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Abstract

   In-situ Operations, Administration, and Maintenance (IOAM) records
   operational and telemetry information in the packet while the packet
   traverses a path between two points in the network.  This document is
   to assist the IPPM WG in designing a solution for those deployments
   where the integrity of IOAM data fields is a concern.  This document
   proposes several methods to ensure the integrity of IOAM data fields.
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   "In-situ" Operations, Administration, and Maintenance (IOAM) records
   OAM information within the packet while the packet traverses a
   particular network domain.  The term "in-situ" refers to the fact
   that the OAM data is added to the data packets rather than is being
   sent within packets specifically dedicated to OAM.  IOAM is to
   complement mechanisms such as Ping, Traceroute, or other active
   probing mechanisms.  In terms of "active" or "passive" OAM, "in-situ"
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   OAM can be considered a hybrid OAM type.  "In-situ" mechanisms do not
   require extra packets to be sent.  IOAM adds information to the
   already available data packets and therefore cannot be considered
   passive.  In terms of the classification given in [RFC7799] IOAM
   could be portrayed as Hybrid Type 1.  IOAM mechanisms can be
   leveraged where mechanisms using e.g.  ICMP do not apply or do not
   offer the desired results, such as proving that a certain traffic
   flow takes a pre-defined path, SLA verification for the live data
   traffic, detailed statistics on traffic distribution paths in
   networks that distribute traffic across multiple paths, or scenarios
   in which probe traffic is potentially handled differently from
   regular data traffic by the network devices.

   The current [I-D.ietf-ippm-ioam-data] assumes that IOAM is deployed
   in specific network domains, where an operator has means to select,
   monitor, and control the access to all the networking devices, making
   the domain a trusted network.  As such, IOAM tracing data is carried
   in the packets in clear and there are no protections against any node
   or middlebox tampering with the data.  As a consequence, IOAM tracing
   data collected in an untrusted or semi-trusted environments cannot be
   trusted for critical operational decisions.  Any rogue or
   unauthorized change to IOAM data fields in a user packet cannot be
   detected.

   Recent discussions following the IETF last call on
   [I-D.ietf-ippm-ioam-data] revealed that there might be uses of IOAM
   where integrity protection of IOAM data fields is at least desirable,
   knowing that IOAM data fields integrity protection would incur extra
   effort in the data path of a device processing IOAM data fields.  As
   such, the following additional considerations and requirements are to
   be taken into account in addition to addressing the problem of
   detectability of any integrity breach of the IOAM trace data
   collected:

   1.  IOAM trace data is processed by the data plane, hence viability
       of any method to prove integrity of the IOAM trace data must be
       feasible at data plane processing/forwarding rates (IOAM data
       might be applied to all traffic a router forwards).

   2.  IOAM trace data is carried within data packets.  Additional space
       required to prove integrity of the data needs to be optimal, i.e.
       should not exceed the MTU or have adverse affect on packet
       processing.

   3.  Replay protection of older IOAM trace data should be possible.
       Without replay protection a rogue node can present the old IOAM
       trace data masking any ongoing network issues/activity making the
       IOAM trace data collection useless.

https://datatracker.ietf.org/doc/html/rfc7799
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   This document is to assist the IPPM working group in designing and
   specifying a solution for those deployments where the integrity of
   IOAM data fields is a concern.  This document proposes several
   methods to achieve integrity protection for IOAM data fields.

2.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   Abbreviations used in this document:

   Geneve:    Generic Network Virtualization Encapsulation
              [I-D.ietf-nvo3-geneve]

   GRE        Generic Routing Encapsulation

   IOAM:      In-situ Operations, Administration, and Maintenance

   MTU:       Maximum Transmit Unit

   NSH:       Network Service Header [RFC8300]

   OAM:       Operations, Administration, and Maintenance

   POT:       Proof of Transit

   SFC:       Service Function Chain

3.  Threat Analysis

   This section presents a threat analysis of integrity-related threats
   in the context of IOAM.  The threats that are discussed are assumed
   to be independent of the lower layer protocols; it is assumed that
   threats at other layers are handled by security mechanisms that are
   deployed at these layers.

