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Abstract

   This document describes the L4S architecture for the provision of a
   new service that the Internet could provide to eventually replace
   best efforts for all traffic: Low Latency, Low Loss, Scalable
   throughput (L4S).  It is becoming common for _all_ (or most)
   applications being run by a user at any one time to require low
   latency.  However, the only solution the IETF can offer for ultra-low
   queuing delay is Diffserv, which only favours a minority of packets
   at the expense of others.  In extensive testing the new L4S service
   keeps average queuing delay under a millisecond for _all_
   applications even under very heavy load, without sacrificing
   utilization; and it keeps congestion loss to zero.  It is becoming
   widely recognized that adding more access capacity gives diminishing
   returns, because latency is becoming the critical problem.  Even with
   a high capacity broadband access, the reduced latency of L4S
   remarkably and consistently improves performance under load for
   applications such as interactive video, conversational video, voice,
   Web, gaming, instant messaging, remote desktop and cloud-based apps
   (even when all being used at once over the same access link).  The
   insight is that the root cause of queuing delay is in TCP, not in the
   queue.  By fixing the sending TCP (and other transports) queuing
   latency becomes so much better than today that operators will want to
   deploy the network part of L4S to enable new products and services.
   Further, the network part is simple to deploy - incrementally with
   zero-config.  Both parts, sender and network, ensure coexistence with
   other legacy traffic.  At the same time L4S solves the long-
   recognized problem with the future scalability of TCP throughput.

   This document describes the L4S architecture, briefly describing the
   different components and how the work together to provide the
   aforementioned enhanced Internet service.
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1.  Introduction

   It is increasingly common for _all_ of a user's applications at any
   one time to require low delay: interactive Web, Web services, voice,
   conversational video, interactive video, instant messaging, online
   gaming, remote desktop and cloud-based applications.  In the last
   decade or so, much has been done to reduce propagation delay by
   placing caches or servers closer to users.  However, queuing remains
   a major, albeit intermittent, component of latency.  When present it
   typically doubles the path delay from that due to the base speed-of-
   light.  Low loss is also important because, for interactive
   applications, losses translate into even longer retransmission
   delays.

   It has been demonstrated that, once access network bit rates reach
   levels now common in the developed world, increasing capacity offers
   diminishing returns if latency (delay) is not addressed.
   Differentiated services (Diffserv) offers Expedited Forwarding
   [RFC3246] for some packets at the expense of others, but this is not
   applicable when all (or most) of a user's applications require low
   latency.

   Therefore, the goal is an Internet service with ultra-Low queueing
   Latency, ultra-Low Loss and Scalable throughput (L4S) - for _all_
   traffic.  This document describes the L4S architecture for achieving
   that goal.

   It must be said that queuing delay only degrades performance
   infrequently [Hohlfeld14].  It only occurs when a large enough
   capacity-seeking (e.g.  TCP) flow is running alongside the user's
   traffic in the bottleneck link, which is typically in the access
   network.  Or when the low latency application is itself a large
   capacity-seeking flow (e.g. interactive video).  At these times, the
   performance improvement must be so remarkable that network operators
   will be motivated to deploy it.

   Active Queue Management (AQM) is part of the solution to queuing
   under load.  AQM improves performance for all traffic, but there is a

https://datatracker.ietf.org/doc/html/rfc3246


Briscoe, et al.            Expires May 4, 2017                  [Page 3]



Internet-Draft              L4S Architecture                October 2016

   limit to how much queuing delay can be reduced by solely changing the
   network; without addressing the root of the problem.

   The root of the problem is the presence of standard TCP congestion
   control (Reno [RFC5681]) or compatible variants (e.g.  TCP Cubic
   [I-D.ietf-tcpm-cubic]).  We shall call this family of congestion
   controls 'Classic' TCP.  It has been demonstrated that if the sending
   host replaces Classic TCP with a 'Scalable' alternative, when a
   suitable AQM is deployed in the network the performance under load of
   all the above interactive applications can be stunningly improved.
   For instance, queuing delay under heavy load with the example DCTCP/
   DualQ solution cited below is roughly 1 millisecond (1 ms) at the
   99th percentile without losing link utilization.  This compares with
   5 to 20 ms on _average_ with a Classic TCP and current state-of-the-
   art AQMs such as fq_CoDel [I-D.ietf-aqm-fq-codel] or
   PIE [I-D.ietf-aqm-pie].  Also, with a Classic TCP, 5 ms of queuing is
   usually only possible by losing some utilization.

   It has been convincingly demonstrated [DCttH15] that it is possible
   to deploy such an L4S service alongside the existing best efforts
   service so that all of a user's applications can shift to it when
   their stack is updated.  Access networks are typically designed with
   one link as the bottleneck for each site (which might be a home,
   small enterprise or mobile device), so deployment at a single node
   should give nearly all the benefit.  The L4S approach requires a
   number of mechanisms in different parts of the Internet to fulfill
   its goal.  This document presents the L4S architecture, by describing
   the different components and how they interact to provide the
   scalable low-latency, low-loss, Internet service.

