which is important for deadlock avoidance (see

Section 3.2.6).

 The Sent Data Size is not strictly necessary on a SYN (SYN=1, ACK=0)
 because a SYN is never resegmented. However, for simplicity, the
 layout for a SYN is made the same as for a SYN/ACK. This future-
 proofs the protocol against the possibility that SYNs might be
 resegmented in future. And it makes it easy to introduce the
 alternative segment structure of Appendix C.3 if it is needed.

3.2.6. Control Options Within Data Sequence Space

Section 2.3 introduced the two types of objects that Inner Space
 places within the TCP Data:

 In-Order Flow-Controlled Objects: Suffix Options and the TCP
 Payload;

 Fire-and-Forget Objects: Padding, the InSpace Option and any Prefix
 Options.

 The following two sections address each in turn: i) explaining why it
 is useful to introduce in-order flow-controlled TCP options and ii)
 explaining why it is feasible to encapsulate fire-and-forget options
 within the TCP datastream, despite its reliable ordered semantics.

3.2.6.1. In-Order Flow-Controlled Options

 Including Suffix Options within TCP's sequence space gives the sender
 a simple way to ensure that control options will be delivered
 reliably and in order to the remote TCP, even if the control options
 are on segments without user-data. By using TCP's existing stream

Briscoe Expires September 10, 2015 [Page 33]

Internet-Draft Inner Space for all TCP Options March 2015

 delivery mechanisms, it adds no extra protocol processing, no extra
 packets and no extra bits.

 The sender can even choose to place control options on a segment
 without user-data, e.g. to reliably re-key TCP-level encryption on a
 connection currently sending no data in one direction. The sender
 can even add an InSpace Option without further Inner Options except a
 no-op Suffix option. Then it can ensure that the segment will
 automatically be delivered reliably and in order to the remote TCP,
 even though it carries no user-data or other TCP control options,
 e.g. for a test probe, a tail-loss probe or a keep-alive.

 Figure 4a) illustrates control options arriving reliably and in order
 at the receiving TCP stack in comparison with the traditional
 approach shown in Figure 4b), in which control options are outside
 the sequence space. In the traditional approach, during a period
 when the remote TCP is sending no user-data, the local TCP may
 receive control options E, B and D without ever knowing that they are
 out of order, and without ever knowing that C is missing.

 a) __ ____ _______ _ __
 |__|____|_______|_| |__| control
 :E : D : C :B: :A :
 ________________: : : : :__________________: :
 |________________| |__________________| data

 b) __
 |__| E
 |_|__ B __
 |____|D |__|A control
 \ / \ /
 ________________\/__________________\/
 |________________||__________________| data
 !
 !drop
 ____!__
 |_______|C

 Figure 4: Control options a) inside vs. b) outside TCP sequence
 space`

 By including Inner Options within the sequence space, each control
 option is automatically bound to the start of a particular byte in
 the data stream, which makes it easy to switch behaviour at a
 specific point mid-stream (e.g. re-keying or switching to a different
 control mode). With traditional TCP options, a bespoke reliable and
 ordered binding to the data stream would have to be developed for
 each TCP option that needs this capability (e.g. co-ordinating use

Briscoe Expires September 10, 2015 [Page 34]

Internet-Draft Inner Space for all TCP Options March 2015

 of new keys in TCP-AO [RFC5925] or tcpcrypt
 [I-D.bittau-tcpinc-tcpcrypt]).

 Including Inner Options in sequence also allows the receiver to tell
 the sender the exact point at which it encountered an unrecognised
 TCP option using only TCP's pre-existing byte-granularity
 acknowledgement scheme.

 Middleboxes exist that rewrite TCP sequence and acknowledgement
 numbers, and they also rewrite options that refer to sequence numbers
 (at least those known when the middlebox was produced, such as SACK,
 but not any introduced afterwards). If Inner Options were not
 included in sequence, the number of bytes beyond the TCP Data Offset
 in each segment would not match the sequence number increment between
 segments. Then, such middleboxes could unintentionally corrupt the
 user-data and options by 'normalising' sequence or acknowledgement
 numbering. Fortunately, including Inner Options in sequence improves
 robustness against such middleboxes.

3.2.6.2. Fire-and-Forget Options

 The Inner Space protocol allows Fire-and-Forget Options to be
 tunnelled within the TCP Data so that they can traverse middleboxes
 that would otherwise strip them or somehow normalise their contents.
 Two question then arise: i) should Fire-and-Forget Objects (padding,
 the InSpace Option and Prefix Options) consume sequence space and ii)
 should they be covered by flow control? The answers to these
 questions will also be re-usable to multiplex streams within one TCP
 connection:

 Sequence Space: Ideally, fire-and-forget objects would not consume
 sequence space, because they do not need to be retransmitted.
 However, many middleboxes expect the TCP sequence number to
 increment consistently with the amount of TCP Data. For instance,
 a split connection would be likely to 'normalise' sequence
 numbers, being unaware that certain items in the datastream might
 be exempt from sequence space consumption.

 Therefore, although it is not elegant, the sender has to consume
 sequence space for fire-and-forget objects, but it implicitly
 considers these octets to be immediately acknowledged. And the
 receiver does not have to immediately acknowledge sequence space
 consumed solely by fire-and-forget objects; it can defer until it
 acknowledges reliably delivered flow-controlled objects--when it
 does no harm to cumulatively acknowledge intervening fire-and-
 forget objects as well. This is the underlying principle behind
 the normative rules given on sequence space consumption and ACK
 withholding in Section 2.3.1.3 and Section 2.3.1.5.

https://datatracker.ietf.org/doc/html/rfc5925

Briscoe Expires September 10, 2015 [Page 35]

Internet-Draft Inner Space for all TCP Options March 2015

 Flow Control: The sender does not need to count Fire-and-Forget
 Objects against the receive window ("Rcv.Wind"), just as it does
 not count Outer TCP Options against "Rcv.Wind".This should work
 because It is impossible for middleboxes to 'normalise' the
 receive window and flow control, because they cannot know when the
 application is releasing data from the receive buffer. Also the
 receiver always processes Fire-and-Forget Objects immediately
 without buffering them; it could be considered that the receiver
 effectively subtracts their size from "Rcv.Wind" then immediately
 restores "Rcv.Wind" to its former value.

 In fact, as shall now be explained, it has to be _mandatory_ for
 the sender not to count fire-and-forget objects against
 "Rcv.Wind". It is important for deadlock avoidance that certain
 TCP options never consume "Rcv.Wind". Some TCP options
 acknowledge data, e.g. SACK or the Data ACK within the Data
 Sequence Signal (DSS) sub-option of MPTCP. Other TCP options need
 to be applied to all ACKs, e.g. the MAC of tcpcrypt. If an
 acknowledgement were to need sufficient advertised receive window
 before it could be sent, there would always be a risk of deadlock
 if the receiver ever needed the acknowledgement before it could
 release more receiver buffer [Raiciu12].

 The rule above concerning sequence space is a compromise needed to
 traverse middleboxes. So, perhaps predictably, this begets further
 compromises. The rule concerning flow-control is principled. So
 perhaps predictably, it has to be compromised to traverse certain
 middleboxes. The rationale for these compromises is explained below,
 referring to the normative rules in the protocol specification where
 appropriate:

 Sequence Space: If the sender does not retransmit unacknowledged
 data after a RTO, some middleboxes will mimic TCP's retransmission
 timeout (RTO) and resend the fire-and-forget data themselves,
 which could lead to an ACK storm. Therefore, Section 2.3.1.5
 allows a receiver to emit a pure ACK every round trip, just to
 keep such middleboxes quiet. In general, allowing TCP to ACK an
 ACK can lead to an ACK storm. However, in this case, all that is
 allowed is a Pure ACK in response to an Impure ACK, which
 immediately terminates any potential for a vicious circle. This
 solution even works in the case where both TCP hosts ignore ACKs
 unless they are authenticated (which the pure ACK will not be).
 No harm will arise if the remote host ignores the pure ACK,
 because it is only for the benefit of a middlebox anyway.

 If a sequence of one or more Impure ACKs is lost the receiver
 cannot suppress retransmission, because it can only decide whether
 it needed in-sequence data once it arrives. Therefore, loss of

Briscoe Expires September 10, 2015 [Page 36]

Internet-Draft Inner Space for all TCP Options March 2015

 fire-and-forget data causes a retransmission that may prove to be
 unnecessary. By the rules in Section 2.3.1.5, an ACK would only
 include fire-and-forget data in the first place if it was actually
 necessary. Therefore, normally retransmission of Impure ACKs will
 be required and useful. However, sometimes, the Prefix Option(s)
 within the Impure ACK(s) might have become unnecessary. This
 inefficiency could just be ignored, or partial reliability could
 be added to TCP to address it. The Inner Space protocol does not
 prevent partial reliability being added, but it does not require
 it either.

 Flow Control: Some middleboxes attempt to mitigate scanning or DoS
 attacks by reading the window field in the main TCP header (and
 the Window Scale outer TCP option if present) and discarding
 segments that they calculate contain data that is out-of-window.

 Section Section 2.3.1.4 requires the two endpoints to tacitly
 agree that the fire-and-forget portion of the TCP Data is exempt
 from flow control. A legacy middlebox will not know this, so it
 might think data is out-of-window when the endpoints have agreed
 it is in-window. Section Section 2.3.1.4 provides a solution to
 this problem, which is only necessary if a TCP implementation is
 deployed where there is a risk of encountering such middleboxes.
 The solution involves the TCP sender denying itself the use of the
 bottom of the buffer advertised by the receiver. Normally the
 sender stops sending when it calculates the remaining receive
 window is zero. Instead, the modified sender sets itself a
 threshold (Snd.Wind.Min) to allow for the Fire-and-Forget Objects
 it might need in flight, and it stops sending before the receive
 window drops below this threshold.

