
TCP Maintenance and Minor Extensions (tcpm)                   B. Briscoe
Internet-Draft                                                        BT
Updates: 793 (if approved)                            September 22, 2014
Intended status: Experimental
Expires: March 26, 2015

Extended TCP Option Space in the Payload of an Alternative SYN
draft-briscoe-tcpm-syn-op-sis-02

Abstract

   This document describes an experimental method to extend the option
   space for connection parameters within the initial TCP SYN segment at
   the start of a TCP connection.  In this method the TCP client sends
   two alternative SYNs: one intended for legacy servers and one
   intended for upgraded servers.  Once it establishes which type of
   server has responded, it continues the connection appropriate to that
   server type and aborts the other.  The SYN intended for upgraded
   servers includes additional options at the end of the payload.  It is
   designed to traverse all known middleboxes.  In the longer term,
   clients will be able to send only the SYN intended for upgraded
   servers.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 26, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents

Briscoe                  Expires March 26, 2015                 [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78


Internet-Draft                 Sister SYNs                September 2014

   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Motivation for Adoption (to be removed before
           publication)  . . . . . . . . . . . . . . . . . . . . . .   3

1.2.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . .   4
1.3.  Experiment Goals  . . . . . . . . . . . . . . . . . . . .   4
1.4.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4

2.  Protocol Specification  . . . . . . . . . . . . . . . . . . .   5
2.1.  Dual 3-Way Handshake  . . . . . . . . . . . . . . . . . .   5
2.2.  Retransmission Behaviour  . . . . . . . . . . . . . . . .   7
2.3.  Segment Structure . . . . . . . . . . . . . . . . . . . .   7
2.3.1.  SYN-U Structure (Non-Deterministic) . . . . . . . . .   7
2.3.2.  SYN/ACK-U Structure . . . . . . . . . . . . . . . . .   9

2.4.  TCP Option Processing . . . . . . . . . . . . . . . . . .   9
2.4.1.  Writing TCP Options . . . . . . . . . . . . . . . . .   9
2.4.2.  Reading TCP Options . . . . . . . . . . . . . . . . .  10
2.4.3.  Forwarding TCP Options  . . . . . . . . . . . . . . .  11

3.  Discussion of Non-Determinism . . . . . . . . . . . . . . . .  11
4.  Migration to Single Handshake . . . . . . . . . . . . . . . .  12
5.  Interaction with Pre-Existing TCP . . . . . . . . . . . . . .  13
6.  Dual Handshake: The Explicit Variant  . . . . . . . . . . . .  13
6.1.  Retransmission Behaviour - Explicit Variant . . . . . . .  14
6.2.  SYN-L Structure . . . . . . . . . . . . . . . . . . . . .  15
6.3.  Corner Cases  . . . . . . . . . . . . . . . . . . . . . .  15

7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  16
8.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  16
10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  16
10.1.  Normative References . . . . . . . . . . . . . . . . . .  16
10.2.  Informative References . . . . . . . . . . . . . . . . .  17

Appendix A.  Alternative Protocol Specifications  . . . . . . . .  17
A.1.  SYN-U Structure (Deterministic) . . . . . . . . . . . . .  17

Appendix B.  Comparison of Alternatives . . . . . . . . . . . . .  19
B.1.  Implicit vs Explicit Dual Handshake . . . . . . . . . . .  19
B.2.  Non-Deterministic vs Deterministic SYN-U  . . . . . . . .  20
B.3.  Comparison with Other Proposals . . . . . . . . . . . . .  21

Appendix C.  Protocol Design Issues (to be Deleted before
                Publication) . . . . . . . . . . . . . . . . . . . .  21

Appendix D.  Change Log (to be Deleted before Publication)  . . .  21

http://trustee.ietf.org/license-info


Briscoe                  Expires March 26, 2015                 [Page 2]



Internet-Draft                 Sister SYNs                September 2014

   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  24

1.  Introduction

   This document describes an experimental method to extend the TCP
   option space available in the initial SYN segment of a TCP connection
   (i.e.  SYN set and ACK not set) [RFC0793].  This extension is
   required to support some combinations of TCP options, notably large
   ones such as TCP AO [RFC5925] (16B), Multipath TCP [RFC6824] (12B),
   and TCP Fast Open [I-D.ietf-tcpm-fastopen] (6-18B) as well as other
   options already typically used in TCP connections, such as SACK-ok
   (2B), Timestamp (10B), Window Scale (3B), MSS (4B) .

   In this method the TCP client sends two alternative SYNs: one
   intended for legacy servers and one intended for upgraded servers.
   Once it establishes which type of server has responded, it continues
   the connection appropriate to that server type and aborts the other.
   The SYN intended for upgraded servers includes additional options at
   the end of the payload.  It is designed to traverse all known
   middleboxes.

   The ambition of this specification is more than just a low latency
   way to extend the TCP option space using two SYNs for parallel
   capability negotiation.  A larger goal is to enable evolution
   towards:

   o  a single TCP initial segment with more space for control options
      and

   o  a more structured way for TCP to determine which control options
      might interact with middleboxes and which are intended solely for
      end-system interaction.

1.1.  Motivation for Adoption (to be removed before publication)

   It is recognised that there could be potential for compressing
   together multiple options in order to mitigate the option space
   problem.  However, it seems inevitable that ultimately more option
   space will be needed, particularly given that many of the TCP options
   introduced recently consume large numbers of bits in order to provide
   sufficient information entropy, which is not amenable to compression.

   Extension of TCP option space on a SYN requires support from both
   ends.  This means it will take many years before the facility is
   functional for most pairs of end-points.  Therefore, given the
   problem is already becoming pressing, a solution needs to start being
   deployed now.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6824


Briscoe                  Expires March 26, 2015                 [Page 3]



Internet-Draft                 Sister SYNs                September 2014

1.2.  Scope

   This experimental specification extends the TCP wire protocol.  It is
   independent of the dynamic behaviour of TCP and it is independent of
   (and thus compatible with) any protocol that encapsulates TCP,
   including IPv4 and IPv6.

