
Active Queue Management (aqm) K. De Schepper
Internet-Draft Nokia Bell Labs
Intended status: Experimental B. Briscoe, Ed.
Expires: May 4, 2017 O. Bondarenko
 Simula Research Lab
 I. Tsang
 Nokia Bell Labs
 October 31, 2016

DualQ Coupled AQM for Low Latency, Low Loss and Scalable Throughput
draft-briscoe-tsvwg-aqm-dualq-coupled-00

Abstract

 Data Centre TCP (DCTCP) was designed to provide predictably low
 queuing latency, near-zero loss, and throughput scalability using
 explicit congestion notification (ECN) and an extremely simple
 marking behaviour on switches. However, DCTCP does not co-exist with
 existing TCP traffic---throughput starves. So, until now, DCTCP
 could only be deployed where a clean-slate environment could be
 arranged, such as in private data centres. This specification
 defines `DualQ Coupled Active Queue Management (AQM)' to allow
 scalable congestion controls like DCTCP to safely co-exist with
 classic Internet traffic. The Coupled AQM ensures that a flow runs
 at about the same rate whether it uses DCTCP or TCP Reno/Cubic, but
 without inspecting transport layer flow identifiers. When tested in
 a residential broadband setting, DCTCP achieved sub-millisecond
 average queuing delay and zero congestion loss under a wide range of
 mixes of DCTCP and `Classic' broadband Internet traffic, without
 compromising the performance of the Classic traffic. The solution
 also reduces network complexity and eliminates network configuration.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

De Schepper, et al. Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DualQ Coupled AQM October 2016

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Problem and Scope . 2
1.2. Terminology . 5
1.3. Features . 5

2. DualQ Coupled AQM Algorithm 6
2.1. Coupled AQM . 7
2.2. Dual Queue . 8
2.3. Traffic Classification 8
2.4. Normative Requirements 8

3. IANA Considerations . 9
4. Security Considerations 10
4.1. Overload Handling . 10

5. Acknowledgements . 11
6. References . 11
6.1. Normative References 11
6.2. Informative References 12

Appendix A. Example DualQ Coupled PI2 Algorithm 14
Appendix B. Example DualQ Coupled Curvy RED Algorithm 17
Appendix C. Guidance on Controlling Throughput Equivalence . . . 23

 Authors' Addresses . 24

1. Introduction

1.1. Problem and Scope

 Latency is becoming the critical performance factor for many (most?)
 applications on the public Internet, e.g. Web, voice, conversational
 video, gaming, finance apps, remote desktop and cloud-based
 applications. In the developed world, further increases in access

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

De Schepper, et al. Expires May 4, 2017 [Page 2]

Internet-Draft DualQ Coupled AQM October 2016

 network bit-rate offer diminishing returns, whereas latency is still
 a multi-faceted problem. In the last decade or so, much has been
 done to reduce propagation time by placing caches or servers closer
 to users. However, queuing remains a major component of latency.

 The Diffserv architecture provides Expedited Forwarding [RFC3246], so
 that low latency traffic can jump the queue of other traffic.
 However, on access links dedicated to individual sites (homes, small
 enterprises or mobile devices), often all traffic at any one time
 will be latency-sensitive. Then Diffserv is of little use. Instead,
 we need to remove the causes of any unnecessary delay.

 The bufferbloat project has shown that excessively-large buffering
 (`bufferbloat') has been introducing significantly more delay than
 the underlying propagation time. These delays appear only
 intermittently--only when a capacity-seeking (e.g. TCP) flow is long
 enough for the queue to fill the buffer, making every packet in other
 flows sharing the buffer sit through the queue.

 Active queue management (AQM) was originally developed to solve this
 problem (and others). Unlike Diffserv, which gives low latency to
 some traffic at the expense of others, AQM controls latency for _all_
 traffic in a class. In general, AQMs introduce an increasing level
 of discard from the buffer the longer the queue persists above a
 shallow threshold. This gives sufficient signals to capacity-seeking
 (aka. greedy) flows to keep the buffer empty for its intended
 purpose: absorbing bursts. However, RED [RFC2309] and other
 algorithms from the 1990s were sensitive to their configuration and
 hard to set correctly. So, AQM was not widely deployed.

 More recent state-of-the-art AQMs, e.g.
 fq_CoDel [I-D.ietf-aqm-fq-codel], PIE [I-D.ietf-aqm-pie], Adaptive
 RED [ARED01], are easier to configure, because they define the
 queuing threshold in time not bytes, so it is invariant for different
 link rates. However, no matter how good the AQM, the sawtoothing
 rate of TCP will either cause queuing delay to vary or cause the link
 to be under-utilized. Even with a perfectly tuned AQM, the
 additional queuing delay will be of the same order as the underlying
 speed-of-light delay across the network. Flow-queuing can isolate
 one flow from another, but it cannot isolate a TCP flow from the
 delay variations it inflicts on itself, and it has other problems -
 it overrides the flow rate decisions of variable rate video
 applications, it does not recognise the flows within IPSec VPN
 tunnels and it is relatively expensive to implement.

 It seems that further changes to the network alone will now yield
 diminishing returns. Data Centre TCP (DCTCP [I-D.ietf-tcpm-dctcp])

https://datatracker.ietf.org/doc/html/rfc3246
https://datatracker.ietf.org/doc/html/rfc2309

De Schepper, et al. Expires May 4, 2017 [Page 3]

Internet-Draft DualQ Coupled AQM October 2016

 teaches us that a small but radical change to TCP is needed to cut
 two major outstanding causes of queuing delay variability:

 1. the `sawtooth' varying rate of TCP itself;

 2. the smoothing delay deliberately introduced into AQMs to permit
 bursts without triggering losses.

 The former causes a flow's round trip time (RTT) to vary from about 1
 to 2 times the base RTT between the machines in question. The latter
 delays the system's response to change by a worst-case
 (transcontinental) RTT, which could be hundreds of times the actual
 RTT of typical traffic from localized CDNs.

 Latency is not our only concern:

 3. It was known when TCP was first developed that it would not scale
 to high bandwidth-delay products.

 Given regular broadband bit-rates over WAN distances are
 already [RFC3649] beyond the scaling range of `classic' TCP Reno,
 `less unscalable' Cubic [I-D.ietf-tcpm-cubic] and
 Compound [I-D.sridharan-tcpm-ctcp] variants of TCP have been
 successfully deployed. However, these are now approaching their
 scaling limits. Unfortunately, fully scalable TCPs such as DCTCP
 cause `classic' TCP to starve itself, which is why they have been
 confined to private data centres or research testbeds (until now).