   This document is focused on integrity protection for IOAM data
   fields.  Thus the threat analysis includes threats that are related
   to or result from compromising the integrity of IOAM data fields.
   Other security aspects such as confidentiality are not within the
   scope of this document.

   Throughout the analysis there is a distinction between on-path and
   off-path attackers.  As discussed in [I-D.ietf-detnet-security], on-
   path attackers are located in a position that allows interception and

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8300
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   modification of in-flight protocol packets, whereas off-path
   attackers can only attack by generating protocol packets.

   The analysis also includes the impact of each of the threats.
   Generally speaking, the impact of a successful attack on an OAM
   protocol [RFC7276] is a false illusion of nonexistent failures or
   preventing the detection of actual ones; in both cases, the attack
   may result in denial of service (DoS).  Furthermore, creating the
   false illusion of a nonexistent issue may trigger unnecessary
   processing in some of the IOAM nodes along the path, and may cause
   more IOAM-related data to be exported to the management plane than is
   conventionally necessary.  Beyond these general impacts, threat-
   specific impacts are discussed in each of the subsections below.

3.1.  Modification: IOAM Data Fields

   Threat

      An attacker can maliciously modify the IOAM data fields of in-
      transit packets.  The modification can either be applied to all
      packets or selectively applied to a subset of the en route
      packets.  This threat is applicable to on-path attackers.

   Impact

      By systematically modifying the IOAM data fields of some or all of
      the in-transit packets an attacker can create a false picture of
      the paths in the network, the existence of faulty nodes and their
      location, and the network performance.

3.2.  Modification: IOAM Option-Type Headers

   Threat

      An on-path attacker can modify IOAM data fields in one or more of
      the IOAM Option-Type headers in order to change or disrupt the
      behavior of nodes processing IOAM data fields along the path.

   Impact

      Changing the header of IOAM Option-Types may have several
      implications.  An attacker can maliciously increase the processing
      overhead in nodes that process IOAM data fields and increase the
      on-the-wire overhead of IOAM data fields, for example by modifying
      the IOAM-Trace-Type field in the IOAM Trace-option header.  An
      attacker can also prevent some of the nodes that process IOAM data
      fields from incorporating IOAM data fields by modifying the
      RemainingLen field.

https://datatracker.ietf.org/doc/html/rfc7276
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3.3.  Injection: IOAM Data Fields

   Threat

      An attacker can inject packets with IOAM Option-Types and IOAM
      data fields.  This threat is applicable to both on-path and off-
      path attackers.

   Impact

      This attack and it impacts are similar to Section 3.1.

3.4.  Injection: IOAM Option-Type Headers

   Threat

      An attacker can inject packets with IOAM Option-Type headers, thus
      manipulating other nodes that process IOAM data fields in the
      network.  This threat is applicable to both on-path and off-path
      attackers.

   Impact

      This attack and it impacts are similar to Section 3.2.

3.5.  Replay

   Threat

      An attacker can replay packets with IOAM data fields.
      Specifically, an attacker may replay a previously transmitted IOAM
      Option-Type with a new data packet, thus attaching old IOAM data
      fields to a fresh user packet.  This threat is applicable to both
      on-path and off-path attackers.

   Impact

      As with previous threats, this threat may create a false image of
      a nonexistent failure, or may overload nodes which process IOAM
      data fields with unnecessary processing.

3.6.  Management and Exporting

   Threat

      Attacks that compromise the integrity of IOAM data fields can be
      applied at the management plane, e.g., by manipulating network
      management packets.  Furthermore, the integrity of IOAM data
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      fields that are exported to a receiving entity can also be
      compromised.  Management plane attacks are not within the scope of
      this document; the network management protocol is expected to
      include inherent security capabilities.  The integrity of exported
      data is also not within the scope of this document.  It is
      expected that the specification of the export format will discuss
      the relevant security aspects.

   Impact

      Malicious manipulation of the management protocol can cause nodes
      that process IOAM data fields to malfunction, to be overloaded, or
      to incorporate unnecessary IOAM data fields into user packets.
      The impact of compromising the integrity of exported IOAM data
      fields is similar to the impacts of previous threats that were
      described in this section.

