
ippm F. Brockners
Internet-Draft Cisco
Intended status: Informational S. Bhandari
Expires: July 29, 2021 Thoughtspot
 T. Mizrahi
 Huawei
 January 25, 2021

Integrity of In-situ OAM Data Fields
draft-brockners-ippm-ioam-data-integrity-00

Abstract

 In-situ Operations, Administration, and Maintenance (IOAM) records
 operational and telemetry information in the packet while the packet
 traverses a path between two points in the network. This document is
 to assist the IPPM WG in designing a solution for those deployments
 where the integrity of IOAM data fields is a concern. This document
 proposes several methods to ensure the integrity of IOAM data fields.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 29, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Brockners, et al. Expires July 29, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft IOAM Data Fields Integrity January 2021

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions . 4
3. Threat Analysis . 4
3.1. Modification: IOAM Data Fields 5
3.2. Modification: IOAM Option-Type Headers 5
3.3. Injection: IOAM Data Fields 6
3.4. Injection: IOAM Option-Type Headers 6
3.5. Replay . 6
3.6. Management and Exporting 6
3.7. Delay . 7
3.8. Threat Summary . 7

4. Methods of providing integrity to IOAM data fields 8
 4.1. Method 1: Using asymmetric keys for signing node trace
 data . 9

4.1.1. Overhead consideration for Method 1 10
 4.2. Method 2: Using symmetric keys for signing node trace
 data . 10

4.2.1. Overhead consideration for Method 2 11
 4.3. Method 3: Space optimized symmetric key based signing of
 trace data . 11

4.3.1. Overhead consideration for Method 3 12
 4.4. Method 4: Dynamic symmetric keys based signing of trace
 data . 12

4.4.1. Overhead consideration for Method 4 14
5. IANA Considerations . 14
6. Security Considerations 14
7. Acknowledgements . 14
8. References . 14
8.1. Normative References 15
8.2. Informative References 15

 Authors' Addresses . 16

1. Introduction

 "In-situ" Operations, Administration, and Maintenance (IOAM) records
 OAM information within the packet while the packet traverses a
 particular network domain. The term "in-situ" refers to the fact
 that the OAM data is added to the data packets rather than is being
 sent within packets specifically dedicated to OAM. IOAM is to
 complement mechanisms such as Ping, Traceroute, or other active
 probing mechanisms. In terms of "active" or "passive" OAM, "in-situ"

Brockners, et al. Expires July 29, 2021 [Page 2]

Internet-Draft IOAM Data Fields Integrity January 2021

 OAM can be considered a hybrid OAM type. "In-situ" mechanisms do not
 require extra packets to be sent. IOAM adds information to the
 already available data packets and therefore cannot be considered
 passive. In terms of the classification given in [RFC7799] IOAM
 could be portrayed as Hybrid Type 1. IOAM mechanisms can be
 leveraged where mechanisms using e.g. ICMP do not apply or do not
 offer the desired results, such as proving that a certain traffic
 flow takes a pre-defined path, SLA verification for the live data
 traffic, detailed statistics on traffic distribution paths in
 networks that distribute traffic across multiple paths, or scenarios
 in which probe traffic is potentially handled differently from
 regular data traffic by the network devices.

 The current [I-D.ietf-ippm-ioam-data] assumes that IOAM is deployed
 in specific network domains, where an operator has means to select,
 monitor, and control the access to all the networking devices, making
 the domain a trusted network. As such, IOAM tracing data is carried
 in the packets in clear and there are no protections against any node
 or middlebox tampering with the data. As a consequence, IOAM tracing
 data collected in an untrusted or semi-trusted environments cannot be
 trusted for critical operational decisions. Any rogue or
 unauthorized change to IOAM data fields in a user packet cannot be
 detected.

 Recent discussions following the IETF last call on
 [I-D.ietf-ippm-ioam-data] revealed that there might be uses of IOAM
 where integrity protection of IOAM data fields is at least desirable,
 knowing that IOAM data fields integrity protection would incur extra
 effort in the data path of a device processing IOAM data fields. As
 such, the following additional considerations and requirements are to
 be taken into account in addition to addressing the problem of
 detectability of any integrity breach of the IOAM trace data
 collected:

 1. IOAM trace data is processed by the data plane, hence viability
 of any method to prove integrity of the IOAM trace data must be
 feasible at data plane processing/forwarding rates (IOAM data
 might be applied to all traffic a router forwards).