2.  L4S architecture overview

   There are three main components to the L4S architecture (illustrated
   in Figure 1):

   2) Network:  The L4S service traffic needs to be isolated from the
      queuing latency of the Classic service traffic.  However, the two
      should be able to freely share a common pool of capacity.  This is
      because there is no way to predict how many flows at any one time
      might use each service and capacity in access networks is too
      scarce to partition into two.  So a 'semi-permeable' membrane is
      needed that partitions latency but not bandwidth.  The Dual Queue
      Coupled AQM [I-D.briscoe-aqm-dualq-coupled] is an example of such
      a semi-permeable membrane.

      Per-flow queuing such as in [I-D.ietf-aqm-fq-codel] could be used,
      but it partitions both latency and bandwidth between every end-to-
      end flow.  So it is rather overkill, which brings disadvantages

https://datatracker.ietf.org/doc/html/rfc5681
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      (see Section 5.2), not least that thousands of queues are needed
      when two are sufficient.

   1) Protocol:  A host needs to distinguish L4S and Classic packets
      with an identifier so that the network can classify them into
      their separate treatments.  [I-D.briscoe-tsvwg-ecn-l4s-id]
      considers various alternative identifiers, and concludes that all
      alternatives involve compromises, but the ECT(1) codepoint of the
      ECN field is a workable solution.

   3) Host:  Scalable congestion controls already exist.  They solve the
      scaling problem with TCP first pointed out in [RFC3649].  The one
      used most widely (in controlled environments) is Data Centre TCP
      (DCTCP [I-D.ietf-tcpm-dctcp]), which has been implemented and
      deployed in Windows Server Editions (since 2012), in Linux and in
      FreeBSD.  Although DCTCP as-is 'works' well over the public
      Internet, most implementations lack certain safety features that
      will be necessary once it is used outside controlled environments
      like data centres (see later).  A similar scalable congestion
      control will also need to be transplanted into protocols other
      than TCP (SCTP, RTP/RTCP, RMCAT, etc.)

                       (1)                      (2)
                .-------^------.  .--------------^-------------------.
  ,-(3)-----.                                    ______
 ; ________  :             L4S    --------.     |      |
 :|Scalable| :                _\         ||___\_| mark |
 :| sender | :   __________  / /         ||   / |______|\   _________
 :|________|\;  |          |/     --------'         ^    \1|         |
  `---------'\__|  IP-ECN  |               Coupling :     \|priority |_\
   ________  /  |Classifier|                        :     /|scheduler| /
  |Classic |/   |__________|\     --------.      ___:__  / |_________|
  | sender |                 \_\   || | |||___\_| mark/|/
  |________|                   /   || | |||   / | drop |
                        Classic   --------'     |______|

     Figure 1: Components of an L4S Solution: 1) Isolation in separate
    network queues; 2) Packet Identification Protocol; and 3) Scalable
                               Sending Host

3.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].  In this
   document, these words will appear with that interpretation only when
   in ALL CAPS.  Lower case uses of these words are not to be

https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc2119
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   interpreted as carrying RFC-2119 significance.  COMMENT: Since this
   will be an information document, This should be removed.

   Classic service:  The 'Classic' service is intended for all the
      congestion control behaviours that currently co-exist with TCP
      Reno (e.g.  TCP Cubic, Compound, SCTP, etc).

   Low-Latency, Low-Loss and Scalable (L4S) service:  The 'L4S' service
      is intended for traffic from scalable TCP algorithms such as Data
      Centre TCP.  But it is also more general--it will allow a set of
      congestion controls with similar scaling properties to DCTCP (e.g.
      Relentless [Mathis09]) to evolve.

      Both Classic and L4S services can cope with a proportion of
      unresponsive or less-responsive traffic as well (e.g.  DNS, VoIP,
      etc).

   Scalable Congestion Control:  A congestion control where flow rate is
      inversely proportional to the level of congestion signals.  Then,
      as flow rate scales, the number of congestion signals per round
      trip remains invariant, maintaining the same degree of control.
      For instance, DCTCP averages 2 congestion signals per round-trip
      whatever the flow rate.

   Classic Congestion Control:  A congestion control with a flow rate
      compatible with standard TCP Reno [RFC5681].  With Classic
      congestion controls, as capacity increases enabling higher flow
      rates, the number of round trips between congestion signals
      (losses or ECN marks) rises in proportion to the flow rate.  So
      control of queuing and/or utilization becomes very slack.  For
      instance, with 1500 B packets and an RTT of 18 ms, as TCP Reno
      flow rate increases from 2 to 100 Mb/s the number of round trips
      between congestion signals rises proportionately, from 2 to 100.

      The default congestion control in Linux (TCP Cubic) is Reno-
      compatible for most scenarios expected for some years.  For
      instance, with a typical domestic round-trip time (RTT) of 18ms,
      TCP Cubic only switches out of Reno-compatibility mode once the
      flow rate approaches 1 Gb/s.  For a typical data centre RTT of 1
      ms, the switch-over point is theoretically 1.3 Tb/s.  However,
      with a less common transcontinental RTT of 100 ms, it only remains
      Reno-compatible up to 13 Mb/s.  All examples assume 1,500 B
      packets.

   Classic ECN:  The original proposed standard Explicit Congestion
      Notification (ECN) protocol [RFC3168], which requires ECN signals
      to be treated the same as drops, both when generated in the
      network and when responded to by the sender.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168
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   Site:  A home, mobile device, small enterprise or campus, where the
      network bottleneck is typically the access link to the site.  Not
      all network arrangements fit this model but it is a useful, widely
      applicable generalisation.