3.7.  Delay

   Threat

      An on-path attacker may delay some or all of the in-transit
      packets that include IOAM data fields in order to create the false
      illusion of congestion.  Delay attacks are well known in the
      context of deterministic networks [I-D.ietf-detnet-security] and
      synchronization [RFC7384], and may be somewhat mitigated in these
      environments by using redundant paths in a way that is resilient
      to an attack along one of the paths.  This approach does not
      address the threat in the context of IOAM, as it does not meet the
      requirement to measure a specific path or to detect a problem
      along the path.  It is noted that this threat is not within the
      scope of the threats that are mitigated in the scope of this
      document.

   Impact

      Since IOAM can be applied to a fraction of the traffic, an
      attacker can detect and delay only the packets that include IOAM
      data fields, thus preventing the authenticity of delay and load
      measurements.

3.8.  Threat Summary

https://datatracker.ietf.org/doc/html/rfc7384
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   +-------------------------------------------+--------+------------+
   | Threat                                    |In scope|Out of scope|
   +-------------------------------------------+--------+------------+
   |Modification: IOAM Data Fields             |   +    |            |
   +-------------------------------------------+--------+------------+
   |Modification: IOAM Option-Type Headers     |   +    |            |
   +-------------------------------------------+--------+------------+
   |Injection: IOAM Data Fields                |   +    |            |
   +-------------------------------------------+--------+------------+
   |Injection: IOAM Option-Type Headers        |   +    |            |
   +-------------------------------------------+--------+------------+
   |Replay                                     |   +    |            |
   +-------------------------------------------+--------+------------+
   |Management and Exporting                   |        |     +      |
   +-------------------------------------------+--------+------------+
   |Delay                                      |        |     +      |
   +-------------------------------------------+--------+------------+

                     Figure 1: Threat Analysis Summary

4.  Methods of providing integrity to IOAM data fields

   This section outlines four different methods that are to provide
   integrity protection of IOAM data fields.  As noted earlier, this
   document is to support the IPPM working group in designing and
   specifying a method for protecting the integrity of IOAM data fields.
   It isn't expected that all four methods would be chosen for a
   solution specification.

   The discussion of the different methods focuses on protecting the
   integrity of IOAM trace data fields, though the outlined methods are
   not limited to protecting IOAM trace data fields only.  The methods
   could be applied to other IOAM Option-Types, such as the E2E Option-
   Type.

   IOAM trace data can be embedded in a variety of protocols.  There are
   specific drafts that cover the encapsulation of IOAM data into
   different protocols, like IPv6 [I-D.ietf-ippm-ioam-ipv6-options], NSH
   [I-D.ietf-sfc-ioam-nsh], Geneve [I-D.brockners-ippm-ioam-geneve],
   etc.

   The IOAM Option-Types for tracing (Pre-allocated Trace-Option and
   Incremental Trace-Option) organize the collected data in an array,
   the "node data list".  See [I-D.ietf-ippm-ioam-data] for further
   details).
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   The basic idea is to introduce a new "signed node-data hash field"
   added by each node along with the node data to prove the integrity of
   the node data inserted.

   The following sections describe different methods of how such a
   "signed node-data field" could be used and populated.  The methods
   assume an IOAM-Domain containing IOAM-encapsulating nodes, IOAM-
   decapsulating nodes and IOAM-transit nodes.  In addition, it is
   assumed that traffic also traverses a Validator node, which verifies
   the integrity of the IOAM data fields.  In a typical deployment, the
   IOAM-decapsulating node would also serve as the Validator.  The setup
   also includes a network management entity/controller which handles
   key distributions to the network nodes and also serves as a receiver
   for validation results provided by the Validator.  Protocols and
   procedures for the exchange of keys and validation results between
   the network management entity/controller and the nodes are outside
   the scope of this document.