 This document specifies a `DualQ Coupled AQM' extension that solves
 the problem of coexistence between scalable and classic flows,
 without having to inspect flow identifiers. The AQM is not like
 flow-queuing approaches [I-D.ietf-aqm-fq-codel] that classify packets
 by flow identifier into numerous separate queues in order to isolate
 sparse flows from the higher latency in the queues assigned to
 heavier flow. In contrast, the AQM exploits the behaviour of
 scalable congestion controls like DCTCP so that every packet in every
 flow sharing the queue for DCTCP-like traffic can be served with very
 low latency.

 This AQM extension can be combined with any single qeueu AQM that
 generates a statistical or deterministic mark/drop probability driven
 by the queue dynamics. In many cases it simplifies the basic control
 algorithm, and requires little extra processing. Therefore it is
 believed the Coupled AQM would be applicable and easy to deploy in
 all types of buffers; buffers in cost-reduced mass-market residential
 equipment; buffers in end-system stacks; buffers in carrier-scale
 equipment including remote access servers, routers, firewalls and

https://datatracker.ietf.org/doc/html/rfc3649

De Schepper, et al. Expires May 4, 2017 [Page 4]

Internet-Draft DualQ Coupled AQM October 2016

 Ethernet switches; buffers in network interface cards, buffers in
 virtualized network appliances, hypervisors, and so on.

 The supporting papers [PI216] and [DCttH15] give the full rationale
 for the AQM's design, both discursively and in more precise
 mathematical form.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. In this
 document, these words will appear with that interpretation only when
 in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

 The DualQ Coupled AQM uses two queues for two services. Each of the
 following terms identifies both the service and the queue that
 provides the service:

 Classic (denoted by subscript C): The `Classic' service is intended
 for all the behaviours that currently co-exist with TCP Reno (TCP
 Cubic, Compound, SCTP, etc).

 Low-Latency, Low-Loss and Scalable (L4S, denoted by subscript L):
 The `L4S' service is intended for a set of congestion controls
 with scalable properties such as DCTCP (e.g.
 Relentless [Mathis09]).

 Either service can cope with a proportion of unresponsive or less-
 responsive traffic as well (e.g. DNS, VoIP, etc), just as a single
 queue AQM can. The DualQ Coupled AQM behaviour is similar to a
 single FIFO queue with respect to unresponsive and overload traffic.

1.3. Features

 The AQM couples marking and/or dropping across the two queues such
 that a flow will get roughly the same throughput whichever it uses.
 Therefore both queues can feed into the full capacity of a link and
 no rates need to be configured for the queues. The L4S queue enables
 scalable congestion controls like DCTCP to give stunningly low and
 predictably low latency, without compromising the performance of
 competing 'Classic' Internet traffic. Thousands of tests have been
 conducted in a typical fixed residential broadband setting. Typical
 experiments used base round trip delays up to 100ms between the data
 centre and home network, and large amounts of background traffic in
 both queues. For every L4S packet, the AQM kept the average queuing
 delay below 1ms (or 2 packets if serialization delay is bigger for

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

De Schepper, et al. Expires May 4, 2017 [Page 5]

Internet-Draft DualQ Coupled AQM October 2016

 slow links), and no losses at all were introduced by the AQM.
 Details of the extensive experiments will be made available [PI216]
 [DCttH15].

 Subjective testing was also conducted using a demanding panoramic
 interactive video application run over a stack with DCTCP enabled and
 deployed on the testbed. Each user could pan or zoom their own high
 definition (HD) sub-window of a larger video scene from a football
 match. Even though the user was also downloading large amounts of
 L4S and Classic data, latency was so low that the picture appeared to
 stick to their finger on the touchpad (all the L4S data achieved the
 same ultra-low latency). With an alternative AQM, the video
 noticeably lagged behind the finger gestures.

 Unlike Diffserv Expedited Forwarding, the L4S queue does not have to
 be limited to a small proportion of the link capacity in order to
 achieve low delay. The L4S queue can be filled with a heavy load of
 capacity-seeking flows like DCTCP and still achieve low delay. The
 L4S queue does not rely on the presence of other traffic in the
 Classic queue that can be 'overtaken'. It gives low latency to L4S
 traffic whether or not there is Classic traffic, and the latency of
 Classic traffic does not suffer when a proportion of the traffic is
 L4S. The two queues are only necessary because DCTCP-like flows
 cannot keep latency predictably low and keep utilization high if they
 are mixed with legacy TCP flows,

 The experiments used the Linux implementation of DCTCP that is
 deployed in private data centres, without any modification despite
 its known deficiencies. Nonetheless, certain modifications will be
 necessary before DCTCP is safe to use on the Internet, which are
 recorded for now in Appendix A of
 [I-D.briscoe-tsvwg-aqm-tcpm-rmcat-l4s-problem]. However, the focus
 of this specification is to get the network service in place. Then,
 without any management intervention, applications can exploit it by
 migrating to scalable controls like DCTCP, which can then evolve
 while their benefits are being enjoyed by everyone on the Internet.

2. DualQ Coupled AQM Algorithm

 There are two main aspects to the algorithm:

 o the Coupled AQM that addresses throughput equivalence between
 Classic (e.g. Reno, Cubic) flows and L4S (e.g. DCTCP) flows

 o the Dual Queue structure that provides latency separation for L4S
 flows to isolate them from the typically large Classic queue.

De Schepper, et al. Expires May 4, 2017 [Page 6]

Internet-Draft DualQ Coupled AQM October 2016

2.1. Coupled AQM

 In the 1990s, the `TCP formula' was derived for the relationship
 between TCP's congestion window, cwnd, and its drop probability, p.
 To a first order approximation, cwnd of TCP Reno is inversely
 proportional to the square root of p. TCP Cubic implements a Reno-
 compatibility mode, which is the only relevant mode for typical RTTs
 under 20ms, while the throughput of a single flow is less than about
 500Mb/s. Therefore we can assume that Cubic traffic behaves similar
 to Reno (but with a slightly different constant of proportionality),
 and we shall use the term 'Classic' for the collection of Reno and
 Cubic in Reno mode.

 In our supporting paper [PI216], we derive the equivalent rate
 equation for DCTCP, for which cwnd is inversely proportional to p
 (not the square root), where in this case p is the ECN marking
 probability. DCTCP is not the only congestion control that behaves
 like this, so we use the term 'L4S' traffic for all similar
 behaviour.

