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1.  Introduction

  This document specifies some conventions for using the elliptic
  curve 2y^2=x^3+x over the field of size 8^91+5 in cryptography.

  This draft focuses on applications to Diffie--Hellman exchange.

1.1.  Background

  This document presumes that its reader already has familiarity with
  elliptic curve cryptography.

  The symbol '^', as used in '2y^2=x^3+x' and '8^91+5' means
  exponentiation, also known as powering.  In particular, it does not
  mean bit-wise exclusive-or (as in the C programming language
  operator).  For example, y^3=yyy (or y*y*y, if * is used for
  multiplication.)

  In particular, p=8^91+5 is a (positive) prime number.  Its encoding
  into bytes, using little-endian ordering (least significant bytes
  first), requires 35 bytes, and has the form {5,0,0,...,2}, with the
  first byte equal to 5, the last 2, and the 33 intermediate bytes are
  each 0.  A byte encoding of p is not needed for this document, and
  is only shown here for illustrative purposes.  Its hexadecimal
  representation (i.e. big-endian, base 16), is 20...05, with 67 zeros
  between 2 and 5.

1.2.  Motivation

  The motivations for curve 2y^2=x^3+x over field 8^91+5 are discussed
  in Appendix B (and in [B1]).

  In short, the main motivation is that the description of the curve
  is very short (for an elliptic curve), thereby reducing the room for
  a secretly embedded trapdoor, as in [Teske].

2.  Requirements Language (RFC 2119)

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [BCP14].
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3.  Encoding a point into 34 bytes

  Elliptic curve cryptography uses points for public keys and raw
  shared secrets.  A point can be defined as either pair (x,y), where
  x and y are field elements, or a special point O located at
  infinity.  Field elements for this curve are integers modulo 8^91+5.

    Note: for practicality, an implementation will usually represent
    the x-coordinate as a ratio (X:Z) of field elements.  This
    specification ignores that detail, assuming x has been normalized
    to (x:1).

  To interoperably communicate, points must be encoded as byte
  strings.

  This draft specifies an encoding of finite points (x,y) as strings
  of 34 bytes, as described in the following sections.

    Note: The 34-byte encoding is not injective. Each point is
    generally among a group of four points that share the same byte
    encoding.

    Note: The 34-byte encoding is not surjective.  Approximately half
    of 34-byte strings do not encode a finite point (x,y).

    Note: In many typical ECC schemes, the 34-byte encoding works
    well, despite being neither injective nor surjective.

3.1.  Encoding a point into bytes

  In short: a finite point (x,y) by the little-endian byte
  representation of x or -x, whichever fits into 34 bytes.

  In detail: a point (x,y) is encoded into 34 bytes, as follows.

  First, ensure that x is fully reduced mod p=8^91+5, so that

   0 <= x < 8^91+5.

  Second, further reduce x by a flipping its sign.  Let

   x' =: min(x,p-x) mod 2^272.

Brown                2y^2=x^3+x over 8^91+5                 [Page 4]



Internet-Draft                                             2018-10-04

  Third, set the byte string b to be the little-endian encoding of the
  reduced integer x', by finding the unique integers b[i] such that
  0<=b[i]<256 and

   (x' mod 2^272) = sum (0<=i<=33, b[i]*256^i).

  Pseudocode can be found in Appendix C.

3.2.  Decoding bytes into a point

  In short: the bytes are little-endian decoded into an integer which
  becomes the x-coordinate.  The y-coordinate is implicit (in
  Diffie--Hellman).

    +-------------------------------------------------------+
    |                                                       |
    |        \  W  / /A\  |R) |N | I |N | /G   !            |
    |         \/ \/ /   \ |^\ | \| | | \| \_7  0            |
    |                                                       |
    |                                                       |
    |  WARNING: Some byte strings b decode to an invalid    |
    |  point (x,y) that does not belong to the curve        |
    |  2y^2=x^3+x.  In some situations, such invalid b can  |
    |  lead to a severe attack.  In these situations, the   |
    |  decoded point (x,y) MUST be validated, as described  |
    |  below in Section 4.                                  |
    |                                                       |
    +-------------------------------------------------------+

  (TO DO: if y is needed explicitly, then one of y matching x must be
  solved; in that case, y-needing application, after a point (x,y) is
  encoded to b, it should be replaced by (x',y'), where (x',y') is the
  decoding of b.  In the rare case that x and x' do not match, then
  (x,y) should be re-generated or rejected.)

  In greater detail: if byte i is b[i], with an integer value
  between 0 and 255 inclusive, then

   x = sum( 0<=i<=33, b[i]*256^i)

4.  Point validation

  In elliptic curve cryptography, scalar multiplying an invalid public
  key by a private key risks leaking information about the private
  key.
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  For curve 2y^2=x^3+x over 8^91+5, the underlying attacks are a
  little milder than the average a typical elliptic curve.

4.1.  When a public key MAY, SHOULD or MUST be validated

  Every public key MAY be validated, just as an extra precaution, or
  defense in depth.

  If an implementation cannot to afford validate every public key, but
  also cannot follow the more complicated rules that follow, the
  implementation can use the following simple rule:

    +---------------------------------------------------------------+
    |   STATIC                                                      |
    |   SECRET                                                      |
    |    KEY      ------\                     _  ___                |
    |     +              )   PUBLIC |\/| | | (_`  |                 |
    |  UNPROVEN   ------/    KEY    |  | \_/ ._)  |  BE VALIDATED.  |
    |   PUBLIC                                                      |
    |    KEY                                                        |
    +---------------------------------------------------------------+

  However, the more complicated rules described below aim to only
  impose a requirement to validate when there is a known attack, when
  a requirement is absolutely necessary.

  Public key validation has a non-negligible cost, and is sometimes
  not necessary for security.  Here are some criteria under which
  public key validation becomes a SHOULD or MUST

  1) The public key P potentially originates from an potential
     adversary.

  2) The public key P will be used in Diffie--Hellman key agreement to
     compute a value sP, where:

     a) s is a secret

     b) s will be or has been re-used to compute other values (other
        than just sP)

     c) proof of knowledge of sP has not been received (see Note)

     d) proof of knowledge of sP has been requested (see Note)

     e) the direct value of sP has been requested
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     f) sP is computed by one of the following methods:

         I) first explicitly decompressing P to (x,y), but without
            checking (x,y) is on the true curve or that intermediate
            candidate square root are correct, second computing sP
            using formulas that are correct even if P lies on some
            other (false) curve.