 Snd.Wind.Min bytes at the 'left-hand' end of the receive buffer
 are wasted by this solution (to be fair, the middlebox behaviour
 is really to blame). An alternative was considered where the
 sender and receiver use a new Inner TCP Option to agree a window
 offset between themselves, so that middleboxes are not party to
 their agreement. Although, this would not waste any of the left-
 hand end of the receive buffer, it would reduce the maximum
 advertised buffer at the right-hand end by the same amount.
 Therefore the sender-only solution was chosen, given it is much
 simpler, and the sender can continuously adapt how much allowance
 it sets aside throughout the connection, rather than having to
 commit to a necessarily conservative estimate at the start.

Briscoe Expires September 10, 2015 [Page 37]

Internet-Draft Inner Space for all TCP Options March 2015

3.3. Deployment Approach

3.3.1. Substrate Protocol: TCP vs. UDP

 Inner Space uses TCP as a substrate protocol, i.e. on the wire, the
 headers look like an RFC793-compliant TCP, and there is only a
 difference if one looks inside the TCP Data. Other transport
 extensibility approaches have used UDP as a substrate protocol, for
 instance, to carry SCTP through middleboxes.

 In design and implementation terms, it is much easier to turn UDP
 into a reliable protocol, than it is to selectively turn TCP into an
 unreliable protocol. However, UDP is already blocked on about 15% of
 Internet paths {ToDo: ref}, whereas vanilla TCP is still universally
 permitted. Therefore, because the goal is middlebox traversal, not
 just ease of implementation, Inner Space uses TCP as a substrate.

 It may well turn out that Inner Space cannot reach some places that
 UDP can. It is expected that applications (or even the TCP stack)
 might sometimes have to resort to tryinging UDP as a substrate in
 such cases.

3.3.2. Kernel-Space vs. User-Space

 At an earlier stage in the specification of the Inner Space protocol
 [I-D.briscoe-tcpm-inner-space] before unordered delivery of Inner
 Options was introduced, Inner Options could all be processed in
 either user-space or kernel-space. The only exception was the
 interactions controlling the handshake on the first segment in each
 direction. However, with the addition of unordered delivery of
 Prefix Options, the protocol has to be implemented in the kernel,
 because the protocol modifies the behaviour of TCP, not just its
 payload.

3.4. Rationale for the InSpace Option Format

 The format of the InSpace Option (Figure 3) does not necessarily have
 to comply with the RFC 793 format for TCP options, because it is not
 intended to ever appear in a sequence of TCP options. In particular,
 it does not need an Option Kind, because the option is always in a
 known location. In effect the magic number serves as a multi-octet
 Option Kind for the first InSpace Option, and the location of each
 subsequent option is always known by the marker in the InSpace option
 as well as by the offset from the previous one, using the Sent Data
 Size field.

 Other aspects of the layout are justified as follows:

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Briscoe Expires September 10, 2015 [Page 38]

Internet-Draft Inner Space for all TCP Options March 2015

 Length: Whatever the size of the InSpace Option, the right-hand edge
 of the Length field is always located 8 octets from the left-hand
 edge of the marker that starts the InSpace Option. From the
 Length, the receiver can always determine the layout of the rest
 of the option. The length is in 4-octet words because the InSpace
 option is always a multiple of 4 octets long, so that any
 subsequent Inner TCP Options comply with TCP's option alignment
 requirements.

 Sent Data Size: This field is 16 bits wide, which is reasonable
 given segment size cannot exceed the limits set by the Total
 Length field in the IPv4 header and the Payload Length field in
 the IPv6 header, both of which are 16 bits wide.

 If the sender were to use a jumbogram [RFC2675], it could use the
 Jumbo InSpace Option defined in Appendix C.2, which offers a
 32-bit Sent Data Size field. The Jumbo InSpace Option is not
 mandatory to implement for the present experimental specification.
 Even if it is implemented, it is only defined when SYN=0, given
 use of a jumbogram for a SYN or SYN/ACK would significantly exceed
 other limits that TCP sets for these segments.

 Inner Options Offset: This field is in units of 4-octet words, so
 its width is 14-bits. Then, if necessary Suffix Options can be as
 large as a maximum sized segment (given 4 * 2^14 = 2^16 octets).

 Suffix Options Offset: The InOO field is the same 14-bit width as
 the SOO field, and for the same reason. Both the SOO and InOO
 fields are aligned 2 bits to the left of a word boundary so that
 they can be used directly in units of octets by masking out the
 2-bit field to the right.

 When SYN=1 the layout of the InSpace Option includes:

 Magic Numbers: The 32-bit size of Magic Number A is not enough to
 reduce the probability of mistaking the start of an Ordinary SYN
 Payload for the start of the Inner Space protocol. A 64-bit magic
 number could have been provided by using the next 4-octet word,
 but this would be unnecessarily large. Therefore, when SYN=1,
 Magic Number B provides 16 more bits of magic number. Otherwise,
 these 16-bits would only have to be used for padding to align with
 the next 4-octet word boundary anyway.

 When SYN=0, the following further considerations determined the
 layout of the InSpace Option:

 ZOMBI: The ZOMBI field holds an offset that has to be sufficiently
 wide to span the extent of a maximum-sized segment of 2^16 bits.

https://datatracker.ietf.org/doc/html/rfc2675

Briscoe Expires September 10, 2015 [Page 39]

Internet-Draft Inner Space for all TCP Options March 2015

 Given the offset is measured in 2-octet units, this means the
 ZOMBI field has to be at least 15 bits wide (see Appendix C.2 for
 the size of the ZOMBI field for a jumbogram).

 Marker: Given occurrences of the marker are replaced by offsets of
 the size of the ZOMBI field, the marker has to be at least as wide
 as the ZOMBI field. However, a 16-bit marker is used, because it
 is more efficient than having to replace 15-bit markers.

 Currently Unused (CU): There are three CU fields in the InSpace
 option when SYN=0 that fill odd corners of space. Unfortunately,
 this is necessary to ensure 4-octet alignment of the first Inner
 Options.

 Prefix (P) flag: When there are solely Prefix Options, or solely
 Suffix Options, a short-form InSpace Option can be used (Len = 1)
 by omitting the last 4-octet word. Then the P flag determines
 whether there are solely Prefix Options or solely Suffix Options
 in the Inner Options field. Whenever both Prefix and a Suffix
 Option are needed on the same segment, even though only 14 more
 bits of framing information are needed, the InSpace option has to
 grow in steps of 32 bits to maintain 4-octet alignment. Therefore
 18 bits have to be assigned as Currently Unused (CU).

4. Protocol Overhead

 The overhead of the Inner Space protocol is quantified as follows:

 Dual Handshake:

 Latency:

 Upgraded Server : zero;

 Legacy Server: worst latency of the two, if dual handshakes
 are used.

 Connection Rate: The typical connection rate will inflate by P*D,
 where:

 P [0-100%] is the proportion of connections that use extra
 option space;

 D [0-100%] is the proportion of these that use a dual
 handshake (the remainder use a single handshake, e.g. by
 caching knowledge of upgraded servers).

Briscoe Expires September 10, 2015 [Page 40]

Internet-Draft Inner Space for all TCP Options March 2015

 For example, if P=80% and D=10%, the connection rate will
 inflate by 8%. P is difficult to predict. D is likely to be
 small, and in the longer term it should reduce to the
 proportion of connections to remaining legacy servers, which
 are likely to be the less frequently accessed ones. In the
 worst case if both P & D are 100%, the maximum that the
 connection rate can inflate by is 100% (i.e. to twice present
 levels).

 Connection State: Connection state on servers and middleboxes
 will inflate by P*D/R, where

 R is the average hold time of connection state measured in
 round trip times

 This is because a server or middlebox only holds dual
 connection state for one round trip, until the RST on one of
 the two connections. For example, keeping P & D as they were
 in the above example, if R = 3 round trips {ToDo: TBA},
 connection state would inflate by 2.7%. In the longer term, any
 extra connection state would be focused on legacy servers, with
 none on upgraded servers. Therefore, if memory for dual
 handshake flow state was a problem, upgrading the server to
 support the Inner Space protocol would solve the problem.

 Network Traffic: The network traffic overhead is 2*H*P*D/J
 counting in bytes or 2*P*D/K counting in packets, where

 H is (h+60B+12B) where h is the IP header size (assuming the
 Ordinary SYN and SYN/ACK have a TCP header packed to the
 maximum of 60B with TCP options, they have no TCP Payload,
 their IP headers have no extensions and the InSpace Option
 in the SYN-U and SYN/ACK-U is 12B). That is H will be 92B
 for IPv4 or 112B for IPv6;

 J is the average number of bytes per TCP connection (in both
 directions)

 K is the average number of packets per TCP connection (in both
 directions);

 For example, keeping and P & D as they were in the above
 example, if J = 50KiB for IPv4 and K = 70 packets (ToDo: TBA),
 traffic overhead would be 0.03% counting in bytes or 0.2%
 counting in packets.

 Processing: {ToDo: Implementation tests}

Briscoe Expires September 10, 2015 [Page 41]

Internet-Draft Inner Space for all TCP Options March 2015

 InSpace Option on every non-empty SYN=0 segment:

 Network Traffic: The traffic overhead is P*Q*8/F, where

 Q is the proportion of Inner Space connections that leave the
 protocol enabled after the initial handshake;

 F is the average frame size in bytes (assuming one segment per
 frame).

 This assumes an InSpace option adds 8B per segment (i.e. both
 Prefix and Suffix Options together on every segment will be
 rare). For example, keeping P as it was in the above example
 and taking Q=10% and F=750B, the traffic overhead is 0.09%. It
 is as difficult to predict Q as it is to predict P.