4.  L4S architecture components

   The L4S architecture is composed by the following elements.

   Protocols:The L4S architecture encompass the two protocols we
   describe next:

   a.  [I-D.briscoe-tsvwg-ecn-l4s-id] recommends ECT(1) is used as the
       identifier to classify L4S and Classic packets into their
       separate treatments, as required by [RFC4774].  The draft also
       points out that the original experimental assignment of this
       codepoint as an ECN nonce [RFC3540] needs to be made obsolete (it
       was never deployed, and it offers no security benefit now that
       deployment is optional).

   b.  An essential aspect of a scalable congestion control is the use
       of explicit congestion signals rather than losses, because the
       signals need to be sent immediately and frequently--too often to
       use drops.  'Classic' ECN [RFC3168] requires an ECN signal to be
       treated the same as a drop, both when it is generated in the
       network and when it is responded to by hosts.  L4S allows
       networks and hosts to support two separate meanings for ECN.  So
       the standards track [RFC3168] will need to be updated to allow
       ECT(1) packets to depart from the 'same as drop' constraint.

   Network components:The Dual Queue Coupled AQM has been specified as
   generically as possible [I-D.briscoe-aqm-dualq-coupled] as a 'semi-
   permeable' membrane without specifying the particular AQMs to use in
   the two queues.  An informational appendix of the draft is provided
   for pseudocode examples of different possible AQM approaches.
   Initially a zero-config variant of RED called Curvy RED was
   implemented, tested and documented.  A variant of PIE has been
   implemented and tested and is about to be documented.  The aim is for
   designers to be free to implement diverse ideas.  So the brief
   normative body of the draft only specifies the minimum constraints an
   AQM needs to comply with to ensure that the L4S and Classic services
   will coexist.

   Host mechanisms: The L4S architecture includes a number of mechanisms
   in the end host that we enumerate next:

   a.  Data Centre TCP is the most widely used example of a scalable
       congestion control.  It is being documented in the TCPM WG as an

https://datatracker.ietf.org/doc/html/rfc4774
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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       informational record of the protocol currently in use
       [I-D.ietf-tcpm-dctcp].  It will be necessary to define a number
       of safety features for a variant usable on the public Internet.
       A draft list of these, known as the TCP Prague requirements, has
       been drawn up (see Appendix A).

   b.  Transport protocols other than TCP use various congestion
       controls designed to be friendly with Classic TCP.  It will be
       necessary to implement scalable variants of each of these
       transport behaviours before they can use the L4S service.  The
       following standards track RFCs currently define these protocols,
       and they will need to be updated to allow a different congestion
       response, which they will have to indicate by using the ECT(1)
       codepoint: ECN in TCP [RFC3168], in SCTP [RFC4960], in RTP
       [RFC6679], and in DCCP [RFC4340].

   c.  ECN feedback is sufficient for L4S in some transport protocols
       (RTCP, DCCP) but not others:

       *  For the case of TCP, the feedback protocol for ECN embeds the
          assumption from Classic ECN that it is the same as drop,
          making it unusable for a scalable TCP.  Therefore, the
          implementation of TCP receivers will have to be upgraded
          [RFC7560].  Work to standardize more accurate ECN feedback for
          TCP (AccECN [I-D.ietf-tcpm-accurate-ecn]) is already in
          progress.

       *  ECN feedback is only roughly sketched in an appendix of the
          SCTP specification.  A fuller specification has been proposed
          [I-D.stewart-tsvwg-sctpecn], which would need to be
          implemented and deployed.

5.  Rationale

5.1.  Why These Primary Components?

   Explicit congestion signalling (protocol):  Explicit congestion
      signalling is a key part of the L4S approach.  In contrast, use of
      drop as a congestion signal creates a tension because drop is both
      a useful signal (more would reduce delay) and an impairment (less
      would reduce delay).  Explicit congestion signals can be used many
      times per round trip, to keep tight control, without any
      impairment.  Under heavy load, even more explicit signals can be
      applied so the queue can be kept short whatever the load.  Whereas
      state-of-the-art AQMs have to introduce very high packet drop at
      high load to keep the queue short.  Further, TCP's sawtooth
      reduction can be smaller, and therefore return to the operating
      point more often, without worrying that this causes more signals

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6679
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc7560
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      (one at the top of each smaller sawtooth).  The consequent smaller
      amplitude sawteeth fit between a very shallow marking threshold
      and an empty queue, so delay variation can be very low, without
      risk of under-utilization.

      All the above makes it clear that explicit congestion signalling
      is only advantageous for latency if it does not have to be
      considered 'the same as' drop (as required with Classic ECN
      [RFC3168]).  Before Classic ECN was standardized, there were
      various proposals to give an ECN mark a different meaning from
      drop.  However, there was no particular reason to agree on any one
      of the alternative meanings, so 'the same as drop' was the only
      compromise that could be reached.  RFC 3168 contains a statement
      that:

         "An environment where all end nodes were ECN-Capable could
         allow new criteria to be developed for setting the CE
         codepoint, and new congestion control mechanisms for end-node
         reaction to CE packets.  However, this is a research issue, and
         as such is not addressed in this document."