 In order to make a DCTCP flow run at roughly the same rate as a Reno
 TCP flow (all other factors being equal), we make the drop or marking
 probability for Classic traffic, p_C distinct from the marking
 probability for L4S traffic, p_L (in contrast to RFC3168 which
 requires them to be the same). We make the Classic drop probability
 p_C proportional to the square of the L4S marking probability p_L.
 This is because we need to make the Reno flow rate equal the DCTCP
 flow rate, so we have to square the square root of p_C in the Reno
 rate equation to make it the same as the straight p_L in the DCTCP
 rate equation.

 There is a really simple way to implement the square of a probability
 - by testing the queue against two random numbers not one. This is
 the approach adopted in Appendix A and Appendix B.

 Stating this as a formula, the relation between Classic drop
 probability, p_C, and L4S marking probability, p_L needs to take the
 form:

 p_C = (p_L / k)^2 (1)

 where k is the constant of proportionality. Optionally, k can be
 expressed as a power of 2, so k=2^k', where k' is another constant.
 Then implementations can avoid costly division by shifting p_L by k'
 bits to the right.

https://datatracker.ietf.org/doc/html/rfc3168

De Schepper, et al. Expires May 4, 2017 [Page 7]

Internet-Draft DualQ Coupled AQM October 2016

2.2. Dual Queue

 Classic traffic builds a large queue, so a separate queue is provided
 for L4S traffic, and it is scheduled with strict priority.
 Nonetheless, coupled marking ensures that giving priority to L4S
 traffic still leaves the right amount of spare scheduling time for
 Classic flows to each get equivalent throughput to DCTCP flows (all
 other factors such as RTT being equal). The algorithm achieves this
 without having to inspect flow identifiers.

2.3. Traffic Classification

 Both the Coupled AQM and DualQ mechanisms need an identifier to
 distinguish L4S and C packets. A separate draft
 [I-D.briscoe-tsvwg-ecn-l4s-id] recommends using the ECT(1) codepoint
 of the ECN field as this identifier, having assessed various
 alternatives.

 Given L4S work is currently on the experimental track, but the
 definition of the ECN field is on the standards track [RFC3168],
 another standards track document has proved necessary to make the
 ECT(1) codepoint available for experimentation
 [I-D.black-tsvwg-ecn-experimentation].

2.4. Normative Requirements

 In the Dual Queue, L4S packets MUST be given priority over Classic,
 although strict priority MAY not be appropriate.

 All L4S traffic MUST be ECN-capable, although some Classic traffic
 MAY also be ECN-capable.

 Whatever identifier is used for L4S traffic, it will still be
 necessary to agree on the meaning of an ECN marking on L4S traffic,
 relative to a drop of Classic traffic. In order to prevent
 starvation of Classic traffic by scalable L4S traffic (e.g. DCTCP)
 the drop probability of Classic traffic MUST be proportional to the
 square of the marking probability of L4S traffic, In other words, the
 power to which p_L is raised in Eqn. (1) MUST be 2.

 The constant of proportionality, k, in Eqn (1) determines the
 relative flow rates of Classic and L4S flows when the AQM concerned
 is the bottleneck (all other factors being equal). k does not have to
 be standardized because differences do not prevent interoperability.
 However, k has to take some value, and each operator can make that
 choice.

https://datatracker.ietf.org/doc/html/rfc3168

De Schepper, et al. Expires May 4, 2017 [Page 8]

Internet-Draft DualQ Coupled AQM October 2016

 A value of k=2 is currently RECOMMENDED as the default for Internet
 access networks. Assuming scalable congestion controls for the
 Internet will be as aggressive as DCTCP, this will ensure their
 congestion window will be roughly the same as that of a standards
 track TCP congestion control (Reno) [RFC5681] and other so-called
 TCP-friendly controls such as TCP Cubic in its TCP-friendly mode.

 The requirements for scalable congestion controls on the Internet
 (termed the TCP Prague requirements) are only in initial draft form
 [I-D.briscoe-tsvwg-aqm-tcpm-rmcat-l4s-problem] and subject to change.
 If the aggressiveness of DCTCP is not defined as the benchmark for
 scalable controls on the Internet, the recommended value of k will
 also be subject to change.

 Whatever value is recommended, the choice of k is a matter of
 operator policy, and operators MAY choose a different value using
 Table 1 and the guidelines in Appendix C.

 Typically, access network operators isolate customers from each other
 with some form of layer-2 multiplexing (TDM in DOCSIS, CDMA in 3G) or
 L3 scheduling (WRR in broadband), rather than relying on TCP to share
 capacity between customers [RFC0970]. In such cases, the choice of k
 will solely affect relative flow rates within each customer's access
 capacity, not between customers. Also, k will not affect relative
 flow rates at any times when all flows are Classic or all L4S, and it
 will not affect small flows.

 Example DualQ Coupled AQM algorithms called PI2 and Curvy RED are
 given in Appendix A and Appendix B. Either example AQM can be used
 to couple packet marking and dropping across a dual Q. Curvy RED
 requires less operations per packet than RED and can be used if the
 range of RTTs is limited. PI2 is a simplification of PIE with stable
 Proportional-Integral control for both Classic and L4S congestion
 controls. Nonetheless, it would be possible to control the queues
 with other alternative AQMs, as long as the above normative
 requirements (those expressed in capitals) are observed, which are
 intended to be independent of the specific AQM.

 {ToDo: Add management and monitoring requirements}

3. IANA Considerations

 This specification contains no IANA considerations.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc0970

De Schepper, et al. Expires May 4, 2017 [Page 9]

Internet-Draft DualQ Coupled AQM October 2016

4. Security Considerations

4.1. Overload Handling

 Where the interests of users or flows might conflict, it could be
 necessary to police traffic to isolate any harm to performance. This
 is a policy issue that needs to be separable from a basic AQM, but an
 AQM does need to handle overload. A trade-off needs to be made
 between complexity and the risk of either class harming the other.
 It is an operator policy to define what must happen if the service
 time of the classic queue becomes too great. In the following
 subsections three optional non-exclusive overload protections are
 defined. Their objective is for the overload behaviour of the DualQ
 AQM to be similar to a single queue AQM. The example implementation
 in Appendix A implements the 'delay on overload' policy. Other
 overload protections can be envisaged:

 Minimum throughput service: By replacing the priority scheduler
 with a weighted round robin scheduler, a minimum throughput
 service can be guaranteed for Classic traffic. Typically the
 scheduling weight of the Classic queue will be small (e.g. 5%) to
 avoid interference with the coupling but big enough to avoid
 complete starvation of Classic traffic.