1.3.  Experiment Goals

   TCP is critical to the robust functioning of the Internet, therefore
   any proposed modifications to TCP need to be thoroughly tested.  The
   present specification describes an experimental protocol that
   provides extra option space on the initial TCP SYN segment.  The
   intention is to specify the protocol sufficiently so that more than
   one implementation can be built in order to test its function,
   robustness and interoperability (with itself, with previous version
   of TCP, and with various commonly deployed middleboxes).

   Success criteria:   The experimental protocol will be considered
      successful if it satisfies the following requirements in the
      consensus opinion of the IETF tcpm working group. {ToDo: describe
      success criteria}

   Duration:   To be credible, the experiment will need to last at least
      12 months from publication of the present specification.  If
      successful, a report on the experiment will be written up. it
      would then be appropriate to work on a standards track
      specification, in which the experiment report may be included.

1.4.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].  In this
   document, these words will appear with that interpretation only when
   in ALL CAPS.  Lower case uses of these words are not to be
   interpreted as carrying RFC-2119 significance.

   TCP header:  As defined in RFC 793 [RFC0793].  Even though the
      present specification places TCP options at the end of the
      payload, the term 'TCP header' is still used to mean only those
      fields at the head of the segment, delimited by the TCP Data
      Offset.

   Extra TCP options:  TCP options placed in the space that the present
      specification makes available beyond the Data Offset, and beyond
      any optional payload.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793


Briscoe                  Expires March 26, 2015                 [Page 4]



Internet-Draft                 Sister SYNs                September 2014

   TCP payload:  User-data to be passed to the layer above TCP.  The
      present document redefines the TCP payload so that it does not
      include the extra TCP options placed at the end of the payload.

   Legacy connection:  A connection starting with a SYN that a pre-
      existing TCP server will fully understand.

   Upgraded connection:  A connection starting with an upgraded SYN that
      will only be fully understood by a server complying with the
      present specification (even though it might appear valid to a pre-
      existing TCP server).

   Legacy server:  A TCP listener complying with pre-existing TCP
      specifications, but not with the present document.

   Upgraded server:  A TCP listener complying with the present document
      as well as with pre-existing TCP specifications.

2.  Protocol Specification

2.1.  Dual 3-Way Handshake

   The upgraded TCP client sends two alternative SYNs: a regular SYN in
   case the server is legacy and a SYN-U (see Section 2.3.1) in case the
   server is upgraded.  The two SYNs MUST have the same network
   addresses and the same destination port, but different source ports.
   Once the client establishes which type of server has responded, it
   continues the connection appropriate to that server type and aborts
   the other.

   The SYN intended for upgraded servers (SYN-U) includes additional TCP
   options at the end of the payload (see Section 2.3.1).  The options
   are placed at the end of the payload to ensure that the SYN-U is more
   likely to traverse middleboxes that inspect application-layer
   headers, which they expect to be at the start of the payload.

   Table 1 summarises the TCP 3-way handshake exchange for each of the
   two SYNs between an upgraded TCP client (the active opener) and
   either:

   1.  a legacy server, using the two columns to the left, or

   2.  an upgraded server, using the two columns to the right

   Because the two SYNs come from different source ports, the server
   will treat them as separate connections, probably using separate
   threads (assuming a threaded server).  A load balancer might forward
   each SYN to separate replicas of the same logical server.  Each



Briscoe                  Expires March 26, 2015                 [Page 5]



Internet-Draft                 Sister SYNs                September 2014

   replica will deal with each incoming SYN independently - it does not
   need to co-ordinate with the other replica.

   +---+-----------------+-----------+---+----------------+------------+
   |   | Legacy Server   | Legacy    |   | Upgraded       | Upgraded   |
   |   | Thread X        | Server    |   | Server Thread  | Server     |
   |   |                 | Thread Y  |   | X              | Thread Y   |
   +---+-----------------+-----------+---+----------------+------------+
   | 1 | >SYN            | >SYN-U    | | | >SYN           | >SYN-U     |
   |   |                 |           | | |                |            |
   | 2 | <SYN/ACK        | <SYN/ACK  | | | <SYN/ACK       | <SYN/ACK-U |
   |   |                 |           | | |                |            |
   | 3 | Client waits    |           |   | Client waits   |            |
   |   | for response to |           |   | for response   |            |
   |   | both SYNs       |           |   | to SYN-U       |            |
   |   |                 |           | | |                |            |
   | 4 | >ACK            | >RST      | | | >RST           | >ACK       |
   |   |                 |           | | |                |            |
   | 5 | Cont...         |           | | |                | Cont...    |
   +---+-----------------+-----------+---+----------------+------------+

           Table 1: Dual 3-Way Handshake in Two Server Scenarios

   Each column of the table shows the required 3-way handshake exchange
   within each connection, using the following symbols:

      > means client to server

      < means server to client

      Cont... means the TCP connection continues as normal

   The connection that starts with a regular SYN is called the 'legacy
   connection' and the one that starts with a SYN-U is called the
   'upgraded connection'.  An upgraded server MUST respond to a SYN-U
   with an upgraded SYN/ACK (termed a SYN/ACK-U and defined in

Section 2.3.2).  Then the client recognises that it is talking to an
   upgraded server.  The client's behaviour depends on which response it
   receives first, as follows:

   o  If the client first receives a SYN/ACK response on the legacy
      connection, it MUST wait for the response on the upgraded
      connection.  It then proceeds as follows:

      *  If the response on the upgraded connection is a regular SYN/
         ACK, the client MUST reset (RST) the upgraded connection and it
         can continue with the legacy connection.