   Latency isolation with coupled congestion notification (network):
      Using just two queues is not essential to L4S (more would be
      possible), but it is the simplest way to isolate all the L4S
      traffic that keeps latency low from all the legacy Classic traffic
      that does not.

      Similarly, coupling the congestion notification between the queues
      is not necessarily essential, but it is a clever and simple way to
      allow senders to determine their rate, packet-by-packet, rather
      than be overridden by a network scheduler.  Because otherwise a
      network scheduler would have to inspect at least transport layer
      headers, and it would have to continually assign a rate to each
      flow without any easy way to understand application intent.

   L4S packet identifier (protocol):  Once there are at least two
      separate treatments in the network, hosts need an identifier at
      the IP layer to distinguish which treatment they intend to use.

   Scalable congestion notification (host):  A scalable congestion
      control keeps the signalling frequency high so that rate
      variations can be small when signalling is stable, and rate can
      track variations in available capacity as rapidly as possible
      otherwise.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
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5.2.  Why Not Alternative Approaches?

   All the following approaches address some part of the same problem
   space as L4S.  In each case, it is shown that L4S complements them or
   improves on them, rather than being a mutually exclusive alternative:

   Diffserv:  Diffserv addresses the problem of bandwidth apportionment
      for important traffic as well as queuing latency for delay-
      sensitive traffic.  L4S solely addresses the problem of queuing
      latency.  Diffserv will still be necessary where important traffic
      requires priority (e.g. for commercial reasons, or for protection
      of critical infrastructure traffic).  Nonetheless, if there are
      Diffserv classes for important traffic, the L4S approach can
      provide low latency for _all_ traffic within each Diffserv class
      (including the case where there is only one Diffserv class).

      Also, as already explained, Diffserv only works for a small subset
      of the traffic on a link.  It is not applicable when all the
      applications in use at one time at a single site (home, small
      business or mobile device) require low latency.  Also, because L4S
      is for all traffic, it needs none of the management baggage
      (traffic policing, traffic contracts) associated with favouring
      some packets over others.  This baggage has held Diffserv back
      from widespread end-to-end deployment.

   State-of-the-art AQMs:  AQMs such as PIE and fq_CoDel give a
      significant reduction in queuing delay relative to no AQM at all.
      The L4S work is intended to complement these AQMs, and we
      definitely do not want to distract from the need to deploy them as
      widely as possible.  Nonetheless, without addressing the large
      saw-toothing rate variations of Classic congestion controls, AQMs
      alone cannot reduce queuing delay too far without significantly
      reducing link utilization.  The L4S approach resolves this tension
      by ensuring hosts can minimize the size of their sawteeth without
      appearing so aggressive to legacy flows that they starve.

   Per-flow queuing:  Similarly per-flow queuing is not incompatible
      with the L4S approach.  However, one queue for every flow can be
      thought of as overkill compared to the minimum of two queues for
      all traffic needed for the L4S approach.  The overkill of per-flow
      queuing has side-effects:

      A.  fq makes high performance networking equipment costly
          (processing and memory) - in contrast dual queue code can be
          very simple;
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      B.  fq requires packet inspection into the end-to-end transport
          layer, which doesn't sit well alongside encryption for privacy
          - in contrast a dual queue only operates at the IP layer;

      C.  fq decides packet-by-packet which flow to schedule without
          knowing application intent.  In contrast, in the L4S approach
          the sender still controls the relative rate of each flow
          dependent on the needs of each application.

   Alternative Back-off ECN (ABE):  Yet again, L4S is not an alternative
      to ABE but a complement that introduces much lower queuing delay.
      ABE [I-D.khademi-tcpm-alternativebackoff-ecn] alters the host
      behaviour in response to ECN marking to utilize a link better and
      give ECN flows a faster throughput, but it assumes the network
      still treats ECN and drop the same.  Therefore ABE exploits any
      lower queuing delay that AQMs can provide.  But as explained
      above, AQMs still cannot reduce queuing delay too far without
      losing link utilization (for other non-ABE flows).

6.  Applicability statement

   A transport layer that solves the current latency issues will provide
   new service, product and application opportunities.

   With the L4S approach, the following existing applications will
   immediately experience significantly better quality of experience
   under load in the best effort class:

   o  Gaming

   o  VoIP

   o  Video conferencing

   o  Web browsing

   o  (Adaptive) video streaming

   o  Instant messaging

   The significantly lower queuing latency also enables some interactive
   application functions to be offloaded to the cloud that would hardly
   even be usable today:

   o  Cloud based interactive video

   o  Cloud based virtual and augmented reality



Briscoe, et al.            Expires May 4, 2017                 [Page 11]



Internet-Draft              L4S Architecture                October 2016

   The above two applications have been successfully demonstrated with
   L4S, both running together over a 40 Mb/s broadband access link
   loaded up with the numerous other latency sensitive applications in
   the previous list as well as numerous downloads.  A panoramic video
   of a football stadium can be swiped and pinched so that on the fly a
   proxy in the cloud generates a sub-window of the match video under
   the finger-gesture control of each user.  At the same time, a virtual
   reality headset fed from a 360 degree camera in a racing car has been
   demonstrated, where the user's head movements control the scene
   generated in the cloud.  In both cases, with 7 ms end-to-end base
   delay, the additional queuing delay of roughly 1 ms is so low that it
   seems the video is generated locally.  See https://riteproject.eu/

dctth/ for videos of these demonstrations.

