
Transport Area Working Group B. Briscoe, Ed.
Internet-Draft Simula Research Lab
Intended status: Informational K. De Schepper
Expires: May 4, 2017 Nokia Bell Labs
 M. Bagnulo Braun
 Universidad Carlos III de Madrid
 October 31, 2016

Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service:
Architecture

draft-briscoe-tsvwg-l4s-arch-00

Abstract

 This document describes the L4S architecture for the provision of a
 new service that the Internet could provide to eventually replace
 best efforts for all traffic: Low Latency, Low Loss, Scalable
 throughput (L4S). It is becoming common for _all_ (or most)
 applications being run by a user at any one time to require low
 latency. However, the only solution the IETF can offer for ultra-low
 queuing delay is Diffserv, which only favours a minority of packets
 at the expense of others. In extensive testing the new L4S service
 keeps average queuing delay under a millisecond for _all_
 applications even under very heavy load, without sacrificing
 utilization; and it keeps congestion loss to zero. It is becoming
 widely recognized that adding more access capacity gives diminishing
 returns, because latency is becoming the critical problem. Even with
 a high capacity broadband access, the reduced latency of L4S
 remarkably and consistently improves performance under load for
 applications such as interactive video, conversational video, voice,
 Web, gaming, instant messaging, remote desktop and cloud-based apps
 (even when all being used at once over the same access link). The
 insight is that the root cause of queuing delay is in TCP, not in the
 queue. By fixing the sending TCP (and other transports) queuing
 latency becomes so much better than today that operators will want to
 deploy the network part of L4S to enable new products and services.
 Further, the network part is simple to deploy - incrementally with
 zero-config. Both parts, sender and network, ensure coexistence with
 other legacy traffic. At the same time L4S solves the long-
 recognized problem with the future scalability of TCP throughput.

 This document describes the L4S architecture, briefly describing the
 different components and how the work together to provide the
 aforementioned enhanced Internet service.

Briscoe, et al. Expires May 4, 2017 [Page 1]

Internet-Draft L4S Architecture October 2016

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. L4S architecture overview 4
3. Terminology . 5
4. L4S architecture components 7
5. Rationale . 8
5.1. Why These Primary Components? 8
5.2. Why Not Alternative Approaches? 10

6. Applicability statement 11
6.1. Use Cases . 12

7. IANA Considerations . 13
8. Security Considerations 13
8.1. Traffic (Non-)Policing 13
8.2. 'Latency Friendliness' 14
8.3. ECN Integrity . 14

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Briscoe, et al. Expires May 4, 2017 [Page 2]

Internet-Draft L4S Architecture October 2016

9. Acknowledgements . 15
10. References . 15
10.1. Normative References 15
10.2. Informative References 16

Appendix A. Required features for scalable transport protocols
 to be safely deployable in the Internet (a.k.a. TCP
 Prague requirements) 19

Appendix B. Standardization items 23
 Authors' Addresses . 25

1. Introduction

 It is increasingly common for _all_ of a user's applications at any
 one time to require low delay: interactive Web, Web services, voice,
 conversational video, interactive video, instant messaging, online
 gaming, remote desktop and cloud-based applications. In the last
 decade or so, much has been done to reduce propagation delay by
 placing caches or servers closer to users. However, queuing remains
 a major, albeit intermittent, component of latency. When present it
 typically doubles the path delay from that due to the base speed-of-
 light. Low loss is also important because, for interactive
 applications, losses translate into even longer retransmission
 delays.

 It has been demonstrated that, once access network bit rates reach
 levels now common in the developed world, increasing capacity offers
 diminishing returns if latency (delay) is not addressed.
 Differentiated services (Diffserv) offers Expedited Forwarding
 [RFC3246] for some packets at the expense of others, but this is not
 applicable when all (or most) of a user's applications require low
 latency.

 Therefore, the goal is an Internet service with ultra-Low queueing
 Latency, ultra-Low Loss and Scalable throughput (L4S) - for _all_
 traffic. This document describes the L4S architecture for achieving
 that goal.

 It must be said that queuing delay only degrades performance
 infrequently [Hohlfeld14]. It only occurs when a large enough
 capacity-seeking (e.g. TCP) flow is running alongside the user's
 traffic in the bottleneck link, which is typically in the access
 network. Or when the low latency application is itself a large
 capacity-seeking flow (e.g. interactive video). At these times, the
 performance improvement must be so remarkable that network operators
 will be motivated to deploy it.

 Active Queue Management (AQM) is part of the solution to queuing
 under load. AQM improves performance for all traffic, but there is a

https://datatracker.ietf.org/doc/html/rfc3246

Briscoe, et al. Expires May 4, 2017 [Page 3]

Internet-Draft L4S Architecture October 2016

 limit to how much queuing delay can be reduced by solely changing the
 network; without addressing the root of the problem.

 The root of the problem is the presence of standard TCP congestion
 control (Reno [RFC5681]) or compatible variants (e.g. TCP Cubic
 [I-D.ietf-tcpm-cubic]). We shall call this family of congestion
 controls 'Classic' TCP. It has been demonstrated that if the sending
 host replaces Classic TCP with a 'Scalable' alternative, when a
 suitable AQM is deployed in the network the performance under load of
 all the above interactive applications can be stunningly improved.
 For instance, queuing delay under heavy load with the example DCTCP/
 DualQ solution cited below is roughly 1 millisecond (1 ms) at the
 99th percentile without losing link utilization. This compares with
 5 to 20 ms on _average_ with a Classic TCP and current state-of-the-
 art AQMs such as fq_CoDel [I-D.ietf-aqm-fq-codel] or
 PIE [I-D.ietf-aqm-pie]. Also, with a Classic TCP, 5 ms of queuing is
 usually only possible by losing some utilization.

 It has been convincingly demonstrated [DCttH15] that it is possible
 to deploy such an L4S service alongside the existing best efforts
 service so that all of a user's applications can shift to it when
 their stack is updated. Access networks are typically designed with
 one link as the bottleneck for each site (which might be a home,
 small enterprise or mobile device), so deployment at a single node
 should give nearly all the benefit. The L4S approach requires a
 number of mechanisms in different parts of the Internet to fulfill
 its goal. This document presents the L4S architecture, by describing
 the different components and how they interact to provide the
 scalable low-latency, low-loss, Internet service.

