
Internet-Draft D. Brown
Intended status: Experimental BlackBerry
Expires: 2019-04-07 2018-10-04

 Elliptic curve 2y^2=x^3+x over field size 8^91+5
 <draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-02.txt>

Abstract

 This document specifies a special elliptic curve with a compact
 description (see title) and an efficient endormorphism (complex
 multiplication by i). This curve is only recommended for
 cryptographic use in a strongest-link combination with dissimilar
 elliptic curves (e.g. NIST P-256, Curve25519, extension-field
 curves, etc.). Used in this manner, the curve special features
 serve as a defense in depth against an unlikely event: a new or
 secret attack against the other types of elliptic curves.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note that
 other groups may also distribute working documents as
 Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 This document may not be modified, and derivative works of it may
 not be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

https://datatracker.ietf.org/doc/html/draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-02.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Brown 2y^2=x^3+x over 8^91+5 [Page 1]

Internet-Draft 2018-10-04

Table of Contents

 1. Introduction
 1.1. Background
 1.2. Motivation
 2. Requirements Language (RFC 2119)
 3. Encoding a point into 34 bytes
 3.1. Encoding a point into bytes
 3.2. Decoding bytes into a point
 4. Point validation
 4.1. When a point MUST be validated
 4.2. How to validate a point (given only x)
 5. OPTIONAL encodings
 5.1. Encoding scalar multipliers as 34 bytes
 5.2. Encoding 34 bytes into a point (sketch)
 6. Cryptographic schemes
 6.1. Diffie--Hellman key agreement
 6.2. Signatures
 6.3 Menezes--Qu--Vanstone key agreement
 7. IANA Considerations
 8. Security considerations
 8.1. Field choice
 8.2. Curve choice
 8.3. Encoding choices
 8.4. General subversion concerns
 9. References
 9.1. Normative References
 9.2. Informative References
Appendix A. Test vectors
Appendix B. Motivation: minimizing the room for backdoors
Appendix C. Pseudocode

 C.1. Byte encoding
 C.2. Byte decoding
 C.3. Fermat inversion
 C.4. Branchless Legendre symbol computation
 C.5. Field multiplication and squaring
 C.6. Field element partial reduction
 C.7. Field element final reduction
 C.8. Scalar point multiplication
 C.9. Diffie--Hellman pseudocode
 C.10. Elligator i
Appendix D. Primality proofs and certificates

 D.1 Pratt certificate for the field size 8^91+5
 D.2 Pratt certificate for size of the large elliptic curve subgroup

Brown 2y^2=x^3+x over 8^91+5 [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft 2018-10-04

1. Introduction

 This document specifies some conventions for using the elliptic
 curve 2y^2=x^3+x over the field of size 8^91+5 in cryptography.

 This draft focuses on applications to Diffie--Hellman exchange.

1.1. Background

 This document presumes that its reader already has familiarity with
 elliptic curve cryptography.

 The symbol '^', as used in '2y^2=x^3+x' and '8^91+5' means
 exponentiation, also known as powering. In particular, it does not
 mean bit-wise exclusive-or (as in the C programming language
 operator). For example, y^3=yyy (or y*y*y, if * is used for
 multiplication.)

 In particular, p=8^91+5 is a (positive) prime number. Its encoding
 into bytes, using little-endian ordering (least significant bytes
 first), requires 35 bytes, and has the form {5,0,0,...,2}, with the
 first byte equal to 5, the last 2, and the 33 intermediate bytes are
 each 0. A byte encoding of p is not needed for this document, and
 is only shown here for illustrative purposes. Its hexadecimal
 representation (i.e. big-endian, base 16), is 20...05, with 67 zeros
 between 2 and 5.

1.2. Motivation

 The motivations for curve 2y^2=x^3+x over field 8^91+5 are discussed
 in Appendix B (and in [B1]).

 In short, the main motivation is that the description of the curve
 is very short (for an elliptic curve), thereby reducing the room for
 a secretly embedded trapdoor, as in [Teske].

2. Requirements Language (RFC 2119)

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [BCP14].

Brown 2y^2=x^3+x over 8^91+5 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft 2018-10-04

3. Encoding a point into 34 bytes

 Elliptic curve cryptography uses points for public keys and raw
 shared secrets. A point can be defined as either pair (x,y), where
 x and y are field elements, or a special point O located at
 infinity. Field elements for this curve are integers modulo 8^91+5.

 Note: for practicality, an implementation will usually represent
 the x-coordinate as a ratio (X:Z) of field elements. This
 specification ignores that detail, assuming x has been normalized
 to (x:1).

 To interoperably communicate, points must be encoded as byte
 strings.

 This draft specifies an encoding of finite points (x,y) as strings
 of 34 bytes, as described in the following sections.

 Note: The 34-byte encoding is not injective. Each point is
 generally among a group of four points that share the same byte
 encoding.

 Note: The 34-byte encoding is not surjective. Approximately half
 of 34-byte strings do not encode a finite point (x,y).

 Note: In many typical ECC schemes, the 34-byte encoding works
 well, despite being neither injective nor surjective.

3.1. Encoding a point into bytes

 In short: a finite point (x,y) by the little-endian byte
 representation of x or -x, whichever fits into 34 bytes.

 In detail: a point (x,y) is encoded into 34 bytes, as follows.

 First, ensure that x is fully reduced mod p=8^91+5, so that

 0 <= x < 8^91+5.

 Second, further reduce x by a flipping its sign. Let

 x' =: min(x,p-x) mod 2^272.

Brown 2y^2=x^3+x over 8^91+5 [Page 4]

Internet-Draft 2018-10-04

 Third, set the byte string b to be the little-endian encoding of the
 reduced integer x', by finding the unique integers b[i] such that
 0<=b[i]<256 and

 (x' mod 2^272) = sum (0<=i<=33, b[i]*256^i).

 Pseudocode can be found in Appendix C.

3.2. Decoding bytes into a point

 In short: the bytes are little-endian decoded into an integer which
 becomes the x-coordinate. The y-coordinate is implicit (in
 Diffie--Hellman).

 +---+
 | |
 | \ W / /A\ |R) |N | I |N | /G ! |
 | \/ \/ / \ |^\ | \| | | \| _7 0 |
 | |
 | |
 | WARNING: Some byte strings b decode to an invalid |
 | point (x,y) that does not belong to the curve |
 | 2y^2=x^3+x. In some situations, such invalid b can |
 | lead to a severe attack. In these situations, the |
 | decoded point (x,y) MUST be validated, as described |
 | below in Section 4. |
 | |
 +---+

 (TO DO: if y is needed explicitly, then one of y matching x must be
 solved; in that case, y-needing application, after a point (x,y) is
 encoded to b, it should be replaced by (x',y'), where (x',y') is the
 decoding of b. In the rare case that x and x' do not match, then
 (x,y) should be re-generated or rejected.)

 In greater detail: if byte i is b[i], with an integer value
 between 0 and 255 inclusive, then

 x = sum(0<=i<=33, b[i]*256^i)

4. Point validation

 In elliptic curve cryptography, scalar multiplying an invalid public
 key by a private key risks leaking information about the private
 key.

Brown 2y^2=x^3+x over 8^91+5 [Page 5]

Internet-Draft 2018-10-04

 For curve 2y^2=x^3+x over 8^91+5, the underlying attacks are a
 little milder than the average a typical elliptic curve.

4.1. When a public key MAY, SHOULD or MUST be validated

 Every public key MAY be validated, just as an extra precaution, or
 defense in depth.

 If an implementation cannot to afford validate every public key, but
 also cannot follow the more complicated rules that follow, the
 implementation can use the following simple rule:

 +---+
 | STATIC |
 | SECRET |
 | KEY ------\ _ ___ |
 | +) PUBLIC |\/| | | (_` | |
 | UNPROVEN ------/ KEY | | _/ ._) | BE VALIDATED. |
 | PUBLIC |
 | KEY |
 +---+

 However, the more complicated rules described below aim to only
 impose a requirement to validate when there is a known attack, when
 a requirement is absolutely necessary.

 Public key validation has a non-negligible cost, and is sometimes
 not necessary for security. Here are some criteria under which
 public key validation becomes a SHOULD or MUST

 1) The public key P potentially originates from an potential
 adversary.