4.1.  Method 1: Using asymmetric keys for signing node trace data

   Method 1 uses asymmetric keys for signing node trace data.  This is
   the procedure to be followed by each node:

   1.  Each IOAM capable node creates a key pair and shares the public
       key with the controller, the Validator and the network management
       system responsible for using the IOAM trace information in the
       network domain.  The detailed mechanisms how keys are exchanged
       between nodes are outside the scope of this document.  For
       optimal performance, use of algorithms like BLS [BLS] or ED25519
       [EdDSA25519] are suggested, resulting in fast signing for small
       keys and limited overhead (see below for an overhead
       calculation).

   2.  Each node data list [x] field is extended with an additional
       "signed node-data" field: node_data_sign[x].  Node_data_sign
       includes a signature using the private key of the node over the
       hash of node data list[x] of the node and the previous node's
       node data sign node_data_sign[x-1].  This couples the signature
       of the current field to the earlier field and creates a chain of
       trust.  This way of chaining the node data signatures provides
       protection against replay of a previous node trace of a specific
       node.
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   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        node_data_sign [x]                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        node data list [x]                     |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   3.  The IOAM encapsulating node (the node that inserts IOAM data
       fields into the packet) will add a seed in its node data list
       that is used in its node_data_sign.  So the first IOAM node
       inserting the IOAM trace data will add node_data_sign over a
       "seed" || [hash of node data of first node].  The seed can be
       included as a field in first node data or the seed can be the
       trailer of the IOAM Trace-Option.

   4.  The validating node - will use the public key of each node to
       validate the signed node data elements in the same way the node
       Trace signatures were created, i.e. it'll repeat the individual
       operations of the IOAM nodes traversed and will compare the
       result to the last node's node_data-sign value.  If the two
       values match, the IOAM data was not tampered with.

4.1.1.  Overhead consideration for Method 1

   Assuming e.g Ed25519, the public keys would have a size of 256 bits /
   32 bytes, and as such signatures would be 512 bits / 64 bytes wide.
   node_data_sign[x] would consume 64 bytes per hop.  Note that
   depending on the deployment, weaker keys might well apply, given that
   the provided integrity check is an online method, i.e. packets are
   verified as they arrive.  This allows an attacker only a short time-
   window.

4.2.  Method 2: Using symmetric keys for signing node trace data

   The same procedure as Method 1 can be followed by using a MAC
   (Message Authentication Code) algorithm for node signature.  This
   involves distributing a secret key to the individual IOAM nodes and
   the Validator.  Steps 1 to 4 of Method 1 apply in a similar way, the
   only difference is that symmetric keys are used.  As such, each node
   data list [x] field is extended with an additional "signed node-data"
   field: node_data_sign[x].  The size of the node_data_sign[x] field
   depends on the cryptographic message authentication code used.
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   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        node_data_sign [x]                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        node data list [x]                     |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.2.1.  Overhead consideration for Method 2

   Different types of cryptographic message authentication codes could
   be chosen, such as HMAC-SHA256 or Poly1305-AES.

   HMAC-SHA256 would take a secret key of any size and provide a 32 byte
   authenticator.  Consequently, node_data_sign[x] would consume 32
   bytes per hop.

   Poly1305-AES would use a 32 bytes secret key and provide a 16 byte
   authenticator.  Consequently, node_data_sign[x] would consume 16
   bytes per hop.

4.3.  Method 3: Space optimized symmetric key based signing of trace
      data

   Methods 1 and 2 add a node_data_sign field at every IOAM node the
   packet traverses.  While feasible for network domains with only a few
   IOAM enabled hops, the number of bytes consumed in case of larger
   networks might not be acceptable.  For those deployments, an approach
   with a single fixed sized signature field could apply.

   Method 3 enhances the IOAM Trace-Option header to carry a "Trace
   Signature" field.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Namespace-ID           |NodeLen  | Flags | RemainingLen|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               IOAM-Trace-Type                 |  Reserved     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Trace Signature                          ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   Method 3 assumes that symmetric keys have been distributed to the
   respective nodes as well as the Validator (the Validator receives all
   the keys).  The details of the mechanisms of how keys are distributed
   are outside the scope of this document.  The "Trace Signature" field
   is populated as follows:

   1.  The first node creates a seed and sign/HMAC over the hash of its
       node_data_list[x], the seed and its symmetric key.  The seed can
       be included as a field in first node data or the seed can be the
       trailer to the trace option.  The resulting HMAC/signature is
       included in the Trace Signature field.