         II) using a (1 or 2 dimensinoal) Montgomery ladder, or
             similar method, that ensures P is internally represented
             as point on the curve or its twist, regardless of the
             bytes used to deliver P,

  3) The public key P will be used in some other algorithm, such as
     Menezes--Qu--Vanstone key agreement, that combines P with a
     long-term (static) secret s and an ephemeral secret e.

  4) The public key P will be used in some algorithm, such as
     signature verification algorithm, that does not combine P with
     any secrets.

     g) The algorithm involving P is used primarily to prove some
        property of P is itself, such as proof-of-possession.

  Note: proof of knowledge of sP can take many forms.  For example,
  deriving an message authetnication code key (HMAC) from sP and then
  computig a tag of a knowable message.  For a second example,
  deriving a symmetric encryption key from sP, then encrypting a
  message that is non-random in the sense it contains enough
  redundancy that decryption proves knowledge of sP.  Obviously,
  direct exposure (e) of sP is a proof of knowledge of sP.

  Public key validation MUST be done when the following sets of
  criteria hold, because of the attacks summarized.

  - {1,2,a,b,f,I}: The attacker pre-computes values P that
    decompress to a point (x,y) of a very low-order point P that is
    neither on the curve nor its twist, but on some other false curve.
    Finding such P may be hard.  The adversary can prove knowledge of
    sP by guessing s mod ord(P), due to their very low order, though
    many proofs will fail.  Using these points P finds the secret s
    quickly, by the Chinese remainder theorem.  The number of failed
    interactions with the owner of s may be in the thousands.
    Fortunately, in this situtation public key validation is very
    fast, since it can be done by checking that 2y^2=x^3+x.
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  - {1,2,a,b,c,f,I}: The attacker pre-computes values P that
    decompress to a point (x,y) of a very low-order point P that is
    neither on the curve nor its twist, but on some other false curve.
    Finding such P may be hard.  The attacker guesses (s mod ord(P)).
    The attacker ascertains whether the guess is correct by conducting
    a reaction attack, seeing whether the owner of s acts as though is
    proper.  Using these points P finds the secret s quickly, by the
    Chinese remainder theorem.  Fortunately, in this situtation public
    key validation is very fast, since it can be done by checking that
    2y^2=x^3+x.

  - {1,2,a,b,c,e,f,II}: The attacker, (easily) pre-computes moderately
    low-order points P on the twist, receives sP, and solves the
    discrete log (s mod ord(P)).  The attack takes computation of
    about 2^65 group operations.  Only esotertic protocols require sP
    to be directly exposed: usually sP is passed through a 1-way hash
    before any other use.

  - {1,2,a,b,c,d,f,II}: The attacker (easily) pre-computes moderately
    low-order points P on the twists, receives proof-of-knowledge of
    sP, exhaustively searches values of (s mod ord(P)).  The attack
    takes computation of at least 2^70 group operations.

  If an implementation of the compute of sP from s and P can be used
   in one of the situtations above, then it MUST either validate P
  before
  computing sP, or it must have a clearly documented input flag to
  indicate whether P can be trusted.

  Public key validation SHOULD be done in the following situations,
  because of the following attacks:

  - {1,2,a,b,d,f,II}: The attacker (easily) generates a point P on the
    twist of order 1526119141 and makes approximately 1526119141/2
    guesses g such gP = sP, uses the guesses as proof of knowledge of
    sP towards the owner of the secret s.  This involves the owner of
    s unwittingly or unstoppably participating in about half a billion
    failed crypto operations.  The attacker then learns about 30 bits
    of the secret s, which could be used to speed up on discrete
    logarithm attack on s to cost of about 2^120 group operations.

  Public key validation SHOULD be also done in the following
  situtations, either because it is so efficient (in 2,f,I), or
  because of potential attacks, in order of decreasing risk (as
  estimated by me):
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  - {1,2,a,b,e}
  - {1,2,a,b,c,d}
  - {1,2,a,b,f,I}
  - {1,2,a,b}
  - {1,2,f,I,3}
  - {1,2,f,I,4}
  - {2,f,I}

  Note that the twist has order:

  2^2 * 5 * 1526119141 * 788069478421 * 182758084524062861993 *
  3452464930451677330036005252040328546941

  OLD TEXT BELOW:

  If a party Alice has a secret key a for the curve 2y^2=x^3+x over
  8^91+5, which she will to establish two (hashed) Diffie--Hellman
  keys, agreement with 2 or more public keys from other parties, say
  Bob and Charles, then Alice SHOULD apply public-key validation to
  the public key points of the other parties (Bob and Charlies).

  MUST undergo validation if they are
  combined with private keys as part of multiple Diffie--Hellman
  computations:

  Additionally, public keys SHOULD undergo validation if they are
  received from an unauthenticated source, even if the scalar is
  ephemeral or public.

  ATTEMPT (TO BE CONFIRMED):

4.2.  How to validate a point (given only x)

  Upon decoding the 34 bytes into x, the next step is to compute
  z=2(x^3+x). Then one checks if z has a nonzero square root.  If z
  has a nonzero square root, then the represented point is valid,
  otherwise it is not valid.

  Equivalently, one can check that x^3 + x has no square root (that
  is, x^3+x is a quadratic non-residue).

  To check z for a square root, one can compute the Legendre symbol
  (z/p) and check that is 1.  (Equivalently, one can check that
  ((x^3+x)/p)=-1.)
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  The Legendre symbol can be computed using Gauss' quadratic
  reciprocity law, but this requires implementing modular integer
  arithmetic for moduli smaller than 8^91+5.

  More slowly, but perhaps more simply, one compute the Legendre
  symbol using powering in the field: (z/p) = z^((p-1)/2) =
  z^(2^272+2).  This will have value 0,1 or p-1 (which is equivalent
  to -1).

  More generally, in signature applications, where the y-coordinate is
  also needed, the computation of y, which involves computing a square
  root will generally include a check that x is valid.

  The curve 2y^2=x^3+x is not twist-secure.  So, using the Montgomery
  ladder for scalar multiplication is not enough to thwart invalid
  public key attacks.  In other words, public key validation MUST be
  combined with the Montgomery ladder, unless the scalar multiplier
  involved is public or a single-DH-use secret (i.e. computing kG and
  kP, counts as a single DH use of k).

    Note: a given point need only be validated once, if the
    implementation can track validation state.

  OPTIONAL: In some rare situations, it is also necessary to ensure
  that the point has large order, not just that it is on the curve.

  For points on this curve, each point has large order, unless it has
  torsion by 12.  In other words, if 12P != O, then the point P has
  large order.

  OPTIONAL: In even rarer situations, it may be necessary to ensure
  that the point also has prime order.  To be completed.