 2) The public key P will be used in Diffie--Hellman key agreement to
 compute a value sP, where:

 a) s is a secret

 b) s will be or has been re-used to compute other values (other
 than just sP)

 c) proof of knowledge of sP has not been received (see Note)

 d) proof of knowledge of sP has been requested (see Note)

 e) the direct value of sP has been requested

Brown 2y^2=x^3+x over 8^91+5 [Page 6]

Internet-Draft 2018-10-04

 f) sP is computed by one of the following methods:

 I) first explicitly decompressing P to (x,y), but without
 checking (x,y) is on the true curve or that intermediate
 candidate square root are correct, second computing sP
 using formulas that are correct even if P lies on some
 other (false) curve.

 II) using a (1 or 2 dimensinoal) Montgomery ladder, or
 similar method, that ensures P is internally represented
 as point on the curve or its twist, regardless of the
 bytes used to deliver P,

 3) The public key P will be used in some other algorithm, such as
 Menezes--Qu--Vanstone key agreement, that combines P with a
 long-term (static) secret s and an ephemeral secret e.

 4) The public key P will be used in some algorithm, such as
 signature verification algorithm, that does not combine P with
 any secrets.

 g) The algorithm involving P is used primarily to prove some
 property of P is itself, such as proof-of-possession.

 Note: proof of knowledge of sP can take many forms. For example,
 deriving an message authetnication code key (HMAC) from sP and then
 computig a tag of a knowable message. For a second example,
 deriving a symmetric encryption key from sP, then encrypting a
 message that is non-random in the sense it contains enough
 redundancy that decryption proves knowledge of sP. Obviously,
 direct exposure (e) of sP is a proof of knowledge of sP.

 Public key validation MUST be done when the following sets of
 criteria hold, because of the attacks summarized.

 - {1,2,a,b,f,I}: The attacker pre-computes values P that
 decompress to a point (x,y) of a very low-order point P that is
 neither on the curve nor its twist, but on some other false curve.
 Finding such P may be hard. The adversary can prove knowledge of
 sP by guessing s mod ord(P), due to their very low order, though
 many proofs will fail. Using these points P finds the secret s
 quickly, by the Chinese remainder theorem. The number of failed
 interactions with the owner of s may be in the thousands.
 Fortunately, in this situtation public key validation is very
 fast, since it can be done by checking that 2y^2=x^3+x.

Brown 2y^2=x^3+x over 8^91+5 [Page 7]

Internet-Draft 2018-10-04

 - {1,2,a,b,c,f,I}: The attacker pre-computes values P that
 decompress to a point (x,y) of a very low-order point P that is
 neither on the curve nor its twist, but on some other false curve.
 Finding such P may be hard. The attacker guesses (s mod ord(P)).
 The attacker ascertains whether the guess is correct by conducting
 a reaction attack, seeing whether the owner of s acts as though is
 proper. Using these points P finds the secret s quickly, by the
 Chinese remainder theorem. Fortunately, in this situtation public
 key validation is very fast, since it can be done by checking that
 2y^2=x^3+x.

 - {1,2,a,b,c,e,f,II}: The attacker, (easily) pre-computes moderately
 low-order points P on the twist, receives sP, and solves the
 discrete log (s mod ord(P)). The attack takes computation of
 about 2^65 group operations. Only esotertic protocols require sP
 to be directly exposed: usually sP is passed through a 1-way hash
 before any other use.

 - {1,2,a,b,c,d,f,II}: The attacker (easily) pre-computes moderately
 low-order points P on the twists, receives proof-of-knowledge of
 sP, exhaustively searches values of (s mod ord(P)). The attack
 takes computation of at least 2^70 group operations.

 If an implementation of the compute of sP from s and P can be used
 in one of the situtations above, then it MUST either validate P
 before
 computing sP, or it must have a clearly documented input flag to
 indicate whether P can be trusted.

 Public key validation SHOULD be done in the following situations,
 because of the following attacks:

 - {1,2,a,b,d,f,II}: The attacker (easily) generates a point P on the
 twist of order 1526119141 and makes approximately 1526119141/2
 guesses g such gP = sP, uses the guesses as proof of knowledge of
 sP towards the owner of the secret s. This involves the owner of
 s unwittingly or unstoppably participating in about half a billion
 failed crypto operations. The attacker then learns about 30 bits
 of the secret s, which could be used to speed up on discrete
 logarithm attack on s to cost of about 2^120 group operations.

 Public key validation SHOULD be also done in the following
 situtations, either because it is so efficient (in 2,f,I), or
 because of potential attacks, in order of decreasing risk (as
 estimated by me):

Brown 2y^2=x^3+x over 8^91+5 [Page 8]

Internet-Draft 2018-10-04

 - {1,2,a,b,e}
 - {1,2,a,b,c,d}
 - {1,2,a,b,f,I}
 - {1,2,a,b}
 - {1,2,f,I,3}
 - {1,2,f,I,4}
 - {2,f,I}

 Note that the twist has order:

 2^2 * 5 * 1526119141 * 788069478421 * 182758084524062861993 *
 3452464930451677330036005252040328546941

 OLD TEXT BELOW:

 If a party Alice has a secret key a for the curve 2y^2=x^3+x over
 8^91+5, which she will to establish two (hashed) Diffie--Hellman
 keys, agreement with 2 or more public keys from other parties, say
 Bob and Charles, then Alice SHOULD apply public-key validation to
 the public key points of the other parties (Bob and Charlies).

 MUST undergo validation if they are
 combined with private keys as part of multiple Diffie--Hellman
 computations:

 Additionally, public keys SHOULD undergo validation if they are
 received from an unauthenticated source, even if the scalar is
 ephemeral or public.

 ATTEMPT (TO BE CONFIRMED):

4.2. How to validate a point (given only x)

 Upon decoding the 34 bytes into x, the next step is to compute
 z=2(x^3+x). Then one checks if z has a nonzero square root. If z
 has a nonzero square root, then the represented point is valid,
 otherwise it is not valid.

 Equivalently, one can check that x^3 + x has no square root (that
 is, x^3+x is a quadratic non-residue).

 To check z for a square root, one can compute the Legendre symbol
 (z/p) and check that is 1. (Equivalently, one can check that
 ((x^3+x)/p)=-1.)

Brown 2y^2=x^3+x over 8^91+5 [Page 9]

Internet-Draft 2018-10-04

 The Legendre symbol can be computed using Gauss' quadratic
 reciprocity law, but this requires implementing modular integer
 arithmetic for moduli smaller than 8^91+5.

 More slowly, but perhaps more simply, one compute the Legendre
 symbol using powering in the field: (z/p) = z^((p-1)/2) =
 z^(2^272+2). This will have value 0,1 or p-1 (which is equivalent
 to -1).

 More generally, in signature applications, where the y-coordinate is
 also needed, the computation of y, which involves computing a square
 root will generally include a check that x is valid.

 The curve 2y^2=x^3+x is not twist-secure. So, using the Montgomery
 ladder for scalar multiplication is not enough to thwart invalid
 public key attacks. In other words, public key validation MUST be
 combined with the Montgomery ladder, unless the scalar multiplier
 involved is public or a single-DH-use secret (i.e. computing kG and
 kP, counts as a single DH use of k).

 Note: a given point need only be validated once, if the
 implementation can track validation state.

 OPTIONAL: In some rare situations, it is also necessary to ensure
 that the point has large order, not just that it is on the curve.

 For points on this curve, each point has large order, unless it has
 torsion by 12. In other words, if 12P != O, then the point P has
 large order.

 OPTIONAL: In even rarer situations, it may be necessary to ensure
 that the point also has prime order. To be completed.

5. OPTIONAL encodings

 The following two encodings are not usually required to obtain
 interoperability in the typical ECC applications, but can sometimes
 be useful.

5.1. Encoding scalar multipliers as 34 bytes

 To be completed.

 Basically, little-endian byte encoding of integers is recommended.

 The main application is to signatures.

Brown 2y^2=x^3+x over 8^91+5 [Page 10]

Internet-Draft 2018-10-04

 Another application is for test vectors (to be completed).

5.2. Encoding 34 bytes into a point (sketch)

 In special applications, beyond mere Diffie--Hellman key exchange or
 digital signatures, it may be desired to encode arbitrary bytes as
 points.

 Example reasons are anonymity, or hiding the presence of a key
 exchange.

 Note: the point encoding described earlier does a different job.
 It encodes every point. The task here is to encode every byte
 string.

 This method is slower than the representations above, and yields
 biased elliptic curve points, but has the advantage that the
 byte-strings are unbiased.