 Processing: {ToDo: Implementation tests}

5. Interaction with Pre-Existing TCP Implementations

5.1. Compatibility with Pre-Existing TCP Variants

 It is believed that all TCP options that were designed as Outer
 Options can be relocated without alteration as Prefix Options,
 because the unreliable unordered semantics are the same as TCP Outer
 Options. However, some yet-to-be-defined TCP options might be better
 suited to the reliable ordered semantics of Suffix Options.
 Specifically, existing or proposed TCP options fall into the
 following categories:

 Segment-Related: Concerned with the delivery of individual segments
 as they arrive at the receiver. Therefore these options MUST NOT
 be located as Suffix Options:

 * Timestamp [RFC7323] on SYN=0 segments;

 * SACK [RFC2018];

 * The Data ACK part of the DSS option of Multipath TCP [RFC6824];

 * TCP-AO [RFC5925] if covering TCP Options;

 Stream-Related: Controlling delivery of an ordered stream.
 Therefore these options SHOULD be located as Suffix Options:

 * The tcpcrypt CRYPT sub-options [I-D.bittau-tcpinc-tcpcrypt].

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc5925

Briscoe Expires September 10, 2015 [Page 42]

Internet-Draft Inner Space for all TCP Options March 2015

 Connection-Related: Controlling the parameters of a connection.
 These options can be located either as Suffix, Prefix or Outer
 Options:

 * No-op and end of option list [RFC0793];

 * Maximum Segment Size (MSS) [RFC0793];

 * SACK-ok [RFC2018];

 * The timestamp when used on SYN=1 segments to indicate support
 for timestamps [RFC7323];

 * Window Scale [RFC7323];

 * Multipath TCP [RFC6824], except the Data ACK part of the Data
 Sequence Signal (DSS) option;

 * TCP Fast Open [I-D.ietf-tcpm-fastopen];

 {ToDo: The above list is not authoritative. Some TCP options include
 suboptions, some of which are discussed below, but others remain to
 be fully assessed.}

 The specification of any future TCP option MUST state whether it is
 designed as a Suffix Option (reliable ordered) or as a Prefix / Outer
 Option (unreliable unordered) or "Don't Care". A TCP option MUST by
 default only be used as an Outer or Prefix Option, unless it is
 explicitly specified that it can (or must) be used as a Suffix
 Option.

 The Inner Space protocol supports TCP Fast Open, by constraining the
 client to obey the rules in Section 2.3.1.1).

 All the sub-types of the MPTCP option [RFC6824] except one could be
 located as Suffix or Prefix Options. That is, MP_CAPABLE, MP_JOIN,
 ADD_ADDR(2), REMOVE_ADDR, MP_PRIO, MP_FAIL, MP_FASTCLOSE. The Data
 Sequence Signal (DSS) of MPTCP consists of four separable parts: i)
 the Data ACK; ii) the mapping between the Data Sequence Number and
 the Subflow Sequence Number over a Data-Level Length; iii) the
 Checksum; and iv) the DATA_FIN flag. If MPTCP were re-factored to
 take advantage of the Inner Space protocol, all these parts except
 the Data ACK could be located as Suffix Options (the Checksum would
 not be necessary).

 The MPTCP Data ACK has to remain as a Prefix or Outer Option
 otherwise there would be a risk of flow control deadlock, as pointed
 out in [Raiciu12]. For instance, a Web client might pipeline

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6824

Briscoe Expires September 10, 2015 [Page 43]

Internet-Draft Inner Space for all TCP Options March 2015

 multiple requests that fill a Web server's receive buffer, while the
 Web server might be busy sending a large response to the first
 request before it reads the second request. If the Data ACK were a
 Suffix Option, the Web client would have to stop acknowledging the
 first response from the server (due to lack of receive window). Then
 the server would not be able to move on to the next request--a
 classic deadlock.

 The TCP authentication option can be configured either to cover TCP
 Options or not (when it was defined only Outer Options existed). If
 it covers any TCP Options it has to be located as an Outer or Prefix
 Option to prevent the possibility of flow-control deadlock (because
 it would consume receive window on pure ACKs if it were located as a
 Suffix Option).

 All sub-options of the tcpcrypt CRYPT option could be located as
 Suffix Options. However, as long as the tcpcrypt MAC option covers
 the TCP header and Outer Options, it has to be located as an Outer
 Option for the same deadlock reason as TCP-AO.

 An Upgraded Server can support SYN Cookies [RFC4987] for Ordinary
 Connections. For Upgraded Connections Section 2.5 defines a new
 EchoCookie TCP option that is a prerequisite for InSpace
 implementations, and provides sufficient space for the more extensive
 connection state requirements of an InSpace server.

 {ToDo: TCP States and Transitions, Connectionless Resets, ICMP
 Handling, Forward-Compatibility.}

5.2. Interaction with Middleboxes

 The interaction with the assumptions about TCP made by middleboxes is
 covered extensively elsewhere:

 o Section 2.3.3 specifies forwarding behaviour for Inner Options;

 o The following sections explain the Inner Space protocol approach
 to middlebox traversal:

 * Section 3.2.1 justifies extending TCP within the TCP Data;

 * Section 3.2.2 justifies the magic number approach;

 * Section 3.2.3 explains why the protocol will remain robust as
 middlboxes evolve;

 * Section 3.2.6 justifies including Inner Options in sequence;

https://datatracker.ietf.org/doc/html/rfc4987

Briscoe Expires September 10, 2015 [Page 44]

Internet-Draft Inner Space for all TCP Options March 2015

 * Section 3.2.5) explains how the protocol will remain robust to
 resegmentation.

5.3. Interaction with the Pre-Existing TCP API

 An aim of the Inner Space protocol is for legacy applications to
 continue to just work without modification. Therefore it is expected
 that the dual handshaking logic and placement of options within the
 TCP Data will be implemented beneath the well-known socket interface.

 Inner Space implementations will need to comply with the following
 behaviours to ensure that legacy applications continue to receive
 predictable behaviour from the socket interface:

 Querying local port (TCP client): If an application calls
 "getsockname()" while the TCP client behind the socket is engaged
 in a dual TCP handshake, the call SHOULD block until the local TCP
 has aborted one of the connections so it knows which of the two
 ports will continue to be used.

 Binding to an explicit port: If an application specifies that it
 wants the TCP client to use a specific port, the Inner Space
 capability can be used, but the dual handshake MUST be disabled,
 because the dual handshake has to try two ports. Therefore, if
 the app binds to a specific port, the upgraded SYN MUST be tried
 first on its own, then if that reveals that the server is not
 upgraded, the stack will abort that connection with a RST and use
 the same port to send an ordinary SYN. Use of a specific port
 might be necessary, for example in the FTP protocol, in a port-
 testing application or if the application wants to explicitly
 control all the handshaking logic of the Inner Space protocol
 itself.

 Logging: The dual handshake will show up as a specific signature in
 logs of network activity. Log formats might not be able to record
 two local ports against one socket, so logs might contain
 unexpected or erroneous data. Even if logs correctly track both
 connection attempts, log analysis software might not expect to see
 one socket attempt to use two different ports. {ToDo: All this
 needs to be turned into a predictability requirement.}

 Note that Inner Space has no impact on queries for the remote port
 from a TCP server. If an application calls "getpeername()" while the
 TCP server behind the socket is (unwittingly) engaged in a dual
 handshake, it will return the port of the remote client, even though
 this connection might subsequently be aborted. This is because a TCP
 server is not aware of whether it is part of a dual handshake.

Briscoe Expires September 10, 2015 [Page 45]

Internet-Draft Inner Space for all TCP Options March 2015

 Some applications interrogate the TCP stack to determine the path max
 transmission unit (PMTU), e.g. in order to optimize application
 message boundaries within the datastream. From the viewpoint of such
 applications, TCP options subtract the same amount from the PMTU
 whether they are Outer or Inner Options. However, the 8 (or 12)
 octet InSpace header and the alignment padding represent extra
 overhead. Therefore, for such applications, the TCP stack as seem
 through the socket API will seem similar to a tunnel that reduces the
 useful size of the PMTU. This could lead to fragmentation until such
 applications are updated. Nonetheless, most such applications
 already include code to adapt to PMTU reduction by tunnels.

 It would be appropriate to enable the Inner Space protocol on a per-
 host or per-user basis. The necessary configuration switch does not
 need to be standardised, but it might allow the following three
 states:

 Enabled: The stack will enable Inner Space on any TCP connection
 that that needs Inner Space for its TCP options. The stack might
 still disable the Inner Space protocol autonomously after the
 initial handshake if it is not needed.

 Forwarding: The Forwarding mode is for TCP implementations on
 middleboxes that implement split TCP connections, as discussed in

Section 2.3.3. Forwarding mode is similar to Disabled, except it
 forwards data in SYN without deferring it until the incoming
 connection is established.

 Disabled: Inner Space is not enabled by default on any connections,
 except those that specifically request it.

 The socket API might also need to be extended for future applications
 that want to control the Inner Space protocol explicitly. Experience
 will determine the best API, so these ideas are merely informational
 suggestions at this stage:

 Enabling/disabling Inner Space: As well as the above per-host or
 per-user switches, the extended API might need to allow an
 application to disable Inner Options on a per-socket basis (e.g.
 for testing). A socket might need to be opened in one of three
 possible Inner Space modes: i) Enabled; ii) Enabled initially but
 can be disabled autonomously by the stack if redundant; iii)
 Enabled initially, then disables itself after the SYN/ACK; and iv)
 Disabled. It also ought to be possible for an application to
 disable Inner Options on-demand mid-connection.

 Querying support for Inner Space: An application might need to be
 able to determine whether the host supports Inner Space and in

Briscoe Expires September 10, 2015 [Page 46]

Internet-Draft Inner Space for all TCP Options March 2015

 which mode it is enabled on a particular socket. For instance, an
 application might need to choose different socket options
 depending on how much space is available, which depends on whether
 Inner Space is enabled.