 Delay on overload: To control milder overload of responsive traffic,
 particularly when close to the maximum congestion signal, delay
 can be used as an alternative congestion control mechanism. The
 Dual Queue Coupled AQM can be made to behave like a single First-
 In First-Out (FIFO) queue with different service times by
 replacing the priority scheduler with a very simple scheduler that
 could be called a "time-shifted FIFO", which is the same as the
 Modifier Earliest Deadline First (MEDF) scheduler of [MEDF]. The
 scheduler adds T_m to the queue delay of the next L4S packet,
 before comparing it with the queue delay of the next Classic
 packet, then it selects the packet with the greater adjusted queue
 delay. Under regular conditions, this time-shifted FIFO scheduler
 behaves just like a strict priority scheduler. But under moderate
 or high overload it prevents starvation of the Classic queue,
 because the time-shift defines the maximum extra queuing delay
 (T_m) of Classic packets relative to L4S.

 Drop on overload: On severe overload, e.g. due to non responsive
 traffic, queues will typically overflow and packet drop will be
 unavoidable. It is important to avoid unresponsive ECN traffic
 (either Classic or L4S) driving the AQM to 100% drop and mark
 probability. Congestion controls that have a minimum congestion
 window will become unresponsive to ECN marking when the marking
 probability is high. This situation can be avoided by applying

De Schepper, et al. Expires May 4, 2017 [Page 10]

Internet-Draft DualQ Coupled AQM October 2016

 the drop probability to all packets of all traffic types when it
 exceeds a certain threshold or by limiting the drop and marking
 probabilities to a lower maximum value (up to where fairnes
 between the different traffic types is still guaranteed) and rely
 on delay to control temporary high congestion and eventually queue
 overflow. If the classic drop probability is applied to all types
 of traffic when it is higher than a threshold probability the
 queueing delay can be controlled up to any overload situation, and
 no further measures are required. If a maximum classic and
 coupled L4S probability of less than 100% is used, both queues
 need scheduling opportunities and should eventually experience
 drop. This can be achieved with a scheduler that guarantees a
 minimum throughput for each queue, such as a weighted round robin
 or time-shifted FIFO scheduler. In that case a common queue limit
 can be configured that will drop packets of both types of traffic.

 To keep the throughput of both L4S and Classic flows equal over the
 full load range, a different control strategy needs to be defined
 above the point where one congestion control first saturates to a
 probability of 100% (if k>1, L4S will saturate first). Possible
 strategies include: also dropping L4S; increasing the queueing delay
 for both; or ensuring that L4S traffic still responds to marking
 below a window of 2 segments (see Appendix A of
 [I-D.briscoe-tsvwg-aqm-tcpm-rmcat-l4s-problem]).

5. Acknowledgements

 Thanks to Anil Agarwal for detailed review comments and suggestions
 on how to make our explanation clearer.

 The authors' contributions are part-funded by the European Community
 under its Seventh Framework Programme through the Reducing Internet
 Transport Latency (RITE) project (ICT-317700). The views expressed
 here are solely those of the authors.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

De Schepper, et al. Expires May 4, 2017 [Page 11]

Internet-Draft DualQ Coupled AQM October 2016

6.2. Informative References

 [ARED01] Floyd, S., Gummadi, R., and S. Shenker, "Adaptive RED: An
 Algorithm for Increasing the Robustness of RED's Active
 Queue Management", ACIRI Technical Report , August 2001,
 <http://www.icir.org/floyd/red.html>.

 [CoDel] Nichols, K. and V. Jacobson, "Controlling Queue Delay",
 ACM Queue 10(5), May 2012,
 <http://queue.acm.org/issuedetail.cfm?issue=2208917>.

 [CRED_Insights]
 Briscoe, B., "Insights from Curvy RED (Random Early
 Detection)", BT Technical Report TR-TUB8-2015-003, July
 2015,
 <http://www.bobbriscoe.net/projects/latency/credi_tr.pdf>.

 [DCttH15] De Schepper, K., Bondarenko, O., Briscoe, B., and I.
 Tsang, "`Data Centre to the Home': Ultra-Low Latency for
 All", 2015, <http://www.bobbriscoe.net/projects/latency/

dctth_preprint.pdf>.

 (Under submission)

 [I-D.black-tsvwg-ecn-experimentation]
 Black, D., "Explicit Congestion Notification (ECN)
 Experimentation", draft-black-tsvwg-ecn-experimentation-02
 (work in progress), October 2016.

 [I-D.briscoe-tsvwg-aqm-tcpm-rmcat-l4s-problem]
 Briscoe, B., Schepper, K., and M. Bagnulo, "Low Latency,
 Low Loss, Scalable Throughput (L4S) Internet Service:
 Problem Statement", draft-briscoe-tsvwg-aqm-tcpm-rmcat-

l4s-problem-02 (work in progress), July 2016.

 [I-D.briscoe-tsvwg-ecn-l4s-id]
 Schepper, K., Briscoe, B., and I. Tsang, "Identifying
 Modified Explicit Congestion Notification (ECN) Semantics
 for Ultra-Low Queuing Delay", draft-briscoe-tsvwg-ecn-l4s-

id-02 (work in progress), October 2016.

 [I-D.ietf-aqm-fq-codel]
 Hoeiland-Joergensen, T., McKenney, P.,
 dave.taht@gmail.com, d., Gettys, J., and E. Dumazet, "The
 FlowQueue-CoDel Packet Scheduler and Active Queue
 Management Algorithm", draft-ietf-aqm-fq-codel-06 (work in
 progress), March 2016.

http://www.icir.org/floyd/red.html
http://queue.acm.org/issuedetail.cfm?issue=2208917
http://www.bobbriscoe.net/projects/latency/credi_tr.pdf
http://www.bobbriscoe.net/projects/latency/dctth_preprint.pdf
http://www.bobbriscoe.net/projects/latency/dctth_preprint.pdf
https://datatracker.ietf.org/doc/html/draft-black-tsvwg-ecn-experimentation-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-aqm-tcpm-rmcat-l4s-problem-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-aqm-tcpm-rmcat-l4s-problem-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-ecn-l4s-id-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-ecn-l4s-id-02
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-fq-codel-06

De Schepper, et al. Expires May 4, 2017 [Page 12]

Internet-Draft DualQ Coupled AQM October 2016

 [I-D.ietf-aqm-pie]
 Pan, R., Natarajan, P., Baker, F., and G. White, "PIE: A
 Lightweight Control Scheme To Address the Bufferbloat
 Problem", draft-ietf-aqm-pie-10 (work in progress),
 September 2016.

 [I-D.ietf-tcpm-cubic]
 Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

draft-ietf-tcpm-cubic-02 (work in progress), August 2016.