   Using a swiping finger gesture or head movement to pan a video are
   extremely demanding applications--far more demanding than VoIP.
   Because human vision can detect extremely low delays of the order of
   single milliseconds when delay is translated into a visual lag
   between a video and a reference point (the finger or the orientation
   of the head).

   If low network delay is not available, all fine interaction has to be
   done locally and therefore much more redundant data has to be
   downloaded.  When all interactive processing can be done in the
   cloud, only the data to be rendered for the end user needs to be
   sent.  Whereas, once applications can rely on minimal queues in the
   network, they can focus on reducing their own latency by only
   minimizing the application send queue.

6.1.  Use Cases

   The following use-cases for L4S are being considered by various
   interested parties:

   o  Where the bottleneck is one of various types of access network:
      DSL, cable, mobile, satellite

      *  Radio links (cellular, WiFi) that are distant from the source
         are particularly challenging.  The radio link capacity can vary
         rapidly by orders of magnitude, so it is often desirable to
         hold a buffer to utilise sudden increases of capacity;

      *  cellular networks are further complicated by a perceived need
         to buffer in order to make hand-overs imperceptible;

      *  Satellite networks generally have a very large base RTT, so
         even with minimal queuing, overall delay can never be extremely
         low;

https://riteproject.eu/dctth/
https://riteproject.eu/dctth/
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      *  Nonetheless, it is certainly desirable not to hold a buffer
         purely because of the sawteeth of Classic TCP, when it is more
         than is needed for all the above reasons.

   o  Private networks of heterogeneous data centres, where there is no
      single administrator that can arrange for all the simultaneous
      changes to senders, receivers and network needed to deploy DCTCP:

      *  a set of private data centres interconnected over a wide area
         with separate administrations, but within the same company

      *  a set of data centres operated by separate companies
         interconnected by a community of interest network (e.g. for the
         finance sector)

      *  multi-tenant (cloud) data centres where tenants choose their
         operating system stack (Infrastructure as a Service - IaaS)

   o  Different types of transport (or application) congestion control:

      *  elastic (TCP/SCTP);

      *  real-time (RTP, RMCAT);

      *  query (DNS/LDAP).

   o  Where low delay quality of service is required, but without
      inspecting or intervening above the IP layer
      [I-D.you-encrypted-traffic-management]:

      *  mobile and other networks have tended to inspect higher layers
         in order to guess application QoS requirements.  However, with
         growing demand for support of privacy and encryption, L4S
         offers an alternative.  There is no need to select which
         traffic to favour for queuing, when L4S gives favourable
         queuing to all traffic.

7.  IANA Considerations

   This specification contains no IANA considerations.

8.  Security Considerations

8.1.  Traffic (Non-)Policing

   Because the L4S service can serve all traffic that is using the
   capacity of a link, it should not be necessary to police access to
   the L4S service.  In contrast, Diffserv only works if some packets
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   get less favourable treatement than others.  So it has to use traffic
   policers to limit how much traffic can be favoured, In turn, traffic
   policers require traffic contracts between users and networks as well
   as pairwise between networks.  Because L4S will lack all this
   management complexity, it is more likely to work end-to-end.

   During early deployment (and perhaps always), some networks will not
   offer the L4S service.  These networks do not need to police or re-
   mark L4S traffic - they just forward it unchanged as best efforts
   traffic, as they would already forward traffic with ECT(1) today.  At
   a bottleneck, such networks will introduce some queuing and dropping.
   When a scalable congestion control detects a drop it will have to
   respond as if it is a Classic congestion control (see item 3-1 in

Appendix A).  This will ensure safe interworking with other traffic
   at the 'legacy' bottleneck.

   Certain network operators might choose to restict access to the L4S
   class, perhaps only to customers who have paid a premium.  In the
   packet classifer (item 2 in Figure 1), they could identify such
   customers using some other field than ECN (e.g. source address
   range), and just ignore the L4S identifier for non-paying customers.
   This would ensure that the L4S identifier survives end-to-end even
   though the service does not have to be supported at every hop.  Such
   arrangements would only require simple registered/not-registered
   packet classification, rather than the managed application-specific
   traffic policing against customer-specific traffic contracts that
   Diffserv requires.

8.2.  'Latency Friendliness'

   The L4S service does rely on self-constraint - not in terms of
   limiting capacity usage, but in terms of limiting burstiness.  It is
   believed that standardisation of dynamic behaviour (cf.  TCP slow-
   start) and self-interest will be sufficient to prevent transports
   from sending excessive bursts of L4S traffic, given the application's
   own latency will suffer most from such behaviour.

   Whether burst policing becomes necessary remains to be seen.  Without
   it, there will be potential for attacks on the low latency of the L4S
   service.  However it may only be necessary to apply such policing
   reactively, e.g. punitively targeted at any deployments of new bursty
   malware.

8.3.  ECN Integrity

   Receiving hosts can fool a sender into downloading faster by
   suppressing feedback of ECN marks (or of losses if retransmissions
   are not necessary or available otherwise).  [RFC3540] proposes that a

https://datatracker.ietf.org/doc/html/rfc3540
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   TCP sender could pseudorandomly set either of ECT(0) or ECT(1) in
   each packet of a flow and remember the sequence it had set, termed
   the ECN nonce.  If the receiver supports the nonce, it can prove that
   it is not suppressing feedback by reflecting its knowledge of the
   sequence back to the sender.  The nonce was proposed on the
   assumption that receivers might be more likely to cheat congestion
   control than senders (although senders also have a motive to cheat).