 2. IOAM trace data is carried within data packets. Additional space
 required to prove integrity of the data needs to be optimal, i.e.
 should not exceed the MTU or have adverse affect on packet
 processing.

 3. Replay protection of older IOAM trace data should be possible.
 Without replay protection a rogue node can present the old IOAM
 trace data masking any ongoing network issues/activity making the
 IOAM trace data collection useless.

https://datatracker.ietf.org/doc/html/rfc7799

Brockners, et al. Expires July 29, 2021 [Page 3]

Internet-Draft IOAM Data Fields Integrity January 2021

 This document is to assist the IPPM working group in designing and
 specifying a solution for those deployments where the integrity of
 IOAM data fields is a concern. This document proposes several
 methods to achieve integrity protection for IOAM data fields.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Abbreviations used in this document:

 Geneve: Generic Network Virtualization Encapsulation
 [I-D.ietf-nvo3-geneve]

 GRE Generic Routing Encapsulation

 IOAM: In-situ Operations, Administration, and Maintenance

 MTU: Maximum Transmit Unit

 NSH: Network Service Header [RFC8300]

 OAM: Operations, Administration, and Maintenance

 POT: Proof of Transit

 SFC: Service Function Chain

3. Threat Analysis

 This section presents a threat analysis of integrity-related threats
 in the context of IOAM. The threats that are discussed are assumed
 to be independent of the lower layer protocols; it is assumed that
 threats at other layers are handled by security mechanisms that are
 deployed at these layers.

 This document is focused on integrity protection for IOAM data
 fields. Thus the threat analysis includes threats that are related
 to or result from compromising the integrity of IOAM data fields.
 Other security aspects such as confidentiality are not within the
 scope of this document.

 Throughout the analysis there is a distinction between on-path and
 off-path attackers. As discussed in [I-D.ietf-detnet-security], on-
 path attackers are located in a position that allows interception and

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8300

Brockners, et al. Expires July 29, 2021 [Page 4]

Internet-Draft IOAM Data Fields Integrity January 2021

 modification of in-flight protocol packets, whereas off-path
 attackers can only attack by generating protocol packets.

 The analysis also includes the impact of each of the threats.
 Generally speaking, the impact of a successful attack on an OAM
 protocol [RFC7276] is a false illusion of nonexistent failures or
 preventing the detection of actual ones; in both cases, the attack
 may result in denial of service (DoS). Furthermore, creating the
 false illusion of a nonexistent issue may trigger unnecessary
 processing in some of the IOAM nodes along the path, and may cause
 more IOAM-related data to be exported to the management plane than is
 conventionally necessary. Beyond these general impacts, threat-
 specific impacts are discussed in each of the subsections below.

3.1. Modification: IOAM Data Fields

 Threat

 An attacker can maliciously modify the IOAM data fields of in-
 transit packets. The modification can either be applied to all
 packets or selectively applied to a subset of the en route
 packets. This threat is applicable to on-path attackers.

 Impact

 By systematically modifying the IOAM data fields of some or all of
 the in-transit packets an attacker can create a false picture of
 the paths in the network, the existence of faulty nodes and their
 location, and the network performance.

3.2. Modification: IOAM Option-Type Headers

 Threat

 An on-path attacker can modify IOAM data fields in one or more of
 the IOAM Option-Type headers in order to change or disrupt the
 behavior of nodes processing IOAM data fields along the path.

 Impact

 Changing the header of IOAM Option-Types may have several
 implications. An attacker can maliciously increase the processing
 overhead in nodes that process IOAM data fields and increase the
 on-the-wire overhead of IOAM data fields, for example by modifying
 the IOAM-Trace-Type field in the IOAM Trace-option header. An
 attacker can also prevent some of the nodes that process IOAM data
 fields from incorporating IOAM data fields by modifying the
 RemainingLen field.

https://datatracker.ietf.org/doc/html/rfc7276

Brockners, et al. Expires July 29, 2021 [Page 5]

Internet-Draft IOAM Data Fields Integrity January 2021

3.3. Injection: IOAM Data Fields

 Threat

 An attacker can inject packets with IOAM Option-Types and IOAM
 data fields. This threat is applicable to both on-path and off-
 path attackers.