5.  OPTIONAL encodings

  The following two encodings are not usually required to obtain
  interoperability in the typical ECC applications, but can sometimes
  be useful.

5.1.  Encoding scalar multipliers as 34 bytes

  To be completed.

  Basically, little-endian byte encoding of integers is recommended.

  The main application is to signatures.
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  Another application is for test vectors (to be completed).

5.2.  Encoding 34 bytes into a point (sketch)

  In special applications, beyond mere Diffie--Hellman key exchange or
  digital signatures, it may be desired to encode arbitrary bytes as
  points.

  Example reasons are anonymity, or hiding the presence of a key
  exchange.

    Note: the point encoding described earlier does a different job.
    It encodes every point.  The task here is to encode every byte
    string.

  This method is slower than the representations above, and yields
  biased elliptic curve points, but has the advantage that the
  byte-strings are unbiased.

  The idea is a minor variation of the Elligator 2 construction
  [Elligator].  Unfortunately, Elligator 2 itself fails for curves
  with j-invariant 1728, which includes 2y^2=x^3+x.  In case of
  confusion, this map here can be called Elligator i, (see also [B1]).

  Fix a square root i of -1 in the field.

  Given any random field element r, compute

    x=i- 3i/(1-ir^2)

  If there is no y solving 2y^2=x^3+x for this x, then replace x by
  x+i and try to solve for y once again.

  If the first x fails, then the second x succeeds.

  So, now r determines a unique x.  To determine y, solve it per the
  equation, getting two roots.  Label the 2 roots y0 and y1 according
  to a deterministic rule.  Then choose y0 if the first x works, else
  choose y2.  This ensures that the map from r^2 to (x,y) is
  injective.

  Finally, to encode a byte string b, just let it represent a field
  element r.  Note that -r will be require more than 34 bytes.  So the
  map from b to (x,y) is now injective.

  This map is reversible.
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  To be completed.

6.  Cryptographic schemes

  To be completed, or even removed!

  List all possible cryptographic schemes in which this curve could be
  used is outside the scope of this short document.  Only a few
  highlights are mentioned.

6.1.  Diffie--Hellman key agreement

  To be completed.

  Question: should DH use cofactor multiplication?  For now, let's say
  no.

  Non-cofactor multiplication risks leaking the private key mod 72, or
  at least mod 12, or perhaps even worse (if the field arithmetic has
  additional leaks).

  But cofactor multiplication reduces the private key size similarly.
  Also, if we start from a 34-byte private key scalar, then we achieve
  a similar effect to cofactor multiplication.

6.2.  Signatures

  For signatures, such as ECDSA, the verifier must fully decompress
  the 34-byte representation.  The verifier must do this twice, once
  with the signer's public key, and once with one component of the
  signature.

  To do this, the verifier can take, and make the most natural choice
  of the two possible y.  The signer, anticipating the verifier, then
  must ensure that the signature will verify correctly under the
  verifier's choices for the y values.  The signer incurs only a small
  extra cost for ensuring this.

  To be completed.

  Given that this curve is experimental and non-radically distinct
  from previous curves, signers and may opt to consider an
  experimental and non-radically distinct signature scheme with the
  curve 2y^2=x^3+x.

  The RKHD ElGamal signature scheme [B2] is an example of such a
  signature scheme.
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  In short, fix a base point G.  The signing key is d, the verifying
  key is Q=dG.  A pair (R,s), R is a point, and s is an integer, is a
  (valid) signature of message with integer hash h, if

       sG = rR + hQ

  where r is obtained from R by re-interpreting its byte as an
  integer.

  To sign a message with hash h, the signer computes a
  message-unique secret k, computes R=kG, computers r as above, and
  computes

       s = rk + hd mod n

  where n is the order of G.

  The signer may compute k as the hash of s and h, or through some
  other method which ensures that k depends (pseudorandomly) on h.

  The signer MUST choose k such that no linear relation between the k
  for different h can be discovered by the adversary.  The signer
  SHOULD use some kind of pseudorandom function to achieve this.

    Note: this ElGamal signature variant corresponds to type 4 ElGamal
    signature in the Handbook of Applied Cryptography.

6.3  Menezes--Qu--Vanstone key agreement

  To be completed.

7.  IANA Considerations

  This document requires no actions by IANA, yet.

8.  Security considerations

  No cryptographic algorithms is without risks. Consequently, risks
  are comparative.  This section will not fully list the risks of all
  other forms of elliptic curve cryptography.  Instead it will list
  the most plausible risks of this curve, and only to a limited degree
  contrast these to a few other standardized curves.

8.1.  Field choice

  The field 8^91+5 has the following risks.
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  - 8^91+5 is a special prime.  As such, it is perhaps vulnerable to
    some kind of attack.  For example, for some curve shapes, the
    supersingularity depends on the prime, and the curve size is
    related in a simple way to the field size, causing a potential
    correlation between the field size and the effectiveness of an
    attack, such as the Pohlig--Hellman attack.

    Many other standard curves, such as the NIST P-256 and
    Curve25519, also use special prime field sizes, so have a similar
    risk.  Yet other standard curves, such as the Brainpool, use
    pseudorandom field sizes, so have less risk to this threat.

  - 8^91+5, while implementable in five 64-bit words, has some risk of
    overflowing, or of not fully reducing properly.  Perhaps a smaller
    field, such as that used in Curve25519, has a simpler reduction
    and overflow-avoidance properties.

  - 8^91+5, by virtue of being well-above 256 bits in size, risks its
    user doing extra, and perhaps unnecessary, computation to protect
    their 128-bit keys, whereas smaller curves might be faster (as
    expected) yet still provide enough security.  In other words, the
    extra cost is wasteful, and partially a form of denial of service.

  - 8^91+5, is smaller than 8^95-9, yet uses no fewer symbols.  Since
    larger field sizes lead to strong Pollard rho resistance, it can
    be argued that this field size does not optimize security against
    (specification) simplicity.  (The main reason this document
    prefers 8^91+5 over 8^95-9 is its simpler field inversion.)
    Similarly, 8^91+5 is smaller than the six-symbol primes 9^99+4 and
    9^87+4, but these are not close to powers of two, which means that
    modular multiplication and reduction for them is not likely to be
    as efficient as for 8^91+5.