 Latency vs Efficiency: A socket that prefers efficient use of
 connection state over latency might use the optional explicit
 variant of the dual handshake (Appendix D). It is unlikely that a
 new option specific to Inner Space would be needed to express this
 preference, as many operating systems already offer a similar
 socket option.

 Logging: Log formats and log analysis software might need to be
 extended to distinguish between the deliberate RST within the dual
 handshake and an unexpected connection RST.

6. IANA Considerations

 This specification requires IANA to allocate values from the TCP
 Option Kind name-space against the following names:

 o "Inner Option Space Upgraded (InSpaceU)"

 o "Inner Option Space Ordinary (InSpaceO)"

 o "ModeSwitch"

 Early implementation before the IANA allocation MUST follow [RFC6994]
 and use experimental option 254 and respective Experiment IDs:

 o 0xUUUU (16 bits);

 o 0xOOOO (16 bits);

 o 0xMMMM (16 bits);

 {ToDo: Values TBA and register them with IANA} then migrate to the
 assigned option after allocation.

7. Security Considerations

 Certain cryptographic functions have different coverage rules for the
 TCP Header and TCP Payload. Placing some TCP options beyond the Data
 Offset could mean that they are treated differently from regular TCP
 options. This is a deliberate feature of the protocol, but
 application developers will need to be aware that this is the case.

https://datatracker.ietf.org/doc/html/rfc6994

Briscoe Expires September 10, 2015 [Page 47]

Internet-Draft Inner Space for all TCP Options March 2015

 A malicious host can send bogus SYN segments with a spoofed source IP
 address (a SYN flood attack). The Inner Space protocol does not
 alter the feasibility of this attack. However, the extra space for
 TCP options on a SYN allows the attacker to include more TCP options
 on a SYN than before, so it can make a server do more option
 processing before replying with a SYN/ACK. To mitigate this problme,
 a server under stress could deprioritise SYNs with longer option
 fields to focus its resources on SYNs that require less processing.

 Each SYN in a SYN flood attack causes a TCP server to consume memory.
 The Inner Space protocol allows a potentially large amount of TCP
 option state to be negotiated during the SYN exchange, which could
 allow attackers to exhaust the TCP server's memory more easily. The
 EchoCookie TCP option (see Section 2.5) allows the server to place
 this state in a cookie and send it on the SYN/ACK to the purported
 address of the client--rather than hold it in memory. Then, as long
 as the client returns the cookie on the acknowledgement and the
 server verifies it, the server can recover its full record of all the
 TCP options it negotiated and continue the connection without delay.
 On the other hand, the server's responses to SYNs from spoofed
 addresses will scatter to those spoofed addresses and the server will
 not have consumed any memory while waiting in vain for them to reply.
 See the Security Considerations in [I-D.briscoe-tcpm-echo-cookie] for
 how the EchoCookie facility protects against reflection and
 amplification attacks.

 Some security devices block data in an initial SYN segment,
 classifying it as the signature of an attack. Attackers might indeed
 use data-in-SYN to strengthen the force of a SYN flood attack, but it
 has also always been valid for clients to use data-in-SYN for low
 latency service as well (today data-in-SYN is used by TCP Fast Open,
 but data-in-SYN has been permitted for similar reasons right back to
 the days of RFC 793). On its own, data-in-SYN MUST NOT be considered
 a sufficient signature of an attack. It can only be considered an
 attack signature if seen in combination with other symptoms of a SYN
 flood attack. The logic that led to data-in-SYN alone being
 considered an attack was probably well-intentioned, but it actually
 turns a security device into an attack on innocent low latency
 services.

 The optional extension for DPI traversal specified in Appendix C.3
 might create a new attack vector. The attack was originally proposed
 (by David Mazieres) when an earlier draft required the optional
 extension to be applied at the start of both half-connections. As
 long as the DPI traversal extension no longer applies in the server-
 client direction the attack seems less feasible. Nonetheless, the
 attack in the server-client direction is described here anyway (in

https://datatracker.ietf.org/doc/html/rfc793

Briscoe Expires September 10, 2015 [Page 48]

Internet-Draft Inner Space for all TCP Options March 2015

 case it prompts someone to think of a similar feasible attack in the
 client-server direction):

 Attack that used to be feasible in the server-client direction: An a
 ttacker could have crafted content (e.g. a binary file such as a
 graphics object) such that it included the appropriate bits in the
 correct positions to match the Inner Space magic numbers and the
 expected format of some TCP options. It could have then uploaded
 this content to a legacy server for download by other clients
 (e.g. a public image archive). Then, if an upgraded Inner Space
 TCP client had accessed this legacy server, it would have seemed
 as if the server was upgraded. So the attacker could have
 theoretically conscripted the server into sending TCP options of
 its choice. Although the attacker would have been limited to TCP
 options relevant to those previously proposed by the client, some
 harm might have been possible. The attacker might also have been
 able to contrive the remainder of the content (after removing the
 apparent TCP options) to be some form of script or executable.

 If the DPI traversal solution is to be used, and a feasible attack is
 developed in the client-server direction, a couple of directions to
 prevent such an attack could be explored:

 o the magic number would somehow have to be complemented by another
 signal, perhaps out of band;

 o the magic number would need to somehow include a cryptographic
 hash of material sent by the client, so that an attacker could not
 predict it.

8. Acknowledgements

 The idea of this approach grew out of discussions with Joe Touch
 while developing draft-touch-tcpm-syn-ext-opt, and with Jana Iyengar
 and Olivier Bonaventure. Jana Iyengar also suggested the sender-only
 flow-control offset. The idea that it is architecturally preferable
 to place a protocol extension within a higher layer, and code its
 location into upgraded implementations of the lower layer, was
 originally articulated by Rob Hancock. {ToDo: Ref?} The following
 people provided useful comments: Joe Touch, Yuchung Cheng, John
 Leslie, Mirja Kuehlewind, Andrew Yourtchenko, Costin Raiciu, Marcelo
 Bagnulo Braun, Julian Chesterfield, Jaime Garcia, Ted Hardie and
 David Mazieres, Tim Shepard, Mark Handley.

 Bob Briscoe's contribution is part-funded by the European Community
 under its Seventh Framework Programme through the Trilogy 2 project
 (ICT-317756) and the Reducing Internet Transport Latency (RITE)

https://datatracker.ietf.org/doc/html/draft-touch-tcpm-syn-ext-opt

Briscoe Expires September 10, 2015 [Page 49]

Internet-Draft Inner Space for all TCP Options March 2015

 project (ICT-317700). The views expressed here are solely those of
 the author.

9. References

9.1. Normative References

 [I-D.ietf-tcpm-fastopen]
 Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", draft-ietf-tcpm-fastopen-10 (work in
 progress), September 2014.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options", RFC
6994, August 2013.

9.2. Informative Reference

 [Briscoe14]
 Briscoe, B., "Tunnelling through Inner Space", IAB
 Workshop on Stack Evolution in a Middlebox Internet ,
 January 2015.

 [Cheshire97]
 Cheshire, S. and M. Baker, "Consistent Overhead Byte
 Stuffing", Proc. ACM SIGCOMM'97, Computer Communication
 Review 27(4):209--220, October 1997.

 [Honda11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it Still Possible to
 Extend TCP?", Proc. ACM Internet Measurement Conference
 (IMC'11) 181--192, November 2011.

 [I-D.bittau-tcpinc-tcpcrypt]
 Bittau, A., Boneh, D., Hamburg, M., Handley, M., Mazieres,
 D., and Q. Slack, "Cryptographic protection of TCP Streams
 (tcpcrypt)", draft-bittau-tcpinc-tcpcrypt-00 (work in
 progress), October 2014.

 [I-D.briscoe-tcpm-echo-cookie]
 Briscoe, B., "The Echo Cookie TCP Option", draft-briscoe-

tcpm-echo-cookie-00 (work in progress), October 2014.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-10
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/draft-bittau-tcpinc-tcpcrypt-00
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-echo-cookie-00
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-echo-cookie-00

Briscoe Expires September 10, 2015 [Page 50]

Internet-Draft Inner Space for all TCP Options March 2015

 [I-D.briscoe-tcpm-inner-space]
 Briscoe, B., "Inner Space for TCP Options", draft-briscoe-

tcpm-inner-space-01 (work in progress), October 2014.

 [I-D.ietf-httpbis-http2]
 Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol version 2", draft-ietf-httpbis-http2-17 (work in
 progress), February 2015.

 [I-D.iyengar-minion-protocol]
 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire
 Protocol", draft-iyengar-minion-protocol-02 (work in
 progress), October 2013.

 [I-D.touch-tcpm-tcp-syn-ext-opt]
 Touch, J. and T. Faber, "TCP SYN Extended Option Space
 Using an Out-of-Band Segment", draft-touch-tcpm-tcp-syn-

ext-opt-01 (work in progress), September 2014.

 [I-D.wing-tsvwg-happy-eyeballs-sctp]
 Wing, D. and P. Natarajan, "Happy Eyeballs: Trending
 Towards Success with SCTP", draft-wing-tsvwg-happy-

eyeballs-sctp-02 (work in progress), October 2010.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, August 2007.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, June 2010.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
 Dual-Stack Hosts", RFC 6555, April 2012.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance", RFC

7323, September 2014.

https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inner-space-01
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inner-space-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-17
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-protocol-02
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-syn-ext-opt-01
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-tcp-syn-ext-opt-01
https://datatracker.ietf.org/doc/html/draft-wing-tsvwg-happy-eyeballs-sctp-02
https://datatracker.ietf.org/doc/html/draft-wing-tsvwg-happy-eyeballs-sctp-02
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2675
https://datatracker.ietf.org/doc/html/rfc4987
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323

Briscoe Expires September 10, 2015 [Page 51]

Internet-Draft Inner Space for all TCP Options March 2015

 [Raiciu12]
 Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", Proc. USENIX Symposium on Networked
 Systems Design and Implementation , April 2012.