 Impact

 This attack and it impacts are similar to Section 3.1.

3.4. Injection: IOAM Option-Type Headers

 Threat

 An attacker can inject packets with IOAM Option-Type headers, thus
 manipulating other nodes that process IOAM data fields in the
 network. This threat is applicable to both on-path and off-path
 attackers.

 Impact

 This attack and it impacts are similar to Section 3.2.

3.5. Replay

 Threat

 An attacker can replay packets with IOAM data fields.
 Specifically, an attacker may replay a previously transmitted IOAM
 Option-Type with a new data packet, thus attaching old IOAM data
 fields to a fresh user packet. This threat is applicable to both
 on-path and off-path attackers.

 Impact

 As with previous threats, this threat may create a false image of
 a nonexistent failure, or may overload nodes which process IOAM
 data fields with unnecessary processing.

3.6. Management and Exporting

 Threat

 Attacks that compromise the integrity of IOAM data fields can be
 applied at the management plane, e.g., by manipulating network
 management packets. Furthermore, the integrity of IOAM data

Brockners, et al. Expires July 29, 2021 [Page 6]

Internet-Draft IOAM Data Fields Integrity January 2021

 fields that are exported to a receiving entity can also be
 compromised. Management plane attacks are not within the scope of
 this document; the network management protocol is expected to
 include inherent security capabilities. The integrity of exported
 data is also not within the scope of this document. It is
 expected that the specification of the export format will discuss
 the relevant security aspects.

 Impact

 Malicious manipulation of the management protocol can cause nodes
 that process IOAM data fields to malfunction, to be overloaded, or
 to incorporate unnecessary IOAM data fields into user packets.
 The impact of compromising the integrity of exported IOAM data
 fields is similar to the impacts of previous threats that were
 described in this section.

3.7. Delay

 Threat

 An on-path attacker may delay some or all of the in-transit
 packets that include IOAM data fields in order to create the false
 illusion of congestion. Delay attacks are well known in the
 context of deterministic networks [I-D.ietf-detnet-security] and
 synchronization [RFC7384], and may be somewhat mitigated in these
 environments by using redundant paths in a way that is resilient
 to an attack along one of the paths. This approach does not
 address the threat in the context of IOAM, as it does not meet the
 requirement to measure a specific path or to detect a problem
 along the path. It is noted that this threat is not within the
 scope of the threats that are mitigated in the scope of this
 document.

 Impact

 Since IOAM can be applied to a fraction of the traffic, an
 attacker can detect and delay only the packets that include IOAM
 data fields, thus preventing the authenticity of delay and load
 measurements.

3.8. Threat Summary

https://datatracker.ietf.org/doc/html/rfc7384

Brockners, et al. Expires July 29, 2021 [Page 7]

Internet-Draft IOAM Data Fields Integrity January 2021

 +---+--------+------------+
 | Threat |In scope|Out of scope|
 +---+--------+------------+
 |Modification: IOAM Data Fields | + | |
 +---+--------+------------+
 |Modification: IOAM Option-Type Headers | + | |
 +---+--------+------------+
 |Injection: IOAM Data Fields | + | |
 +---+--------+------------+
 |Injection: IOAM Option-Type Headers | + | |
 +---+--------+------------+
 |Replay | + | |
 +---+--------+------------+
 |Management and Exporting | | + |
 +---+--------+------------+
 |Delay | | + |
 +---+--------+------------+

 Figure 1: Threat Analysis Summary

4. Methods of providing integrity to IOAM data fields

 This section outlines four different methods that are to provide
 integrity protection of IOAM data fields. As noted earlier, this
 document is to support the IPPM working group in designing and
 specifying a method for protecting the integrity of IOAM data fields.
 It isn't expected that all four methods would be chosen for a
 solution specification.