 [I-D.ietf-tcpm-dctcp]
 Bensley, S., Eggert, L., Thaler, D., Balasubramanian, P.,
 and G. Judd, "Datacenter TCP (DCTCP): TCP Congestion
 Control for Datacenters", draft-ietf-tcpm-dctcp-02 (work
 in progress), July 2016.

 [I-D.sridharan-tcpm-ctcp]
 Sridharan, M., Tan, K., Bansal, D., and D. Thaler,
 "Compound TCP: A New TCP Congestion Control for High-Speed
 and Long Distance Networks", draft-sridharan-tcpm-ctcp-02
 (work in progress), November 2008.

 [Mathis09]
 Mathis, M., "Relentless Congestion Control", PFLDNeT'09 ,
 May 2009, <http://www.hpcc.jp/pfldnet2009/

Program_files/1569198525.pdf>.

 [MEDF] Menth, M., Schmid, M., Heiss, H., and T. Reim, "MEDF - a
 simple scheduling algorithm for two real-time transport
 service classes with application in the UTRAN", Proc. IEEE
 Conference on Computer Communications (INFOCOM'03) Vol.2
 pp.1116-1122, March 2003.

 [PI216] De Schepper, K., Bondarenko, O., Briscoe, B., and I.
 Tsang, "PI2: A Linearized AQM for both Classic and
 Scalable TCP", ACM CoNEXT'16 , December 2016,
 <https://riteproject.files.wordpress.com/2015/10/

pi2_conext.pdf>.

 (To appear)

 [RFC0970] Nagle, J., "On Packet Switches With Infinite Storage",
RFC 970, DOI 10.17487/RFC0970, December 1985,

 <http://www.rfc-editor.org/info/rfc970>.

https://datatracker.ietf.org/doc/html/draft-ietf-aqm-pie-10
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-dctcp-02
https://datatracker.ietf.org/doc/html/draft-sridharan-tcpm-ctcp-02
http://www.hpcc.jp/pfldnet2009/Program_files/1569198525.pdf
http://www.hpcc.jp/pfldnet2009/Program_files/1569198525.pdf
https://riteproject.files.wordpress.com/2015/10/pi2_conext.pdf
https://riteproject.files.wordpress.com/2015/10/pi2_conext.pdf
https://datatracker.ietf.org/doc/html/rfc970
http://www.rfc-editor.org/info/rfc970

De Schepper, et al. Expires May 4, 2017 [Page 13]

Internet-Draft DualQ Coupled AQM October 2016

 [RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
 S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
 Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
 S., Wroclawski, J., and L. Zhang, "Recommendations on
 Queue Management and Congestion Avoidance in the
 Internet", RFC 2309, DOI 10.17487/RFC2309, April 1998,
 <http://www.rfc-editor.org/info/rfc2309>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
 J., Courtney, W., Davari, S., Firoiu, V., and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
 <http://www.rfc-editor.org/info/rfc3246>.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
RFC 3649, DOI 10.17487/RFC3649, December 2003,

 <http://www.rfc-editor.org/info/rfc3649>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

Appendix A. Example DualQ Coupled PI2 Algorithm

 As a first concrete example, the pseudocode below gives the DualQ
 Coupled AQM algorithm based on the PI2 Classic AQM, we used and
 tested. For this example only the pseudo code is given. An open
 source implementation for Linux is available at:

https://github.com/olgabo/dualpi2.

 1: dualpi2_enqueue(lq, cq, pkt) { % Test limit and classify lq or cq
 2: stamp(pkt) % attach arrival time to packet
 3: if (lq.len() + cq.len() > limit)
 4: drop(pkt) % drop packet if q is full
 5: else {
 6: if (ecn(pkt) modulo 2 == 0) % ECN bits = not-ect or ect(0)
 7: cq.enqueue(pkt)
 8: else % ECN bits = ect(1) or ce
 9: lq.enqueue(pkt)
 10: }
 11: }

 Figure 1: Example Enqueue Pseudocode for DualQ Coupled PI2 AQM

https://datatracker.ietf.org/doc/html/rfc2309
http://www.rfc-editor.org/info/rfc2309
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3246
http://www.rfc-editor.org/info/rfc3246
https://datatracker.ietf.org/doc/html/rfc3649
http://www.rfc-editor.org/info/rfc3649
https://datatracker.ietf.org/doc/html/rfc5681
http://www.rfc-editor.org/info/rfc5681
https://github.com/olgabo/dualpi2

De Schepper, et al. Expires May 4, 2017 [Page 14]

Internet-Draft DualQ Coupled AQM October 2016

 1: dualpi2_dequeue(lq, cq) { % Couples L4S & Classic queues, lq & cq
 2: while (lq.len() + cq.len() > 0)
 3: if (lq.time() + tshift >= cq.time()) {
 4: lq.dequeue(pkt)
 5: if ((pkt.time() > T) or (p > rand()))
 6: mark(pkt)
 7: return(pkt) % return the packet and stop here
 8: } else {
 9: cq.dequeue(pkt)
 10: if (p/k > max(rand(), rand())) % same as testing (p/k)^2
 11: if (ecn(pkt) == 0) % ECN field = not-ect
 12: drop(pkt) % squared drop, redo loop
 13: else {
 14: mark(pkt) % squared mark
 15: return(pkt) % return the packet and stop here
 16: }
 17: else
 18: return(pkt) % return the packet and stop here
 19: }
 20: }
 21: return(NULL) % no packet to dequeue
 22: }

 Figure 2: Example Dequeue Pseudocode for DualQ Coupled PI2 AQM

 1: dualpi2_update(lq, cq) { % Update p every Tupdate
 2: curq = cq.time() % use queuing time of first-in Classic packet
 3: alpha_U = alpha * Tupdate % done once when parameters are set
 4: beta_U = beta * Tupdate % done once when parameters are set
 5: p = p + alpha_U * (curq - target) + beta_U * (curq - prevq)
 6: prevq = curq
 7: }

 Figure 3: Example PI-Update Pseudocode for DualQ Coupled PI2 AQM

 When packets arrive, first a common queue limit is checked as shown
 in line 3 of the enqueuing pseudocode in Figure 1. Note that the
 limit is deliberately tested before enqueue to avoid any bias against
 larger packets (so the actual buffer has to be one packet larger than
 limit). If limit is not exceeded, the packet will be classified and
 enqueued to the Classic or L4S queue dependent on the least
 significant bit of the ECN field in the IP header (line 6). Packets
 with a codepoint having an LSB of 0 (Not-ECT and ECT(0)) will be
 enqueued in the Classic queue. Otherwise, ECT(1) and CE packets will
 be enqueued in the L4S queue.