  - 8^91+5, is smaller than 2^283 (the field size for curve sect283k1
    [SEC2], [Zigbee]), and many other five-symbol and four-symbol
    powers of primes (such as 9^97).  So, it less to provide less
    resistance to Pollard rho.  Recent progress in the elliptic curve
    discrete logarithm problem, [HPST] and [Nagao], is the main reason
    to prefer prime fields instead of power of prime fields.  A second
    reason to prefer prime field 8^91+5 (and other large
    characteristic fields) over small characteristic fields, is the
    generally better software speed of large characteristic fields:
    which arises because most software is implemented on a general
    purpose hardware processor that has fast multiplication circuits.
    (This speed advantage probably does not apply for hardware.)

  See [B1] for further discussion.
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8.2.  Curve choice

  A first risk of using 2y^2=x^3+x is the fact that it is a special
  curve, with complex multiplication leading to an efficient
  endomorphism.  Many other standard curves, NIST P-256 [NIST-P-256],
  Curve25519, Brainpool [Brainpool], do not have any efficient
  endomorphisms.  Yet some standard curves do, NIST K-283 and
  secp256k1 (see [SEC2] and [BitCoin]).  Furthermore, it is not
  implausible [KKM] that special curves, including those efficient
  endomorphisms, may survive an attack on random curves.

  A second risk of 2y^2=x^3+x over 8^91+5 is the fact that it is not
  twist-secure.  What may happen is that an implementer may use the
  Montgomery ladder in Diffie--Hellman and re-use private keys.  They
  may think, despite the (ample?) warnings in this document, that
  public key validation in unnecessary, modeling their implementation
  after Curve25519 or some other twist-secure curve.  This implementer
  is at risk of an invalid public key attack.  Moreover, the
  implementer has an incentive to skip public-key validation, for
  better performance.  Finally, even if the implementer uses
  public-key validation, then the cost of public-key validation is
  non-negligible.

  A third risk is a biased ephemeral private key generation in a
  digital signature scheme.  Most standard curve lack this risk
  because the field is close to a power of two, and the cofactor is a
  power of two.

  A fourth risk is a Cheon-type attack.  Few standard curves address
  this risk.

  A fifth risk is a small-subgroup confinement attack, which can also
  leak a few bits of the private key.

8.3.  Encoding choices

  To be completed.

8.4.  General subversion concerns

  Although the main motivation of curve 2y^2=x^3+x over 8^91+5 is to
  minimize the risk of subversion via a backdoor ([Gordon], [YY],
  [Teske]), it is only fair to point out that its appearance in this
  very document can be viewed with suspicion as an possible effort at
  subversion (via a front-door).  (See [BCCHLV] for some further
  discussion.)
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  Any other standardized curve can be view with a similar suspicion
  (except, perhaps, by the honest authors of those standards for whom
  such suspicion seems absurd and unfair).  A skeptic can then examine
  both (a) the reputation of the (alleged) author of the standard,
  making an ad hominem argument, and (b) the curve's intrinsic merits.

  By the very definition of this document, the user is encouraged to
  take an especially skeptical viewpoint of curve 2y^2=x^3+x over
  8^91+5.  So, it is expected that skeptical users of the curve will
  either

  - use the curve for its other merits (other than its backdoor
    mitigations), such as efficient endomorphism, field inversion,
    high Pollard rho resistance within five 64-bit words, meanwhile
    holding to the evidence-supported belief ECC that is now so mature
    that worries about subverted curves are just far-fetched nonsense,
    or

  - as an additional of layer of security in addition to other
    algorithms (ECC or otherwise), as an extra cost to address the
    non-zero probability of other curves being subverted.

  To paraphrase, consider users seriously worried about subverted
  curves (or other cryptographic algorithms), either because they
  estimate as high either the probability of subversion or the value
  of the data needing protection.  These users have good reason to
  like 2y^2=x^3+x over 8^91+5 for its compact description.
  Nevertheless, the best way to resist subversion of cryptographic
  algorithms seems to be combine multiple dissimilar cryptographic
  algorithms, in a strongest-link manner.  Diversity hedges against
  subversion, and should the first defense against it.

8.5.  Concerns about 'aegis'

  The exact curve 2y^2=x^3+x over 8^91+5 was (seemingly) first
  described to the public in 2017 [AB].  So, it has a very low age.

  Furthermore, it has not been submitted for a publication with peer
  review to any cryptographic forum such as the IACR conferences like
  Crypto and Eurocrypt.  So, it has been review by very few eyes, most
  of which had little incentive to study it seriously.

  Under the metric of aegis, as in age * eyes, it scores low.
  Counting myself (but not quantifying incentive) it gets an aegis
  score of 0.1 (using a rating 0.1 of my eyes factor in the aegis
  score: I have not discovered any major ECC attacks of my own.)  This
  is far smaller than some more well-studied curves.
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  However, in its defense, the curve 2y^2=x^3+x over 8^91+5 has
  similarities to some of the better-studied curves with much higher
  aegis:

  - Curve25519: has field size 8^85-19, which a little similar to
    8^91+5; has equation of the form by^2=x^3+ax+x, with b and a
    small, which is similar to 2y^2=x^3+x.  Curve25519 has been around
    for over 10 years, has (presumably) many eyes looking at it, and
    has been deployed thereby creating an incentive to study.  An
    estimated aegis score is 10000.

  - P-256: has a special field size, and maybe an estimated aegis
    score of 200000.  (It is a high-incentive target. Also, it has
    received much criticism, showing some intent of cryptanalysis.
    Indeed, there has been incremental progress in finding minor
    weakness (implementation security flaws), suggestive of actual
    cryptanalytic effort.)  The similarity to 2y^2=x^3+x over 8^91+5
    is very minor, so very little of the P-256 aegis would be relevant
    to this document.

  - secp256k1: has a special field size, though not quite as special
    as 8^91+5, and has special field equation with an efficient
    endomorphism by a low-norm complex algebraic integer, quite
    similar to 2y^2=x^3+x.  It is about 17 years old, and though not
    studied much in academic work, its deployment in Bitcoin has at
    least created an incentive to attack it.  An estimated aegis score
    is 10000.

  - Miller's curve: Miller's 1985 paper introducing ECC suggested,
    among other choices, a curve equation y^2=x^3-ax, where a is a
    quadratic non-residue.  Curve 2y^2=x^3+x is isomorphic to
    y^2=x^3-x, which is essentially one of Miller's curves, except
    that a=1 is a quadratic residue.  Miller's curve has not been
    studied directly, but probably much more so than this than the
    curve in this document.  Miller also hinted that it was not
    prudent to use a special curve y^2=x^3-ax: such a comment may have
    encourage some cryptanalysts, but discouraged cryptographers,
    perhaps balancing out the effect on the eyes factor the aegis
    score.  An estimate aegis score is 300.