   If L4S uses the ECT(1) codepoint of ECN for packet classification, it
   will have to obsolete the experimental nonce.  As far as is known,
   the ECN Nonce has never been deployed, and it was only implemented
   for a couple of testbed evaluations.  It would be nearly impossible
   to deploy now, because any misbehaving receiver can simply opt-out,
   which would be unremarkable given all receivers currently opt-out.

   Other ways to protect TCP feedback integrity have since been
   developed.  For instance:

   o  the sender can test the integrity of the receiver's feedback by
      occasionally setting the IP-ECN field to a value normally only set
      by the network.  Then it can test whether the receiver's feedback
      faithfully reports what it expects [I-D.moncaster-tcpm-rcv-cheat].
      This method consumes no extra codepoints.  It works for loss and
      it will work for ECN feedback in any transport protocol suitable
      for L4S.  However, it shares the same assumption as the nonce;
      that the sender is not cheating and it is motivated to prevent the
      receiver cheating;

   o  A network can enforce a congestion response to its ECN markings
      (or packet losses) by auditing congestion exposure (ConEx)
      [RFC7713].  Whether the receiver or a downstream network is
      suppressing congestion feedback or the sender is unresponsive to
      the feedback, or both, ConEx audit can neutralise any advantage
      that any of these three parties would otherwise gain.  ConEx is
      only currently defined for IPv6 and consumes a destination option
      header.  It has been implemented, but not deployed as far as is
      known.
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Appendix A.  Required features for scalable transport protocols to be
             safely deployable in the Internet (a.k.a.  TCP Prague
             requirements)

   This list contains a list of features, mechanisms and modifications
   from currently defined behaviour for scalable Transport protocols so
   that they can be safely deployed over the public Internet.  This list
   of requirements was produced at an ad hoc meeting during IETF-94 in
   Prague [TCPPrague].

   One of such scalable transport protocols is DCTCP, currently
   specified in [I-D.ietf-tcpm-dctcp].  In its current form, DCTCP is
   specified to be deployable in controlled environments and deploying
   it in the public Internet would lead to a number of issues, both from
   the safety and the performance perspective.  In this section, we
   describe the modifications and additional mechanisms that are
   required for its deployment over the global Internet.  We use DCTCP
   as a base, but it is likely that most of these requirements equally
   apply to other scalable transport protocols.

   We next provide a brief description of each required feature.

   Requirement #4.1: Fall back to Reno/Cubic congestion control on
   packet loss.

   Description: In case of packet loss, the scalable transport MUST
   react as classic TCP (whatever the classic version of TCP is running
   in the host, e.g.  Reno, Cubic).

   Motivation: As part of the safety conditions for deploying a scalable
   transport over the public Internet is to make sure that it behaves
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   properly when some or all the network devices connecting the two
   endpoints that implement the scalable transport have not been
   upgraded.  In particular, it may be the case that some of the
   switches along the path between the two endpoints may only react to
   congestion by dropping packets (i.e. no ECN marking).  It is
   important that in these cases, the scalable transport react to the
   congestion signal in the form of a packet drop similarly to classic
   TCP.

   In the particular case of DCTCP, the current DCTCP specification
   states that "It is RECOMMENDED that an implementation deal with loss
   episodes in the same way as conventional TCP."  For safe deployment
   in the public Internet of a scalable transport, the above requirement
   needs to be defined as a MUST.

   Packet loss, while rare, may also occur in the case that the
   bottleneck is L4S capable.  In this case, the sender may receive a
   high number of packets marked with the CE bit set and also experience
   a loss.  Current DCTCP implementations react differently to this
   situation.  At least one implementation reacts only to the drop
   signal (e.g. by halving the CWND) and at least another DCTCP
   implementation reacts to both signals (e.g. by halving the CWND due
   to the drop and also further reducing the CWND based on the
   proportion of marked packet).  We believe that further
   experimentation is needed to understand what is the best behaviour
   for the public Internet, which may or not be one of the existent
   implementations.

   Requirement #4.2: Fall back to Reno/Cubic congestion control on
   classic ECN bottlenecks.

   Description: The scalable transport protocol SHOULD/MAY? behave as
   classic TCP with classic ECN if the path contains a legacy bottleneck
   which marks both ect(0) and ect(1) in the same way as drop (non L4S,
   but ECN capable bottleneck).

   Motivation: Similarly to Requirement #3.1, this requirement is a
   safety condition in case L4S-capable endpoints are communicating over
   a path that contains one or more non-L4S but ECN capable switches and
   one of them happens to be the bottleneck.  In this case, the scalable
   transport will attempt to fill in the buffer of the bottleneck switch
   up to the marking threshold and produce a small sawtooth around that
   operation point.  The result is that the switch will set its
   operation point with the buffer full and all other non-scalable
   transports will be starved (as they will react reducing their CWND
   more aggressively than the scalable transport).
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   Scalable transports then MUST be able to detect the presence of a
   classic ECN bottleneck and fall back to classic TCP/classic ECN
   behaviour in this case.