   2.  Subsequent nodes will update the Trace Signature field by
       creating a signature/HMAC of data where the data is [Trace
       Signature || its node_data_list[x] hash] with its symmetric key.

   3.  The Validator will iteratively recreate the Trace Signature over
       the node data trace fields collected and matches the Trace
       Signature field to validate the trace data integrity.

4.3.1.  Overhead consideration for Method 3

   Much like method 2, the Trace Signature would consume 16 or 32 bytes
   - though with method 3, the Trace Signature is only carried once for
   the entire packet.

4.4.  Method 4: Dynamic symmetric keys based signing of trace data

   This method builds on top of Method 3 leverages Post-quantum Secure
   Pre-shared key distribution for deriving a dynamic symmetric key for
   every packet or a set of packets.  The method utilizes the dynamic
   keys to provide for replay protection and does not require a seed to
   be added to the trace data to protect from replays because a private
   key is derived for each packet.  The method relies on a local service
   that generates common Key/KeyID pairs for the participating Node and
   Validator (see the figure below).  This common key generator uses
   ratcheting cryptography to generate the next secret while forgetting
   about the previous one.  A unique ID is paired with each secret
   generated.  Given the same seed secret as input parameter, two
   implementations of the common key generator will generate the exact
   same key and associated ID.  The common key generator can be queried
   for the next key or for a specific key ID.

   The figure below illustrates the concept:
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         Validator                                         Node
             |                                              |
             |                                              |
       Generate McEliece                                    |
       public/private key-pair                              |
             |                                              |
             |<---Establ. classic secure connection---------|
             |               (e.g. TLS)                     |
             |---Send public key over secure connection---->|
             |                                              |
             |                             Generate random secret seed
             |                               and encrypt w/ Validator
             |                                        public key
             |                                              |
             |<--Send encrypted seed over secure connection-|
             |                                              |
      Decrypt secret seed sent from Node                    |
         using Validator's private key                      |
             |                                              |
             (-- Common secret seed established between   --)
             (--       Node and Validator                 --)
             |                                              |
             |                             Generate Node's KeyID pair
             |                             based on common secret seed
             |                                              |
             |           Use Node's key to update Trace Signature field
             |           in trace option header. Include Node's KeyID
             |                           in the extended node data.
             |                                              |
             (--        Packet reaches Validator          --)
             |                                              |
       Get Node's key using Node's KeyID                    |
       present in extended node data.                       |
       Validate Trace Signature using Node's key.           |

   The main steps of method 4 are:

   1.  Each node will establish a common secret seed establishment using
       McEliece [McEliece] with the Validator.

   2.  Each node will then use the seed to generate a symmetric key per
       packet and use it in updating the Trace Signature field in the
       IOAM Trace-Option header over its node data hash.  The node data
       is extended to include the KeyID of the dynamic key generated.
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   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            KeyID [x]                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        node data list [x]                     |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   3.  The Validator will validate the Trace Signature by deducing the
       key for each node using the KeyID.

   The detailed mechanisms how keys and seeds are exchanged between
   nodes are outside the scope of this document.

4.4.1.  Overhead consideration for Method 4

   Like with method 3, the Trace Signature is only carried once for the
   entire packet and could be 32 bytes total.  In addition, the KeyID
   needs to be added on a per hop basis.  For sizing the Key ID, similar
   considerations like those for proof-of-transit packet random numbers
   apply - i.e. it depends on the packet rates of quickly keys are
   consumed.  E.g. assuming a packet rate of 100Gbps and a KeyID space
   of 64 bits / 8 bytes, the system would need to be re-keyed after 3100
   years (see also [I-D.ietf-sfc-proof-of-transit]).  If frequent re-
   keying is feasible, 32 bits for KeyID might well be feasible.

5.  IANA Considerations

   This document is to support the IPPM working group to design and
   specify a solution for protecting the integrity of IOAM data fields.
   It does not include any requests to IANA.

6.  Security Considerations

   This section will be completed in a future revision of this document.
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