Appendix A. Zero Overhead Message Boundary Insertion (ZOMBI)

 This appendix is normative and mandatory to implement for the Inner
 Space protocol. This encoding is relegated to an appendix merely
 because it is applicable more generally than for just Inner Space.
 Therefore, in a future revision, this appendix might be removed and
 replaced by a reference to a stand-alone document.

 The Inner Space protocol requires the sender to add a marker in every
 segment at the first 4-octet aligned word from the start of the
 datastream. Then, even if the stream is subsequently resegmented,
 the receiver can recover segments and their associated TCP options as
 they were sent. The sender uses the value 0x0000 as the 2-octet
 marker at the start of the InSpace option header. It uses the ZOMBI
 encoding to remove all other occurrences of 0x0000, treating the
 segment as a sequence of 2-octet shorts. Then, a marker will
 unambiguously locate the InSpace option at the start of each segment.
 From this InSpace option, the receiver can find the length of the
 segment. Then it can decode the ZOMBI encoding to return the segment
 to its original form.

 The sender applies the ZOMBI encoding as follows:

 1. It places 0x0000 in the Marker and the ZOMBI fields of the
 InSpace option, and fills all the other fields of the InSpace
 option with the relevant sizes and offsets.

 2. Treating the stream as a sequence of 2-octet shorts,starting from
 the ZOMBI field, it replaces each occurrence of 0x0000 with the
 offset (in shorts) to the next occurrence of 0x0000, or to just
 beyond the end of the segment when there are no more occurrences
 of 0x0000.

 Because an offset can never be zero, this process naturally removes
 all occurrences of 0x0000 from the segment.

 The receiver reverses the above encoding, assuming the worst case of
 a resegmented stream unless it finds otherwise:

 1. If it is buffering undecoded bytes either side of the newly
 arrived segment in the sequence space, it coalesces them.

Briscoe Expires September 10, 2015 [Page 52]

Internet-Draft Inner Space for all TCP Options March 2015

 2. Scanning two octets at a time aligned on even numbers of octets
 from the ISN, it locates the next occurrence of an InSpace option
 by locating the next occurrence of 0x0000 in a segment.

 3. Starting at the ZOMBI field, it points a variable (e.g. "ptr") to
 a position in the stream, reads the short at that location,
 writes 0x0000 into the stream to replace it, then increments
 "ptr" by the value just read. It continually repeats the same
 read, replace and increment operations at each new location
 pointed to by "ptr".

 4. The receiver knows the size of the sent segment from the SDS
 field, so that it knows when to stop decoding. If the end of the
 received segment is reached before this, it implies the stream
 has been resegmented and the next segment has not been buffered
 yet. In this case, the receiver stores how much decoding is
 left.

 5. If there are more undecoded octets buffered, the process repeats
 from step 1.

 Below an implementation of the ZOMBI encode and decode algorithms is
 given in C. The decode algorithm would be preceded by marker-
 scanning code to find the location of the ZOMBI and SDS fields within
 the InSpace option. The SDS field will always be non-zero, therefore
 it will never be changed by the encoding, so the receiver can read it
 before starting to decode. In case length is odd, a non-zero pseudo-
 padding octet is considered to be appended to the segment while
 encoding or decoding (but it is not actually transmitted).

Briscoe Expires September 10, 2015 [Page 53]

Internet-Draft Inner Space for all TCP Options March 2015

 /* {ToDo: Test}
 * ZombiEncode encodes "length" bytes of data
 * starting directly after the marker pointed to by "ptr", where:
 * length = sds - pad.
 */

 void ZombiEncode(unsigned short *ptr, unsigned short length)
 {
 const unsigned short *end = ptr + ++length>>1; % /2 rounded up
 unsigned short *code_ptr = ++ptr; % point to ZOMBI
 unsigned short code = 0x0001;

 while (++ptr < end) { % initialise after ZOMBI
 if (*ptr == 0) {
 *code_ptr = code;
 code_ptr = ptr;
 code = 0x0001;
 } else
 code++;
 }
 }

 /* {ToDo: Test}
 * ZombiDecode decodes "length" bytes of data
 * starting after the marker pointed to by "ptr", where
 * length = sds - pad.
 * Returns number of shorts still to decode.
 */

 short ZombiDecode(unsigned short *ptr, unsigned short length)
 {
 const unsigned short *end = ptr++ + ++length>>1; % /2 rounded up
 while (ptr < end) { % initialise to ZOMBI
 code = *ptr;
 *ptr = 0;
 ptr += code;
 }
 return (ptr - end);
 }

 The ZOMBI encoding always uses a marker that is larger than the
 maximum possible segment size. Therefore, for a jumbo segment

Appendix C.2, the sender uses 0x00000000 (4 octets of zeros) as the
 marker; it pads the segment to a multiple of 4 octets; and it scans
 the stream in 4-octet words, replacing any occurrences of the marker
 with the offset in 4-octet words to the next marker.

Briscoe Expires September 10, 2015 [Page 54]

Internet-Draft Inner Space for all TCP Options March 2015

 The ZOMBI encoding is similar to consistent overhead byte stuffing
 (COBS [Cheshire97]). The main difference is that COBS markers are
 only one octet. Therefore, in COBS, whenever the distance between
 zero-bytes is greater than 0xFE, it has to insert an extra byte into
 the stream with the special value of 0xFF. When decoding, 0xFF is
 removed rather than replaced by 0x00. Therefore, as well as 2 extra
 delimiting octets, COBS introduces a variable number of extra octets,
 but no more than 1 in 254 (a more accurate name would have been
 capped overhead byte stuffing, because the overhead is variable,
 not consistent).

 In contrast, ZOMBI introduces a predictable overhead of 4 delimiting
 octets per segment (or 5 for odd length segments), with no
 unpredictable variation. Therefore, space for the known overhead can
 be set aside in the InSpace option, and the ZOMBI encode and decode
 operation can be zero-copy, which is not possible with COBS. A more
 accurate name for ZOMBI would have been _constant_ overhead message
 boundary insertion. Nonetheless, the encoding to replace markers
 once the message boundaries have been inserted actually is zero
 overhead, so the cool acronym is not totally contrived.

Appendix B. Generic Connection Mode Switching

 This appendix is normative and mandatory to implement for the Inner
 Space protocol. This encoding is relegated to an appendix merely
 because, in a future revision, this appendix might be removed and
 replaced by a reference to a stand-alone document. It defines the
 new ModeSwitch TCP option illustrated in Figure 5. This option
 provides a facility to disable the Inner Space protocol for the
 remainder of a connection. It also provides a general-purpose
 facility for a TCP connection to co-ordinate between the endpoints
 before switching into a yet-to-be-defined mode.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +---------------+---------------+-----------+-+-+
 | ModeSwitch | Length=3 |Flags (CU) |I|R|
 +---------------+---------------+-----------+-+-+

 Figure 5: The ModeSwitch TCP Option

 The Option Kind is ModeSwitch, the value of which is to be allocated
 by IANA {ToDo: Value TBA}. ModeSwitch MUST be used only as an Inner
 Option, because it uses the reliable ordered delivery property of
 Inner Options. Therefore implementation of the Inner Space protocol
 is REQUIRED for an implementation of ModeSwitch. Nonetheless,
 ModeSwitch is a generic facility for switching a connection between

Briscoe Expires September 10, 2015 [Page 55]

Internet-Draft Inner Space for all TCP Options March 2015

 yet-to-be-defined modes that do not have to relate to extra option
 space.

 The sender MUST set the option Length to 3 (octets). The Length
 field MUST be forwarded unchanged by other nodes, even if its value
 is different.

 The Flags field is available for defining modes of the connection.
 Only two connection modes are currently defined. The first 6 bits of
 the Flags field are Currently Unused (CU) and the sender MUST set
 them to zero. The CU flags MUST be ignored and forwarded unchanged
 by other nodes, even if their value is non-zero.

 The two 1-bit connection mode flags that are currently defined have
 the following meanings:

 o R: Request flag if 1. Request mode is a special mode that allows
 the hosts to co-ordinate a change to any other mode(s);

 o I: Inner Space mode: Enabled if 1, Disabled if 0.

 The default Inner Space mode at the start of a connection is I=1,
 meaning Inner Space is in enabled mode.

 The procedure for changing a mode or modes is as follows:

 o The host that wants to change modes (the requester) sends a
 ModeSwitch message as an Inner Option with R=1 and with the other
 flag(s) set to the mode(s) it wants to change to. The requester
 does not change modes yet.

 o The responder echoes the mode flag(s) it is willing to change to,
 with the request flag R=0.

 o The half-connection from the responder changes to the mode(s) it
 confirms directly after the end of the segment that echoes its
 confirmation, i.e. after the last octet of the TCP Payload
 following the ModeSwitch option that echoes its confirmation.
 Therefore it sends the segment carrying the confirmation in the
 prior mode(s) of the connection.

 o Once the requester receives the responder's confirmation message,
 it re-echoes its confirmation of the responder's confirmation,
 with the mode(s) set to those that both hosts agree on and R=0.

 o The half-connection from the requester changes to the mode(s) it
 confirms directly after the end of the segment that re-echoes its

Briscoe Expires September 10, 2015 [Page 56]

Internet-Draft Inner Space for all TCP Options March 2015

 confirmation. Therefore it sends the segment carrying the
 confirmation in the prior mode(s) of the connection.

 o The responder can refuse a request to change into a mode in any
 one of three ways:

 * either implicitly by never confirming it;

 * or explicitly by sending a message with R=0 and the opposite
 mode;

 * or explicitly be sending a counter-request to switch to the
 opposite mode (that the connection is already in) with R=1.

 The regular TCP sequence numbers and acknowledgement numbers of
 requests or confirmations can be used to disambiguate overlapping
 requests or responses.