 The pseudocode in Figure 2 summarises the per packet dequeue
 implementation of the DualPI2 code. Line 3 implements the time-

De Schepper, et al. Expires May 4, 2017 [Page 15]

Internet-Draft DualQ Coupled AQM October 2016

 shifted FIFO scheduling. It takes the packet that waited the
 longest, biased by a time-shift of tshift for the Classic traffic.
 If an L4S packet is scheduled, lines 5 and 6 mark the packet if
 either the L4S threshold T is exceeded, or if a random marking
 decision is drawn according to the probability p (maintained by the
 dualpi2_update() function discussed below). If a Classic packet is
 scheduled, lines 10 to 16 drop or mark the packet based on 2 random
 decisions resulting in the squared probability (p/k)^2 (hence the
 name PI2 for Classic traffic). Note that p is reduced by the factor
 k here. This has 2 effects; first the steady state probability is
 halved as required to give Classic TCP and DCTCP traffic equal
 throughput; secondly, the effect of the dynamic gain parameters alpha
 and beta are halved as well, which is also needed give Classic TCP
 and DCTCP control the same stability.

 The probability p is kept up to date by the core PI algorithm in
 Figure 3 which is executed every Tupdate ([I-D.ietf-aqm-pie] now
 recommends 16ms, but in our testing so far we have used the earlier
 recommendation of 32ms). Note that p solely depends on the queuing
 time in the Classic queue. In line 2, the current queuing delay is
 evaluated by inspecting the timestamp of the next packet to schedule
 in the Classic queue. The function cq.time() subtracts the time
 stamped at enqueue from the current time and implicitly takes the
 current queuing delay as 0 if the queue is empty. Line 3 and 4 only
 need to be executed when the configuration parameters are changed.
 Alpha and beta in Hz are gain factors per 1 second. If a briefer
 update time is configured, alpha_U and beta_U (_U = per Tupdate) also
 have to be reduced, to ensure that the same response is given over
 time. As such, a smaller Tupdate will only result in a response with
 smaller and finer steps, not a more aggressive response. The new
 probability is calculated in line 5, where target is the target
 queuing delay, as defined in [I-D.ietf-aqm-pie]. In corner cases, p
 can overflow the range [0,1] so the resulting value of p has to be
 bounded (omitted from the pseudocode). Unlike PIE, alpha_U and
 beta_U are not tuned dependent on p, every Tupdate. Instead, in PI2
 alpha_U and beta_U can be constants because the squaring applied to
 Classic traffic tunes them inherently, as explained in [PI216].

 In our experiments so far (building on experiments with PIE) on
 broadband access links ranging from 4 Mb/s to 200 Mb/s with base RTTs
 from 5 ms to 100 ms, PI2 achieves good results with the following
 parameters:

 tshift = 40ms

 T = max(1ms, serialization time of 2 MTU)

 target = 20ms

De Schepper, et al. Expires May 4, 2017 [Page 16]

Internet-Draft DualQ Coupled AQM October 2016

 Tupdate = 32ms

 k = 2

 alpha = 20Hz (alpha/k = 10Hz for Classic)

 beta = 200Hz (beta/k = 100Hz for Classic)

Appendix B. Example DualQ Coupled Curvy RED Algorithm

 As another example, the pseudocode below gives the Curvy RED based
 DualQ Coupled AQM algorithm we used and tested. Although we designed
 the AQM to be efficient in integer arithmetic, to aid understanding
 it is first given using real-number arithmetic. Then, one possible
 optimization for integer arithmetic is given, also in pseudocode. To
 aid comparison, the line numbers are kept in step between the two by
 using letter suffixes where the longer code needs extra lines.

 1: dualq_dequeue(lq, cq) { % Couples L4S & Classic queues, lq & cq
 2: if (lq.dequeue(pkt)) {
 3a: p_L = cq.sec() / 2^S_L
 3b: if (lq.byt() > T)
 3c: mark(pkt)
 3d: elif (p_L > maxrand(U))
 4: mark(pkt)
 5: return(pkt) % return the packet and stop here
 6: }
 7: while (cq.dequeue(pkt)) {
 8a: alpha = 2^(-f_C)
 8b: Q_C = alpha * pkt.sec() + (1-alpha)* Q_C % Classic Q EWMA
 9a: sqrt_p_C = Q_C / 2^S_C
 9b: if (sqrt_p_C > maxrand(2*U))
 10: drop(pkt) % Squared drop, redo loop
 11: else
 12: return(pkt) % return the packet and stop here
 13: }
 14: return(NULL) % no packet to dequeue
 15: }

 16: maxrand(u) { % return the max of u random numbers
 17: maxr=0
 18: while (u-- > 0)
 19: maxr = max(maxr, rand()) % 0 <= rand() < 1
 20: return(maxr)
 21: }

 Figure 4: Example Dequeue Pseudocode for DualQ Coupled Curvy RED AQM

De Schepper, et al. Expires May 4, 2017 [Page 17]

Internet-Draft DualQ Coupled AQM October 2016

 Packet classification code is not shown, as it is no different from
 Figure 1. Potential classification schemes are discussed in

Section 2. Overload protection code will be included in a future
 draft {ToDo}.

 At the outer level, the structure of dualq_dequeue() implements
 strict priority scheduling. The code is written assuming the AQM is
 applied on dequeue (Note 1) . Every time dualq_dequeue() is called,
 the if-block in lines 2-6 determines whether there is an L4S packet
 to dequeue by calling lq.dequeue(pkt), and otherwise the while-block
 in lines 7-13 determines whether there is a Classic packet to
 dequeue, by calling cq.dequeue(pkt). (Note 2)

 In the lower priority Classic queue, a while loop is used so that, if
 the AQM determines that a classic packet should be dropped, it
 continues to test for classic packets deciding whether to drop each
 until it actually forwards one. Thus, every call to dualq_dequeue()
 returns one packet if at least one is present in either queue,
 otherwise it returns NULL at line 14. (Note 3)

 Within each queue, the decision whether to drop or mark is taken as
 follows (to simplify the explanation, it is assumed that U=1):

 L4S: If the test at line 2 determines there is an L4S packet to
 dequeue, the tests at lines 3a and 3c determine whether to mark
 it. The first is a simple test of whether the L4S queue (lq.byt()
 in bytes) is greater than a step threshold T in bytes (Note 4).
 The second test is similar to the random ECN marking in RED, but
 with the following differences: i) the marking function does not
 start with a plateau of zero marking until a minimum threshold,
 rather the marking probability starts to increase as soon as the
 queue is positive; ii) marking depends on queuing time, not bytes,
 in order to scale for any link rate without being reconfigured;
 iii) marking of the L4S queue does not depend on itself, it
 depends on the queuing time of the _other_ (Classic) queue, where
 cq.sec() is the queuing time of the packet at the head of the
 Classic queue (zero if empty); iv) marking depends on the
 instantaneous queuing time (of the other Classic queue), not a
 smoothed average; v) the queue is compared with the maximum of U
 random numbers (but if U=1, this is the same as the single random
 number used in RED).