 The discussion of the different methods focuses on protecting the
 integrity of IOAM trace data fields, though the outlined methods are
 not limited to protecting IOAM trace data fields only. The methods
 could be applied to other IOAM Option-Types, such as the E2E Option-
 Type.

 IOAM trace data can be embedded in a variety of protocols. There are
 specific drafts that cover the encapsulation of IOAM data into
 different protocols, like IPv6 [I-D.ietf-ippm-ioam-ipv6-options], NSH
 [I-D.ietf-sfc-ioam-nsh], Geneve [I-D.brockners-ippm-ioam-geneve],
 etc.

 The IOAM Option-Types for tracing (Pre-allocated Trace-Option and
 Incremental Trace-Option) organize the collected data in an array,
 the "node data list". See [I-D.ietf-ippm-ioam-data] for further
 details).

Brockners, et al. Expires July 29, 2021 [Page 8]

Internet-Draft IOAM Data Fields Integrity January 2021

 The basic idea is to introduce a new "signed node-data hash field"
 added by each node along with the node data to prove the integrity of
 the node data inserted.

 The following sections describe different methods of how such a
 "signed node-data field" could be used and populated. The methods
 assume an IOAM-Domain containing IOAM-encapsulating nodes, IOAM-
 decapsulating nodes and IOAM-transit nodes. In addition, it is
 assumed that traffic also traverses a Validator node, which verifies
 the integrity of the IOAM data fields. In a typical deployment, the
 IOAM-decapsulating node would also serve as the Validator. The setup
 also includes a network management entity/controller which handles
 key distributions to the network nodes and also serves as a receiver
 for validation results provided by the Validator. Protocols and
 procedures for the exchange of keys and validation results between
 the network management entity/controller and the nodes are outside
 the scope of this document.

4.1. Method 1: Using asymmetric keys for signing node trace data

 Method 1 uses asymmetric keys for signing node trace data. This is
 the procedure to be followed by each node:

 1. Each IOAM capable node creates a key pair and shares the public
 key with the controller, the Validator and the network management
 system responsible for using the IOAM trace information in the
 network domain. The detailed mechanisms how keys are exchanged
 between nodes are outside the scope of this document. For
 optimal performance, use of algorithms like BLS [BLS] or ED25519
 [EdDSA25519] are suggested, resulting in fast signing for small
 keys and limited overhead (see below for an overhead
 calculation).

 2. Each node data list [x] field is extended with an additional
 "signed node-data" field: node_data_sign[x]. Node_data_sign
 includes a signature using the private key of the node over the
 hash of node data list[x] of the node and the previous node's
 node data sign node_data_sign[x-1]. This couples the signature
 of the current field to the earlier field and creates a chain of
 trust. This way of chaining the node data signatures provides
 protection against replay of a previous node trace of a specific
 node.

Brockners, et al. Expires July 29, 2021 [Page 9]

Internet-Draft IOAM Data Fields Integrity January 2021

 +-+
 | node_data_sign [x] |
 +-+
 | |
 | node data list [x] |
 | |
 +-+

 3. The IOAM encapsulating node (the node that inserts IOAM data
 fields into the packet) will add a seed in its node data list
 that is used in its node_data_sign. So the first IOAM node
 inserting the IOAM trace data will add node_data_sign over a
 "seed" || [hash of node data of first node]. The seed can be
 included as a field in first node data or the seed can be the
 trailer of the IOAM Trace-Option.

 4. The validating node - will use the public key of each node to
 validate the signed node data elements in the same way the node
 Trace signatures were created, i.e. it'll repeat the individual
 operations of the IOAM nodes traversed and will compare the
 result to the last node's node_data-sign value. If the two
 values match, the IOAM data was not tampered with.

4.1.1. Overhead consideration for Method 1

 Assuming e.g Ed25519, the public keys would have a size of 256 bits /
 32 bytes, and as such signatures would be 512 bits / 64 bytes wide.
 node_data_sign[x] would consume 64 bytes per hop. Note that
 depending on the deployment, weaker keys might well apply, given that
 the provided integrity check is an online method, i.e. packets are
 verified as they arrive. This allows an attacker only a short time-
 window.