Briscoe                  Expires March 26, 2015                 [Page 6]



Internet-Draft                 Sister SYNs                September 2014

      *  If the response on the upgraded connection is an upgraded SYN/
         ACK-U, the client MUST reset (RST) the legacy connection and it
         can continue with the upgraded connection.

   o  If the client first receives a legacy SYN/ACK response on the
      upgraded connection, it MUST reset (RST) the upgraded connection
      immediately.  It can then wait for the response on the legacy
      connection and, once it arrives, continue as normal.

   o  If the client first receives an upgraded SYN/ACK-U response on the
      upgraded connection, it MUST reset (RST) the legacy connection
      immediately and continue with the upgraded connection.

2.2.  Retransmission Behaviour

   If the client receives a response to the SYN, but a short while after
   that {duration TBA} the response to the SYN-U has not arrived, it
   SHOULD retransmit the SYN-U.  If latency is more important than the
   extra TCP options, in parallel to any retransmission, or instead of
   any retransmission, the client MAY give up on the upgraded (SYN-U)
   connection by sending a reset (RST) and completing the 3-way
   handshake of the legacy connection.

   If the client receives no response at all to either the SYN or the
   SYN-U, it SHOULD solely retransmit one or the other, not both.  If
   latency is more important than the extra TCP options, it will
   retransmit the SYN.  Otherwise it will retransmit the SYN-U.  It MUST
   NOT retransmit both segments, because the lack of response could be
   due to severe congestion.

2.3.  Segment Structure

2.3.1.  SYN-U Structure (Non-Deterministic)

   {Temporary note: The structure for a SYN-U segment specified in this
   section leads to slightly non-deterministic behaviour, so it will be
   labelled SYN-UN (for Upgraded Non-deterministic).  A deterministic
   alternative is given in Appendix A.  It is expected that one will be
   chosen during the IETF review process, at which point the other will
   be deleted.}

   A SYN-UN is structured as shown in Figure 1.  Up to the payload, it
   is identical to a regular TCP SYN segment, with a base TCP header
   (TCP hdr) and the usual facility to set the Data Offset (DO) to allow
   space for TCP options (TCPopts#2).  The significance of '#2' will be
   explained later.



Briscoe                  Expires March 26, 2015                 [Page 7]



Internet-Draft                 Sister SYNs                September 2014

   Unlike a legacy TCP segment, the payload of a SYN-UN does not
   continue to the end of the packet.  Instead, it can be seen that
   space is provided for additional TCP options at the end of the packet
   at an offset from the end of the packet defined using the Extra
   Options Offset (EOO) field.  The EOO field is read from a new
   'SynOpSis' TCP option defined in this specification.

   Note that the handshake described earlier (Section 2.1) ensures that
   a legacy server will never erroneously pass this mixture of payload
   and options to the application.  If a SYN carries a payload, a TCP
   server holds back the payload from the application until the 3-way
   handshake completes.  And, once the upgraded client recognises it is
   talking to a legacy server it will abort the 3-way handshake of the
   upgraded connection.  Therefore it will always prevent the mixed
   payload from confusing the application.

   The SynOpSis TCP option MUST be the final TCP option right-aligned at
   the end of the payload so that the server can find it (using the
   length of the whole packet found in the network layer header, e.g.
   IPv4 or IPv6).

                                   |   EPOO    |
                                   ,---------->|
   |         DO          |         |               EOO     |     2    |
   ,-------------------->|         |<----------------------.<---------.
   +---------+-----------+---------+-----------+-----------+----------+
   | TCP hdr | TCPopts#2 | Payload | TCPopts#1 | TCPopts#3 | SynOpSis |
   +---------+-----------+---------+-----------+-----------+----------+

           All offsets are specified in 4-octet (32-bit) words.

        Figure 1: The Structure of a SYN-UN segment (not to scale)

   The SynOpSis TCP option has Kind SynOpSis, with a value {TBA} (See
Section 7).  The internal structure of the SynOpSis TCP option for a

   SYN-UN is defined in Figure 2.  In general, the SynOpSis TCP option
   can have different lengths for different purposes.  However, in a
   SYN-UN, the SynOpSis TCP option MUST have Length = 8, so that the
   server can find where it starts (8 octets before the end of the
   segment).  The first 4 octets of the option contain a magic number
   {TBA} to reduce the chance that arbitrary data within the payload
   will be mistaken for a SynOpSis TCP option.



Briscoe                  Expires March 26, 2015                 [Page 8]



Internet-Draft                 Sister SYNs                September 2014

   +---------------+---------------+-------------------------------+
   | Kind=SynOpSis | Length=8      | Magic Number                  |
   +---------------+---------------+---------------+---------------+
   | Magic Number (cont)           | EOO           | EPOO          |
   +---------------+---------------+---------------+---------------+

                Figure 2: SynOpSis TCP Option for a SYN-UN

   Two 1-octet offset fields are placed at the end of the SynOpSis TCP
   option for a SYN-UN:

   The Extra Options Offset (EOO):  The EOO field defines the total size
      of the extra TCP options in 4-octet words.  The start of the extra
      options will be located 4 * (EOO + 2) octets from the end of the
      packet.  The IP payload size will be 4 * (DO + EOO + 2) +
      TCP_payload_size.

   The Extra Prefix Options Offset:  The EPOO field defines an
      additional offset from the start of the extra TCP options that
      identifies the extent of those extra TCP options that need to be
      processed before any regular TCP options.  The EPOO field defines
      this offset in 4-octet words.

2.3.2.  SYN/ACK-U Structure

   The SYN/ACK-U carries a simple SynOpSis flag TCP option as defined in
   Figure 3.  It solely identifies that the SYN/ACK is from a server
   that supports SynOpSis TCP options.

   +---------------+---------------+
   | Kind=SynOpSis | Length=2      |
   +---------------+---------------+

                   Figure 3: A SynOpSis flag TCP option

2.4.  TCP Option Processing

2.4.1.  Writing TCP Options

   If an upgraded TCP client includes the TCP Fast Open option
   [I-D.ietf-tcpm-fastopen] in the SYN, it MUST be placed with the extra
   TCP options after the end of the payload.  An upgraded TCP client
   MUST NOT place any TCP option in the TCP header of a SYN that might
   cause a TCP server to pass user-data directly to the application
   before the 3-way handshake completes.