2. L4S architecture overview

 There are three main components to the L4S architecture (illustrated
 in Figure 1):

 2) Network: The L4S service traffic needs to be isolated from the
 queuing latency of the Classic service traffic. However, the two
 should be able to freely share a common pool of capacity. This is
 because there is no way to predict how many flows at any one time
 might use each service and capacity in access networks is too
 scarce to partition into two. So a 'semi-permeable' membrane is
 needed that partitions latency but not bandwidth. The Dual Queue
 Coupled AQM [I-D.briscoe-aqm-dualq-coupled] is an example of such
 a semi-permeable membrane.

 Per-flow queuing such as in [I-D.ietf-aqm-fq-codel] could be used,
 but it partitions both latency and bandwidth between every end-to-
 end flow. So it is rather overkill, which brings disadvantages

https://datatracker.ietf.org/doc/html/rfc5681

Briscoe, et al. Expires May 4, 2017 [Page 4]

Internet-Draft L4S Architecture October 2016

 (see Section 5.2), not least that thousands of queues are needed
 when two are sufficient.

 1) Protocol: A host needs to distinguish L4S and Classic packets
 with an identifier so that the network can classify them into
 their separate treatments. [I-D.briscoe-tsvwg-ecn-l4s-id]
 considers various alternative identifiers, and concludes that all
 alternatives involve compromises, but the ECT(1) codepoint of the
 ECN field is a workable solution.

 3) Host: Scalable congestion controls already exist. They solve the
 scaling problem with TCP first pointed out in [RFC3649]. The one
 used most widely (in controlled environments) is Data Centre TCP
 (DCTCP [I-D.ietf-tcpm-dctcp]), which has been implemented and
 deployed in Windows Server Editions (since 2012), in Linux and in
 FreeBSD. Although DCTCP as-is 'works' well over the public
 Internet, most implementations lack certain safety features that
 will be necessary once it is used outside controlled environments
 like data centres (see later). A similar scalable congestion
 control will also need to be transplanted into protocols other
 than TCP (SCTP, RTP/RTCP, RMCAT, etc.)

 (1) (2)
 .-------^------. .--------------^-------------------.
 ,-(3)-----. ______
 ; ________ : L4S --------. | |
 :|Scalable| : _\ ||____| mark |
 :| sender | : __________ / / || / |______|\ _________
 :|________|\; | |/ --------' ^ \1| |
 `---------'__| IP-ECN | Coupling : \|priority |_\
 ________ / |Classifier| : /|scheduler| /
 |Classic |/ |__________|\ --------. ___:__ / |_________|
 | sender | _\ || | |||____| mark/|/
 |________| / || | ||| / | drop |
 Classic --------' |______|

 Figure 1: Components of an L4S Solution: 1) Isolation in separate
 network queues; 2) Packet Identification Protocol; and 3) Scalable
 Sending Host

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. In this
 document, these words will appear with that interpretation only when
 in ALL CAPS. Lower case uses of these words are not to be

https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc2119

Briscoe, et al. Expires May 4, 2017 [Page 5]

Internet-Draft L4S Architecture October 2016

 interpreted as carrying RFC-2119 significance. COMMENT: Since this
 will be an information document, This should be removed.

 Classic service: The 'Classic' service is intended for all the
 congestion control behaviours that currently co-exist with TCP
 Reno (e.g. TCP Cubic, Compound, SCTP, etc).

 Low-Latency, Low-Loss and Scalable (L4S) service: The 'L4S' service
 is intended for traffic from scalable TCP algorithms such as Data
 Centre TCP. But it is also more general--it will allow a set of
 congestion controls with similar scaling properties to DCTCP (e.g.
 Relentless [Mathis09]) to evolve.

 Both Classic and L4S services can cope with a proportion of
 unresponsive or less-responsive traffic as well (e.g. DNS, VoIP,
 etc).

 Scalable Congestion Control: A congestion control where flow rate is
 inversely proportional to the level of congestion signals. Then,
 as flow rate scales, the number of congestion signals per round
 trip remains invariant, maintaining the same degree of control.
 For instance, DCTCP averages 2 congestion signals per round-trip
 whatever the flow rate.

 Classic Congestion Control: A congestion control with a flow rate
 compatible with standard TCP Reno [RFC5681]. With Classic
 congestion controls, as capacity increases enabling higher flow
 rates, the number of round trips between congestion signals
 (losses or ECN marks) rises in proportion to the flow rate. So
 control of queuing and/or utilization becomes very slack. For
 instance, with 1500 B packets and an RTT of 18 ms, as TCP Reno
 flow rate increases from 2 to 100 Mb/s the number of round trips
 between congestion signals rises proportionately, from 2 to 100.

 The default congestion control in Linux (TCP Cubic) is Reno-
 compatible for most scenarios expected for some years. For
 instance, with a typical domestic round-trip time (RTT) of 18ms,
 TCP Cubic only switches out of Reno-compatibility mode once the
 flow rate approaches 1 Gb/s. For a typical data centre RTT of 1
 ms, the switch-over point is theoretically 1.3 Tb/s. However,
 with a less common transcontinental RTT of 100 ms, it only remains
 Reno-compatible up to 13 Mb/s. All examples assume 1,500 B
 packets.

 Classic ECN: The original proposed standard Explicit Congestion
 Notification (ECN) protocol [RFC3168], which requires ECN signals
 to be treated the same as drops, both when generated in the
 network and when responded to by the sender.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires May 4, 2017 [Page 6]

Internet-Draft L4S Architecture October 2016

 Site: A home, mobile device, small enterprise or campus, where the
 network bottleneck is typically the access link to the site. Not
 all network arrangements fit this model but it is a useful, widely
 applicable generalisation.

4. L4S architecture components

 The L4S architecture is composed by the following elements.

 Protocols:The L4S architecture encompass the two protocols we
 describe next:

 a. [I-D.briscoe-tsvwg-ecn-l4s-id] recommends ECT(1) is used as the
 identifier to classify L4S and Classic packets into their
 separate treatments, as required by [RFC4774]. The draft also
 points out that the original experimental assignment of this
 codepoint as an ECN nonce [RFC3540] needs to be made obsolete (it
 was never deployed, and it offers no security benefit now that
 deployment is optional).

 b. An essential aspect of a scalable congestion control is the use
 of explicit congestion signals rather than losses, because the
 signals need to be sent immediately and frequently--too often to
 use drops. 'Classic' ECN [RFC3168] requires an ECN signal to be
 treated the same as a drop, both when it is generated in the
 network and when it is responded to by hosts. L4S allows
 networks and hosts to support two separate meanings for ECN. So
 the standards track [RFC3168] will need to be updated to allow
 ECT(1) packets to depart from the 'same as drop' constraint.