4.2. Method 2: Using symmetric keys for signing node trace data

 The same procedure as Method 1 can be followed by using a MAC
 (Message Authentication Code) algorithm for node signature. This
 involves distributing a secret key to the individual IOAM nodes and
 the Validator. Steps 1 to 4 of Method 1 apply in a similar way, the
 only difference is that symmetric keys are used. As such, each node
 data list [x] field is extended with an additional "signed node-data"
 field: node_data_sign[x]. The size of the node_data_sign[x] field
 depends on the cryptographic message authentication code used.

Brockners, et al. Expires July 29, 2021 [Page 10]

Internet-Draft IOAM Data Fields Integrity January 2021

 +-+
 | node_data_sign [x] |
 +-+
 | |
 | node data list [x] |
 | |
 +-+

4.2.1. Overhead consideration for Method 2

 Different types of cryptographic message authentication codes could
 be chosen, such as HMAC-SHA256 or Poly1305-AES.

 HMAC-SHA256 would take a secret key of any size and provide a 32 byte
 authenticator. Consequently, node_data_sign[x] would consume 32
 bytes per hop.

 Poly1305-AES would use a 32 bytes secret key and provide a 16 byte
 authenticator. Consequently, node_data_sign[x] would consume 16
 bytes per hop.

4.3. Method 3: Space optimized symmetric key based signing of trace
 data

 Methods 1 and 2 add a node_data_sign field at every IOAM node the
 packet traverses. While feasible for network domains with only a few
 IOAM enabled hops, the number of bytes consumed in case of larger
 networks might not be acceptable. For those deployments, an approach
 with a single fixed sized signature field could apply.

 Method 3 enhances the IOAM Trace-Option header to carry a "Trace
 Signature" field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Namespace-ID |NodeLen | Flags | RemainingLen|
 +-+
 | IOAM-Trace-Type | Reserved |
 +-+
 | Trace Signature ~
 +-+

Brockners, et al. Expires July 29, 2021 [Page 11]

Internet-Draft IOAM Data Fields Integrity January 2021

 Method 3 assumes that symmetric keys have been distributed to the
 respective nodes as well as the Validator (the Validator receives all
 the keys). The details of the mechanisms of how keys are distributed
 are outside the scope of this document. The "Trace Signature" field
 is populated as follows:

 1. The first node creates a seed and sign/HMAC over the hash of its
 node_data_list[x], the seed and its symmetric key. The seed can
 be included as a field in first node data or the seed can be the
 trailer to the trace option. The resulting HMAC/signature is
 included in the Trace Signature field.

 2. Subsequent nodes will update the Trace Signature field by
 creating a signature/HMAC of data where the data is [Trace
 Signature || its node_data_list[x] hash] with its symmetric key.

 3. The Validator will iteratively recreate the Trace Signature over
 the node data trace fields collected and matches the Trace
 Signature field to validate the trace data integrity.

4.3.1. Overhead consideration for Method 3

 Much like method 2, the Trace Signature would consume 16 or 32 bytes
 - though with method 3, the Trace Signature is only carried once for
 the entire packet.

4.4. Method 4: Dynamic symmetric keys based signing of trace data

 This method builds on top of Method 3 leverages Post-quantum Secure
 Pre-shared key distribution for deriving a dynamic symmetric key for
 every packet or a set of packets. The method utilizes the dynamic
 keys to provide for replay protection and does not require a seed to
 be added to the trace data to protect from replays because a private
 key is derived for each packet. The method relies on a local service
 that generates common Key/KeyID pairs for the participating Node and
 Validator (see the figure below). This common key generator uses
 ratcheting cryptography to generate the next secret while forgetting
 about the previous one. A unique ID is paired with each secret
 generated. Given the same seed secret as input parameter, two
 implementations of the common key generator will generate the exact
 same key and associated ID. The common key generator can be queried
 for the next key or for a specific key ID.