Briscoe                  Expires March 26, 2015                 [Page 9]



Internet-Draft                 Sister SYNs                September 2014

   In order to ensure that the first extra TCP option aligns on a
   4-octet word boundary, a TCP client SHOULD {ToDo: MUST?} start the
   extra TCP options with sufficient 1-octet no-op TCP options
   [RFC0793].  The number of no-op octets required will be 3 - ((S - 1)
   % 4), where S is the IP payload size in octets and '%' is the modulo
   operation.

2.4.2.  Reading TCP Options

   Before processing any TCP options, if the TCP payload is greater than
   9 octets, an upgraded server MUST determine whether there is a
   SynOpSis TCP option at the end of the packet by checking all the
   following conditions:

   o  The Kind value is the SynOpSis Kind value;

   o  The length is 8;

   o  The next 4 octets match the magic number;

   o  The sum of the value of the EOO field, and all the length fields
      found by walking along the TCP options at the end of the payload
      exactly reaches the end of the packet.

   If any of these conditions fails, the server MUST proceed by
   processing any TCP options in the TCP header (TCPopts#2 in Figure 1),
   and treat all octets after the Data Offset as user-data.

   If an upgraded server finds a valid SynOpSis TCP option at the end of
   the packet, it MUST process the TCP options in a SYN-UN in the
   following order:

   1.  The Prefix TCP options (TCPopts#1 in Figure 1)

   2.  The regular TCP options following the main header but before the
       payload (TCPopts#2 in Figure 1);

   3.  The Suffix TCP options (TCPopts#3 in Figure 1)

   This arrangement allows the client to reveal certain TCP options for
   processing by middleboxes (TCPopts#2), while concealing others after
   the payload.  And the client can still control the order in which the
   server processes all the TCP options.

https://datatracker.ietf.org/doc/html/rfc0793


Briscoe                  Expires March 26, 2015                [Page 10]



Internet-Draft                 Sister SYNs                September 2014

2.4.3.  Forwarding TCP Options

   Middleboxes exist that process some aspects of the TCP header.
   Although the present specification defines a new location for extra
   TCP options at the end of a packet, this is intended for the
   exclusive use of the destination TCP implementation.  Legacy
   middleboxes will not expect to find TCP options beyond the Data
   Offset anyway.  A middlebox MUST continue to treat any data beyond
   the Data Offset solely as user-data.

   A TCP implementation is not necessarily aware whether it is deployed
   in a middlebox or in a destination, e.g. a split TCP connection might
   use a regular TCP implementation.  Therefore, a general-purpose TCP
   that implements the present specification will need a configuration
   switch to disable any search for TCP options at the end of the
   packet.

3.  Discussion of Non-Determinism

   All the TCP headers and options before the payload of a SYN-UN (see
Section 2.3.1) are completely indistinguishable from a regular SYN.

   This makes it very likely that a SYN-UN will be able to traverse any
   legacy middlebox, even one that splits a TCP connection.  A SYN-UN
   can only be distinguished from any legacy SYN by the presence of the
   SynOpSis bit-pattern at the end of the packet.

   This is termed the non-deterministic segment structure, because there
   will be a very small probability (roughly 2^{-48-L}) that payload
   data on a regular (non-SynOpSis) SYN could:

   o  happen to contain a pattern in exactly the right place that
      matches the kind, length and magic number of a SynOpSis TCP option
      and

   o  happen to contain a valid sequence of numbers in exactly the right
      places to look like a valid sequence of TCP option lengths.

   In the above formula, L is the sum of all the bits in all the TCP
   option length fields that seem to be in the payload.  For instance,
   if it appears that there are 2 TCP options before the SynOpSis option
   at the end of the payload, then L=2*8=16, and the probability of
   incorrectly using user-data as TCP options will then be roughly
   2^(-64) = 1 in 18 billion billion (18x10^18).  This 'stealth'
   approach has been taken in order to maximise the chances of
   traversing all the various types of middlebox.

   Note that the non-determinism is only in one direction.  I.e., there
   is a small chance that arbitrary user data might be mistaken for the



Briscoe                  Expires March 26, 2015                [Page 11]



Internet-Draft                 Sister SYNs                September 2014

   SynOpSis TCP option, but it is not possible that a valid SynOpSis TCP
   option would ever be mistaken for user data.

   {ToDo: It is recognised that it is potentially unsafe to use
   probability to determine whether TCP options are hidden at the end of
   the payload.  If the WG prefers not to use the non-deterministic
   structure in Section 2.3.1, it can be replaced with the alternative
   more conventional deterministic protocol structure in .
   (Appendix A.1), and this discussion of non-determinism could then be
   deleted.}

4.  Migration to Single Handshake

   The strategy of sending two SYNs in parallel is not essential to the
   Alternative SYN approach.  It is merely an initial strategy that
   minimises latency when the client does not know whether the server
   has been upgraded.  Evolution to a single SYN with greater optio
   space could proceed as follows:

   o  Clients could maintain a white-list of upgraded servers discovered
      by experience and send just the upgraded SYN-U in these cases.

   o  Then, for white-listed servers, the client could send a legacy SYN
      only in the rare cases when an attempt to use an upgraded
      connection had previously failed (perhaps a mobile client
      encountering a new blockage on a new path to a server that it had
      previously accessed over a good path).

   o  In the longer term, once it can be assumed that most servers are
      upgraded and the risk of having to fall back to legacy has dropped
      to near-zero, clients could send just the upgraded SYN first,
      without maintaining a white-list, but still be prepared to send a
      legacy SYN in the rare cases when that might fail.