 Network components:The Dual Queue Coupled AQM has been specified as
 generically as possible [I-D.briscoe-aqm-dualq-coupled] as a 'semi-
 permeable' membrane without specifying the particular AQMs to use in
 the two queues. An informational appendix of the draft is provided
 for pseudocode examples of different possible AQM approaches.
 Initially a zero-config variant of RED called Curvy RED was
 implemented, tested and documented. A variant of PIE has been
 implemented and tested and is about to be documented. The aim is for
 designers to be free to implement diverse ideas. So the brief
 normative body of the draft only specifies the minimum constraints an
 AQM needs to comply with to ensure that the L4S and Classic services
 will coexist.

 Host mechanisms: The L4S architecture includes a number of mechanisms
 in the end host that we enumerate next:

 a. Data Centre TCP is the most widely used example of a scalable
 congestion control. It is being documented in the TCPM WG as an

https://datatracker.ietf.org/doc/html/rfc4774
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires May 4, 2017 [Page 7]

Internet-Draft L4S Architecture October 2016

 informational record of the protocol currently in use
 [I-D.ietf-tcpm-dctcp]. It will be necessary to define a number
 of safety features for a variant usable on the public Internet.
 A draft list of these, known as the TCP Prague requirements, has
 been drawn up (see Appendix A).

 b. Transport protocols other than TCP use various congestion
 controls designed to be friendly with Classic TCP. It will be
 necessary to implement scalable variants of each of these
 transport behaviours before they can use the L4S service. The
 following standards track RFCs currently define these protocols,
 and they will need to be updated to allow a different congestion
 response, which they will have to indicate by using the ECT(1)
 codepoint: ECN in TCP [RFC3168], in SCTP [RFC4960], in RTP
 [RFC6679], and in DCCP [RFC4340].

 c. ECN feedback is sufficient for L4S in some transport protocols
 (RTCP, DCCP) but not others:

 * For the case of TCP, the feedback protocol for ECN embeds the
 assumption from Classic ECN that it is the same as drop,
 making it unusable for a scalable TCP. Therefore, the
 implementation of TCP receivers will have to be upgraded
 [RFC7560]. Work to standardize more accurate ECN feedback for
 TCP (AccECN [I-D.ietf-tcpm-accurate-ecn]) is already in
 progress.

 * ECN feedback is only roughly sketched in an appendix of the
 SCTP specification. A fuller specification has been proposed
 [I-D.stewart-tsvwg-sctpecn], which would need to be
 implemented and deployed.

5. Rationale

5.1. Why These Primary Components?

 Explicit congestion signalling (protocol): Explicit congestion
 signalling is a key part of the L4S approach. In contrast, use of
 drop as a congestion signal creates a tension because drop is both
 a useful signal (more would reduce delay) and an impairment (less
 would reduce delay). Explicit congestion signals can be used many
 times per round trip, to keep tight control, without any
 impairment. Under heavy load, even more explicit signals can be
 applied so the queue can be kept short whatever the load. Whereas
 state-of-the-art AQMs have to introduce very high packet drop at
 high load to keep the queue short. Further, TCP's sawtooth
 reduction can be smaller, and therefore return to the operating
 point more often, without worrying that this causes more signals

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6679
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc7560

Briscoe, et al. Expires May 4, 2017 [Page 8]

Internet-Draft L4S Architecture October 2016

 (one at the top of each smaller sawtooth). The consequent smaller
 amplitude sawteeth fit between a very shallow marking threshold
 and an empty queue, so delay variation can be very low, without
 risk of under-utilization.

 All the above makes it clear that explicit congestion signalling
 is only advantageous for latency if it does not have to be
 considered 'the same as' drop (as required with Classic ECN
 [RFC3168]). Before Classic ECN was standardized, there were
 various proposals to give an ECN mark a different meaning from
 drop. However, there was no particular reason to agree on any one
 of the alternative meanings, so 'the same as drop' was the only
 compromise that could be reached. RFC 3168 contains a statement
 that:

 "An environment where all end nodes were ECN-Capable could
 allow new criteria to be developed for setting the CE
 codepoint, and new congestion control mechanisms for end-node
 reaction to CE packets. However, this is a research issue, and
 as such is not addressed in this document."

 Latency isolation with coupled congestion notification (network):
 Using just two queues is not essential to L4S (more would be
 possible), but it is the simplest way to isolate all the L4S
 traffic that keeps latency low from all the legacy Classic traffic
 that does not.

 Similarly, coupling the congestion notification between the queues
 is not necessarily essential, but it is a clever and simple way to
 allow senders to determine their rate, packet-by-packet, rather
 than be overridden by a network scheduler. Because otherwise a
 network scheduler would have to inspect at least transport layer
 headers, and it would have to continually assign a rate to each
 flow without any easy way to understand application intent.

 L4S packet identifier (protocol): Once there are at least two
 separate treatments in the network, hosts need an identifier at
 the IP layer to distinguish which treatment they intend to use.

 Scalable congestion notification (host): A scalable congestion
 control keeps the signalling frequency high so that rate
 variations can be small when signalling is stable, and rate can
 track variations in available capacity as rapidly as possible
 otherwise.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires May 4, 2017 [Page 9]

Internet-Draft L4S Architecture October 2016

5.2. Why Not Alternative Approaches?

 All the following approaches address some part of the same problem
 space as L4S. In each case, it is shown that L4S complements them or
 improves on them, rather than being a mutually exclusive alternative:

 Diffserv: Diffserv addresses the problem of bandwidth apportionment
 for important traffic as well as queuing latency for delay-
 sensitive traffic. L4S solely addresses the problem of queuing
 latency. Diffserv will still be necessary where important traffic
 requires priority (e.g. for commercial reasons, or for protection
 of critical infrastructure traffic). Nonetheless, if there are
 Diffserv classes for important traffic, the L4S approach can
 provide low latency for _all_ traffic within each Diffserv class
 (including the case where there is only one Diffserv class).

 Also, as already explained, Diffserv only works for a small subset
 of the traffic on a link. It is not applicable when all the
 applications in use at one time at a single site (home, small
 business or mobile device) require low latency. Also, because L4S
 is for all traffic, it needs none of the management baggage
 (traffic policing, traffic contracts) associated with favouring
 some packets over others. This baggage has held Diffserv back
 from widespread end-to-end deployment.

 State-of-the-art AQMs: AQMs such as PIE and fq_CoDel give a
 significant reduction in queuing delay relative to no AQM at all.
 The L4S work is intended to complement these AQMs, and we
 definitely do not want to distract from the need to deploy them as
 widely as possible. Nonetheless, without addressing the large
 saw-toothing rate variations of Classic congestion controls, AQMs
 alone cannot reduce queuing delay too far without significantly
 reducing link utilization. The L4S approach resolves this tension
 by ensuring hosts can minimize the size of their sawteeth without
 appearing so aggressive to legacy flows that they starve.