 The figure below illustrates the concept:

Brockners, et al. Expires July 29, 2021 [Page 12]

Internet-Draft IOAM Data Fields Integrity January 2021

 Validator Node
 | |
 | |
 Generate McEliece |
 public/private key-pair |
 | |
 |<---Establ. classic secure connection---------|
 | (e.g. TLS) |
 |---Send public key over secure connection---->|
 | |
 | Generate random secret seed
 | and encrypt w/ Validator
 | public key
 | |
 |<--Send encrypted seed over secure connection-|
 | |
 Decrypt secret seed sent from Node |
 using Validator's private key |
 | |
 (-- Common secret seed established between --)
 (-- Node and Validator --)
 | |
 | Generate Node's KeyID pair
 | based on common secret seed
 | |
 | Use Node's key to update Trace Signature field
 | in trace option header. Include Node's KeyID
 | in the extended node data.
 | |
 (-- Packet reaches Validator --)
 | |
 Get Node's key using Node's KeyID |
 present in extended node data. |
 Validate Trace Signature using Node's key. |

 The main steps of method 4 are:

 1. Each node will establish a common secret seed establishment using
 McEliece [McEliece] with the Validator.

 2. Each node will then use the seed to generate a symmetric key per
 packet and use it in updating the Trace Signature field in the
 IOAM Trace-Option header over its node data hash. The node data
 is extended to include the KeyID of the dynamic key generated.

Brockners, et al. Expires July 29, 2021 [Page 13]

Internet-Draft IOAM Data Fields Integrity January 2021

 +-+
 | KeyID [x] |
 +-+
 | |
 | node data list [x] |
 | |
 +-+

 3. The Validator will validate the Trace Signature by deducing the
 key for each node using the KeyID.

 The detailed mechanisms how keys and seeds are exchanged between
 nodes are outside the scope of this document.

4.4.1. Overhead consideration for Method 4

 Like with method 3, the Trace Signature is only carried once for the
 entire packet and could be 32 bytes total. In addition, the KeyID
 needs to be added on a per hop basis. For sizing the Key ID, similar
 considerations like those for proof-of-transit packet random numbers
 apply - i.e. it depends on the packet rates of quickly keys are
 consumed. E.g. assuming a packet rate of 100Gbps and a KeyID space
 of 64 bits / 8 bytes, the system would need to be re-keyed after 3100
 years (see also [I-D.ietf-sfc-proof-of-transit]). If frequent re-
 keying is feasible, 32 bits for KeyID might well be feasible.

5. IANA Considerations

 This document is to support the IPPM working group to design and
 specify a solution for protecting the integrity of IOAM data fields.
 It does not include any requests to IANA.

6. Security Considerations

 This section will be completed in a future revision of this document.

7. Acknowledgements

 The authors would like to thank Santhosh N, Rakesh Kandula, Saiprasad
 Muchala, Greg Mirsky, Benjamin Kaduk and Martin Duke for their
 comments and advice.

8. References

Brockners, et al. Expires July 29, 2021 [Page 14]

Internet-Draft IOAM Data Fields Integrity January 2021

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

8.2. Informative References

 [BLS] "BLS (Boneh-Lynn-Shacham) digital signature", 2021,
 <https://en.wikipedia.org/wiki/BLS_digital_signature>.

 [EdDSA25519]
 "Edwards-curve Digital Signature Algorithm (EdDSA)", 2021,
 <https://en.wikipedia.org/wiki/EdDSA#Ed25519>.

 [I-D.brockners-ippm-ioam-geneve]
 Brockners, F., Bhandari, S., Govindan, V., Pignataro, C.,
 Nainar, N., Gredler, H., Leddy, J., Youell, S., Mizrahi,
 T., Lapukhov, P., Gafni, B., Kfir, A., and M. Spiegel,
 "Geneve encapsulation for In-situ OAM Data", draft-

brockners-ippm-ioam-geneve-05 (work in progress), November
 2020.

 [I-D.ietf-detnet-security]
 Grossman, E., Mizrahi, T., and A. Hacker, "Deterministic
 Networking (DetNet) Security Considerations", draft-ietf-

detnet-security-13 (work in progress), December 2020.

 [I-D.ietf-ippm-ioam-data]
 Brockners, F., Bhandari, S., and T. Mizrahi, "Data Fields
 for In-situ OAM", draft-ietf-ippm-ioam-data-11 (work in
 progress), November 2020.