   There is concern that, although dual handshake approaches might well
   eventually migrate to a single handshake, they do not scale when
   there are numerous choices to be made simultaneously.  For instance,
   trying IPv4 and IPv6 in parallel [RFC6555]; and trying SCTP and TCP
   in parallel [I-D.wing-tsvwg-happy-eyeballs-sctp]; and trying ECN and
   non-ECN in parallel; and so on.  Nonetheless, it is not necessary to
   try every possible combination of N choices, which would otherwise
   require 2^N handshakes (assuming each choice is between two options).
   Instead, a selection of the choices could be attempted together.  At
   the extreme, two handshakes could be attempted, one with all the new
   features, and one without all the new features.

https://datatracker.ietf.org/doc/html/rfc6555


Briscoe                  Expires March 26, 2015                [Page 12]



Internet-Draft                 Sister SYNs                September 2014

5.  Interaction with Pre-Existing TCP

   {ToDo: TCP API, TCP States and Transitions, TCP Segment Processing,
   Processing and Segment Size Overhead, Connectionless Resets, ICMP
   Handling.  Interaction with EDO, Interaction with TFO (see

Section 2.4.1), Interactions with Other TCP Variants including SYN
   Cookies, Forward-Compatibility, Interaction with TCP assumptions of
   Middleboxes. }

6.  Dual Handshake: The Explicit Variant

   This explicit dual handshake is similar to that in Section 2.1,
   except the SYN that the client intends for a legacy server is
   explicitly distinguishable from the SYN that would be sent by a
   legacy client.  Then, in the case of an upgraded server, the server
   can reset the legacy connection itself, rather than creating
   connection state for at least a round trip until the client resets
   the connection.

   {Temporary note: The choice between the explicit handshake in the
   present section or the handshake in Section 2.1 is a tradeoff between
   robustness against middlebox interference and minimal server state.
   During the IETF review process, one might be chosen as the only
   variant to go forward, at which point the other will be deleted.
   Alternatively, the IETF could allow both variants and a client could
   be implemented with either, or both.  If both, the application could
   choose which to use at run-time.  Then we will need a section
   describing the necessary API.}

   For an explicit dual handshake, the TCP client still sends two
   alternative SYNs: a SYN-L intended for legacy servers and a SYN-U
   intended for upgraded servers.  The two SYNs MUST have the same
   network addresses and the same destination port, but different source
   ports.  Once the client establishes which type of server has
   responded, it continues the connection appropriate to that server
   type and aborts the other.  The SYN intended for upgraded servers
   includes additional options at the end of the payload (the SYN-U
   defined as before in Section 2.3.1).

   Table 2 summarises the TCP 3-way handshake exchange for each of the
   two SYNs between an upgraded TCP client (the active opener) and
   either:

   1.  a legacy server, using the two columns to the left, or

   2.  an upgraded server, using the two columns to the right



Briscoe                  Expires March 26, 2015                [Page 13]



Internet-Draft                 Sister SYNs                September 2014

   The table uses the same layout and symbols as Table 1, which have
   already been explained in Section 2.1.

   +---+-------------+--------------+---+--------------+---------------+
   |   | Legacy      | Legacy       |   | Upgraded     | Upgraded      |
   |   | Server      | Server       |   | Server       | Server Thread |
   |   | Thread X    | Thread Y     |   | Thread X     | Y             |
   +---+-------------+--------------+---+--------------+---------------+
   | 1 | >SYN-L      | >SYN-U       | | | >SYN-L       | >SYN-U        |
   |   |             |              | | |              |               |
   | 2 | <SYN/ACK    | <SYN/ACK     | | | <RST         | <SYN/ACK-U    |
   |   |             |              | | |              |               |
   | 3 | >ACK        | >RST         | | |              | >ACK          |
   |   |             |              | | |              |               |
   | 4 | Cont...     |              | | |              | Cont...       |
   +---+-------------+--------------+---+--------------+---------------+

      Table 2: Explicit Variant of Dual 3-Way Handshake in Two Server
                                 Scenarios

   As before, an upgraded server MUST respond to a SYN-U with a SYN/ACK-
   U.  Then, the client recognises that it is talking to an upgraded
   server.

   Unlike before, an upgraded server MUST respond to a SYN-L with a RST.
   However, the client cannot rely on this behaviour, because a
   middlebox might strip the SynOpSis TCP option from the SYN-L before
   it reaches the server.  Then the handshake would effectively revert
   to the implicit variant.  Therefore the client's behaviour still
   depends on which SYN-ACK arrives first, so its response to SYN-ACKs
   has to follow the rules specified for the implicit handshake variant
   in Section 2.1.

   The rules for processing TCP options are unchanged from those in
Section 2.4.

6.1.  Retransmission Behaviour - Explicit Variant

   If the client receives a RST on one connection, but a short while
   after that {duration TBA} the response to the SYN-U has not arrived,
   it SHOULD retransmit the SYN-U.  If latency is more important than
   the extra TCP options, in parallel to any retransmission, or instead
   of any retransmission, the client MAY send a SYN without any SynOpSis
   option, in case this is the cause of the black-hole.  However, the
   presence of the RST implies that one of the SYNs with a SynOpSis TCP
   option (the SYN-L) probably reached the server, therefore it is more
   likely (but not certain) that the lack of response on the other
   connection is due to transmission loss or congestion loss.



Briscoe                  Expires March 26, 2015                [Page 14]



Internet-Draft                 Sister SYNs                September 2014

   If the client receives no response at all to either the SYN-L or the
   SYN-U, it SHOULD solely retransmit one or the other, not both.  If
   latency is more important than the extra TCP options, it SHOULD send
   a SYN without a SynOpSis TCP option.  Otherwise it SHOULD retransmit
   the SYN-U.  It MUST NOT retransmit both segments, because the lack of
   response could be due to severe congestion.

6.2.  SYN-L Structure

   The SYN-L is merely a SYN with with an extra SynOpSis flag option as
   shown in Figure 3 (see Section 2.3.2).  It solely identifies that the
   SYN is from a client that supports SynOpSis TCP options.  In the case
   of a legacy server, it will just ignore this TCP option that it
   doesn't recognise.