 The idea is a minor variation of the Elligator 2 construction
 [Elligator]. Unfortunately, Elligator 2 itself fails for curves
 with j-invariant 1728, which includes 2y^2=x^3+x. In case of
 confusion, this map here can be called Elligator i, (see also [B1]).

 Fix a square root i of -1 in the field.

 Given any random field element r, compute

 x=i- 3i/(1-ir^2)

 If there is no y solving 2y^2=x^3+x for this x, then replace x by
 x+i and try to solve for y once again.

 If the first x fails, then the second x succeeds.

 So, now r determines a unique x. To determine y, solve it per the
 equation, getting two roots. Label the 2 roots y0 and y1 according
 to a deterministic rule. Then choose y0 if the first x works, else
 choose y2. This ensures that the map from r^2 to (x,y) is
 injective.

 Finally, to encode a byte string b, just let it represent a field
 element r. Note that -r will be require more than 34 bytes. So the
 map from b to (x,y) is now injective.

 This map is reversible.

Brown 2y^2=x^3+x over 8^91+5 [Page 11]

Internet-Draft 2018-10-04

 To be completed.

6. Cryptographic schemes

 To be completed, or even removed!

 List all possible cryptographic schemes in which this curve could be
 used is outside the scope of this short document. Only a few
 highlights are mentioned.

6.1. Diffie--Hellman key agreement

 To be completed.

 Question: should DH use cofactor multiplication? For now, let's say
 no.

 Non-cofactor multiplication risks leaking the private key mod 72, or
 at least mod 12, or perhaps even worse (if the field arithmetic has
 additional leaks).

 But cofactor multiplication reduces the private key size similarly.
 Also, if we start from a 34-byte private key scalar, then we achieve
 a similar effect to cofactor multiplication.

6.2. Signatures

 For signatures, such as ECDSA, the verifier must fully decompress
 the 34-byte representation. The verifier must do this twice, once
 with the signer's public key, and once with one component of the
 signature.

 To do this, the verifier can take, and make the most natural choice
 of the two possible y. The signer, anticipating the verifier, then
 must ensure that the signature will verify correctly under the
 verifier's choices for the y values. The signer incurs only a small
 extra cost for ensuring this.

 To be completed.

 Given that this curve is experimental and non-radically distinct
 from previous curves, signers and may opt to consider an
 experimental and non-radically distinct signature scheme with the
 curve 2y^2=x^3+x.

 The RKHD ElGamal signature scheme [B2] is an example of such a
 signature scheme.

Brown 2y^2=x^3+x over 8^91+5 [Page 12]

Internet-Draft 2018-10-04

 In short, fix a base point G. The signing key is d, the verifying
 key is Q=dG. A pair (R,s), R is a point, and s is an integer, is a
 (valid) signature of message with integer hash h, if

 sG = rR + hQ

 where r is obtained from R by re-interpreting its byte as an
 integer.

 To sign a message with hash h, the signer computes a
 message-unique secret k, computes R=kG, computers r as above, and
 computes

 s = rk + hd mod n

 where n is the order of G.

 The signer may compute k as the hash of s and h, or through some
 other method which ensures that k depends (pseudorandomly) on h.

 The signer MUST choose k such that no linear relation between the k
 for different h can be discovered by the adversary. The signer
 SHOULD use some kind of pseudorandom function to achieve this.

 Note: this ElGamal signature variant corresponds to type 4 ElGamal
 signature in the Handbook of Applied Cryptography.

6.3 Menezes--Qu--Vanstone key agreement

 To be completed.

7. IANA Considerations

 This document requires no actions by IANA, yet.

8. Security considerations

 No cryptographic algorithms is without risks. Consequently, risks
 are comparative. This section will not fully list the risks of all
 other forms of elliptic curve cryptography. Instead it will list
 the most plausible risks of this curve, and only to a limited degree
 contrast these to a few other standardized curves.

8.1. Field choice

 The field 8^91+5 has the following risks.

Brown 2y^2=x^3+x over 8^91+5 [Page 13]

Internet-Draft 2018-10-04

 - 8^91+5 is a special prime. As such, it is perhaps vulnerable to
 some kind of attack. For example, for some curve shapes, the
 supersingularity depends on the prime, and the curve size is
 related in a simple way to the field size, causing a potential
 correlation between the field size and the effectiveness of an
 attack, such as the Pohlig--Hellman attack.

 Many other standard curves, such as the NIST P-256 and
 Curve25519, also use special prime field sizes, so have a similar
 risk. Yet other standard curves, such as the Brainpool, use
 pseudorandom field sizes, so have less risk to this threat.

 - 8^91+5, while implementable in five 64-bit words, has some risk of
 overflowing, or of not fully reducing properly. Perhaps a smaller
 field, such as that used in Curve25519, has a simpler reduction
 and overflow-avoidance properties.

 - 8^91+5, by virtue of being well-above 256 bits in size, risks its
 user doing extra, and perhaps unnecessary, computation to protect
 their 128-bit keys, whereas smaller curves might be faster (as
 expected) yet still provide enough security. In other words, the
 extra cost is wasteful, and partially a form of denial of service.

 - 8^91+5, is smaller than 8^95-9, yet uses no fewer symbols. Since
 larger field sizes lead to strong Pollard rho resistance, it can
 be argued that this field size does not optimize security against
 (specification) simplicity. (The main reason this document
 prefers 8^91+5 over 8^95-9 is its simpler field inversion.)
 Similarly, 8^91+5 is smaller than the six-symbol primes 9^99+4 and
 9^87+4, but these are not close to powers of two, which means that
 modular multiplication and reduction for them is not likely to be
 as efficient as for 8^91+5.

 - 8^91+5, is smaller than 2^283 (the field size for curve sect283k1
 [SEC2], [Zigbee]), and many other five-symbol and four-symbol
 powers of primes (such as 9^97). So, it less to provide less
 resistance to Pollard rho. Recent progress in the elliptic curve
 discrete logarithm problem, [HPST] and [Nagao], is the main reason
 to prefer prime fields instead of power of prime fields. A second
 reason to prefer prime field 8^91+5 (and other large
 characteristic fields) over small characteristic fields, is the
 generally better software speed of large characteristic fields:
 which arises because most software is implemented on a general
 purpose hardware processor that has fast multiplication circuits.
 (This speed advantage probably does not apply for hardware.)

 See [B1] for further discussion.

Brown 2y^2=x^3+x over 8^91+5 [Page 14]

Internet-Draft 2018-10-04

8.2. Curve choice

 A first risk of using 2y^2=x^3+x is the fact that it is a special
 curve, with complex multiplication leading to an efficient
 endomorphism. Many other standard curves, NIST P-256 [NIST-P-256],
 Curve25519, Brainpool [Brainpool], do not have any efficient
 endomorphisms. Yet some standard curves do, NIST K-283 and
 secp256k1 (see [SEC2] and [BitCoin]). Furthermore, it is not
 implausible [KKM] that special curves, including those efficient
 endomorphisms, may survive an attack on random curves.

 A second risk of 2y^2=x^3+x over 8^91+5 is the fact that it is not
 twist-secure. What may happen is that an implementer may use the
 Montgomery ladder in Diffie--Hellman and re-use private keys. They
 may think, despite the (ample?) warnings in this document, that
 public key validation in unnecessary, modeling their implementation
 after Curve25519 or some other twist-secure curve. This implementer
 is at risk of an invalid public key attack. Moreover, the
 implementer has an incentive to skip public-key validation, for
 better performance. Finally, even if the implementer uses
 public-key validation, then the cost of public-key validation is
 non-negligible.

 A third risk is a biased ephemeral private key generation in a
 digital signature scheme. Most standard curve lack this risk
 because the field is close to a power of two, and the cofactor is a
 power of two.

 A fourth risk is a Cheon-type attack. Few standard curves address
 this risk.

 A fifth risk is a small-subgroup confinement attack, which can also
 leak a few bits of the private key.

8.3. Encoding choices

 To be completed.

8.4. General subversion concerns

 Although the main motivation of curve 2y^2=x^3+x over 8^91+5 is to
 minimize the risk of subversion via a backdoor ([Gordon], [YY],
 [Teske]), it is only fair to point out that its appearance in this
 very document can be viewed with suspicion as an possible effort at
 subversion (via a front-door). (See [BCCHLV] for some further
 discussion.)