 Per-flow queuing: Similarly per-flow queuing is not incompatible
 with the L4S approach. However, one queue for every flow can be
 thought of as overkill compared to the minimum of two queues for
 all traffic needed for the L4S approach. The overkill of per-flow
 queuing has side-effects:

 A. fq makes high performance networking equipment costly
 (processing and memory) - in contrast dual queue code can be
 very simple;

Briscoe, et al. Expires May 4, 2017 [Page 10]

Internet-Draft L4S Architecture October 2016

 B. fq requires packet inspection into the end-to-end transport
 layer, which doesn't sit well alongside encryption for privacy
 - in contrast a dual queue only operates at the IP layer;

 C. fq decides packet-by-packet which flow to schedule without
 knowing application intent. In contrast, in the L4S approach
 the sender still controls the relative rate of each flow
 dependent on the needs of each application.

 Alternative Back-off ECN (ABE): Yet again, L4S is not an alternative
 to ABE but a complement that introduces much lower queuing delay.
 ABE [I-D.khademi-tcpm-alternativebackoff-ecn] alters the host
 behaviour in response to ECN marking to utilize a link better and
 give ECN flows a faster throughput, but it assumes the network
 still treats ECN and drop the same. Therefore ABE exploits any
 lower queuing delay that AQMs can provide. But as explained
 above, AQMs still cannot reduce queuing delay too far without
 losing link utilization (for other non-ABE flows).

6. Applicability statement

 A transport layer that solves the current latency issues will provide
 new service, product and application opportunities.

 With the L4S approach, the following existing applications will
 immediately experience significantly better quality of experience
 under load in the best effort class:

 o Gaming

 o VoIP

 o Video conferencing

 o Web browsing

 o (Adaptive) video streaming

 o Instant messaging

 The significantly lower queuing latency also enables some interactive
 application functions to be offloaded to the cloud that would hardly
 even be usable today:

 o Cloud based interactive video

 o Cloud based virtual and augmented reality

Briscoe, et al. Expires May 4, 2017 [Page 11]

Internet-Draft L4S Architecture October 2016

 The above two applications have been successfully demonstrated with
 L4S, both running together over a 40 Mb/s broadband access link
 loaded up with the numerous other latency sensitive applications in
 the previous list as well as numerous downloads. A panoramic video
 of a football stadium can be swiped and pinched so that on the fly a
 proxy in the cloud generates a sub-window of the match video under
 the finger-gesture control of each user. At the same time, a virtual
 reality headset fed from a 360 degree camera in a racing car has been
 demonstrated, where the user's head movements control the scene
 generated in the cloud. In both cases, with 7 ms end-to-end base
 delay, the additional queuing delay of roughly 1 ms is so low that it
 seems the video is generated locally. See https://riteproject.eu/

dctth/ for videos of these demonstrations.

 Using a swiping finger gesture or head movement to pan a video are
 extremely demanding applications--far more demanding than VoIP.
 Because human vision can detect extremely low delays of the order of
 single milliseconds when delay is translated into a visual lag
 between a video and a reference point (the finger or the orientation
 of the head).

 If low network delay is not available, all fine interaction has to be
 done locally and therefore much more redundant data has to be
 downloaded. When all interactive processing can be done in the
 cloud, only the data to be rendered for the end user needs to be
 sent. Whereas, once applications can rely on minimal queues in the
 network, they can focus on reducing their own latency by only
 minimizing the application send queue.

6.1. Use Cases

 The following use-cases for L4S are being considered by various
 interested parties:

 o Where the bottleneck is one of various types of access network:
 DSL, cable, mobile, satellite

 * Radio links (cellular, WiFi) that are distant from the source
 are particularly challenging. The radio link capacity can vary
 rapidly by orders of magnitude, so it is often desirable to
 hold a buffer to utilise sudden increases of capacity;

 * cellular networks are further complicated by a perceived need
 to buffer in order to make hand-overs imperceptible;

 * Satellite networks generally have a very large base RTT, so
 even with minimal queuing, overall delay can never be extremely
 low;

https://riteproject.eu/dctth/
https://riteproject.eu/dctth/

Briscoe, et al. Expires May 4, 2017 [Page 12]

Internet-Draft L4S Architecture October 2016

 * Nonetheless, it is certainly desirable not to hold a buffer
 purely because of the sawteeth of Classic TCP, when it is more
 than is needed for all the above reasons.

 o Private networks of heterogeneous data centres, where there is no
 single administrator that can arrange for all the simultaneous
 changes to senders, receivers and network needed to deploy DCTCP:

 * a set of private data centres interconnected over a wide area
 with separate administrations, but within the same company

 * a set of data centres operated by separate companies
 interconnected by a community of interest network (e.g. for the
 finance sector)

 * multi-tenant (cloud) data centres where tenants choose their
 operating system stack (Infrastructure as a Service - IaaS)

 o Different types of transport (or application) congestion control:

 * elastic (TCP/SCTP);

 * real-time (RTP, RMCAT);

 * query (DNS/LDAP).

 o Where low delay quality of service is required, but without
 inspecting or intervening above the IP layer
 [I-D.you-encrypted-traffic-management]:

 * mobile and other networks have tended to inspect higher layers
 in order to guess application QoS requirements. However, with
 growing demand for support of privacy and encryption, L4S
 offers an alternative. There is no need to select which
 traffic to favour for queuing, when L4S gives favourable
 queuing to all traffic.

7. IANA Considerations

 This specification contains no IANA considerations.

8. Security Considerations

8.1. Traffic (Non-)Policing

 Because the L4S service can serve all traffic that is using the
 capacity of a link, it should not be necessary to police access to
 the L4S service. In contrast, Diffserv only works if some packets

Briscoe, et al. Expires May 4, 2017 [Page 13]

Internet-Draft L4S Architecture October 2016

 get less favourable treatement than others. So it has to use traffic
 policers to limit how much traffic can be favoured, In turn, traffic
 policers require traffic contracts between users and networks as well
 as pairwise between networks. Because L4S will lack all this
 management complexity, it is more likely to work end-to-end.

 During early deployment (and perhaps always), some networks will not
 offer the L4S service. These networks do not need to police or re-
 mark L4S traffic - they just forward it unchanged as best efforts
 traffic, as they would already forward traffic with ECT(1) today. At
 a bottleneck, such networks will introduce some queuing and dropping.
 When a scalable congestion control detects a drop it will have to
 respond as if it is a Classic congestion control (see item 3-1 in

Appendix A). This will ensure safe interworking with other traffic
 at the 'legacy' bottleneck.