6.3.  Corner Cases

   There is a small but finite possibility that one load-sharing replica
   of a server is upgraded, while another is not.  The Implicit
   Handshake is robust to this possibility, but the Explicit Handshake
   is not., unless the following additional rules are followed:

   Both aborted:  The client might receive a RST on its legacy
      connection in response to its SYN-L, then a regular SYN/ACK on its
      upgraded connection in response to its SYN-U.  In this case, the
      client MUST still respond with a RST on its upgraded connection.
      Otherwise, its extra TCP options will be passed as user-data to
      the application by the legacy server.  If confronted with this
      unusual scenario where both connections are aborted, the client's
      only recourse is to retry a new dual handshake on different source
      ports, or ultimately to fall-back to sending a regular SYN.

   Both successful:  This could happen in either order but, in both
      cases, the client aborts the last connection to respond:

      *  The client completes the legacy handshake (because it receives
         a SYN/ACK), but then, before it has aborted the upgraded
         connection, it receives a SYN/ACK-U on it.  In this case, the
         client MUST abort the upgraded connection even though it would
         work.  Otherwise the client will have opened both connections,
         one with extra TCP options and one without.  This could confuse
         the application.

      *  The client completes the the upgraded connection after
         receiving a SYN/ACK-U, but then it receives a SYN/ACK on the
         legacy connection.  In this case, the client MUST abort the
         legacy connection.



Briscoe                  Expires March 26, 2015                [Page 15]



Internet-Draft                 Sister SYNs                September 2014

7.  IANA Considerations

   This specification requires IANA to allocate one value from the TCP
   option Kind name-space, against the name "Sister SYN Options
   (SynOpSis)"

   Early implementation before the IANA allocation MUST follow [RFC6994]
   and use experimental option 254 and magic number 0xHHHH (16 bits)
   {ToDo: Value TBA and register this with IANA}, then migrate to the
   new option after the allocation.

8.  Security Considerations

   Certain cryptographic functions have different coverage rules for the
   TCP header and TCP payload.  Placing some TCP options at the end of
   the payload could mean that they are treated differently from regular
   TCP options.  This is a deliberate feature of the protocol, but
   application developers will need to be aware that this is the case.

   {ToDo: More}

9.  Acknowledgements

   The idea of this approach grew out of discussions with Joe Touch
   while developing draft-touch-tcpm-syn-ext-opt, and with Jana Iyengar
   and Olivier Bonaventure.  The idea that it is architecturally
   preferable to place a protocol extension behind a higher layer, and
   code its location into upgraded implementations, was originally
   articulated by Rob Hancock.  The following people provided useful
   review comments: Joe Touch, Yuchung Cheng.

   Bob Briscoe was part-funded by the European Community under its
   Seventh Framework Programme through the Trilogy 2 project (ICT-
   317756).  The views expressed here are solely those of the authors.

10.  References

10.1.  Normative References

   [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC6994]  Touch, J., "Shared Use of Experimental TCP Options", RFC
6994, August 2013.

https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-syn-ext-opt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc6994


Briscoe                  Expires March 26, 2015                [Page 16]



Internet-Draft                 Sister SYNs                September 2014

10.2.  Informative References

   [I-D.ietf-tcpm-fastopen]
              Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
              Fast Open", draft-ietf-tcpm-fastopen-09 (work in
              progress), July 2014.

   [I-D.wing-tsvwg-happy-eyeballs-sctp]
              Wing, D. and P. Natarajan, "Happy Eyeballs: Trending
              Towards Success with SCTP", draft-wing-tsvwg-happy-

eyeballs-sctp-02 (work in progress), October 2010.

   [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
              Authentication Option", RFC 5925, June 2010.

   [RFC6555]  Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
              Dual-Stack Hosts", RFC 6555, April 2012.

   [RFC6824]  Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
              "TCP Extensions for Multipath Operation with Multiple
              Addresses", RFC 6824, January 2013.

Appendix A.  Alternative Protocol Specifications

   This appendix is informative and will be deleted before publication.
   It documents protocol alternatives that the IETF may wish to consider
   in place of those in the body of the specification.

A.1.  SYN-U Structure (Deterministic)

   This appendix describes a structure for an upgraded SYN called SYN-UD
   (for upgraded deterministic) that is an alternative to the non-
   deterministic structure defined in Section 2.3.1.  It is termed
   'deterministic' because it uses the conventional placement for the
   SynOpSis TCP option (instead of the unconventional SYN-UN placement
   at the end of the packet, where arbitrary user-data could be mistaken
   for the SynOpSis option).

   However, given it uses the new SynOpSis TCP option in the TCP header,
   it will not always successfully traverse middleboxes.  Unlike a SYN-
   UN, a SYN-UD will certainly not traverse legacy middleboxes that do
   not forward unrecognised TCP options, and it is unlikely to traverse
   a legacy middlebox that splits TCP connections, unless it copies
   unrecognised TCP options.  Nonetheless, like the SYN-UN, the options
   are still placed at the end of the payload to ensure that the SYN-UD
   is more likely to traverse middleboxes that inspect application-layer
   headers, which they expect to be at the start of the payload.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-fastopen-09
https://datatracker.ietf.org/doc/html/draft-wing-tsvwg-happy-eyeballs-sctp-02
https://datatracker.ietf.org/doc/html/draft-wing-tsvwg-happy-eyeballs-sctp-02
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6555
https://datatracker.ietf.org/doc/html/rfc6824


Briscoe                  Expires March 26, 2015                [Page 17]



Internet-Draft                 Sister SYNs                September 2014

   The placement of the SynOpSis TCP option in a SYN-UD segment is shown
   in Figure 4.  It can be seen that extra TCP options are still placed
   at the end of the payload at an offset from the end of the packet
   defined using the Extra Options Offset (EOO) field.