Brown 2y^2=x^3+x over 8^91+5 [Page 15]

Internet-Draft 2018-10-04

 Any other standardized curve can be view with a similar suspicion
 (except, perhaps, by the honest authors of those standards for whom
 such suspicion seems absurd and unfair). A skeptic can then examine
 both (a) the reputation of the (alleged) author of the standard,
 making an ad hominem argument, and (b) the curve's intrinsic merits.

 By the very definition of this document, the user is encouraged to
 take an especially skeptical viewpoint of curve 2y^2=x^3+x over
 8^91+5. So, it is expected that skeptical users of the curve will
 either

 - use the curve for its other merits (other than its backdoor
 mitigations), such as efficient endomorphism, field inversion,
 high Pollard rho resistance within five 64-bit words, meanwhile
 holding to the evidence-supported belief ECC that is now so mature
 that worries about subverted curves are just far-fetched nonsense,
 or

 - as an additional of layer of security in addition to other
 algorithms (ECC or otherwise), as an extra cost to address the
 non-zero probability of other curves being subverted.

 To paraphrase, consider users seriously worried about subverted
 curves (or other cryptographic algorithms), either because they
 estimate as high either the probability of subversion or the value
 of the data needing protection. These users have good reason to
 like 2y^2=x^3+x over 8^91+5 for its compact description.
 Nevertheless, the best way to resist subversion of cryptographic
 algorithms seems to be combine multiple dissimilar cryptographic
 algorithms, in a strongest-link manner. Diversity hedges against
 subversion, and should the first defense against it.

8.5. Concerns about 'aegis'

 The exact curve 2y^2=x^3+x over 8^91+5 was (seemingly) first
 described to the public in 2017 [AB]. So, it has a very low age.

 Furthermore, it has not been submitted for a publication with peer
 review to any cryptographic forum such as the IACR conferences like
 Crypto and Eurocrypt. So, it has been review by very few eyes, most
 of which had little incentive to study it seriously.

 Under the metric of aegis, as in age * eyes, it scores low.
 Counting myself (but not quantifying incentive) it gets an aegis
 score of 0.1 (using a rating 0.1 of my eyes factor in the aegis
 score: I have not discovered any major ECC attacks of my own.) This
 is far smaller than some more well-studied curves.

Brown 2y^2=x^3+x over 8^91+5 [Page 16]

Internet-Draft 2018-10-04

 However, in its defense, the curve 2y^2=x^3+x over 8^91+5 has
 similarities to some of the better-studied curves with much higher
 aegis:

 - Curve25519: has field size 8^85-19, which a little similar to
 8^91+5; has equation of the form by^2=x^3+ax+x, with b and a
 small, which is similar to 2y^2=x^3+x. Curve25519 has been around
 for over 10 years, has (presumably) many eyes looking at it, and
 has been deployed thereby creating an incentive to study. An
 estimated aegis score is 10000.

 - P-256: has a special field size, and maybe an estimated aegis
 score of 200000. (It is a high-incentive target. Also, it has
 received much criticism, showing some intent of cryptanalysis.
 Indeed, there has been incremental progress in finding minor
 weakness (implementation security flaws), suggestive of actual
 cryptanalytic effort.) The similarity to 2y^2=x^3+x over 8^91+5
 is very minor, so very little of the P-256 aegis would be relevant
 to this document.

 - secp256k1: has a special field size, though not quite as special
 as 8^91+5, and has special field equation with an efficient
 endomorphism by a low-norm complex algebraic integer, quite
 similar to 2y^2=x^3+x. It is about 17 years old, and though not
 studied much in academic work, its deployment in Bitcoin has at
 least created an incentive to attack it. An estimated aegis score
 is 10000.

 - Miller's curve: Miller's 1985 paper introducing ECC suggested,
 among other choices, a curve equation y^2=x^3-ax, where a is a
 quadratic non-residue. Curve 2y^2=x^3+x is isomorphic to
 y^2=x^3-x, which is essentially one of Miller's curves, except
 that a=1 is a quadratic residue. Miller's curve has not been
 studied directly, but probably much more so than this than the
 curve in this document. Miller also hinted that it was not
 prudent to use a special curve y^2=x^3-ax: such a comment may have
 encourage some cryptanalysts, but discouraged cryptographers,
 perhaps balancing out the effect on the eyes factor the aegis
 score. An estimate aegis score is 300.

 Obvious cautions to the reader:

 - Small changes in a cryptographic algorithm sometimes cause large
 differences in security. So security arguments based on
 similarity in cryptographic schemes should be given low priority.

Brown 2y^2=x^3+x over 8^91+5 [Page 17]

Internet-Draft 2018-10-04

 - Security flaws have sometimes remained undiscovered for years,
 despite both incentives and peer reviews (and lack of hard
 evidence of conspiracy). So, the eyes-part of the aegis score is
 very subjective, and perhaps vulnerable false positives by a herd
 effect. Despite this caveat, it is not recommended to ignore the
 eyes factor in the aegis score: don't just flip through old books
 (of say, fiction), looking for cryptographic algorithms that might
 never have been studied.

9. References

9.1. Normative References

 [BCP14] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/bcp14>.

9.2. Informative References

 To be completed.

 [AB] A. Allen and D. Brown. ECC mod 8^91+5, presentation to CFRG,
 2017.
 <https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/>

 [AMPS] Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and
 Juraj Somorovsky. Prime and Prejudice: Primality Testing Under
 Adversarial Conditions, IACR ePrint,
 2018. <https://ia.cr/2018/749>

 [B1] D. Brown. ECC mod 8^91+5, IACR ePrint, 2018.
 <https://ia.cr/2018/121>

 [B2] D. Brown. RKHD ElGamal signing and 1-way sums, IACR ePrint,
 2018. <http://ia.cr/2018/186>

 [KKM] A. Koblitz, N. Koblitz and A. Menezes. Elliptic Curve
 Cryptography: The Serpentine Course of a Paradigm Shift, IACR
 ePrint, 2008. <https://ia.cr/2008/390>

 [BCCHLV] D. Bernstein, T. Chou, C. Chuengsatiansup, A. Hulsing,
 T. Lange, R. Niederhagen and C. van Vredendaal. How to
 manipulate curve standards: a white paper for the black hat, IACR
 ePrint, 2014. <https://ia.cr/2014/571>

 [Elligator] To do: fill in this reference.

Brown 2y^2=x^3+x over 8^91+5 [Page 18]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/bcp14
https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/
https://ia.cr/2018/749
https://ia.cr/2018/121
http://ia.cr/2018/186
https://ia.cr/2008/390
https://ia.cr/2014/571

Internet-Draft 2018-10-04

 [NIST-P-256] To do: NIST recommended 15 elliptic curves for
 cryptography, the most popular of which is P-256.

 [Zigbee] To do: Zigbee allows the use of a small-characteristic
 special curve, which was also recommended by NIST, called K-283,
 and also known as sect283k1. These types of curves were
 introduced by Koblitz. These types of curves were not
 recommended by NSA in Suite B.

 [Brainpool] To do: the Brainpool consortium (???) recommended some
 elliptic curves in which both the field size and the curve
 equation were derived pseudorandomly from a nothing-up-my-sleeve
 number.

 [SEC2] Standards for Efficient Cryptography. SEC 2: Recommended
 Elliptic Curve Domain Parameters, version 2.0, 2010.
 <http://www.secg.org/sec2-v2.pdf>

 [IT] T. Izu and T. Takagi. Exceptional procedure attack on elliptic
 curve cryptosystems, Public key cryptography -- PKC 2003, Lecture
 Notes in Computer Science, Springer, pp. 224--239, 2003.

 [PSM] To do: Projective coordinates leak. Pointcheval, Smart,
 Malone-Lee?

 [BitCoin] To do: BitCoin uses curve secp256k1, which has an
 efficient endomorphism.

 [Bleichenbacher] To do: Bleichenbacher showed how to attack DSA
 using a bias in the per-message secrets.

 [Gordon] To do: Gordon showed how to embed a trapdoor in DSA
 parameters.

 [HPST] Y. Huang, C. Petit, N. Shinohara and T. Takagi. On
 Generalized First Fall Degree Assumptions, IACR ePrint 2015.
 <https://ia.cr/2015/358>

 [Nagao] K. Nagao. Equations System coming from Weil descent and
 subexponential attack for algebraic curve cryptosystem, IACR
 ePrint, 2015. <http://ia.cr/2013/549>

 [Teske] E. Teske. An Elliptic Curve Trapdoor System, IACR ePrint,
 2003. <http://ia.cr/2003/058>

 [YY] To do: Yung and Young, generalized Gordon's ideas [Gordon] into
 Secretly-embedded trapdoor ... also known as a backdoor.

http://www.secg.org/sec2-v2.pdf
https://ia.cr/2015/358
http://ia.cr/2013/549
http://ia.cr/2003/058

Brown 2y^2=x^3+x over 8^91+5 [Page 19]

Internet-Draft 2018-10-04

Appendix A. Test vectors

 To be completed.