  Obvious cautions to the reader:

  - Small changes in a cryptographic algorithm sometimes cause large
    differences in security.  So security arguments based on
    similarity in cryptographic schemes should be given low priority.
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  - Security flaws have sometimes remained undiscovered for years,
    despite both incentives and peer reviews (and lack of hard
    evidence of conspiracy).  So, the eyes-part of the aegis score is
    very subjective, and perhaps vulnerable false positives by a herd
    effect.  Despite this caveat, it is not recommended to ignore the
    eyes factor in the aegis score: don't just flip through old books
    (of say, fiction), looking for cryptographic algorithms that might
    never have been studied.
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Appendix A.  Test vectors

  To be completed.

Appendix B.  Motivation: minimizing the room for backdoors

  To be completed.

  See [AB] and [B1] for some details.

  The field and curve are described with very few symbols, while
  retaining many basic security and speed features.

  A prime field was chosen due to recent asymptotic advances on
  discrete logarithms in low-characteristic fields [HPST] and
  [Nagao].  According to [Teske], some characteristic-two elliptic
  curves could be equipped with a secretly embedded backdoor.

    Note: this curve is isomorphic to the non-Montgomery curve
    y^2=x^3-x, which requires just 9 symbols in its description, 1
    fewer than required by 2y^2=x^3+x.

Appendix C.  Pseudocode

  This section uses a C-like pseudocode to describe some of the
  algorithms useful for implementing this curve.

  Real-world implementations adapting this pseudocode had better
  harden this pseudocode against real-world implementation issues.
  Better yet, real-world code could start from scratch, using the
  pseudocode only for comparison.

    Note: the pseudocode relies on some C idioms (hacks?), which might
    make the pseudocode unclear to those unfamiliar with these idioms.

    Note: this pseudocode was adapted from a few different
    experimental prototypes of the author, (which might not be
    consistent).  The pseudocode has not yet received any independent
    review.

    Note: this pseudocode uses a terse non-conventional coding style,
    partly as an exercise in arbitrary source code compression (code
    golf), but also in the mathematics tradition of using many
    single-letter variable names, which enables seeing an entire
    formula in a single view and emphasizes the essential mathematical
    operations rather than the variable's purpose.
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    Note: the pseudocode does not use the C operator ^ for bitwise XOR
    of integers, which (luckily) avoid possible confusion with the use
    of ^ as exponentiation operator in the rest of this document.

C.1.  Byte encoding

  Pseudocode for byte representation encoding process is

  <CODE BEGINS>
  bite(c b,f x) {
   i j=34,k=5; f t;
   mal(t,-1,x);
   mal(x,cmp(t,x),x);
   fix(x);
   for(;j--;) b[j]=x[j/7]>>((8*j)%55);
   for(;--k;) b[7*k-1]+=x[k]<<(8-k);
   }
  <CODE ENDS>

  The input variable is x and the output variable is b.  The declared
  types and functions are as follows:

  - type c: curve representative, length-34 array of non-negative
    8-bit integers ("characters"),

  - type f: field element, a length-5 array of 64-bit integers
    (negatives allowed), representing a field element as an integer in
    base 2^55,

  - type i: 64-bit integers (e.g. entries of f),

  - function mal: multiply a field element by a small integer (result
    stored in 1st argument),

  - function fix: fully reduce an integer modulo 8^91+5,

  - function cmp: compare two field element (after fixing), returning
    -1, 0 or 1.

    Note: The two for-loops in the pseudocode are just radix
    conversion, from base 2^55 to base 2^8.  Because both bases are
    powers of two, this amount to moving bits around.  The entries of
    array b are compute modulo 256.  The second loop copies the bits
    that the first loop misses (the bottom bits of each entry of f).

    Note: Encoding is lossy, several different (x,y) may encode to the
    same byte string b.  Usually, if (x,y) generated as a part of
    Diffie--Hellman key exchange, this lossiness has no effect.
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    Note: Encoding should not be confused with encryption.  Encoding
    is merely a conversion or representation process, whose inverse is
    called decoding.

C.2.  Byte decoding

  Pseudocode for decoding is:

  <CODE BEGINS>
  feed(f x,c b) {
   i j=34;
   mal(x,0,x);
   for(;j--;) x[j/7]+=((i)b[j])<<((8*j)%55);
   fix(x);
   }
  <CODE ENDS>

  with similar conventions as used in the pseudocode function bite
  (defined in the section on encoding), and some extra conventions:

  - the expression (i)b[j] means that 8-bit integer b[j] is converted
    to a 64-bit integer (so is no longer treated modulo 256).  (In C,
    this is operation is called casting.)

    Note: the decode function 'feed' only has 1 for-loop, which is the
    approximate inverse of the first of the 2 for-loops in the encode
    function 'bite'.  The reason the 'bite' needs the 2nd for-loop is
    due to the lossy conversion from integers to bytes, whereas in the
    other direction the conversion is not lossy.  The second loop
    recovers the lost information.

C.3.  Fermat inversion

  Projective coordinates help avoid costly inversion steps during
  scalar multiplication.

  Projective coordinates are not suitable as the final representation
  of an elliptic curve point, for two reasons.

  - Projective coordinates for a point are generally not unique: each
    point can be represented in projective coordinates in multiple
    different ways.  So, projective coordinates are unsuitable for
    finalizing a shared secret, because the two parties computing the
    shared secret point may end up with different projective
    coordinates.
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  - Projective coordinates have been shown to leak information about
    the scalar multiplier [PSM], which could be the private
    key.  It would be unacceptable for a public key to leak
    information about the private key.  In digital signatures, even a
    few leaked bits can be fatal, over a few signatures
    [Bleichenbacher].

  Therefore, the final computation of an elliptic curve point, after
  scalar multiplication, should translate the point to a unique
  representation, such as the affine coordinates described in this
  report.

  For example, when using a Montgomery ladder, scalar multiplication
  yields a representation (X:Z) of the point in projective
  coordinates.  Its x-coordinate is then x=X/Z, which can be computed
  by computing the 1/Z and then multiplying by X.

  The safest, most prudent way to compute 1/Z is to use a side-channel
  resistant method, in particular at least, a constant-time method.
  This reduces the risk of leaking information about Z, which might in
  turn leak information about X or the scalar multiplier.  Fermat
  inversion, computation of Z^(p-2) mod p, is one method to compute
  the inverse in constant time (if the inverse exists).

  Pseudocode for Fermat inversion is:

  <CODE BEGINS>
  i inv(f y,f x) {
    i j=272;f z;
    squ(z,x);
    mul(y,x,z);
    for(;j--;) squ(z,z);
    mul(y,z,y);
    return !!cmp(y,(f){});
  }
  <CODE ENDS>

  Other inversion techniques, such as the binary extended GCD, may be
  faster, but generally run in variable-time.