 Once a host switches to Disabled mode, it MUST NOT send any further
 InSpace Options. Therefore it can send no further Inner Options and
 it cannot switch back to Enabled mode for the rest of the connection.

 To temporarily reduce InSpace overhead without permanently disabling
 the protocol, the sender can use a value of 0xFFFF in the Sent Data
 Size (see Section 2.4).

Appendix C. Protocol Extension Specifications

 This appendix specifies protocol extensions that are OPTIONAL while
 the specification is experimental. If an implementation includes an
 extension, this section gives normative specification requirements.
 However, if the extension is not implemented, the normative
 requirements can be ignored.

 {Temporary note: The IETF may wish to consider making some of these
 extensions mandatory to implement if early testing shows they are
 useful or even necessary. Or it may wish to make at least the
 receiving side mandatory to implement to ensure that two-ended
 experiments are more feasible.}

C.1. Dual Handshake: The Explicit Variant

 This appendix is normative. It is separated from the body of the
 specification because it is OPTIONAL to implement while the Inner
 Space protocol is experimental. It is not mandatory to implement
 because it will be more useful once the Inner Space protocol has
 become accepted widely enough that fewer middleboxes will discard SYN
 segments carrying this option (see Appendix D for when best to deploy

Briscoe Expires September 10, 2015 [Page 57]

Internet-Draft Inner Space for all TCP Options March 2015

 it). It only works if both ends support it, but it can be deployed
 one end at a time, so there is no need for support in early
 experimental implementations.

 {Temporary note: The choice between the explicit handshake in the
 present section or the handshake in Section 2.1.1 is a tradeoff
 between robustness against middlebox interference and minimal server
 state. During the IETF review process, one might be chosen as the
 only variant to go forward, at which point the other will be deleted.
 Alternatively, the IETF could require a server to understand both
 variants and a client could be implemented with either, or both. If
 both, the application could choose which to use at run-time. Then we
 will need a section describing the necessary API.}

 This explicit dual handshake is similar to that in Section 2.1.1,
 except the SYN that the Upgraded Client sends on the Ordinary
 Connection is explicitly distinguishable from the SYN that would be
 sent by a Legacy Client. Then, if the server actually is an Upgraded
 Server, it can reset the Ordinary Connection itself, rather than
 creating connection state for at least a round trip until the client
 resets the connection.

 For an explicit dual handshake, the TCP client still sends two
 alternative SYNs: a SYN-O intended for Legacy Servers and a SYN-U
 intended for Upgraded Servers. The two SYNs MUST have the same
 network addresses and the same destination port, but different source
 ports. Once the client establishes which type of server has
 responded, it continues the connection appropriate to that server
 type and aborts the other. The SYN intended for Upgraded Servers
 includes additional options within the TCP Data (the SYN-U defined as
 before in Section 2.2.1).

 Table 2 summarises the TCP 3-way handshake exchange for each of the
 two SYNs in the two right-hand columns, between an Upgraded TCP
 Client (the active opener) and either:

 1. a Legacy Server, in the top half of the table (steps 2-4), or

 2. an Upgraded Server, in the bottom half of the table (steps 2-4)

 The table uses the same layout and symbols as Table 1, which has
 already been explained in Section 2.1.1.

Briscoe Expires September 10, 2015 [Page 58]

Internet-Draft Inner Space for all TCP Options March 2015

 +------+------------------+--------------------+--------------------+
 | | | Ordinary | Upgraded |
 | | | Connection | Connection |
 +------+------------------+--------------------+--------------------+
1	Upgraded Client	>SYN-O	>SYN-U
/\/\	/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\
2	Legacy Server	<SYN/ACK	<SYN/ACK
3a	Upgraded Client	Waits for response	
		to both SYNs	
3b	"	>ACK	>RST
4		Cont...	
/\/\	/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\	/\/\/\/\/\/\/\/\/\
2	Upgraded Server	<RST	<SYN/ACK-U
3	Upgraded Client		>ACK
4			Cont...
 +------+------------------+--------------------+--------------------+

 Table 2: Explicit Variant of Dual 3-Way Handshake in Two Server
 Scenarios

 As before, an Upgraded Server MUST respond to a SYN-U with a SYN/ACK-
 U. Then, the client recognises that it is talking to an Upgraded
 Server.

 Unlike before, an Upgraded Server MUST respond to a SYN-O with a RST.
 However, the client cannot rely on this behaviour, because a
 middlebox might be stripping Outer TCP Options which would turn the
 SYN-O into a regular SYN before it reached the server. Then the
 handshake would effectively revert to the implicit variant.
 Therefore the client's behaviour still depends on which SYN-ACK
 arrives first, so its response to SYN-ACKs has to follow the rules
 specified for the implicit handshake variant in Section 2.1.1.

 The rules for processing TCP options are also unchanged from those in
Section 2.3.

C.1.1. SYN-O Structure

 The SYN-O is merely a SYN with an extra InSpaceO Outer TCP Option as
 shown in Figure 6. It merely identifies that the SYN is opening an

Briscoe Expires September 10, 2015 [Page 59]

Internet-Draft Inner Space for all TCP Options March 2015

 Ordinary Connection, but explicitly identifies that the client
 supports the Inner Space protocol.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---------------+---------------+
 | Kind=InSpaceO | Length=2 |
 +---------------+---------------+

 Figure 6: An InSpaceO TCP Option Flag

 An InSpaceO TCP Option has Option Kind InSpaceO with value {ToDo:
 Value TBA} and MUST have Length = 2 octets.

 To use this option, the client MUST place it with the Outer TCP
 Options. A Legacy Server will just ignore this TCP option, which is
 the normal behaviour for an option that TCP does not recognise
 [RFC0793].

C.1.2. Retransmission Behaviour - Explicit Variant

 If the client receives a RST on one connection, but a short while
 after that {ToDo: duration TBA} the response to the SYN-U has not
 arrived, it SHOULD retransmit the SYN-U. If latency is more
 important than the extra TCP option space, in parallel to any
 retransmission, or instead of any retransmission, the client MAY send
 a SYN without any InSpace TCP Option, in case this is the cause of
 the black-hole. However, the presence of the RST implies that the
 SYN with the InSpaceO TCP Option (the SYN-O) probably reached the
 server, therefore it is more likely (but not certain) that the lack
 of response on the other connection is due to transmission loss or
 congestion loss.

 If the client receives no response at all to either the SYN-O or the
 SYN-U, it SHOULD solely retransmit one or the other, not both. If
 latency is more important than the extra TCP option space, it SHOULD
 send a SYN without an InSpaceO TCP Option. Otherwise it SHOULD
 retransmit the SYN-U. It MUST NOT retransmit both segments, because
 the lack of response could be due to severe congestion.

C.1.3. Corner Cases

 There is a small but finite possibility that the Explicit Dual
 Handshake might encounter the cases below. The Implicit Handshake
 (Section 2.1.1) is robust to these possibilities, but the Explicit
 Handshake is not, unless the following additional rules are followed:

https://datatracker.ietf.org/doc/html/rfc0793

Briscoe Expires September 10, 2015 [Page 60]

Internet-Draft Inner Space for all TCP Options March 2015

 Both successful: This could occur if one load-sharing replica of a
 server is upgraded, while another is not. This could happen in
 either order but, in both cases, the client aborts the last
 connection to respond:

 * The client completes the Ordinary Handshake (because it
 receives a SYN/ACK), but then, before it has aborted the
 Upgraded Connection, it receives a SYN/ACK-U on it. In this
 case, the client MUST abort the Upgraded Connection even though
 it would work. Otherwise the client will have opened both
 connections, one with Inner TCP Options and one without. This
 could confuse the application.

 * The client completes the Upgraded Connection after receiving a
 SYN/ACK-U, but then it receives a SYN/ACK in response to the
 SYN-O. In this case, the client MUST abort the connection it
 initiated with the SYN-O.

 Both aborted: The client might receive a RST in response to its SYN-
 O, then an Ordinary SYN/ACK on its Upgraded Connection in response
 to its SYN-U. This could occur i) if a split connection middlebox
 actively forwards unknown options but holds back or discards data
 in a SYN; or ii) if one load-sharing replica of a server is
 upgraded, while another is not.

 Whatever the likely cause, the client MUST still respond with a
 RST on its Upgraded Connection. Otherwise, its Inner TCP Options
 will be passed as user-data to the application by a Legacy Server.

 If confronted with this scenario where both connections are
 aborted, the client will not be able to include extra options on a
 SYN, but it might still be able to set up a connection with extra
 option space on all the other segments in both directions using
 the approach in Appendix C.1.4. If that doesn't work either, the
 client's only recourse is to retry a new dual handshake on
 different source ports, or ultimately to fall-back to sending an
 Ordinary SYN.

C.1.4. Workround if Data in SYN is Blocked

 If a path either holds back or discards data in a SYN-U, but there is
 evidence that the server is upgraded from a RST response to the SYN-
 O, the strategy below might at least allow a connection to use extra
 option space on all the segments except the SYN.

 It is assumed that the symptoms described in the 'both aborted' case
 (Appendix C.1.3) have occurred, i.e. the server has responded to the
 SYN-O with a RST, but it has responded to the SYN-U with an Ordinary

Briscoe Expires September 10, 2015 [Page 61]

Internet-Draft Inner Space for all TCP Options March 2015

 SYN/ACK not a SYN/ACK-U, so the client has had to RST the Upgraded
 Connection as well. In this case, the client SHOULD attempt the
 following (alternatively it MAY give up and fall back to opening an
 Ordinary TCP connection).