Appendix B. Motivation: minimizing the room for backdoors

 To be completed.

 See [AB] and [B1] for some details.

 The field and curve are described with very few symbols, while
 retaining many basic security and speed features.

 A prime field was chosen due to recent asymptotic advances on
 discrete logarithms in low-characteristic fields [HPST] and
 [Nagao]. According to [Teske], some characteristic-two elliptic
 curves could be equipped with a secretly embedded backdoor.

 Note: this curve is isomorphic to the non-Montgomery curve
 y^2=x^3-x, which requires just 9 symbols in its description, 1
 fewer than required by 2y^2=x^3+x.

Appendix C. Pseudocode

 This section uses a C-like pseudocode to describe some of the
 algorithms useful for implementing this curve.

 Real-world implementations adapting this pseudocode had better
 harden this pseudocode against real-world implementation issues.
 Better yet, real-world code could start from scratch, using the
 pseudocode only for comparison.

 Note: the pseudocode relies on some C idioms (hacks?), which might
 make the pseudocode unclear to those unfamiliar with these idioms.

 Note: this pseudocode was adapted from a few different
 experimental prototypes of the author, (which might not be
 consistent). The pseudocode has not yet received any independent
 review.

 Note: this pseudocode uses a terse non-conventional coding style,
 partly as an exercise in arbitrary source code compression (code
 golf), but also in the mathematics tradition of using many
 single-letter variable names, which enables seeing an entire
 formula in a single view and emphasizes the essential mathematical
 operations rather than the variable's purpose.

Brown 2y^2=x^3+x over 8^91+5 [Page 20]

Internet-Draft 2018-10-04

 Note: the pseudocode does not use the C operator ^ for bitwise XOR
 of integers, which (luckily) avoid possible confusion with the use
 of ^ as exponentiation operator in the rest of this document.

C.1. Byte encoding

 Pseudocode for byte representation encoding process is

 <CODE BEGINS>
 bite(c b,f x) {
 i j=34,k=5; f t;
 mal(t,-1,x);
 mal(x,cmp(t,x),x);
 fix(x);
 for(;j--;) b[j]=x[j/7]>>((8*j)%55);
 for(;--k;) b[7*k-1]+=x[k]<<(8-k);
 }
 <CODE ENDS>

 The input variable is x and the output variable is b. The declared
 types and functions are as follows:

 - type c: curve representative, length-34 array of non-negative
 8-bit integers ("characters"),

 - type f: field element, a length-5 array of 64-bit integers
 (negatives allowed), representing a field element as an integer in
 base 2^55,

 - type i: 64-bit integers (e.g. entries of f),

 - function mal: multiply a field element by a small integer (result
 stored in 1st argument),

 - function fix: fully reduce an integer modulo 8^91+5,

 - function cmp: compare two field element (after fixing), returning
 -1, 0 or 1.

 Note: The two for-loops in the pseudocode are just radix
 conversion, from base 2^55 to base 2^8. Because both bases are
 powers of two, this amount to moving bits around. The entries of
 array b are compute modulo 256. The second loop copies the bits
 that the first loop misses (the bottom bits of each entry of f).

 Note: Encoding is lossy, several different (x,y) may encode to the
 same byte string b. Usually, if (x,y) generated as a part of
 Diffie--Hellman key exchange, this lossiness has no effect.

Brown 2y^2=x^3+x over 8^91+5 [Page 21]

Internet-Draft 2018-10-04

 Note: Encoding should not be confused with encryption. Encoding
 is merely a conversion or representation process, whose inverse is
 called decoding.

C.2. Byte decoding

 Pseudocode for decoding is:

 <CODE BEGINS>
 feed(f x,c b) {
 i j=34;
 mal(x,0,x);
 for(;j--;) x[j/7]+=((i)b[j])<<((8*j)%55);
 fix(x);
 }
 <CODE ENDS>

 with similar conventions as used in the pseudocode function bite
 (defined in the section on encoding), and some extra conventions:

 - the expression (i)b[j] means that 8-bit integer b[j] is converted
 to a 64-bit integer (so is no longer treated modulo 256). (In C,
 this is operation is called casting.)

 Note: the decode function 'feed' only has 1 for-loop, which is the
 approximate inverse of the first of the 2 for-loops in the encode
 function 'bite'. The reason the 'bite' needs the 2nd for-loop is
 due to the lossy conversion from integers to bytes, whereas in the
 other direction the conversion is not lossy. The second loop
 recovers the lost information.

C.3. Fermat inversion

 Projective coordinates help avoid costly inversion steps during
 scalar multiplication.

 Projective coordinates are not suitable as the final representation
 of an elliptic curve point, for two reasons.

 - Projective coordinates for a point are generally not unique: each
 point can be represented in projective coordinates in multiple
 different ways. So, projective coordinates are unsuitable for
 finalizing a shared secret, because the two parties computing the
 shared secret point may end up with different projective
 coordinates.

Brown 2y^2=x^3+x over 8^91+5 [Page 22]

Internet-Draft 2018-10-04

 - Projective coordinates have been shown to leak information about
 the scalar multiplier [PSM], which could be the private
 key. It would be unacceptable for a public key to leak
 information about the private key. In digital signatures, even a
 few leaked bits can be fatal, over a few signatures
 [Bleichenbacher].

 Therefore, the final computation of an elliptic curve point, after
 scalar multiplication, should translate the point to a unique
 representation, such as the affine coordinates described in this
 report.

 For example, when using a Montgomery ladder, scalar multiplication
 yields a representation (X:Z) of the point in projective
 coordinates. Its x-coordinate is then x=X/Z, which can be computed
 by computing the 1/Z and then multiplying by X.

 The safest, most prudent way to compute 1/Z is to use a side-channel
 resistant method, in particular at least, a constant-time method.
 This reduces the risk of leaking information about Z, which might in
 turn leak information about X or the scalar multiplier. Fermat
 inversion, computation of Z^(p-2) mod p, is one method to compute
 the inverse in constant time (if the inverse exists).

 Pseudocode for Fermat inversion is:

 <CODE BEGINS>
 i inv(f y,f x) {
 i j=272;f z;
 squ(z,x);
 mul(y,x,z);
 for(;j--;) squ(z,z);
 mul(y,z,y);
 return !!cmp(y,(f){});
 }
 <CODE ENDS>

 Other inversion techniques, such as the binary extended GCD, may be
 faster, but generally run in variable-time.

 When field elements are sometimes secret keys, using a variable-time
 algorithm risk leaking these secrets, and defeating security.

C.4. Branchless Legendre symbol computation

 Pseudocode for branchlessly computing if a field element x has a
 square root:

Brown 2y^2=x^3+x over 8^91+5 [Page 23]

Internet-Draft 2018-10-04

 <CODE BEGINS>
 i has_root(f x) {
 i j=270;f y,z;
 squ(y,x);squ(z,y);
 for(;j--;)squ(z,z);
 mul(y,y,z);
 return 0==cmp(y,(f){1});
 }
 <CODE ENDS>

 Note: Legendre symbol is usually most appropriately applied to
 public keys, which mostly obviates the need for side-channel
 resistance. In this case, the implementer can use quadratic
 reciprocity for greater speed.

C.5. Field multiplication and squaring

 To be completed.

 Note (on security): Field multiplication can be achieved most
 quickly by using hardware integer multiplication circuits. It is
 critical that those circuits have no bugs or backdoors.
 Furthermore, those circuits typically can only multiple integers
 smaller than the field elements. Larger inputs to the circuits
 will cause overflows. It is critical to avoid these overflows,
 not just to avoid interoperability failures, but also to avoid
 attacks where the attackers supplies inputs likely induce
 overflows [bug attacks], [IT]. The following pseudocode
 should therefore be considered only for illustrative purposes.
 The implementer is responsible for ensuring that inputs cannot
 cause overflows or bugs.

 The pseudocode below for multiplying and squaring: uses unrolled
 loops for efficiency, uses refactoring for source code compression,
 relies on a compiler optimizer to detect common sub-expressions (in
 squaring).