 Specifically, in line 3a the marking probability p_L is set to the
 Classic queueing time qc.sec() in seconds divided by the L4S
 scaling parameter 2^S_L, which represents the queuing time (in
 seconds) at which marking probability would hit 100%. Then in line
 3d (if U=1) the result is compared with a uniformly distributed
 random number between 0 and 1, which ensures that marking

De Schepper, et al. Expires May 4, 2017 [Page 18]

Internet-Draft DualQ Coupled AQM October 2016

 probability will linearly increase with queueing time. The
 scaling parameter is expressed as a power of 2 so that division
 can be implemented as a right bit-shift (>>) in line 3 of the
 integer variant of the pseudocode (Figure 5).

 Classic: If the test at line 7 determines that there is at least one
 Classic packet to dequeue, the test at line 9b determines whether
 to drop it. But before that, line 8b updates Q_C, which is an
 exponentially weighted moving average (Note 5) of the queuing time
 in the Classic queue, where pkt.sec() is the instantaneous
 queueing time of the current Classic packet and alpha is the EWMA
 constant for the classic queue. In line 8a, alpha is represented
 as an integer power of 2, so that in line 8 of the integer code
 the division needed to weight the moving average can be
 implemented by a right bit-shift (>> f_C).

 Lines 9a and 9b implement the drop function. In line 9a the
 averaged queuing time Q_C is divided by the Classic scaling
 parameter 2^S_C, in the same way that queuing time was scaled for
 L4S marking. This scaled queuing time is given the variable name
 sqrt_p_C because it will be squared to compute Classic drop
 probability, so before it is squared it is effectively the square
 root of the drop probability. The squaring is done by comparing
 it with the maximum out of two random numbers (assuming U=1).
 Comparing it with the maximum out of two is the same as the
 logical `AND' of two tests, which ensures drop probability rises
 with the square of queuing time (Note 6). Again, the scaling
 parameter is expressed as a power of 2 so that division can be
 implemented as a right bit-shift in line 9 of the integer
 pseudocode.

 The marking/dropping functions in each queue (lines 3 & 9) are two
 cases of a new generalization of RED called Curvy RED, motivated as
 follows. When we compared the performance of our AQM with fq_CoDel
 and PIE, we came to the conclusion that their goal of holding queuing
 delay to a fixed target is misguided [CRED_Insights]. As the number
 of flows increases, if the AQM does not allow TCP to increase queuing
 delay, it has to introduce abnormally high levels of loss. Then loss
 rather than queuing becomes the dominant cause of delay for short
 flows, due to timeouts and tail losses.

 Curvy RED constrains delay with a softened target that allows some
 increase in delay as load increases. This is achieved by increasing
 drop probability on a convex curve relative to queue growth (the
 square curve in the Classic queue, if U=1). Like RED, the curve hugs
 the zero axis while the queue is shallow. Then, as load increases,
 it introduces a growing barrier to higher delay. But, unlike RED, it
 requires only one parameter, the scaling, not three. The diadvantage

De Schepper, et al. Expires May 4, 2017 [Page 19]

Internet-Draft DualQ Coupled AQM October 2016

 of Curvy RED is that it is not adapted to a wide range of RTTs.
 Curvy RED can be used as is when the RTT range to support is limited
 otherwise an adaptation mechanism is required.

 There follows a summary listing of the two parameters used for each
 of the two queues:

 Classic:

 S_C : The scaling factor of the dropping function scales Classic
 queuing times in the range [0, 2^(S_C)] seconds into a dropping
 probability in the range [0,1]. To make division efficient, it
 is constrained to be an integer power of two;

 f_C : To smooth the queuing time of the Classic queue and make
 multiplication efficient, we use a negative integer power of
 two for the dimensionless EWMA constant, which we define as
 2^(-f_C).

 L4S :

 S_L (and k): As for the Classic queue, the scaling factor of the
 L4S marking function scales Classic queueing times in the range
 [0, 2^(S_L)] seconds into a probability in the range [0,1].
 Note that S_L = S_C + k, where k is the coupling between the
 queues (Section 2.1). So S_L and k count as only one
 parameter;

 T : The queue size in bytes at which step threshold marking
 starts in the L4S queue.

 {ToDo: These are the raw parameters used within the algorithm. A
 configuration front-end could accept more meaningful parameters and
 convert them into these raw parameters.}

 From our experiments so far, recommended values for these parameters
 are: S_C = -1; f_C = 5; T = 5 * MTU for the range of base RTTs
 typical on the public Internet. [CRED_Insights] explains why these
 parameters are applicable whatever rate link this AQM implementation
 is deployed on and how the parameters would need to be adjusted for a
 scenario with a different range of RTTs (e.g. a data centre) {ToDo
 incorporate a summary of that report into this draft}. The setting of
 k depends on policy (see Section 2.4 and Appendix C respectively for
 its recommended setting and guidance on alternatives).

 There is also a cUrviness parameter, U, which is a small positive
 integer. It is likely to take the same hard-coded value for all
 implementations, once experiments have determined a good value. We

De Schepper, et al. Expires May 4, 2017 [Page 20]

Internet-Draft DualQ Coupled AQM October 2016

 have solely used U=1 in our experiments so far, but results might be
 even better with U=2 or higher.

 Note that the dropping function at line 9 calls maxrand(2*U), which
 gives twice as much curviness as the call to maxrand(U) in the
 marking function at line 3. This is the trick that implements the
 square rule in equation (1) (Section 2.1). This is based on the fact
 that, given a number X from 1 to 6, the probability that two dice
 throws will both be less than X is the square of the probability that
 one throw will be less than X. So, when U=1, the L4S marking
 function is linear and the Classic dropping function is squared. If
 U=2, L4S would be a square function and Classic would be quartic.
 And so on.

 The maxrand(u) function in lines 16-21 simply generates u random
 numbers and returns the maximum (Note 7). Typically, maxrand(u)
 could be run in parallel out of band. For instance, if U=1, the
 Classic queue would require the maximum of two random numbers. So,
 instead of calling maxrand(2*U) in-band, the maximum of every pair of
 values from a pseudorandom number generator could be generated out-
 of-band, and held in a buffer ready for the Classic queue to consume.