 The client sends an 'Alternative SYN-U' by including an InSpaceU
 Outer TCP Option (Figure 7). This Alternative SYN-U merely flags
 that the client is attempting to open an Upgraded Connection. The
 client MUST NOT include any Inner Options or InSpace Option or Magic
 Number. If the previous aborted SYN/ACK-U acknowledged the data that
 the client sent within the original SYN-U, the client SHOULD resend
 the TCP Payload data in the Alternative SYN-U, otherwise it might as
 well defer it to the first data segment.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +---------------+---------------+
 | Kind=InSpaceU | Length=2 |
 +---------------+---------------+

 Figure 7: An InSpaceU Flag TCP option

 An InSpaceU Flag TCP Option has Option Kind InSpaceU with value
 {ToDo: Value TBA} and MUST have Length = 2 octets.

 To use this option, the client MUST place it with the Outer TCP
 Options. A Legacy Server will just ignore this TCP option, which is
 the normal behaviour for an option that TCP does not recognise
 [RFC0793]. Because the client has received a RST from the server in
 response to the SYN-O it can assume that the server is upgraded. So
 the client probably only needs to send a single Alternative SYN-U in
 this repeat attempt. Nonetheless, the RST might have been spurious.
 Therefore the client MAY also send an Ordinary SYN in parallel, i.e.
 using the Implicit Dual Handshake (Section 2.1.1).

 If an Upgraded Server receives a SYN carrying the InSpaceU option, it
 MUST continue the rest of the connection as if it had received a full
 SYN-U (Section 2.2), i.e. by processing any Outer Options in the
 SYN-U and responding with a SYN/ACK-U.

C.2. Jumbo InSpace TCP Option (only if SYN=0)

 This appendix is normative. It defines the format of the InSpace
 Option necessary to support jumbograms. It is separated from the
 body of the specification because it is OPTIONAL to implement while
 the Inner Space protocol is experimental. In experimental
 implementations, it will be sufficient to implement the required

https://datatracker.ietf.org/doc/html/rfc0793

Briscoe Expires September 10, 2015 [Page 62]

Internet-Draft Inner Space for all TCP Options March 2015

 behaviour for when the Length of a received InSpace Option is not
 recognised (Section 2.4).

 If the IPv6 Jumbo extension header is used, a sender MUST use the
 InSpace Option format defined in Figure 8.

 All the fields have the same meanings as defined in Section 2.2.2,
 except Sent Data Size (SDS), the Inner Options Offset (InOO) and the
 Suffix Options Offset (SOO) use more bits, respectively 32, 30 and
 30. The Length (Len) field can be either 2, 3 or 4, where binary 00
 represents 4.

 If Len=3: the last 4-octet word is omitted and the value of SOO is
 determined by the P flag as already described in Section 2.2.2.

 If Len=2: it is assumed InOO = SOO = 0.

 When reading a segment, the Jumbo InSpace Option could be present in
 a packet that is not a jumbogram (e.g. due to resegmentation).
 Therefore a receiver MUST use the Jumbo InSpace Option to work along
 the stream irrespective of whether arriving packets are jumbo sized
 or not.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Marker |
 +---+---+
 | ZOMBI |Len|
 +---+---+
 | Sent Data Size (SDS) |
 +---+-+-+
 | Inner Options Offset (InOO) CU|P|
 +---+-+-+
 | Suffix Options Offset (SOO) |CU |
 +---+---+

 Figure 8: InSpace Option for a Jumbo Datagram

C.3. Optional Segment Structure to Traverse DPI boxes

 This appendix is normative. It is separated from the body of the
 specification because it is OPTIONAL to implement while the Inner
 Space protocol is experimental.

 In experiments conducted between 2010 and 2011, [Honda11] reported
 that 7 of 142 paths (about 5%) blocked access to port 80 if the
 payload was not parsable as valid HTTP. This extension to the

Briscoe Expires September 10, 2015 [Page 63]

Internet-Draft Inner Space for all TCP Options March 2015

 specification has been defined in case experiments prove that it
 significantly improves traversal of such deep packet inspection (DPI)
 boxes.

 This extension places the expected app-layer headers at the start of
 the TCP Data in the SYN and in the first data segment in the client-
 to-server direction:

 SYN=1: The sender uses the structure in Figure 9a) on the SYN. The
 sender right-aligns the 12-octet InSpace Option at the end of the
 segment. Then it right-aligns the Inner Options against the
 InSpace Option, all after the end of the TCP Payload and any
 padding necessary to align the options on a 4-octet word boundary.

 Magic Number A starts 4*3=12 octets from the end of the segment
 {ToDo: Magic Number A could be placed at the end of the segment
 instead.}. A receiver implementation of this optional extension
 MUST check whether Magic Number A is present within the InSpace
 option if it does not first find it at the start of the segment.

 The start of the Inner Options is therefore 4 * (InOO +3) octets
 before the end of the segment, where InOO is read from within the
 InSpace Option. Although the InnerOptions are located at the end
 of the TCP Payload, they are considered to be applied before the
 first octet of the TCP Payload.

 SYN=0: The structure of the first non-SYN segment that contains any
 TCP Data is shown in Figure 9b).

 The receiver will find the second InSpace Option (InSpace#2)
 located SDS#1 octets from the start of the segment (plus possible
 padding), where SDS#1 is the value of Sent Data Size that was read
 from the InSpace Option in the previous (SYN=1) segment that
 started the half-connection. Although the Inner Options are
 shifted, they are still considered to be applied at the start of
 the TCP Data in this second segment.

 From the second InSpace Option onwards, the structure of the stream
 reverts to that already defined in Section 2.2.1. So the value of
 Sent Data Size (SDS#2) in the second InSpace Option (InSpace #2)
 defines the length of the remaining TCP Data before the end of the
 first data segment, as shown.

Briscoe Expires September 10, 2015 [Page 64]

Internet-Draft Inner Space for all TCP Options March 2015

 TCP Data
 .---------------------------'------------------.
 | Inner Options |
 a) SYN=1 | .---------'---------. |
 +--------+----------+-------------+-+---------+---------+----------+
 | BaseHdr| OuterOpts| Payload | | PrefOpts| SuffOpts|InSpace#1 |
 +--------+----------+-------------+-+---------+---------+----------+
 | DO | | | SOO | | |
 `------------------>| |P`-------->| | Len = 3 |
 | | |a| InOO |<---------'
 |d|<------------------' |

 b) First SYN=0 segment
 +--------+----------+--------+-+---------+--------+--------+-------+
 | BaseHdr| OuterOpts|Payload | |InSpace#2|PrefOpts|SuffOpts|Payload|
 +--------+----------+--------+-+---------+--------+--------+-------+
 | DO | | | Len | SOO | |
 `------------------>| |P`-------->`------->| | |
 | |a| | InOO | |
 | |d| `---------------->| |
 | SDS#1 | SDS#2 |
 `------->`------------------------------------>|
 | | |

 All offsets are specified in 4-octet (32-bit) words, except SDS and
 Pad, which are in octets.

 Figure 9: Segment Structures to Traverse DPI boxes (not to scale)

 It is recognised that having to work from the end of the first
 segment makes segment processing more involved. Experimental
 implementation of this approach will determine whether the extra
 complexity improves DPI box traversal sufficiently to make it
 worthwhile.

 If it does work, it is believed that this extension will only be
 necessary on the initial SYN and the first data segment sent in the
 direction from TCP client to server. Therefore, the SYN/ACK and data
 segments sent by the TCP server will continue to use the regular
 Inner Space segment structure illustrated in Figure 2.

 If a TCP client that implements this extension opens a connection
 with a server that does not, the client will fall back to ordinary
 TCP even though the server would have supported the Inner Space
 protocol without the DPI traversal extension. This is because the
 server does not look for the magic number at the end of the SYN, so
 it behaves like a legacy TCP server responding with an ordinary SYN/

Briscoe Expires September 10, 2015 [Page 65]

Internet-Draft Inner Space for all TCP Options March 2015

 ACK, which in turn makes the client fall back to ordinary TCP. Such
 limited fall-back is considered sufficient to support experiments to
 see whether the DPI traversal extension is useful. If it is useful,
 a future standards track specification could make support for this
 DPI traversal extension mandatory for an Inner Space TCP server, but
 still optional for an Inner Space TCP client.

Appendix D. Comparison of Alternatives

D.1. Implicit vs Explicit Dual Handshake

 In the body of this specification, two variants of the dual handshake
 are defined:

 1. The implicit dual handshake (Section 2.1.1) starting with just an
 Ordinary SYN (no InSpaceO flag option) on the Ordinary
 Connection;

 2. The explicit dual handshake (Appendix C.1) starting with a SYN-O
 (InSpaceO flag option) on the Ordinary Connection.

 Both schemes double up connection state (for a round trip) on the
 Legacy Server. But only the implicit scheme doubles up connection
 state (for a round trip) on the Upgraded Server as well. On the
 other hand, the explicit scheme risks delay accessing a Legacy Server
 if a middlebox discards the SYN-O (some firewalls and middleboxes
 discard packets with unrecognised TCP options [Honda11]). Table 3
 summarises these points.

 +----------------------------------+---------------+----------------+
 | | SYN | SYN-L |
 | | (Implicit) | (Explicit) |
 +----------------------------------+---------------+----------------+
Minimum state on Upgraded Server	-	+
Minimum risk of delay to Legacy	+	-
Server		
 +----------------------------------+---------------+----------------+

 Table 3: Comparison of Implicit vs. Explicit Dual Handshake on the
 Ordinary Connection

 There is no need for the IETF to choose between these. If the
 specification allows either or both, the tradeoff can be left to
 implementers at build-time, or to the application at run-time.

 Initially clients might choose the Implicit Dual Handshake to
 minimise delays due to middlebox interference. But later, perhaps

Briscoe Expires September 10, 2015 [Page 66]

Internet-Draft Inner Space for all TCP Options March 2015

 once more middleboxes support the scheme, clients might choose the
 Explicit scheme, to minimise state on Upgraded Servers.