Brown 2y^2=x^3+x over 8^91+5 [Page 24]

Internet-Draft 2018-10-04

 <CODE BEGINS>
 #define TRI(m,_)\
 zz[0]=m(0,0)_(1,4)_(2,3)_(3,2)_(4,1);\
 zz[1]=m(0,1)_(1,0)_(2,4)_(3,3)_(4,2);\
 zz[2]=m(0,2)_(1,1)_(2,0)_(3,4)_(4,3);\
 zz[3]=m(0,3)_(1,2)_(2,1)_(3,0)_(4,4);\
 zz[4]=m(0,4)_(1,3)_(2,2)_(3,1)_(4,0);
 #define CYC(M) ff zz; TRI(+M,-20*M); mod(z,zz);
 #define MUL(j,k) x[j]*(ii)y[k]
 #define SQR(j,k) x[j]*(ii)x[k]
 #define SQU(j,k) SQR(j>k?j:k,j<k?j:k)
 mul(f z,f x,f y) {CYC(MUL);}
 squ(f a,f x) {CYC{SQU};}
 <CODE ENDS>

 This pseudocode makes uses of some extra C-like pseudocode features:

 - #define is used to create macros, which expand within the source
 code (as in C pre-processing).

 - type ii is 128-bit integer

 - multiplying a type i by a type ii variable yields a type ii
 variable. If both inputs can fit into a type i variable, then
 the result has no overflow or reduction: it is exact as a product
 of integers.

 - type ff is array of five type ii values. It is used to represent
 a field in a radix expansion, except the limbs (digits) can be
 128-bits instead of 64-bits. The variable zz has type ff and is
 used to intermediately store the product of two field element
 variables x and y (of type f).

 - function mod takes an ff variable and produce f variable
 representing the same field element. A pseudocode example may be
 defined further below.

 TO DO: Add some notes (answer these questions):

 - How small the limbs of the inputs to function mul and squ must be
 to ensure no overflow occurs?

 - How small are the limbs of the output of functions mul and squ?

C.6. Field element partial reduction

 To be completed.

Brown 2y^2=x^3+x over 8^91+5 [Page 25]

Internet-Draft 2018-10-04

 The function mod used by pseudocode function mul and squ above is
 defined below.

 <CODE BEGINS>
 #define QUO(x)(x>>55)
 #define MOD(x)(x&((((i)1)<<5)-1))
 #define Q(j) QUO(QUO(zz[j]))
 #define P(j) MOD(QUO(zz[j]))
 #define R(j) MOD(zz[j])
 mod(f z,ff zz){
 z[0]=R(0)-P(4)*20-Q(3)*20;
 z[1]=R(1)-P(0)-Q(4)*20;
 z[2]=R(2)-P(1)-Q(0);
 z[3]=R(3)-P(2)-Q(1);
 z[4]=R(4)-P(3)-Q(2);
 z[1]+=QUO(z[0]);
 z[0]=MOD(z[0]);
 }
 <CODE ENDS>

 TO DO: add notes answering these questions:

 - How small must be the input limbs to avoid overflow?

 - How small are the output limbs (to know how to safely use of
 output in further calculations).

C.7. Field element final reduction

 To be completed.

 The partial reduction technique is sometimes known as lazy
 reduction. It is an optimization technique. It aims to do only
 enough calculation to avoid overflow errors.

 For interoperability, field elements need to be fully reduced,
 because partial reduction means the elements still have multiple
 different representations.

 Pseudocode that aims for final reduction is the following:

Brown 2y^2=x^3+x over 8^91+5 [Page 26]

Internet-Draft 2018-10-04

 <CODE BEGINS>
 #define FIX(j,r,k) {q=x[j]>>r;\
 x[j]-=q<<r; x[(j+1)%5]+=q*k;}
 fix(f x) {
 i j,q,t=2;
 for(;t--;) for(j=0;j<5;j++) FIX(j,(j<4?55:53),(j<4?1:-5));
 q=x[0]<0;
 x[0]+=q*5; x[4]+=q>>53;
 }
 <CODE ENDS>

C.8. Scalar point multiplication

 Work in progress.

 A recommended method of scalar point multiplication is the
 Montgomery ladder. However, the curve 2y^2=x^3+x has an efficient
 endomorphism. So, this can be used to speed-up scalar point
 multiplication, as suggested by Gallant, Lambert and Vanstone.

 Combining both GLV and Montgomery is also possible, such as
 suggested as by Bernstein.

 Note: The following pseudocode is not entirely consistent with
 previous pseudocode examples.

 Note and Warning: The following pseudocode uses secret indices to
 access (small) arrays. This has a risk of cache-timing attacks.

Brown 2y^2=x^3+x over 8^91+5 [Page 27]

Internet-Draft 2018-10-04

 <CODE BEGINS>
 typedef f p[2];
 typedef struct rung {i x0; i x1; i y; i z;} k[137];
 monty_2d (f ps,k sk,f px) {
 i j,h; f z; p w[3],x[3],y[2]={{{},{1}}},z[2];
 fix(px);mal(y[0][0],1,px);
 endomorphism_1_plus_i(z[0],px);
 endo_i(y[1],y[0]); endo_i(z[1],z[0]);
 copy(x[1],y[0]); copy(x[2],z[0]);
 double_xz(x[0],y[0]);
 for(j=0;j<137;j+=){
 double_xz(w[0], x[sk[j].x0 /* cache attack here? */]);
 diff_add (w[1],x[1],x[sk[j].x1],y[sk[j].y]);
 diff_add (2[2],x[2],x[0], z[sk[j].z]);
 for(h=0;h<3;h++) {copy(x[h],w[h]);}
 }
 inv(ps,x[1][1]);
 mul(ps,x[1][0],ps);
 fix(ps);
 }
 <CODE ENDS>

 Note: The pseudocode uses some other functions not defined here,
 but whose meaning can be inferred by ECC experts.

 Note: The pseudocode uses a specialized format for the scalar.
 Normal scalars would have to be re-coded into this format, and
 re-coding has non-negligible run-time. Perhaps in
 Diffie--Hellman, re-coding is not necessary if one can ensure that
 uniformly selection of coded scalars is not a security risk.

 TO DO:
 - Define the functions used by monty_2d.
 - Prove that these function avoid overflow.
 - Define functions to re-code scalars for monty_2d.

C.9. Diffie--Hellman pseudocode

 To be completed.

 This pseudocode would show how to use to scalar multiplication,
 combined with point validation, and so on.

C.10. Elligator i

 To be completed.

Brown 2y^2=x^3+x over 8^91+5 [Page 28]

Internet-Draft 2018-10-04

 This pseudocode would show how to implement to the Elligator i map
 from byte strings to points.

 Pseudocode (to be verified):

 <CODE BEGINS>
 typedef f xy[2] ;
 #define X p[0]
 #define Y p[1]
 lift(xy p, f r) {
 f t ; i b ;
 fix(r);
 squ(t,r); // r^2
 mul(t,I,t); // ir^2
 sub(t,(f){1},t); // 1-ir^2
 inv(t,t); // 1/(1-ir^2)
 mal(t,3,t); // 3/(1-ir^2)
 mul(t,I,t); // 3i/(1-ir^2)
 sub(X,I,t); // i-3i/(1-ir^2)
 b = get_y(t,X);
 mal(t,1-b,I); // (1-b)i
 add(X,X,t); // EITHER x OR x + i
 get_y(Y,X);
 mal(Y,2*b-1,Y); // (-1)^(1-b)""
 fix(X); fix(Y);
 }

 drop(f r, xy p)
 {
 f t ; i b,h ;
 fix(X); fix(Y);
 get_y(t,X);
 b=eq(t,Y);
 mal(t,1-b,I);
 sub(t,X,t); // EITHER x or x-i
 sub(t,I,t); // i-x
 inv(t,t); // 1/(i-x)
 mal(t,3,t); // 3/(i-x)
 add(t,I,t); // i+ 3/(i-x)
 mal(t,-1,t); // -i-3/(i-x)) = (1-3i/(i-x))/i
 b = root(r,t) ;
 fix(r);
 h = (r[4]<(1LL<<52)) ;
 mal(r,2*h-1,r);
 fix(r);
 }

Brown 2y^2=x^3+x over 8^91+5 [Page 29]

Internet-Draft 2018-10-04

 elligator(xy p,c b) {f r; feed(r,b); lift(p,r);}

 crocodile(c b,xy p) {f r; drop(r,p); bite(b,r);}
 <CODE ENDS>

D. Primality proofs and certificates

 In most cases, probablistic primality tests, if conducted properly,
 can ensure more than adequate security. But recent work of Albrecht
 and others [AMPS] has shown the combination of adversarially chosen
 prime and improper probabilistic primality tests can result in
 attacks.