   The EOO field is read from a new 'SynOpSis' TCP option defined in
   this specification.  The SynOpSis TCP options is placed in the
   regular TCP option space of the SYN-UD.

   |                   DO                       |         |    EOO    |
   ,------------------------------------------->|         |<----------.
   +---------+-----------+----------+-----------+---------+-----------+
   | TCP hdr | TCPopts#1 | SynOpSis | TCPopts#3 | Payload | TCPopts#2 |
   +---------+-----------+----------+-----------+---------+-----------+

     Figure 4: The Structure of an alternative (deterministic) SYN-UD
                          segment (not to scale)

   The SynOpSis TCP option for a SYN-UD segment MUST have Kind SynOpSis,
   with a value {TBA} (See Section 7) and Length = 3.  In general, the
   SynOpSis TCP option can have different lengths for different
   purposes.  However, in a SYN-UD, the SynOpSis TCP option has Length =
   3, so that it can carry the 1-octet EOO field, which MUST be present
   in a SYN-UD.  The internal structure of the SynOpSis TCP option for a
   SYN-UD segment is defined in Figure 5.

   +---------------+---------------+---------------+
   | Kind=SynOpSis | Length=3      | EOO           |
   +---------------+---------------+---------------+

         Figure 5: SynOpSis TCP Option for a deterministic SYN-UD

   The Extra Options Offset (EOO) field defines the total size of the
   extra TCP options in 4-octet words.  The start of the extra options
   will be located 4 * EOO octets from the end of the packet.  The IP
   packet payload size will be 4 * (DO + EOO) + TCP_payload_size.

   An upgraded server MUST process the TCP options in a SYN-UD in the
   following order:

   1.  The regular TCP options following the main header but before the
       SynOpSis TCP option (TCPopts#1 in Figure 4)

   2.  The TCP options at the end of the payload (TCPopts#2 in Figure 4)



Briscoe                  Expires March 26, 2015                [Page 18]



Internet-Draft                 Sister SYNs                September 2014

   3.  The regular TCP options following the main header but after the
       SynOpSis TCP option (TCPopts#3 in Figure 4);

Appendix B.  Comparison of Alternatives

B.1.  Implicit vs Explicit Dual Handshake

   In the body of this specification, two variants of the dual handshake
   are defined:

   1.  The implicit dual handshake (Section 2.1) with just a regular SYN
       (no SynOpSis flag option) on the legacy connection;

   2.  The explicit dual handshake (Section 6) with a SYN-L (SynOpSis
       flag option) on the legacy connection.

   Both schemes double up connection state (for a round trip) on the
   legacy server.  But only the implicit scheme doubles up connection
   state (for a round trip) on the upgraded server as well.  On the
   other hand, the explicit scheme risks delay accessing a legacy server
   if a middlebox discards the SYN-L (e.g. some firewalls discard
   packets with unrecognised TCP options).  Table 3 summarises these
   points.

   +----------------------------------+---------------+----------------+
   |                                  |      SYN      |     SYN-L      |
   |                                  |   (Implicit)  |   (Explicit)   |
   +----------------------------------+---------------+----------------+
   | Minimum state on upgraded server |       -       |       +        |
   |                                  |               |                |
   | Minimum risk of delay to legacy  |       +       |       -        |
   | server                           |               |                |
   +----------------------------------+---------------+----------------+

    Table 3: Comparison of Implicit vs. Explicit Dual Handshake on the
                             Legacy Connection

   There is no need for the IETF to choose between these.  If the spec
   allows either or both, the tradeoff can be left to implementers at
   build-time, or to the application at run-time.

   Initially clients might choose the Implicit Dual Handshake to
   minimise delays due to middlebox interference.  But later, perhaps
   once more middleboxes support the scheme, clients might choose the
   Explicit scheme, to minimise state on upgraded servers.



Briscoe                  Expires March 26, 2015                [Page 19]



Internet-Draft                 Sister SYNs                September 2014

B.2.  Non-Deterministic vs Deterministic SYN-U

   Two alternative segment structures for the SYN-U are defined, but in
   this case it is recommended that the IETF needs to choose between
   them so that only one or the other would be specified:

   a.  The non-deterministic SYN-UN (Section 2.3.1), with the SynOpSis
       TCP option located at the end of the packet;

   b.  The deterministic SYN-UD (Appendix A.1), with the SynOpSis TCP
       option located conventionally in the sequence of TCP options in
       the TCP header.

   The non-deterministic SYN-UN presents a small risk of user data being
   mistaken for TCP options.  Also, whether or not the client needs
   extra option space, it requires the server to always check for a TCP
   option at the end of any SYN with a payload greater than 9 octets.
   On the other hand, the deterministic SYN-UD risks delay accessing an
   upgraded server because it is visible to middleboxes that discard
   packets with unrecognised TCP options.  Also the SYN-UD is vulnerable
   to being removed by middleboxes that do not forward unrecognised
   options, whereas the SYN-UN is likely to traverse all legacy
   middleboxes, even split TCP connections.  Table 4 summarises these
   points.

   +---------------------------+---------------------+-----------------+
   |                           |     SYN-UN (Non-    |      SYN-UD     |
   |                           |    deterministic)   | (Deterministic) |
   +---------------------------+---------------------+-----------------+
   | User data unmistakable    |          -          |        +        |
   |                           |                     |                 |
   | No need for upgraded      |          -          |        +        |
   | server to check end of    |                     |                 |
   | every SYN payload         |                     |                 |
   |                           |                     |                 |
   | Minimum risk of delay to  |          +          |        -        |
   | upgraded server           |                     |                 |
   |                           |                     |                 |
   | Extra TCP options likely  |          +          |        -        |
   | to traverse all           |                     |                 |
   | middleboxes               |                     |                 |
   +---------------------------+---------------------+-----------------+

    Table 4: Comparison of Implicit vs. Explicit Dual Handshake on the
                             Legacy Connection

   The IETF needs to choose between SYN-UN and SYN-UD, because if
   implementation of either or both were allowed, the two deficiencies



Briscoe                  Expires March 26, 2015                [Page 20]



Internet-Draft                 Sister SYNs                September 2014

   of SYN-UN would still affect server implementations, whether or not
   the client used a SYN-UN to take advantage of the two benefits.