Appendix E. Protocol Design Issues (to be Deleted before Publication)

 This appendix is informative, not normative. It records outstanding
 issues with the protocol design that will need to be resolved before
 publication.

 Data in SYN middlebox traversal: Certain middleboxes do not forward
 data in a SYN. The scheme can detect this (by the lack of
 acknowledgement of the data on the SYN/ACK). However, it would be
 ideal to be able to work round this problem in all circumstances,
 not just those in Appendix C.1.4.

 Options that alter the main TCP header semantics: Need to include
 text to ensure Inner options are used with care where middleboxes
 are known to use a main header field, particularly if the
 middlebox also understands how a TCP option alters its semantics.
 Examples:

 WScale: Easiest to only locate this as an Outer Option - too
 many TCP normalisers that check whether a segment is in window
 use WS to interpret the Window field.

 SACK: A similar but different example is where a middlebox shifts
 the ISN, and also shifts all seqno values including in TCP
 options, e.g. SACK. Here, if SACK were placed as an Inner
 Option, another 'ISN' option would be needed to detect and
 allow for the ISN shift.

 Flow-control deadlock: It needs to be proved whether the solution to
 flow-control deadlock for acknowledgement-related options also
 avoids the risk of deadlock across one or more connection-
 splitting middleboxes.

 Simultaneous open: If host A sends a SYN-U from port S to D, it
 might receive a SYN rather than a SYN/ACK on port S from port D.
 Whether the SYN is upgraded or not, it is believed that it will be
 possible to define all the cases necessary to fully specify the
 simultaneous open case. The number of combinations that have to
 be considered becomes quite tiresome, especially if the case of
 simulataneous dual handshakes is included. Therefore, these
 corner-cases will be addressed in a later revision.

 TCP offload: The protocol design is intended to ensure that new TCP
 extensions will survive segmentation offload. The InSpace Options
 are also intended to provide a robust way for an Inner Space TCP

Briscoe Expires September 10, 2015 [Page 67]

Internet-Draft Inner Space for all TCP Options March 2015

 to offload the generation or ingestion of TCP segments without
 breaking extensibility, but whether it is the best way to
 interwork with offload hardware is yet to be determined.

Appendix F. Change Log (to be Deleted before Publication)

 A detailed version history can be accessed at
 <http://datatracker.ietf.org/doc/draft-briscoe-tcpm-inner-space/

history/>

 From briscoe-...-inner-space-01 to briscoe-...-inner-space-sink-00:
 Technical changes:

 * Added choice of in-order and out-of-order TCP option delivery

 * Added padding for 4-octet alignment of options

 * Made InSpace Options for SYN=0 or SYN=1 have the same structure
 by i) including magic no / message boundary marker as prefix to
 InSpace option and ii) allowing Prefix (out-of-order or fire-
 and-forget) Options in all segments.

 * Changed Sent Payload Size (SPS) field to Sent Data Size (SDS),
 to minimise framing arithmetic.

 * Allowed space in the InSpace Option for the SOO field on all
 segments (not just SYN=1). Also allowed a choice of Len=1 or 2
 when SYN=0 and introduced the P flag if Len=1 to state whether
 the Inner Options are all Prefix or all Suffix.

 * Added the Marker and ZOMBI fields to the InSpace Option when
 SYN=0.

 * Extended Sequence Space Consumption rules to require the
 sequence space of fire-and-forget objects to be coinsidered
 implicitly acknowledged.

 * Removed Fire-and-Forget Options from flow control coverage.

 * New rules for new concept of Impure ACKs.

 * Defined Construction Order for writing TCP Data.

 * Extensive changes to processing order when reading Inner
 Options with SYN=0.

 * 'Compatibility with Pre-Existing TCP Variants' now categorises
 existing TCP options by whether they must be Prefix, Suffix or

http://datatracker.ietf.org/doc/draft-briscoe-tcpm-inner-space/history/
http://datatracker.ietf.org/doc/draft-briscoe-tcpm-inner-space/history/

Briscoe Expires September 10, 2015 [Page 68]

Internet-Draft Inner Space for all TCP Options March 2015

 either, and requires future option definitions to make this
 distinction. Also added some previously overlooked options
 (no-op & EOL) and re-categorised TCP-AO, with explanation

 * When explicit port binding needed, recommended dual handshakes
 in series rather than disabling Inner Space.

 * Defined behaviour when app attempts to determine PMTU.

 * Added security recommendation not to block data-in-SYN unless
 other signs of SYN flood attack.

 * Discussed the potential new attack vector in the optional DPI
 traversal approach, and why it is probably not a concern now
 that the approach is only used in the client-server direction.

 * Made ModeSwitch mandatory, not optional.

 * Restructured the InSpace Option for a jumbogram

 * Specified that the optional DPI traversal extension would only
 be used in the client-server direction, and restructured to
 remain consistent with the changes to the regular InSpace
 Option structure.

 * Cleared all Protocol Design Issues, and added some new ones.

 Editorial changes:

 * Changes to document structure:

 + Added Wider Implications subsection to Intro, looking
 forward to i) a structured control channel for end-to-middle
 interaction and ii) new transport services such as
 Multiplexed streams, compression and encryption;

 + Added 'Flow Control Coverage' and 'Construction Order for
 TCP Data' subsections to 'Writing Inner TCP Options'
 section;

 + Added 'Header Extension by Encapsulation' and 'Framing
 Segments' subsections to rationale for Inner Option Space;

 + Split 'Control Options Within Data Sequence Space' into two
 subsections: i) 'In-Order Flow-Controlled Options' using the
 existing text and a new 'Fire-and-Forget Options'
 subsection;

Briscoe Expires September 10, 2015 [Page 69]

Internet-Draft Inner Space for all TCP Options March 2015

 + Added 'Deployment Approach', including 'Substrate Protocol:
 TCP vs. UDP', and ''User-Space vs. Kernel-Space' to
 Rationale section;

 + Promoted Protocol Overhead subsection.

 + Added appendix for 'Zero Overhead Message Boundary Insertion
 (ZOMBI)';

 * Abstract & Introduction: primary goal changed to redesign of
 TCP's extensibility mechanism (ie middlebox traversal as well
 as option space).

 * Introduction:

 + Rewrote Introduction to introduce the two difficult
 questions that tunnelling TCP options raises: i) immediate
 (out-of-order) delivery of certain options and ii)
 bootstrapping the inner control channel;

 + Made examples in Intro consistent with those in TCP
 Compatibility section (i.e. TCP-AO removed from Inner
 Option list).

 + Added MPTCP & tcpinc to 'Motivation for Adoption Now'

 * Terminology: Added definitions of Pure ACKs, Impure ACKs and
 Flow-Controlled ACKs.

 * Protocol Spec

 + Upgraded Segment Structure and Format: Reflected technical
 changes as above

 + Inner TCP Option Processing: Introduced distinction between
 flow-controlled and fire-and-forget options at the start

 * Acknowledged more helpful people.

 * Added refs related to Minion/COBS, HTTP2 and an architectural
 paper on Inner Space.

 * Appendices: Expanded rationale for optional DPI traversal fall-
 back if not supported by both ends.

 From briscoe-...-inner-space-00 to briscoe-...-inner-space-01:
 Technical changes:

Briscoe Expires September 10, 2015 [Page 70]

Internet-Draft Inner Space for all TCP Options March 2015

 * Corrected DO to 4 * DO (twice)

 * Confirmed that receive window applies to Inner Options

 * Generalised the cause of decryption/decompression from a
 previous TCP option to any previous control message

 * Added requirement for a middlebox not to defer data on SYN

 * Latency of dual handshake is worst of two

 * Completed "Interaction with Pre-Existing TCP Implementations"
 section, covering other TCP variants, TCP in middleboxes and
 the TCP API. Shifted some TCP options to Outer only, because
 of RWND deadlock problem

 * Added two outstanding issues: i) ossifies reliable ordered
 delivery; ii) Ideally Outer in Inner.

 Editorial changes:

 * Removed section on Echo TCP option to a separate I-D that is
 mandatory to implement for inner-space, and shifted some SYN
 flood discussion in Security Considerations

 * Clarifications throughout

 * Acknowledged more review comments

 From draft-briscoe-tcpm-syn-op-sis-02 to draft-briscoe-tcpm-inner-
space-00:

 The Inner Space protocol is a development of a proposal called the
 SynOpSis (Sister SYN options) protocol. Most of the elements of
 Inner Space were in SynOpSis, such as the implicit and explicit
 dual handshakes; the use of a magic number to flag the existence
 of the option; the various header offsets; and the option
 processing rules.

 The main technical differences are: Inner Space extends option
 space on any segment, not just the SYN; this advance requires the
 introduction of the Sent Payload Size field and a general
 rearrangement and simplification of the protocol format; the
 option processing rules have been extended to assure compatibility
 with TFO and one degree of recursion has been introduced to cater
 for encryption or compression of Inner Options; The Echo option
 has been added to provide a SYN-cookie-like capability. Also, the
 default protocol has been pared down to the bare bones and
 optional extensions relegated to appendices.

https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-syn-op-sis-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inner-space-00
https://datatracker.ietf.org/doc/html/draft-briscoe-tcpm-inner-space-00

Briscoe Expires September 10, 2015 [Page 71]

Internet-Draft Inner Space for all TCP Options March 2015

 The main editorial differences are: The emphasis of the Abstract
 and Introduction has expanded from a focus on just extra space
 using the dual handshake to include much more comprehensive
 middlebox traversal. A comprehensive Design Rationale section has
 been added.

Author's Address

 Bob Briscoe
 BT
 B54/77, Adastral Park
 Martlesham Heath
 Ipswich IP5 3RE
 UK

 Phone: +44 1473 645196
 Email: bob.briscoe@bt.com
 URI: http://bobbriscoe.net/

http://bobbriscoe.net/

Briscoe Expires September 10, 2015 [Page 72]