 Certain network operators might choose to restict access to the L4S
 class, perhaps only to customers who have paid a premium. In the
 packet classifer (item 2 in Figure 1), they could identify such
 customers using some other field than ECN (e.g. source address
 range), and just ignore the L4S identifier for non-paying customers.
 This would ensure that the L4S identifier survives end-to-end even
 though the service does not have to be supported at every hop. Such
 arrangements would only require simple registered/not-registered
 packet classification, rather than the managed application-specific
 traffic policing against customer-specific traffic contracts that
 Diffserv requires.

8.2. 'Latency Friendliness'

 The L4S service does rely on self-constraint - not in terms of
 limiting capacity usage, but in terms of limiting burstiness. It is
 believed that standardisation of dynamic behaviour (cf. TCP slow-
 start) and self-interest will be sufficient to prevent transports
 from sending excessive bursts of L4S traffic, given the application's
 own latency will suffer most from such behaviour.

 Whether burst policing becomes necessary remains to be seen. Without
 it, there will be potential for attacks on the low latency of the L4S
 service. However it may only be necessary to apply such policing
 reactively, e.g. punitively targeted at any deployments of new bursty
 malware.

8.3. ECN Integrity

 Receiving hosts can fool a sender into downloading faster by
 suppressing feedback of ECN marks (or of losses if retransmissions
 are not necessary or available otherwise). [RFC3540] proposes that a

https://datatracker.ietf.org/doc/html/rfc3540

Briscoe, et al. Expires May 4, 2017 [Page 14]

Internet-Draft L4S Architecture October 2016

 TCP sender could pseudorandomly set either of ECT(0) or ECT(1) in
 each packet of a flow and remember the sequence it had set, termed
 the ECN nonce. If the receiver supports the nonce, it can prove that
 it is not suppressing feedback by reflecting its knowledge of the
 sequence back to the sender. The nonce was proposed on the
 assumption that receivers might be more likely to cheat congestion
 control than senders (although senders also have a motive to cheat).

 If L4S uses the ECT(1) codepoint of ECN for packet classification, it
 will have to obsolete the experimental nonce. As far as is known,
 the ECN Nonce has never been deployed, and it was only implemented
 for a couple of testbed evaluations. It would be nearly impossible
 to deploy now, because any misbehaving receiver can simply opt-out,
 which would be unremarkable given all receivers currently opt-out.

 Other ways to protect TCP feedback integrity have since been
 developed. For instance:

 o the sender can test the integrity of the receiver's feedback by
 occasionally setting the IP-ECN field to a value normally only set
 by the network. Then it can test whether the receiver's feedback
 faithfully reports what it expects [I-D.moncaster-tcpm-rcv-cheat].
 This method consumes no extra codepoints. It works for loss and
 it will work for ECN feedback in any transport protocol suitable
 for L4S. However, it shares the same assumption as the nonce;
 that the sender is not cheating and it is motivated to prevent the
 receiver cheating;

 o A network can enforce a congestion response to its ECN markings
 (or packet losses) by auditing congestion exposure (ConEx)
 [RFC7713]. Whether the receiver or a downstream network is
 suppressing congestion feedback or the sender is unresponsive to
 the feedback, or both, ConEx audit can neutralise any advantage
 that any of these three parties would otherwise gain. ConEx is
 only currently defined for IPv6 and consumes a destination option
 header. It has been implemented, but not deployed as far as is
 known.

9. Acknowledgements

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc7713
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Briscoe, et al. Expires May 4, 2017 [Page 15]

Internet-Draft L4S Architecture October 2016

10.2. Informative References

 [Alizadeh-stability]
 Alizadeh, M., Javanmard, A., and B. Prabhakar, "Analysis
 of DCTCP: Stability, Convergence, and Fairness", ACM
 SIGMETRICS 2011 , June 2011.

 [DCttH15] De Schepper, K., Bondarenko, O., Briscoe, B., and I.
 Tsang, "'Data Centre to the Home': Ultra-Low Latency for
 All", 2015, <http://www.bobbriscoe.net/projects/latency/

dctth_preprint.pdf>.

 (Under submission)

 [Hohlfeld14]
 Hohlfeld , O., Pujol, E., Ciucu, F., Feldmann, A., and P.
 Barford, "A QoE Perspective on Sizing Network Buffers",
 Proc. ACM Internet Measurement Conf (IMC'14) hmm, November
 2014.

 [I-D.briscoe-aqm-dualq-coupled]
 Schepper, K., Briscoe, B., Bondarenko, O., and I. Tsang,
 "DualQ Coupled AQM for Low Latency, Low Loss and Scalable
 Throughput", draft-briscoe-aqm-dualq-coupled-01 (work in
 progress), March 2016.

 [I-D.briscoe-tsvwg-ecn-l4s-id]
 Schepper, K., Briscoe, B., and I. Tsang, "Identifying
 Modified Explicit Congestion Notification (ECN) Semantics
 for Ultra-Low Queuing Delay", draft-briscoe-tsvwg-ecn-l4s-

id-02 (work in progress), October 2016.

 [I-D.ietf-aqm-fq-codel]
 Hoeiland-Joergensen, T., McKenney, P.,
 dave.taht@gmail.com, d., Gettys, J., and E. Dumazet, "The
 FlowQueue-CoDel Packet Scheduler and Active Queue
 Management Algorithm", draft-ietf-aqm-fq-codel-06 (work in
 progress), March 2016.

 [I-D.ietf-aqm-pie]
 Pan, R., Natarajan, P., Baker, F., and G. White, "PIE: A
 Lightweight Control Scheme To Address the Bufferbloat
 Problem", draft-ietf-aqm-pie-10 (work in progress),
 September 2016.

http://www.bobbriscoe.net/projects/latency/dctth_preprint.pdf
http://www.bobbriscoe.net/projects/latency/dctth_preprint.pdf
https://datatracker.ietf.org/doc/html/draft-briscoe-aqm-dualq-coupled-01
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-ecn-l4s-id-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-ecn-l4s-id-02
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-fq-codel-06
https://datatracker.ietf.org/doc/html/draft-ietf-aqm-pie-10

Briscoe, et al. Expires May 4, 2017 [Page 16]

Internet-Draft L4S Architecture October 2016

 [I-D.ietf-tcpm-accurate-ecn]
 Briscoe, B., Kuehlewind, M., and R. Scheffenegger, "More
 Accurate ECN Feedback in TCP", draft-ietf-tcpm-accurate-

ecn-02 (work in progress), October 2016.