  When field elements are sometimes secret keys, using a variable-time
  algorithm risk leaking these secrets, and defeating security.

C.4.  Branchless Legendre symbol computation

  Pseudocode for branchlessly computing if a field element x has a
  square root:
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  <CODE BEGINS>
  i has_root(f x) {
    i j=270;f y,z;
    squ(y,x);squ(z,y);
    for(;j--;)squ(z,z);
    mul(y,y,z);
    return 0==cmp(y,(f){1});
  }
  <CODE ENDS>

    Note: Legendre symbol is usually most appropriately applied to
    public keys, which mostly obviates the need for side-channel
    resistance.  In this case, the implementer can use quadratic
    reciprocity for greater speed.

C.5.  Field multiplication and squaring

  To be completed.

    Note (on security): Field multiplication can be achieved most
    quickly by using hardware integer multiplication circuits.  It is
    critical that those circuits have no bugs or backdoors.
    Furthermore, those circuits typically can only multiple integers
    smaller than the field elements.  Larger inputs to the circuits
    will cause overflows.  It is critical to avoid these overflows,
    not just to avoid interoperability failures, but also to avoid
    attacks where the attackers supplies inputs likely induce
    overflows [bug attacks], [IT].  The following pseudocode
    should therefore be considered only for illustrative purposes.
    The implementer is responsible for ensuring that inputs cannot
    cause overflows or bugs.

  The pseudocode below for multiplying and squaring: uses unrolled
  loops for efficiency, uses refactoring for source code compression,
  relies on a compiler optimizer to detect common sub-expressions (in
  squaring).
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  <CODE BEGINS>
  #define TRI(m,_)\
    zz[0]=m(0,0)_(1,4)_(2,3)_(3,2)_(4,1);\
    zz[1]=m(0,1)_(1,0)_(2,4)_(3,3)_(4,2);\
    zz[2]=m(0,2)_(1,1)_(2,0)_(3,4)_(4,3);\
    zz[3]=m(0,3)_(1,2)_(2,1)_(3,0)_(4,4);\
    zz[4]=m(0,4)_(1,3)_(2,2)_(3,1)_(4,0);
  #define CYC(M) ff zz; TRI(+M,-20*M); mod(z,zz);
  #define MUL(j,k) x[j]*(ii)y[k]
  #define SQR(j,k) x[j]*(ii)x[k]
  #define SQU(j,k) SQR(j>k?j:k,j<k?j:k)
  mul(f z,f x,f y) {CYC(MUL);}
  squ(f a,f x) {CYC{SQU};}
  <CODE ENDS>

  This pseudocode makes uses of some extra C-like pseudocode features:

  - #define is used to create macros, which expand within the source
    code (as in C pre-processing).

  - type ii is 128-bit integer

  - multiplying a type i by a type ii variable yields a type ii
    variable.  If both inputs can fit into a type i variable, then
    the result has no overflow or reduction: it is exact as a product
    of integers.

  - type ff is array of five type ii values.  It is used to represent
    a field in a radix expansion, except the limbs (digits) can be
    128-bits instead of 64-bits.  The variable zz has type ff and is
    used to intermediately store the product of two field element
    variables x and y (of type f).

  - function mod takes an ff variable and produce f variable
    representing the same field element.  A pseudocode example may be
    defined further below.

  TO DO: Add some notes (answer these questions):

  - How small the limbs of the inputs to function mul and squ must be
    to ensure no overflow occurs?

  - How small are the limbs of the output of functions mul and squ?

C.6.  Field element partial reduction

  To be completed.
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  The function mod used by pseudocode function mul and squ above is
  defined below.

  <CODE BEGINS>
  #define QUO(x)(x>>55)
  #define MOD(x)(x&((((i)1)<<5)-1))
  #define Q(j) QUO(QUO(zz[j]))
  #define P(j) MOD(QUO(zz[j]))
  #define R(j)     MOD(zz[j])
  mod(f z,ff zz){
   z[0]=R(0)-P(4)*20-Q(3)*20;
   z[1]=R(1)-P(0)-Q(4)*20;
   z[2]=R(2)-P(1)-Q(0);
   z[3]=R(3)-P(2)-Q(1);
   z[4]=R(4)-P(3)-Q(2);
   z[1]+=QUO(z[0]);
   z[0]=MOD(z[0]);
   }
  <CODE ENDS>

  TO DO: add notes answering these questions:

  - How small must be the input limbs to avoid overflow?

  - How small are the output limbs (to know how to safely use of
    output in further calculations).

C.7.  Field element final reduction

  To be completed.

  The partial reduction technique is sometimes known as lazy
  reduction.  It is an optimization technique.  It aims to do only
  enough calculation to avoid overflow errors.

  For interoperability, field elements need to be fully reduced,
  because partial reduction means the elements still have multiple
  different representations.

  Pseudocode that aims for final reduction is the following:
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  <CODE BEGINS>
  #define FIX(j,r,k) {q=x[j]>>r;\
   x[j]-=q<<r; x[(j+1)%5]+=q*k;}
  fix(f x) {
   i j,q,t=2;
   for(;t--;) for(j=0;j<5;j++) FIX(j,(j<4?55:53),(j<4?1:-5));
   q=x[0]<0;
   x[0]+=q*5; x[4]+=q>>53;
   }
  <CODE ENDS>

C.8.  Scalar point multiplication

  Work in progress.

  A recommended method of scalar point multiplication is the
  Montgomery ladder.  However, the curve 2y^2=x^3+x has an efficient
  endomorphism.  So, this can be used to speed-up scalar point
  multiplication, as suggested by Gallant, Lambert and Vanstone.

  Combining both GLV and Montgomery is also possible, such as
  suggested as by Bernstein.

    Note: The following pseudocode is not entirely consistent with
    previous pseudocode examples.