 1: dualq_dequeue(lq, cq) { % Couples L4S & Classic queues, lq & cq
 2: if (lq.dequeue(pkt)) {
 3: if ((lq.byt() > T) || ((cq.ns() >> (S_L-2)) > maxrand(U)))
 4: mark(pkt)
 5: return(pkt) % return the packet and stop here
 6: }
 7: while (cq.dequeue(pkt)) {
 8: Q_C += (pkt.ns() - Q_C) >> f_C % Classic Q EWMA
 9: if ((Q_C >> (S_C-2)) > maxrand(2*U))
 10: drop(pkt) % Squared drop, redo loop
 11: else
 12: return(pkt) % return the packet and stop here
 13: }
 14: return(NULL) % no packet to dequeue
 15: }

 Figure 5: Optimised Example Dequeue Pseudocode for Coupled DualQ AQM
 using Integer Arithmetic

 Notes:

 1. The drain rate of the queue can vary if it is scheduled relative
 to other queues, or to cater for fluctuations in a wireless
 medium. To auto-adjust to changes in drain rate, the queue must
 be measured in time, not bytes or packets [CoDel]. In our Linux
 implementation, it was easiest to measure queuing time at

De Schepper, et al. Expires May 4, 2017 [Page 21]

Internet-Draft DualQ Coupled AQM October 2016

 dequeue. Queuing time can be estimated when a packet is enqueued
 by measuring the queue length in bytes and dividing by the recent
 drain rate.

 2. An implementation has to use priority queueing, but it need not
 implement strict priority.

 3. If packets can be enqueued while processing dequeue code, an
 implementer might prefer to place the while loop around both
 queues so that it goes back to test again whether any L4S packets
 arrived while it was dropping a Classic packet.

 4. In order not to change too many factors at once, for now, we keep
 the marking function for DCTCP-only traffic as similar as
 possible to DCTCP. However, unlike DCTCP, all processing is at
 dequeue, so we determine whether to mark a packet at the head of
 the queue by the byte-length of the queue _behind_ it. We plan
 to test whether using queuing time will work in all
 circumstances, and if we find that the step can cause
 oscillations, we will investigate replacing it with a steep
 random marking curve.

 5. An EWMA is only one possible way to filter bursts; other more
 adaptive smoothing methods could be valid and it might be
 appropriate to decrease the EWMA faster than it increases.

 6. In practice at line 10 the Classic queue would probably test for
 ECN capability on the packet to determine whether to drop or mark
 the packet. However, for brevity such detail is omitted. All
 packets classified into the L4S queue have to be ECN-capable, so
 no dropping logic is necessary at line 3. Nonetheless, L4S
 packets could be dropped by overload code (see Section 4.1).

 7. In the integer variant of the pseudocode (Figure 5) real numbers
 are all represented as integers scaled up by 2^32. In lines 3 &
 9 the function maxrand() is arranged to return an integer in the
 range 0 <= maxrand() < 2^32. Queuing times are also scaled up by
 2^32, but in two stages: i) In lines 3 and 8 queuing times
 cq.ns() and pkt.ns() are returned in integer nanoseconds, making
 the values about 2^30 times larger than when the units were
 seconds, ii) then in lines 3 and 9 an adjustment of -2 to the
 right bit-shift multiplies the result by 2^2, to complete the
 scaling by 2^32.

De Schepper, et al. Expires May 4, 2017 [Page 22]

Internet-Draft DualQ Coupled AQM October 2016

Appendix C. Guidance on Controlling Throughput Equivalence

 +---------------+------+-------+
 | RTT_C / RTT_L | Reno | Cubic |
 +---------------+------+-------+
 | 1 | k=1 | k=0 |
 | 2 | k=2 | k=1 |
 | 3 | k=2 | k=2 |
 | 4 | k=3 | k=2 |
 | 5 | k=3 | k=3 |
 +---------------+------+-------+

 Table 1: Value of k for which DCTCP throughput is roughly the same as
 Reno or Cubic, for some example RTT ratios

 To determine the appropriate policy, the operator first has to judge
 whether it wants DCTCP flows to have roughly equal throughput with
 Reno or with Cubic (because, even in its Reno-compatibility mode,
 Cubic is about 1.4 times more aggressive than Reno). Then the
 operator needs to decide at what ratio of RTTs it wants DCTCP and
 Classic flows to have roughly equal throughput. For example choosing
 the recommended value of k=0 will make DCTCP throughput roughly the
 same as Cubic, _if their RTTs are the same_.

 However, even if the base RTTs are the same, the actual RTTs are
 unlikely to be the same, because Classic (Cubic or Reno) traffic
 needs a large queue to avoid under-utilization and excess drop,
 whereas L4S (DCTCP) does not. The operator might still choose this
 policy if it judges that DCTCP throughput should be rewarded for
 keeping its own queue short.

 On the other hand, the operator will choose one of the higher values
 for k, if it wants to slow DCTCP down to roughly the same throughput
 as Classic flows, to compensate for Classic flows slowing themselves
 down by causing themselves extra queuing delay.

 The values for k in the table are derived from the formulae, which
 was developed in [DCttH15]:

 2^k = 1.64 (RTT_reno / RTT_dc) (2)
 2^k = 1.19 (RTT_cubic / RTT_dc) (3)

 For localized traffic from a particular ISP's data centre, we used
 the measured RTTs to calculate that a value of k=3 would achieve
 throughput equivalence, and our experiments verified the formula very
 closely.

De Schepper, et al. Expires May 4, 2017 [Page 23]

Internet-Draft DualQ Coupled AQM October 2016

Authors' Addresses

 Koen De Schepper
 Nokia Bell Labs
 Antwerp
 Belgium

 Email: koen.de_schepper@nokia.com
 URI: https://www.bell-labs.com/usr/koen.de_schepper

 Bob Briscoe (editor)
 Simula Research Lab

 Email: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

 Olga Bondarenko
 Simula Research Lab
 Lysaker
 Norway

 Email: olgabnd@gmail.com
 URI: https://www.simula.no/people/olgabo

 Ing-jyh Tsang
 Nokia Bell Labs
 Antwerp
 Belgium

 Email: ing-jyh.tsang@nokia.com

https://www.bell-labs.com/usr/koen.de_schepper
http://bobbriscoe.net/
https://www.simula.no/people/olgabo

De Schepper, et al. Expires May 4, 2017 [Page 24]