 [I-D.ietf-tcpm-cubic]
 Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

draft-ietf-tcpm-cubic-02 (work in progress), August 2016.

 [I-D.ietf-tcpm-dctcp]
 Bensley, S., Eggert, L., Thaler, D., Balasubramanian, P.,
 and G. Judd, "Datacenter TCP (DCTCP): TCP Congestion
 Control for Datacenters", draft-ietf-tcpm-dctcp-02 (work
 in progress), July 2016.

 [I-D.khademi-tcpm-alternativebackoff-ecn]
 Khademi, N., Welzl, M., Armitage, G., and G. Fairhurst,
 "TCP Alternative Backoff with ECN (ABE)", draft-khademi-

tcpm-alternativebackoff-ecn-01 (work in progress), October
 2016.

 [I-D.moncaster-tcpm-rcv-cheat]
 Moncaster, T., Briscoe, B., and A. Jacquet, "A TCP Test to
 Allow Senders to Identify Receiver Non-Compliance", draft-

moncaster-tcpm-rcv-cheat-03 (work in progress), July 2014.

 [I-D.stewart-tsvwg-sctpecn]
 Stewart, R., Tuexen, M., and X. Dong, "ECN for Stream
 Control Transmission Protocol (SCTP)", draft-stewart-

tsvwg-sctpecn-05 (work in progress), January 2014.

 [I-D.you-encrypted-traffic-management]
 You, J. and C. Xiong, "The Effect of Encrypted Traffic on
 the QoS Mechanisms in Cellular Networks", draft-you-

encrypted-traffic-management-00 (work in progress),
 October 2015.

 [Mathis09]
 Mathis, M., "Relentless Congestion Control", PFLDNeT'09 ,
 May 2009, <http://www.hpcc.jp/pfldnet2009/

Program_files/1569198525.pdf>.

 [NewCC_Proc]
 Eggert, L., "Experimental Specification of New Congestion
 Control Algorithms", IETF Operational Note ion-tsv-alt-cc,
 July 2007.

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-dctcp-02
https://datatracker.ietf.org/doc/html/draft-khademi-tcpm-alternativebackoff-ecn-01
https://datatracker.ietf.org/doc/html/draft-khademi-tcpm-alternativebackoff-ecn-01
https://datatracker.ietf.org/doc/html/draft-moncaster-tcpm-rcv-cheat-03
https://datatracker.ietf.org/doc/html/draft-moncaster-tcpm-rcv-cheat-03
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-you-encrypted-traffic-management-00
https://datatracker.ietf.org/doc/html/draft-you-encrypted-traffic-management-00
http://www.hpcc.jp/pfldnet2009/Program_files/1569198525.pdf
http://www.hpcc.jp/pfldnet2009/Program_files/1569198525.pdf

Briscoe, et al. Expires May 4, 2017 [Page 17]

Internet-Draft L4S Architecture October 2016

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3246] Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
 J., Courtney, W., Davari, S., Firoiu, V., and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
 <http://www.rfc-editor.org/info/rfc3246>.

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces",

RFC 3540, DOI 10.17487/RFC3540, June 2003,
 <http://www.rfc-editor.org/info/rfc3540>.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
RFC 3649, DOI 10.17487/RFC3649, December 2003,

 <http://www.rfc-editor.org/info/rfc3649>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <http://www.rfc-editor.org/info/rfc4340>.

 [RFC4774] Floyd, S., "Specifying Alternate Semantics for the
 Explicit Congestion Notification (ECN) Field", BCP 124,

RFC 4774, DOI 10.17487/RFC4774, November 2006,
 <http://www.rfc-editor.org/info/rfc4774>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <http://www.rfc-editor.org/info/rfc5681>.

 [RFC6679] Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,
 and K. Carlberg, "Explicit Congestion Notification (ECN)
 for RTP over UDP", RFC 6679, DOI 10.17487/RFC6679, August
 2012, <http://www.rfc-editor.org/info/rfc6679>.

 [RFC7560] Kuehlewind, M., Ed., Scheffenegger, R., and B. Briscoe,
 "Problem Statement and Requirements for Increased Accuracy
 in Explicit Congestion Notification (ECN) Feedback",

RFC 7560, DOI 10.17487/RFC7560, August 2015,
 <http://www.rfc-editor.org/info/rfc7560>.

https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3246
http://www.rfc-editor.org/info/rfc3246
https://datatracker.ietf.org/doc/html/rfc3540
http://www.rfc-editor.org/info/rfc3540
https://datatracker.ietf.org/doc/html/rfc3649
http://www.rfc-editor.org/info/rfc3649
https://datatracker.ietf.org/doc/html/rfc4340
http://www.rfc-editor.org/info/rfc4340
https://datatracker.ietf.org/doc/html/bcp124
https://datatracker.ietf.org/doc/html/rfc4774
http://www.rfc-editor.org/info/rfc4774
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc5681
http://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc6679
http://www.rfc-editor.org/info/rfc6679
https://datatracker.ietf.org/doc/html/rfc7560
http://www.rfc-editor.org/info/rfc7560

Briscoe, et al. Expires May 4, 2017 [Page 18]

Internet-Draft L4S Architecture October 2016

 [RFC7713] Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)
 Concepts, Abstract Mechanism, and Requirements", RFC 7713,
 DOI 10.17487/RFC7713, December 2015,
 <http://www.rfc-editor.org/info/rfc7713>.

 [TCP-sub-mss-w]
 Briscoe, B. and K. De Schepper, "Scaling TCP's Congestion
 Window for Small Round Trip Times", BT Technical Report
 TR-TUB8-2015-002, May 2015,
 <http://www.bobbriscoe.net/projects/latency/

sub-mss-w.pdf>.

 [TCPPrague]
 Briscoe, B., "Notes: DCTCP evolution 'bar BoF': Tue 21 Jul
 2015, 17:40, Prague", tcpprague mailing list archive ,
 July 2015.

Appendix A. Required features for scalable transport protocols to be
 safely deployable in the Internet (a.k.a. TCP Prague
 requirements)

 This list contains a list of features, mechanisms and modifications
 from currently defined behaviour for scalable Transport protocols so
 that they can be safely deployed over the public Internet. This list
 of requirements was produced at an ad hoc meeting during IETF-94 in
 Prague [TCPPrague].

 One of such scalable transport protocols is DCTCP, currently
 specified in [I-D.ietf-tcpm-dctcp]. In its current form, DCTCP is
 specified to be deployable in controlled environments and deploying
 it in the public Internet would lead to a number of issues, both from
 the safety and the performance perspective. In this section, we
 describe the modifications and additional mechanisms that are
 required for its deployment over the global Internet. We use DCTCP
 as a base, but it is likely that most of these requirements equally
 apply to other scalable transport protocols.