    Note and Warning: The following pseudocode uses secret indices to
    access (small) arrays.  This has a risk of cache-timing attacks.
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  <CODE BEGINS>
  typedef f p[2];
  typedef struct rung {i x0; i x1; i y; i z;} k[137];
  monty_2d (f ps,k sk,f px) {
    i j,h; f z; p w[3],x[3],y[2]={{{},{1}}},z[2];
    fix(px);mal(y[0][0],1,px);
    endomorphism_1_plus_i(z[0],px);
    endo_i(y[1],y[0]); endo_i(z[1],z[0]);
    copy(x[1],y[0]); copy(x[2],z[0]);
    double_xz(x[0],y[0]);
    for(j=0;j<137;j+=){
     double_xz(w[0],     x[sk[j].x0 /* cache attack here? */ ]);
     diff_add (w[1],x[1],x[sk[j].x1],y[sk[j].y]);
     diff_add (2[2],x[2],x[0],       z[sk[j].z]);
     for(h=0;h<3;h++) {copy(x[h],w[h]);}
    }
    inv(ps,x[1][1]);
    mul(ps,x[1][0],ps);
    fix(ps);
  }
  <CODE ENDS>

    Note: The pseudocode uses some other functions not defined here,
    but whose meaning can be inferred by ECC experts.

    Note: The pseudocode uses a specialized format for the scalar.
    Normal scalars would have to be re-coded into this format, and
    re-coding has non-negligible run-time.  Perhaps in
    Diffie--Hellman, re-coding is not necessary if one can ensure that
    uniformly selection of coded scalars is not a security risk.

  TO DO:
  -  Define the functions used by monty_2d.
  -  Prove that these function avoid overflow.
  -  Define functions to re-code scalars for monty_2d.

C.9.  Diffie--Hellman pseudocode

  To be completed.

  This pseudocode would show how to use to scalar multiplication,
  combined with point validation, and so on.

C.10.  Elligator i

  To be completed.
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  This pseudocode would show how to implement to the Elligator i map
  from byte strings to points.

  Pseudocode (to be verified):

  <CODE BEGINS>
  typedef f xy[2] ;
  #define X p[0]
  #define Y p[1]
  lift(xy p, f r) {
    f t ; i b ;
    fix(r);
    squ(t,r);        // r^2
    mul(t,I,t);      // ir^2
    sub(t,(f){1},t); // 1-ir^2
    inv(t,t);        // 1/(1-ir^2)
    mal(t,3,t);      // 3/(1-ir^2)
    mul(t,I,t);      // 3i/(1-ir^2)
    sub(X,I,t);      // i-3i/(1-ir^2)
    b = get_y(t,X);
    mal(t,1-b,I);    // (1-b)i
    add(X,X,t);      // EITHER  x  OR  x + i
    get_y(Y,X);
    mal(Y,2*b-1,Y);  // (-1)^(1-b)""
    fix(X);  fix(Y);
  }

  drop(f r, xy p)
  {
    f t ; i b,h ;
    fix(X); fix(Y);
    get_y(t,X);
    b=eq(t,Y);
    mal(t,1-b,I);
    sub(t,X,t);   // EITHER x or x-i
    sub(t,I,t);   // i-x
    inv(t,t);     // 1/(i-x)
    mal(t,3,t);   // 3/(i-x)
    add(t,I,t);   // i+ 3/(i-x)
    mal(t,-1,t);  // -i-3/(i-x)) = (1-3i/(i-x))/i
    b = root(r,t) ;
    fix(r);
    h = (r[4]<(1LL<<52)) ;
    mal(r,2*h-1,r);
    fix(r);
  }
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  elligator(xy p,c b) {f r; feed(r,b); lift(p,r);}

  crocodile(c b,xy p) {f r; drop(r,p); bite(b,r);}
  <CODE ENDS>

D. Primality proofs and certificates

  In most cases, probablistic primality tests, if conducted properly,
  can ensure more than adequate security.  But recent work of Albrecht
  and others [AMPS] has shown the combination of adversarially chosen
  prime and improper probabilistic primality tests can result in
  attacks.

  Three countermeasures to the attacks in [AMPS] are (1) using proper
  probabilistic prime tests, (2) using provable prime tests, and (3)
  using nothing-up-my-sleeve primes which seem immune to the [AMPS]
  attack.

  It seems that field size 8^91+5 should already resist [AMPS] based
  on the third countermeasure (its especially compact representation).
  This document cannot really accomplish the first countermeasure,
  because the first countermeasure requires fresh randomness for each
  test.  This document can help with the second countermeasure by
  providing primality certificate.

  A primality certificate is essentially a rapidly verifiable proof of
  primality.  More precisely, it involves some rigorous logic and and
  some calculations.  The calculations, although too tedious to be
  done by hand, have a cost that is polynomial time, and usually
  amounting only to some number of modular expontiations, with the
  number comparable to the bit length of the prime being tested.

  Typically, generation of the primality certificate is much more
  costly than verifying it: generation is not polynomial-time.  For
  example, Pratt certificates require the factorization of p-1, which
  is typically expensive for large primes.  Nevertheless, for the
  prime 8^91+5, software exists that can generate a Pratt certificate
  in minutes on a personal computer.  Yet other kinds of primality
  certificates (those using elliptic curves) can be generated even
  more quickly, except their verification requires an elliptic curve
  implementation, and uses less elementary rigor in their proofs.

  For these reasons, a primality certificate for primes of size 8^91+5
  is nearly redundant.  Nonetheless, it does not hurt to provide the
  proofs within this curve, if only for completeness.

D.1 Pratt certificate for the field size 8^91+5
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  Define 52 positive integers, a,b,c,...,z,A,...,Z as follows:

   a=2 b=1+a c=1+aa d=1+ab e=1+ac f=1+aab g=1+aaaa h=1+abb i=1+ae
   j=1+aaac k=1+abd l=1+aaf m=1+abf n=1+aacc o=1+abg p=1+al q=1+aaag
   r=1+abcc s=1+abbbb t=1+aak u=1+abbbc v=1+ack w=1+aas x=1+aabbi
   y=1+aco z=1+abu A=1+at B=1+aaaadh C=1+acu D=1+aaav E=1+aeff F=1+aA
   G=1+aB H=1+aD I=1+acx J=1+aaacej K=1+abqr L=1+aabJ M=1+aaaaaabdt
   N=1+abdpw O=1+aaaabmC P=1+aabeK Q=1+abcfgE R=1+abP S=1+aaaaaaabcM
   T=1+aIO U=1+aaaaaduGS V=1+aaaabbnuHT W=1+abffLNQR X=1+afFW
   Y=1+aaaaauX Z=1+aabzUVY.

    Note: variable concatentation is used to indicate multiplication.
    For example, f = 1+aab = 1+2*2*(1+2) = 13.  This brevity was only
    possible by a fluke: only 52 integers were needed, obviating the
    need for multi-letter variable names.

    Note: the information above can suffice as a Pratt certificate for
    the primality of Z, but only if the following further sequence of
    computations are done.  (The information suffices because it
    deducibly implies the sequence of computations.)