 [I-D.ietf-ippm-ioam-ipv6-options]
 Bhandari, S., Brockners, F., Pignataro, C., Gredler, H.,
 Leddy, J., Youell, S., Mizrahi, T., Kfir, A., Gafni, B.,
 Lapukhov, P., Spiegel, M., Krishnan, S., Asati, R., and M.
 Smith, "In-situ OAM IPv6 Options", draft-ietf-ippm-ioam-

ipv6-options-04 (work in progress), November 2020.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://en.wikipedia.org/wiki/BLS_digital_signature
https://en.wikipedia.org/wiki/EdDSA#Ed25519
https://datatracker.ietf.org/doc/html/draft-brockners-ippm-ioam-geneve-05
https://datatracker.ietf.org/doc/html/draft-brockners-ippm-ioam-geneve-05
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-security-13
https://datatracker.ietf.org/doc/html/draft-ietf-detnet-security-13
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-11
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-ipv6-options-04
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-ipv6-options-04

Brockners, et al. Expires July 29, 2021 [Page 15]

Internet-Draft IOAM Data Fields Integrity January 2021

 [I-D.ietf-nvo3-geneve]
 Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
 Network Virtualization Encapsulation", draft-ietf-

nvo3-geneve-16 (work in progress), March 2020.

 [I-D.ietf-sfc-ioam-nsh]
 Brockners, F. and S. Bhandari, "Network Service Header
 (NSH) Encapsulation for In-situ OAM (IOAM) Data", draft-

ietf-sfc-ioam-nsh-05 (work in progress), December 2020.

 [I-D.ietf-sfc-proof-of-transit]
 Brockners, F., Bhandari, S., Mizrahi, T., Dara, S., and S.
 Youell, "Proof of Transit", draft-ietf-sfc-proof-of-

transit-08 (work in progress), November 2020.

 [McEliece]
 McEliece, R., "A Public-Key Cryptosystem Based on
 Algebraic Coding Theory", 1978,
 <https://ipnpr.jpl.nasa.gov/

progress_report2/42-44/44N.PDF>.

 [RFC7276] Mizrahi, T., Sprecher, N., Bellagamba, E., and Y.
 Weingarten, "An Overview of Operations, Administration,
 and Maintenance (OAM) Tools", RFC 7276,
 DOI 10.17487/RFC7276, June 2014,
 <https://www.rfc-editor.org/info/rfc7276>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC7799] Morton, A., "Active and Passive Metrics and Methods (with
 Hybrid Types In-Between)", RFC 7799, DOI 10.17487/RFC7799,
 May 2016, <https://www.rfc-editor.org/info/rfc7799>.

 [RFC8300] Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
 "Network Service Header (NSH)", RFC 8300,
 DOI 10.17487/RFC8300, January 2018,
 <https://www.rfc-editor.org/info/rfc8300>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-geneve-16
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-geneve-16
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-ioam-nsh-05
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-ioam-nsh-05
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-proof-of-transit-08
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-proof-of-transit-08
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://datatracker.ietf.org/doc/html/rfc7276
https://www.rfc-editor.org/info/rfc7276
https://datatracker.ietf.org/doc/html/rfc7384
https://www.rfc-editor.org/info/rfc7384
https://datatracker.ietf.org/doc/html/rfc7799
https://www.rfc-editor.org/info/rfc7799
https://datatracker.ietf.org/doc/html/rfc8300
https://www.rfc-editor.org/info/rfc8300

Brockners, et al. Expires July 29, 2021 [Page 16]

Internet-Draft IOAM Data Fields Integrity January 2021

 Frank Brockners
 Cisco Systems, Inc.
 Hansaallee 249, 3rd Floor
 DUESSELDORF, NORDRHEIN-WESTFALEN 40549
 Germany

 Email: fbrockne@cisco.com

 Shwetha Bhandari
 Thoughtspot
 3rd Floor, Indiqube Orion, 24th Main Rd, Garden Layout, HSR Layout
 Bangalore, KARNATAKA 560 102
 India

 Email: shwetha.bhandari@thoughtspot.com

 Tal Mizrahi
 Huawei
 8-2 Matam
 Haifa 3190501
 Israel

 Email: tal.mizrahi.phd@gmail.com

Brockners, et al. Expires July 29, 2021 [Page 17]