 We next provide a brief description of each required feature.

 Requirement #4.1: Fall back to Reno/Cubic congestion control on
 packet loss.

 Description: In case of packet loss, the scalable transport MUST
 react as classic TCP (whatever the classic version of TCP is running
 in the host, e.g. Reno, Cubic).

 Motivation: As part of the safety conditions for deploying a scalable
 transport over the public Internet is to make sure that it behaves

https://datatracker.ietf.org/doc/html/rfc7713
http://www.rfc-editor.org/info/rfc7713
http://www.bobbriscoe.net/projects/latency/sub-mss-w.pdf
http://www.bobbriscoe.net/projects/latency/sub-mss-w.pdf

Briscoe, et al. Expires May 4, 2017 [Page 19]

Internet-Draft L4S Architecture October 2016

 properly when some or all the network devices connecting the two
 endpoints that implement the scalable transport have not been
 upgraded. In particular, it may be the case that some of the
 switches along the path between the two endpoints may only react to
 congestion by dropping packets (i.e. no ECN marking). It is
 important that in these cases, the scalable transport react to the
 congestion signal in the form of a packet drop similarly to classic
 TCP.

 In the particular case of DCTCP, the current DCTCP specification
 states that "It is RECOMMENDED that an implementation deal with loss
 episodes in the same way as conventional TCP." For safe deployment
 in the public Internet of a scalable transport, the above requirement
 needs to be defined as a MUST.

 Packet loss, while rare, may also occur in the case that the
 bottleneck is L4S capable. In this case, the sender may receive a
 high number of packets marked with the CE bit set and also experience
 a loss. Current DCTCP implementations react differently to this
 situation. At least one implementation reacts only to the drop
 signal (e.g. by halving the CWND) and at least another DCTCP
 implementation reacts to both signals (e.g. by halving the CWND due
 to the drop and also further reducing the CWND based on the
 proportion of marked packet). We believe that further
 experimentation is needed to understand what is the best behaviour
 for the public Internet, which may or not be one of the existent
 implementations.

 Requirement #4.2: Fall back to Reno/Cubic congestion control on
 classic ECN bottlenecks.

 Description: The scalable transport protocol SHOULD/MAY? behave as
 classic TCP with classic ECN if the path contains a legacy bottleneck
 which marks both ect(0) and ect(1) in the same way as drop (non L4S,
 but ECN capable bottleneck).

 Motivation: Similarly to Requirement #3.1, this requirement is a
 safety condition in case L4S-capable endpoints are communicating over
 a path that contains one or more non-L4S but ECN capable switches and
 one of them happens to be the bottleneck. In this case, the scalable
 transport will attempt to fill in the buffer of the bottleneck switch
 up to the marking threshold and produce a small sawtooth around that
 operation point. The result is that the switch will set its
 operation point with the buffer full and all other non-scalable
 transports will be starved (as they will react reducing their CWND
 more aggressively than the scalable transport).

Briscoe, et al. Expires May 4, 2017 [Page 20]

Internet-Draft L4S Architecture October 2016

 Scalable transports then MUST be able to detect the presence of a
 classic ECN bottleneck and fall back to classic TCP/classic ECN
 behaviour in this case.

 Discussion: It is not clear at this point if it is possible to design
 a mechanism that always detect the aforementioned cases. One
 possibility is to base the detection on an increase on top of a
 minimum RTT, but it is not yet clear which value should trigger this.
 Having a delay based fall back response on L4S may as well be
 beneficial for preserving low latency without legacy network nodes.
 Even if it possible to design such a mechanism, it may well be that
 it would encompass additional complexity that implementers may
 consider unnecessary. The need for this mechanism depends on the
 extent of classic ECN deployment.

 Requirement #4.3: Reduce RTT dependence

 Description: Scalable transport congestion control algorithms MUST
 reduce or eliminate the RTT bias within the range of RTTs available.

 Motivation: Classic TCP's throughput is known to be inversely
 proportional to RTT. One would expect flows over very low RTT paths
 to nearly starve flows over larger RTTs. However, because Classic
 TCP induces a large queue, it has never allowed a very low RTT path
 to exist, so far. For instance, consider two paths with base RTT 1ms
 and 100ms. If Classic TCP induces a 20ms queue, it turns these RTTs
 into 21ms and 120ms leading to a throughput ratio of about 1:6.
 Whereas if a Scalable TCP induces only a 1ms queue, the ratio is
 2:101. Therefore, with small queues, long RTT flows will essentially
 starve.

 Scalable transport protocol MUST then accommodate flows across the
 range of RTTs enabled by the deployment of L4S service over the
 public Internet.

 Requirement #4.4: Scaling down the congestion window.

 Description: Scalable transports MUST be responsive to congestion
 when RTTs are significantly smaller than in the current public
 Internet.

 Motivation: As currently specified, the minimum CWND of TCP (and the
 scalable extensions such as DCTCP), is set to 2 MSS. Once this
 minimum CWND is reached, the transport protocol ceases to react to
 congestion signals (the CWND is not further reduced beyond this
 minimum size).

Briscoe, et al. Expires May 4, 2017 [Page 21]

Internet-Draft L4S Architecture October 2016

 L4S mechanisms reduce significantly the queueing delay, achieving
 smaller RTTs over the Internet. For the same CWND, smaller RTTs
 imply higher transmission rates. The result is that when scalable
 transport are used and small RTTs are achieved, the minimum value of
 the CWND currently defined in 2 MSS may still result in a high
 transmission rate for a large number of common scenarios. For
 example, as described in [TCP-sub-mss-w], consider a residential
 setting with an broadband Internet access of 40Mbps. Suppose now a
 number of equal TCP flows running in parallel with the Internet
 access link being the bottleneck. Suppose that for these flows, the
 RTT is 6ms and the MSS is 1500B. The minimum transmission rate
 supported by TCP in this scenario is when CWND is set to 2 MSS, which
 results in 4Mbps for each flow. This means that in this scenario, if
 the number of flows is higher than 10, the congestion control ceases
 to be responsive and starts to build up a queue in the network.

 In order to address this issue, the congestion control mechanism for
 scalable transports MUST be responsive for the new range of RTT
 resulting from the decrease of the queueing delay.

 There are several ways how this can be achieved. One possible sub-
 MSS window mechanism is described in [TCP-sub-mss-w].