 Three countermeasures to the attacks in [AMPS] are (1) using proper
 probabilistic prime tests, (2) using provable prime tests, and (3)
 using nothing-up-my-sleeve primes which seem immune to the [AMPS]
 attack.

 It seems that field size 8^91+5 should already resist [AMPS] based
 on the third countermeasure (its especially compact representation).
 This document cannot really accomplish the first countermeasure,
 because the first countermeasure requires fresh randomness for each
 test. This document can help with the second countermeasure by
 providing primality certificate.

 A primality certificate is essentially a rapidly verifiable proof of
 primality. More precisely, it involves some rigorous logic and and
 some calculations. The calculations, although too tedious to be
 done by hand, have a cost that is polynomial time, and usually
 amounting only to some number of modular expontiations, with the
 number comparable to the bit length of the prime being tested.

 Typically, generation of the primality certificate is much more
 costly than verifying it: generation is not polynomial-time. For
 example, Pratt certificates require the factorization of p-1, which
 is typically expensive for large primes. Nevertheless, for the
 prime 8^91+5, software exists that can generate a Pratt certificate
 in minutes on a personal computer. Yet other kinds of primality
 certificates (those using elliptic curves) can be generated even
 more quickly, except their verification requires an elliptic curve
 implementation, and uses less elementary rigor in their proofs.

 For these reasons, a primality certificate for primes of size 8^91+5
 is nearly redundant. Nonetheless, it does not hurt to provide the
 proofs within this curve, if only for completeness.

D.1 Pratt certificate for the field size 8^91+5

Brown 2y^2=x^3+x over 8^91+5 [Page 30]

Internet-Draft 2018-10-04

 Define 52 positive integers, a,b,c,...,z,A,...,Z as follows:

 a=2 b=1+a c=1+aa d=1+ab e=1+ac f=1+aab g=1+aaaa h=1+abb i=1+ae
 j=1+aaac k=1+abd l=1+aaf m=1+abf n=1+aacc o=1+abg p=1+al q=1+aaag
 r=1+abcc s=1+abbbb t=1+aak u=1+abbbc v=1+ack w=1+aas x=1+aabbi
 y=1+aco z=1+abu A=1+at B=1+aaaadh C=1+acu D=1+aaav E=1+aeff F=1+aA
 G=1+aB H=1+aD I=1+acx J=1+aaacej K=1+abqr L=1+aabJ M=1+aaaaaabdt
 N=1+abdpw O=1+aaaabmC P=1+aabeK Q=1+abcfgE R=1+abP S=1+aaaaaaabcM
 T=1+aIO U=1+aaaaaduGS V=1+aaaabbnuHT W=1+abffLNQR X=1+afFW
 Y=1+aaaaauX Z=1+aabzUVY.

 Note: variable concatentation is used to indicate multiplication.
 For example, f = 1+aab = 1+2*2*(1+2) = 13. This brevity was only
 possible by a fluke: only 52 integers were needed, obviating the
 need for multi-letter variable names.

 Note: the information above can suffice as a Pratt certificate for
 the primality of Z, but only if the following further sequence of
 computations are done. (The information suffices because it
 deducibly implies the sequence of computations.)

 Writing % for modular reduction (with lower precedence than
 exponention ^), verify that following 51 modular exponentiations all
 result in value 1:

 2^(b-1)%b, 2^(c-1)%c, 3^(d-1)%d, 2^(e-1)%e, 2^(f-1)%f, 3^(g-1)%g,
 2^(h-1)%h, 5^(i-1)%i, 6^(j-1)%j, 3^(k-1)%k, 2^(l-1)%l, 3^(m-1)%m,
 2^(n-1)%n, 5^(o-1)%o, 2^(p-1)%p, 3^(q-1)%q, 6^(r-1)%r, 2^(s-1)%s,
 2^(t-1)%t, 6^(u-1)%u, 7^(v-1)%v, 2^(w-1)%w, 2^(x-1)%x, 14^(y-1)%y,
 3^(z-1)%z, 5^(A-1)%A, 3^(B-1)%B, 7^(C-1)%C, 3^(D-1)%D, 7^(E-1)%E,
 5^(F-1)%F, 2^(G-1)%G, 2^(H-1)%H, 2^(I-1)%I, 3^(J-1)%J, 2^(K-1)%K,
 2^(L-1)%L, 10^(M-1)%M, 5^(N-1)%N, 10^(O-1)%O, 2^(P-1)%P,
 10^(Q-1)%Q, 6^(R-1)%R, 7^(S-1)%S, 5^(T-1)%T, 3^(U-1)%U, 5^(V-1)%V,
 2^(W-1)%W, 2^(X-1)%X, 3^(Y-1)%Y, 7^(Z-1)%Z.

 This shows that b,c,...,Z are Fermat pseudoprimes to the Fermat
 bases indicated (for example, Z is a Fermat pseudoprime to Fermat
 base 7).

 Note: Each Fermat base above was chosen as the minimal possible
 value. These bases can be deduced from b,c,...,Z by searching
 bases 2,3,4,... until a Fermat is found. The results of these
 search are included above for convenience.

 Verify that a is prime (because it is just two).

Brown 2y^2=x^3+x over 8^91+5 [Page 31]

Internet-Draft 2018-10-04

 Lehmer's theorem provides the Lehmer test that a Fermat pseudoprime
 is prime: if the Fermat base raised to each integer power of the
 form (pseudoprime-1)/(a prime factor) is not congruent to 1 modulo
 the pseudoprime. Consequently, to prove b,c,d,...,Z are prime, it
 suffices to do all the necessary Lehmer tests, which means to verify
 that all of following 154 modular exponentiations result in a value
 different from 1.