   Currently this document favours SYN-UN, because SYN-UD's lack of
   reliable middlebox traversal introduces a functional deficiency (if
   extra option space is absolutely required, the connection cannot even
   start).  In contrast, SYN-UN's first failing has vanishingly small
   probability, and its second failing 'only' increases server
   processing - it does not impair the ability of connections to
   function outright.

B.3.  Comparison with Other Proposals

   {ToDo}

Appendix C.  Protocol Design Issues (to be Deleted before Publication)

   This appendix is informative, not normative.  It records outstanding
   issues with the protocol design that will need to be resolved before
   publication.

   Reliance on segmentation boundary:  The definition of the position of
      the SynOpSis TCP options depends on where the sender decided to
      place a segment boundary.  In general, a sender cannot rely on
      segment boundaries being preserved, e.g. by segmentation
      offloading hardware.  In the case of a SYN, no more payload data
      is sent in the first round trip, therefore using this segment
      boundary is probably safe.  However, it may constrain future
      attempts to send additional data in the first round.

   Tie to EDO?:  Consider whether a successful SYN/ACK-U implies EDO is
      also supported.

   Size of SynOpSis magic number:  Justify choice.

Appendix D.  Change Log (to be Deleted before Publication)

   A detailed version history can be accesssed at
   <http://datatracker.ietf.org/doc/draft-briscoe-tcpm-syn-op-sis/

history/>

   From briscoe...-01 to briscoe...-02:

      Technical changes:

      *  Defined the client behaviour dependent on which response
         arrives first.

http://datatracker.ietf.org/doc/draft-briscoe-tcpm-syn-op-sis/history/
http://datatracker.ietf.org/doc/draft-briscoe-tcpm-syn-op-sis/history/


Briscoe                  Expires March 26, 2015                [Page 21]



Internet-Draft                 Sister SYNs                September 2014

      *  Allowed retransmission of either SYN or SYN-U if no response
         from either.

      *  Redefined EOO as an offset from the end of the packet, not from
         the beginning of the payload.

      *  Added section on Migration to a Single Handshake.  Reworded
         dual handshake so that it is not mandatory for the client to
         send dual SYNs simultaneously; only the relation between the
         SYNs and the response to either is mandatory, while parallel
         SYNs is purely for latency reduction.

      *  Added rules for writing TCP options, i.e. i) options like TFO
         MUST NOT be located in the TCP header and ii) add no-ops to
         align on 4-octet boundary.

      *  Added rules for forwarding TCP options, i.e. only the
         destination looks for TCP options after the Data Offset, not
         middleboxes.

      *  Moved the Explicit Handshake variant (SYN-L) into the body from
         the appendix, and recommended the choice could be down to
         implementers or apps.  Included section on corner cases.

      *  Introduced more normative language throughout the Protocol
         Spec.

      Editorial changes:

      *  Added temporary motivation section

      *  Added confusible terminology to Terminology section.

      *  Divided protocol spec into sub-sections.

      *  Handshake table: Clarified that the two columns under each
         server represent separate threads, that may run on separate
         servers, without co-ordination.  Represented message
         dependencies in the alignment of the rows.

      *  Explained the table.

      *  Explained why a legacy server won't ever pass SYN-U to the app.

      *  More precisely described loss as 'not arrived before a
         timeout', and explained the tradeoff between latency and extra
         TCP options.



Briscoe                  Expires March 26, 2015                [Page 22]



Internet-Draft                 Sister SYNs                September 2014

      *  Gave reasoning for locating TCP options in three groups.

      *  Acknowledged Rob Hancock for the architectural idea of hiding
         an extension to a protocol in the layer above.

      *  Appendix about protocol alternatives now only presents the SYN-
         UD alternative, given the implicit/explicit handshake choice
         has been moved to the body.

      *  Rewrote appendix about comparing the choices to treat the two
         pairs of choices separately, rather than discussing all four
         combinations of pairs of choices.

   From briscoe...-00 to briscoe...-01:

      Technical changes:

      *  Added the definition of a SYN/ACK-U

      *  Deterministic Protocol Spec: Replaced SYN/ACK-L with RST (Joe
         Touch)

      *  Added Non-Deterministic Explicit and Deterministic Implicit
         Protocol Specs in Appendices

      *  Added Comparison of Alternatives as an Appendix

      *  Security Considerations: Added note about crypto coverage of
         TCP options in the payload being different from that of other
         TCP options.

      *  Added an appendix to record outstanding Protocol Design Issues,
         and included segmentation boundary issue (Yuchung Cheng).

      Editorial changes:

      *  Changed TCP option Kind from SYN-OP-SIS to SynOpSis

      *  Protocol Spec: Explained why the extra TCP options are placed
         at the end of the payload

      *  Throughout: avoided the ambiguity in the word payload, now that
         there are TCP options at the end of the payload.  Some might
         consider these to be within the payload, while others might
         consider them to be placed beyond the payload.

      *  Segment structure figures: Clarified that they are not to
         scale.



Briscoe                  Expires March 26, 2015                [Page 23]



Internet-Draft                 Sister SYNs                September 2014

      *  Added placeholder section "Interaction with TCP"

      *  Acknowledged reviewers

Author's Address

   Bob Briscoe
   BT
   B54/77, Adastral Park
   Martlesham Heath
   Ipswich  IP5 3RE
   UK

   Phone: +44 1473 645196
   Email: bob.briscoe@bt.com
   URI:   http://bobbriscoe.net/

http://bobbriscoe.net/


Briscoe                  Expires March 26, 2015                [Page 24]