   Discussion: It is not clear at this point if it is possible to design
   a mechanism that always detect the aforementioned cases.  One
   possibility is to base the detection on an increase on top of a
   minimum RTT, but it is not yet clear which value should trigger this.
   Having a delay based fall back response on L4S may as well be
   beneficial for preserving low latency without legacy network nodes.
   Even if it possible to design such a mechanism, it may well be that
   it would encompass additional complexity that implementers may
   consider unnecessary.  The need for this mechanism depends on the
   extent of classic ECN deployment.

   Requirement #4.3: Reduce RTT dependence

   Description: Scalable transport congestion control algorithms MUST
   reduce or eliminate the RTT bias within the range of RTTs available.

   Motivation: Classic TCP's throughput is known to be inversely
   proportional to RTT.  One would expect flows over very low RTT paths
   to nearly starve flows over larger RTTs.  However, because Classic
   TCP induces a large queue, it has never allowed a very low RTT path
   to exist, so far.  For instance, consider two paths with base RTT 1ms
   and 100ms.  If Classic TCP induces a 20ms queue, it turns these RTTs
   into 21ms and 120ms leading to a throughput ratio of about 1:6.
   Whereas if a Scalable TCP induces only a 1ms queue, the ratio is
   2:101.  Therefore, with small queues, long RTT flows will essentially
   starve.

   Scalable transport protocol MUST then accommodate flows across the
   range of RTTs enabled by the deployment of L4S service over the
   public Internet.

   Requirement #4.4: Scaling down the congestion window.

   Description: Scalable transports MUST be responsive to congestion
   when RTTs are significantly smaller than in the current public
   Internet.

   Motivation: As currently specified, the minimum CWND of TCP (and the
   scalable extensions such as DCTCP), is set to 2 MSS.  Once this
   minimum CWND is reached, the transport protocol ceases to react to
   congestion signals (the CWND is not further reduced beyond this
   minimum size).
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   L4S mechanisms reduce significantly the queueing delay, achieving
   smaller RTTs over the Internet.  For the same CWND, smaller RTTs
   imply higher transmission rates.  The result is that when scalable
   transport are used and small RTTs are achieved, the minimum value of
   the CWND currently defined in 2 MSS may still result in a high
   transmission rate for a large number of common scenarios.  For
   example, as described in [TCP-sub-mss-w], consider a residential
   setting with an broadband Internet access of 40Mbps.  Suppose now a
   number of equal TCP flows running in parallel with the Internet
   access link being the bottleneck.  Suppose that for these flows, the
   RTT is 6ms and the MSS is 1500B.  The minimum transmission rate
   supported by TCP in this scenario is when CWND is set to 2 MSS, which
   results in 4Mbps for each flow.  This means that in this scenario, if
   the number of flows is higher than 10, the congestion control ceases
   to be responsive and starts to build up a queue in the network.

   In order to address this issue, the congestion control mechanism for
   scalable transports MUST be responsive for the new range of RTT
   resulting from the decrease of the queueing delay.

   There are several ways how this can be achieved.  One possible sub-
   MSS window mechanism is described in [TCP-sub-mss-w].

   In addition to the safety requirements described before, there are
   some optimizations that while not required for the safe deployment of
   scalable transports over the public Internet, would results in an
   optimized performance.  We describe them next.

   Optimization #5.1: Setting ECT in SYN, SYN/ACK and pure ACK packets.

   Description: Scalable transport SHOULD set the ECT bit in SYN, SYN/
   ACK and pure ACK packets.

   Motivation: Failing to set the ECT bit in SYN, SYN/ACK or ACK packets
   results in these packets being more likely dropped during congestion
   events.  Dropping SYN and SYN/ACK packets is particularly bad for
   performance as the retransmission timers for these packets are large.
   [RFC3168] prevents from marking these packets due to security
   reasons.  The arguments provided should be revisited in the the
   context of L4S and evaluate if avoiding marking these packets is
   still the best approach.

   Optimization #5.2: Faster than additive increase.

   Description: Scalable transport MAY support faster than additive
   increase in the congestion avoidance phase.

https://datatracker.ietf.org/doc/html/rfc3168
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   Motivation: As currently defined, DCTCP supports additive increase in
   congestion avoidance phase.  It would be beneficial for performance
   to update the congestion control algorithm to increase the CWND more
   than 1 MSS per RTT during the congestion avoidance phase.  In the
   context of L4S such mechanism, must also provide fairness with other
   classes of traffic, including classic TCP and possibly scalable TCP
   that uses additive increase.

   Optimization #5.3: Faster convergence to fairness.

   Description: Scalable transport SHOULD converge to a fair share
   allocation of the available capacity as fast as classic TCP or
   faster.

   Motivation: The time required for a new flow to obtain its fair share
   of the capacity of the bottleneck when the there are already ongoing
   flows using up all the bottleneck capacity is higher in the case of
   DCTCP than in the case of classic TCP (about a factor of 1,5 and 2
   larger according to [Alizadeh-stability]).  This is detrimental in
   general, but it is very harmful for short flows, which performance
   can be worse than the one obtained with classic TCP. for this reason
   it is desirable that scalable transport provide convergence times no
   larger than classic TCP.