 2^((b-1)/a)%b, 2^((c-1)/a)%c, 3^((d-1)/a)%d, 3^((d-1)/b)%d,
 2^((e-1)/a)%e, 2^((e-1)/c)%e, 3^((f-1)/a)%f, 3^((f-1)/b)%f,
 3^((g-1)/a)%g, 2^((h-1)/a)%h, 2^((h-1)/b)%h, 5^((i-1)/a)%i,
 5^((i-1)/e)%i, 6^((j-1)/a)%j, 6^((j-1)/c)%j, 3^((k-1)/a)%k,
 2^((l-1)/a)%l, 2^((l-1)/f)%l, 3^((m-1)/a)%m, 3^((m-1)/b)%m,
 3^((m-1)/f)%m, 2^((n-1)/a)%n, 2^((n-1)/c)%n, 5^((o-1)/a)%o,
 5^((o-1)/b)%o, 5^((o-1)/f)%o, 2^((p-1)/a)%p, 2^((p-1)/l)%p,
 3^((q-1)/a)%q, 3^((q-1)/g)%q, 6^((r-1)/a)%r, 6^((r-1)/a)%r,
 2^((s-1)/a)%s, 2^((s-1)/b)%s, 2^((t-1)/a)%t, 2^((t-1)/k)%t,
 6^((u-1)/a)%u, 6^((u-1)/b)%u, 6^((u-1)/c)%u, 7^((v-1)/a)%v,
 7^((v-1)/c)%v, 7^((v-1)/k)%v, 2^((w-1)/a)%w, 2^((w-1)/s)%w,
 2^((x-1)/a)%x, 2^((x-1)/b)%x, 2^((x-1)/i)%x, 14^((y-1)/a)%y,
 14^((y-1)/c)%y, 14^((y-1)/o)%y, 3^((z-1)/a)%z, 3^((z-1)/b)%z,
 3^((z-1)/u)%z, 5^((A-1)/a)%A, 5^((A-1)/t)%A, 3^((B-1)/a)%B,
 3^((B-1)/d)%B, 3^((B-1)/h)%B, 7^((C-1)/a)%C, 7^((C-1)/c)%C,
 7^((C-1)/u)%C, 3^((D-1)/a)%D, 3^((D-1)/v)%D, 7^((E-1)/a)%E,
 7^((E-1)/e)%E, 7^((E-1)/f)%E, 5^((F-1)/a)%F, 5^((F-1)/A)%F,
 2^((G-1)/a)%G, 2^((G-1)/B)%G, 2^((H-1)/a)%H, 2^((H-1)/D)%H,
 2^((I-1)/a)%I, 2^((I-1)/c)%I, 2^((I-1)/x)%I, 3^((J-1)/a)%J,
 3^((J-1)/c)%J, 3^((J-1)/e)%J, 3^((J-1)/j)%J, 2^((K-1)/a)%K,
 2^((K-1)/b)%K, 2^((K-1)/q)%K, 2^((K-1)/r)%K, 2^((L-1)/a)%L,
 2^((L-1)/b)%L, 2^((L-1)/J)%L, 10^((M-1)/a)%M, 10^((M-1)/b)%M,
 10^((M-1)/d)%M, 10^((M-1)/t)%M, 5^((N-1)/a)%N, 5^((N-1)/b)%N,
 5^((N-1)/d)%N, 5^((N-1)/p)%N, 5^((N-1)/w)%N, 10^((O-1)/a)%O,
 10^((O-1)/b)%O, 10^((O-1)/m)%O, 10^((O-1)/C)%O, 2^((P-1)/a)%P,
 2^((P-1)/b)%P, 2^((P-1)/e)%P, 2^((P-1)/K)%P, 10^((Q-1)/a)%Q,
 10^((Q-1)/b)%Q, 10^((Q-1)/c)%Q, 10^((Q-1)/f)%Q, 10^((Q-1)/g)%Q,
 10^((Q-1)/E)%Q, 6^((R-1)/a)%R, 6^((R-1)/b)%R, 6^((R-1)/P)%R,
 7^((S-1)/a)%S, 7^((S-1)/b)%S, 7^((S-1)/c)%S, 7^((S-1)/M)%S,
 5^((T-1)/a)%T, 5^((T-1)/I)%T, 5^((T-1)/O)%T, 3^((U-1)/a)%U,
 3^((U-1)/d)%U, 3^((U-1)/u)%U, 3^((U-1)/G)%U, 3^((U-1)/S)%U,
 5^((V-1)/a)%V, 5^((V-1)/b)%V, 5^((V-1)/n)%V, 5^((V-1)/u)%V,
 5^((V-1)/H)%V, 5^((V-1)/T)%V, 2^((W-1)/a)%W, 2^((W-1)/b)%W,
 2^((W-1)/f)%W, 2^((W-1)/L)%W, 2^((W-1)/N)%W, 2^((W-1)/Q)%W,
 2^((W-1)/R)%W, 2^((X-1)/a)%X, 2^((X-1)/f)%X, 2^((X-1)/F)%X,
 2^((X-1)/W)%X, 3^((Y-1)/a)%Y, 3^((Y-1)/u)%Y, 3^((Y-1)/X)%Y,
 7^((Z-1)/a)%Z, 7^((Z-1)/b)%Z, 7^((Z-1)/z)%Z, 7^((Z-1)/U)%Z,
 7^((Z-1)/V)%Z, 7^((Z-1)/Y)%Z.

Brown 2y^2=x^3+x over 8^91+5 [Page 32]

Internet-Draft 2018-10-04

 Note: Each base above is the same as the base in the previous
 Fermat pseudoprime stage, and each list of prime factors is
 deduced from the definition of positive integers b,c,...,Z. The
 consistency between these stages of the proof must be verified for
 rigor. For example, the Fermat base for Z was 7, and the
 factorization of Z-1 was aabzUVY, so we must test 7^((Z-1)/a)%Z,
 7^((Z-1)/b)%Z, ..., 7^((Z-1)/Y)%Z.

 This proves that a,b,...,Z are primes.

 Verify that Z=8^91+5 to conclude that 8^91+5 is prime.

 Note: the Pratt certificate is essentially unique for each prime.
 The presentation above is for illustrative purposes: the
 formatting is not intended for an automated verification. A
 sensible automation of the verification would simply generate the
 154 Lehmer tests from integer definitions and the Fermat
 pseudoprime tests, rather than rely on the listing provided above.
 With only slightly greater cost, the Fermat pseudoprime test can
 be derived from integers, by a separate search for each Fermat
 base.

 Note: A reader who wishes to verify, with greatest certainty, that
 8^91+5 is prime, would be probably be most convinced by running a
 provable prime test entirely independent of this document and the
 primality certificate given in this section.

 Note: the most expensive step in generating the Pratt certificate
 for 8^91+5 was factoring the integer 8^91+4 = Z-1 = aabzUVY. The
 other integers were generated in reverse alphabetical order, as
 Y,X,...,c,b,a, with each integer appearing as an (seemingly) prime
 factor of one less than number previously computed. All
 subsequent integer factorizations took time negligible compared to
 the factorization of Z-1.

Brown 2y^2=x^3+x over 8^91+5 [Page 33]

Internet-Draft 2018-10-04

 Note: The decimal values for a,b,c,...,Y are given by: a=2, b=3,
 c=5, d=7, e=11, f=13, g=17, h=19, i=23, j=41, k=43, l=53, m=79,
 n=101, o=103, p=107, q=137, r=151, s=163, t=173, u=271, v=431,
 w=653, x=829, y=1031, z=1627, A=2063, B=2129, C=2711, D=3449,
 E=3719, F=4127, G=4259, H=6899, I=8291, J=18041, K=124123,
 L=216493, M=232513, N=2934583, O=10280113, P=16384237, Q=24656971,
 R=98305423, S=446424961, T=170464833767, U=115417966565804897,
 V=4635260015873357770993, W=1561512307516024940642967698779,
 X=167553393621084508180871720014384259,
 Y=1453023029482044854944519555964740294049. If the reader has a
 tool to generate a Pratt certificate (with decimal notation), the
 reader should be able to find these numbers in the Pratt
 certifcate for 8^91+5. (Since Pratt certificate generation is
 slower than for other primality certificate types, some tools
 require special configuration to generate a Pratt certificate.)

 Note: the Pratt certificate for 8^91+5 might not be shortest
 possible primality certificate (under some measure of length), but
 optimizing the shortness of a primality certificate seems to add
 little value.

D.2 Pratt certificate for size of the large elliptic curve subgroup

 Using the same verification strategy of the previous strategy, but
 now with 56 variables a,b,...,z,A,B,...,Z,!,@,#,$, with new
 definitions:

 a=2 b=1+a c=1+a2 d=1+ab e=1+ac f=1+a2b g=1+a4 h=1+ab2 i=1+ae
 j=1+a2d k=1+a3c l=1+abd m=1+a2f n=1+acd o=1+a3b2 p=1+ak q=1+a5b
 r=1+a2c2 s=1+am t=1+ab2d u=1+abi v=1+ap w=1+a2l x=1+abce y=1+a5e
 z=1+a2t A=1+a3bc2 B=1+a7c C=1+agh D=1+a2bn E=1+a7b2 F=1+abck
 G=1+a5bf H=1+aB I=1+aceg J=1+a3bc3 K=1+abA L=1+abD M=1+abcx N=1+acG
 O=1+aqs P=1+aqy Q=1+abrv R=1+ad2eK S=1+a3bCL T=1+a2bewM U=1+aijsJ
 V=1+auEP W=1+agIR X=1+a2bV Y=1+a2cW Z=1+ab3oHOT !=1+a3SUX @=1+abNY!
 #=1+a4kzF@ $=1+a3QZ#

 Note: numeral after variable names represent powers. For example,
 f = 1 + a2b = 1 + 2^2 * 3 = 13.

 Note: The use of punctuation for variable names !,@,#,$, does not
 scale (or fit into most programming languages), so is really just
 a hack to avoid a multiplication operator.

 A routine but tedious verification (Fermat and Lehmer tests)
 converts the information above into a proof that $ is prime. (The
 information above, obtained by repeated factorization, is also
 routine, but more computatinally expensive, because it involves
 integer factorization.)

Brown 2y^2=x^3+x over 8^91+5 [Page 34]

Internet-Draft 2018-10-04

 The last variable, $, is the order of the base point, and the order
 of the curve is 72$.

Acknowledgments

 Thanks to John Goyo and various other BlackBerry employees for past
 technical review, to Gaelle Martin-Cocher for encouraging
 submission of this I-D. Thanks to David Jacobson for sending me
 Pratt primality certificates (generated with mathetmatic, and
 re-generated by me).

Author's Address

 Dan Brown
 4701 Tahoe Blvd.
 BlackBerry, 5th Floor
 Mississauga, ON
 Canada
 danibrown@blackberry.com

Brown 2y^2=x^3+x over 8^91+5 [Page 35]