 In addition to the safety requirements described before, there are
 some optimizations that while not required for the safe deployment of
 scalable transports over the public Internet, would results in an
 optimized performance. We describe them next.

 Optimization #5.1: Setting ECT in SYN, SYN/ACK and pure ACK packets.

 Description: Scalable transport SHOULD set the ECT bit in SYN, SYN/
 ACK and pure ACK packets.

 Motivation: Failing to set the ECT bit in SYN, SYN/ACK or ACK packets
 results in these packets being more likely dropped during congestion
 events. Dropping SYN and SYN/ACK packets is particularly bad for
 performance as the retransmission timers for these packets are large.
 [RFC3168] prevents from marking these packets due to security
 reasons. The arguments provided should be revisited in the the
 context of L4S and evaluate if avoiding marking these packets is
 still the best approach.

 Optimization #5.2: Faster than additive increase.

 Description: Scalable transport MAY support faster than additive
 increase in the congestion avoidance phase.

https://datatracker.ietf.org/doc/html/rfc3168

Briscoe, et al. Expires May 4, 2017 [Page 22]

Internet-Draft L4S Architecture October 2016

 Motivation: As currently defined, DCTCP supports additive increase in
 congestion avoidance phase. It would be beneficial for performance
 to update the congestion control algorithm to increase the CWND more
 than 1 MSS per RTT during the congestion avoidance phase. In the
 context of L4S such mechanism, must also provide fairness with other
 classes of traffic, including classic TCP and possibly scalable TCP
 that uses additive increase.

 Optimization #5.3: Faster convergence to fairness.

 Description: Scalable transport SHOULD converge to a fair share
 allocation of the available capacity as fast as classic TCP or
 faster.

 Motivation: The time required for a new flow to obtain its fair share
 of the capacity of the bottleneck when the there are already ongoing
 flows using up all the bottleneck capacity is higher in the case of
 DCTCP than in the case of classic TCP (about a factor of 1,5 and 2
 larger according to [Alizadeh-stability]). This is detrimental in
 general, but it is very harmful for short flows, which performance
 can be worse than the one obtained with classic TCP. for this reason
 it is desirable that scalable transport provide convergence times no
 larger than classic TCP.

Appendix B. Standardization items

 The following table includes all the itmes that should be
 standardized to provide a full L4S architecture.

 The table is too wide for the ASCII draft format, so it has been
 split into two, with a common column of row index numbers on the
 left.

 The columns in the second part of the table have the following
 meanings:

 WG: The IETF WG most relevant to this requirement. The "tcpm/iccrg"
 combination refers to the procedure typically used for congestion
 control changes, where tcpm owns the approval decision, but uses
 the iccrg for expert review [NewCC_Proc];

 TCP: Applicable to all forms of TCP congestion control;

 DCTCP: Applicable to Data Centre TCP as currently used (in
 controlled environments);

 DCTCP bis: Applicable to an future Data Centre TCP congestion
 control intended for controlled environments;

Briscoe, et al. Expires May 4, 2017 [Page 23]

Internet-Draft L4S Architecture October 2016

 XXX Prague: Applicable to a Scalable variant of XXX (TCP/SCTP/RMCAT)
 congestion control.

 +-----+-----------------------+-------------------------------------+
 | Req | Requirement | Reference |
 | # | | |
 +-----+-----------------------+-------------------------------------+
0	ARCHITECTURE	
1	L4S IDENTIFIER	[I-D.briscoe-tsvwg-ecn-l4s-id]
2	DUAL QUEUE AQM	[I-D.briscoe-aqm-dualq-coupled]
3	Suitable ECN Feedback	[I-D.ietf-tcpm-accurate-ecn],
		[I-D.stewart-tsvwg-sctpecn].
	SCALABLE TRANSPORT -	
	SAFETY ADDITIONS	
4-1	Fall back to	[I-D.ietf-tcpm-dctcp]
	Reno/Cubic on loss	
4-2	Fall back to	
	Reno/Cubic if classic	
	ECN bottleneck	
	detected	
4-3	Reduce RTT-dependence	
4-4	Scaling TCP's	[TCP-sub-mss-w]
	Congestion Window for	
	Small Round Trip	
	Times	
	SCALABLE TRANSPORT -	
	PERFORMANCE	
	ENHANCEMENTS	
5-1	Setting ECT in SYN,	draft-bagnulo-tsvwg-generalized-ECN
	SYN/ACK and pure ACK	
	packets	
5-2	Faster-than-additive	
	increase	
5-3	Less drastic exit	
	from slow-start	
 +-----+-----------------------+-------------------------------------+

https://datatracker.ietf.org/doc/html/draft-bagnulo-tsvwg-generalized-ECN

Briscoe, et al. Expires May 4, 2017 [Page 24]

Internet-Draft L4S Architecture October 2016

 +-----+--------+-----+-------+-----------+--------+--------+--------+
 | # | WG | TCP | DCTCP | DCTCP-bis | TCP | SCTP | RMCAT |
 | | | | | | Prague | Prague | Prague |
 +-----+--------+-----+-------+-----------+--------+--------+--------+
0	tsvwg?	Y	Y	Y	Y	Y	Y
1	tsvwg?			Y	Y	Y	Y
2	aqm?	n/a	n/a	n/a	n/a	n/a	n/a
3	tcpm	Y	Y	Y	Y	n/a	n/a
4-1	tcpm		Y	Y	Y	Y	Y
4-2	tcpm/				Y	Y	?
	iccrg?						
4-3	tcpm/			Y	Y	Y	?
	iccrg?						
4-4	tcpm	Y	Y	Y	Y	Y	?
5-1	tsvwg	Y	Y	Y	Y	n/a	n/a
5-2	tcpm/			Y	Y	Y	?
	iccrg?						
5-3	tcpm/			Y	Y	Y	?
	iccrg?						
 +-----+--------+-----+-------+-----------+--------+--------+--------+

Authors' Addresses

 Bob Briscoe (editor)
 Simula Research Lab

 Email: ietf@bobbriscoe.net
 URI: http://bobbriscoe.net/

http://bobbriscoe.net/

Briscoe, et al. Expires May 4, 2017 [Page 25]

Internet-Draft L4S Architecture October 2016

 Koen De Schepper
 Nokia Bell Labs
 Antwerp
 Belgium

 Email: koen.de_schepper@nokia.com
 URI: https://www.bell-labs.com/usr/koen.de_schepper

 Marcelo Bagnulo
 Universidad Carlos III de Madrid
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: 34 91 6249500
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es

https://www.bell-labs.com/usr/koen.de_schepper
http://www.it.uc3m.es

Briscoe, et al. Expires May 4, 2017 [Page 26]