Appendix B.  Standardization items

   The following table includes all the itmes that should be
   standardized to provide a full L4S architecture.

   The table is too wide for the ASCII draft format, so it has been
   split into two, with a common column of row index numbers on the
   left.

   The columns in the second part of the table have the following
   meanings:

   WG:  The IETF WG most relevant to this requirement.  The "tcpm/iccrg"
      combination refers to the procedure typically used for congestion
      control changes, where tcpm owns the approval decision, but uses
      the iccrg for expert review [NewCC_Proc];

   TCP:  Applicable to all forms of TCP congestion control;

   DCTCP:  Applicable to Data Centre TCP as currently used (in
      controlled environments);

   DCTCP bis:  Applicable to an future Data Centre TCP congestion
      control intended for controlled environments;
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   XXX Prague:  Applicable to a Scalable variant of XXX (TCP/SCTP/RMCAT)
      congestion control.

   +-----+-----------------------+-------------------------------------+
   | Req | Requirement           | Reference                           |
   | #   |                       |                                     |
   +-----+-----------------------+-------------------------------------+
   | 0   | ARCHITECTURE          |                                     |
   | 1   | L4S IDENTIFIER        | [I-D.briscoe-tsvwg-ecn-l4s-id]      |
   | 2   | DUAL QUEUE AQM        | [I-D.briscoe-aqm-dualq-coupled]     |
   | 3   | Suitable ECN Feedback | [I-D.ietf-tcpm-accurate-ecn],       |
   |     |                       | [I-D.stewart-tsvwg-sctpecn].        |
   |     |                       |                                     |
   |     | SCALABLE TRANSPORT -  |                                     |
   |     | SAFETY ADDITIONS      |                                     |
   | 4-1 | Fall back to          | [I-D.ietf-tcpm-dctcp]               |
   |     | Reno/Cubic on loss    |                                     |
   | 4-2 | Fall back to          |                                     |
   |     | Reno/Cubic if classic |                                     |
   |     | ECN bottleneck        |                                     |
   |     | detected              |                                     |
   |     |                       |                                     |
   | 4-3 | Reduce RTT-dependence |                                     |
   |     |                       |                                     |
   | 4-4 | Scaling TCP's         | [TCP-sub-mss-w]                     |
   |     | Congestion Window for |                                     |
   |     | Small Round Trip      |                                     |
   |     | Times                 |                                     |
   |     | SCALABLE TRANSPORT -  |                                     |
   |     | PERFORMANCE           |                                     |
   |     | ENHANCEMENTS          |                                     |
   | 5-1 | Setting ECT in SYN,   | draft-bagnulo-tsvwg-generalized-ECN |
   |     | SYN/ACK and pure ACK  |                                     |
   |     | packets               |                                     |
   | 5-2 | Faster-than-additive  |                                     |
   |     | increase              |                                     |
   | 5-3 | Less drastic exit     |                                     |
   |     | from slow-start       |                                     |
   +-----+-----------------------+-------------------------------------+

https://datatracker.ietf.org/doc/html/draft-bagnulo-tsvwg-generalized-ECN
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   +-----+--------+-----+-------+-----------+--------+--------+--------+
   | #   | WG     | TCP | DCTCP | DCTCP-bis | TCP    | SCTP   | RMCAT  |
   |     |        |     |       |           | Prague | Prague | Prague |
   +-----+--------+-----+-------+-----------+--------+--------+--------+
   | 0   | tsvwg? | Y   | Y     | Y         | Y      | Y      | Y      |
   | 1   | tsvwg? |     |       | Y         | Y      | Y      | Y      |
   | 2   | aqm?   | n/a | n/a   | n/a       | n/a    | n/a    | n/a    |
   |     |        |     |       |           |        |        |        |
   |     |        |     |       |           |        |        |        |
   |     |        |     |       |           |        |        |        |
   | 3   | tcpm   | Y   | Y     | Y         | Y      | n/a    | n/a    |
   |     |        |     |       |           |        |        |        |
   | 4-1 | tcpm   |     | Y     | Y         | Y      | Y      | Y      |
   |     |        |     |       |           |        |        |        |
   | 4-2 | tcpm/  |     |       |           | Y      | Y      | ?      |
   |     | iccrg? |     |       |           |        |        |        |
   |     |        |     |       |           |        |        |        |
   |     |        |     |       |           |        |        |        |
   |     |        |     |       |           |        |        |        |
   |     |        |     |       |           |        |        |        |
   | 4-3 | tcpm/  |     |       | Y         | Y      | Y      | ?      |
   |     | iccrg? |     |       |           |        |        |        |
   | 4-4 | tcpm   | Y   | Y     | Y         | Y      | Y      | ?      |
   |     |        |     |       |           |        |        |        |
   |     |        |     |       |           |        |        |        |
   | 5-1 | tsvwg  | Y   | Y     | Y         | Y      | n/a    | n/a    |
   |     |        |     |       |           |        |        |        |
   | 5-2 | tcpm/  |     |       | Y         | Y      | Y      | ?      |
   |     | iccrg? |     |       |           |        |        |        |
   | 5-3 | tcpm/  |     |       | Y         | Y      | Y      | ?      |
   |     | iccrg? |     |       |           |        |        |        |
   +-----+--------+-----+-------+-----------+--------+--------+--------+
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