  Writing % for modular reduction (with lower precedence than
  exponention ^), verify that following 51 modular exponentiations all
  result in value 1:

   2^(b-1)%b, 2^(c-1)%c, 3^(d-1)%d, 2^(e-1)%e, 2^(f-1)%f, 3^(g-1)%g,
   2^(h-1)%h, 5^(i-1)%i, 6^(j-1)%j, 3^(k-1)%k, 2^(l-1)%l, 3^(m-1)%m,
   2^(n-1)%n, 5^(o-1)%o, 2^(p-1)%p, 3^(q-1)%q, 6^(r-1)%r, 2^(s-1)%s,
   2^(t-1)%t, 6^(u-1)%u, 7^(v-1)%v, 2^(w-1)%w, 2^(x-1)%x, 14^(y-1)%y,
   3^(z-1)%z, 5^(A-1)%A, 3^(B-1)%B, 7^(C-1)%C, 3^(D-1)%D, 7^(E-1)%E,
   5^(F-1)%F, 2^(G-1)%G, 2^(H-1)%H, 2^(I-1)%I, 3^(J-1)%J, 2^(K-1)%K,
   2^(L-1)%L, 10^(M-1)%M, 5^(N-1)%N, 10^(O-1)%O, 2^(P-1)%P,
   10^(Q-1)%Q, 6^(R-1)%R, 7^(S-1)%S, 5^(T-1)%T, 3^(U-1)%U, 5^(V-1)%V,
   2^(W-1)%W, 2^(X-1)%X, 3^(Y-1)%Y, 7^(Z-1)%Z.

  This shows that b,c,...,Z are Fermat pseudoprimes to the Fermat
  bases indicated (for example, Z is a Fermat pseudoprime to Fermat
  base 7).

    Note: Each Fermat base above was chosen as the minimal possible
    value.  These bases can be deduced from b,c,...,Z by searching
    bases 2,3,4,... until a Fermat is found.  The results of these
    search are included above for convenience.

  Verify that a is prime (because it is just two).

Brown                2y^2=x^3+x over 8^91+5                 [Page 31]



Internet-Draft                                             2018-10-04

  Lehmer's theorem provides the Lehmer test that a Fermat pseudoprime
  is prime: if the Fermat base raised to each integer power of the
  form (pseudoprime-1)/(a prime factor) is not congruent to 1 modulo
  the pseudoprime.  Consequently, to prove b,c,d,...,Z are prime, it
  suffices to do all the necessary Lehmer tests, which means to verify
  that all of following 154 modular exponentiations result in a value
  different from 1.

   2^((b-1)/a)%b, 2^((c-1)/a)%c, 3^((d-1)/a)%d, 3^((d-1)/b)%d,
   2^((e-1)/a)%e, 2^((e-1)/c)%e, 3^((f-1)/a)%f, 3^((f-1)/b)%f,
   3^((g-1)/a)%g, 2^((h-1)/a)%h, 2^((h-1)/b)%h, 5^((i-1)/a)%i,
   5^((i-1)/e)%i, 6^((j-1)/a)%j, 6^((j-1)/c)%j, 3^((k-1)/a)%k,
   2^((l-1)/a)%l, 2^((l-1)/f)%l, 3^((m-1)/a)%m, 3^((m-1)/b)%m,
   3^((m-1)/f)%m, 2^((n-1)/a)%n, 2^((n-1)/c)%n, 5^((o-1)/a)%o,
   5^((o-1)/b)%o, 5^((o-1)/f)%o, 2^((p-1)/a)%p, 2^((p-1)/l)%p,
   3^((q-1)/a)%q, 3^((q-1)/g)%q, 6^((r-1)/a)%r, 6^((r-1)/a)%r,
   2^((s-1)/a)%s, 2^((s-1)/b)%s, 2^((t-1)/a)%t, 2^((t-1)/k)%t,
   6^((u-1)/a)%u, 6^((u-1)/b)%u, 6^((u-1)/c)%u, 7^((v-1)/a)%v,
   7^((v-1)/c)%v, 7^((v-1)/k)%v, 2^((w-1)/a)%w, 2^((w-1)/s)%w,
   2^((x-1)/a)%x, 2^((x-1)/b)%x, 2^((x-1)/i)%x, 14^((y-1)/a)%y,
   14^((y-1)/c)%y, 14^((y-1)/o)%y, 3^((z-1)/a)%z, 3^((z-1)/b)%z,
   3^((z-1)/u)%z, 5^((A-1)/a)%A, 5^((A-1)/t)%A, 3^((B-1)/a)%B,
   3^((B-1)/d)%B, 3^((B-1)/h)%B, 7^((C-1)/a)%C, 7^((C-1)/c)%C,
   7^((C-1)/u)%C, 3^((D-1)/a)%D, 3^((D-1)/v)%D, 7^((E-1)/a)%E,
   7^((E-1)/e)%E, 7^((E-1)/f)%E, 5^((F-1)/a)%F, 5^((F-1)/A)%F,
   2^((G-1)/a)%G, 2^((G-1)/B)%G, 2^((H-1)/a)%H, 2^((H-1)/D)%H,
   2^((I-1)/a)%I, 2^((I-1)/c)%I, 2^((I-1)/x)%I, 3^((J-1)/a)%J,
   3^((J-1)/c)%J, 3^((J-1)/e)%J, 3^((J-1)/j)%J, 2^((K-1)/a)%K,
   2^((K-1)/b)%K, 2^((K-1)/q)%K, 2^((K-1)/r)%K, 2^((L-1)/a)%L,
   2^((L-1)/b)%L, 2^((L-1)/J)%L, 10^((M-1)/a)%M, 10^((M-1)/b)%M,
   10^((M-1)/d)%M, 10^((M-1)/t)%M, 5^((N-1)/a)%N, 5^((N-1)/b)%N,
   5^((N-1)/d)%N, 5^((N-1)/p)%N, 5^((N-1)/w)%N, 10^((O-1)/a)%O,
   10^((O-1)/b)%O, 10^((O-1)/m)%O, 10^((O-1)/C)%O, 2^((P-1)/a)%P,
   2^((P-1)/b)%P, 2^((P-1)/e)%P, 2^((P-1)/K)%P, 10^((Q-1)/a)%Q,
   10^((Q-1)/b)%Q, 10^((Q-1)/c)%Q, 10^((Q-1)/f)%Q, 10^((Q-1)/g)%Q,
   10^((Q-1)/E)%Q, 6^((R-1)/a)%R, 6^((R-1)/b)%R, 6^((R-1)/P)%R,
   7^((S-1)/a)%S, 7^((S-1)/b)%S, 7^((S-1)/c)%S, 7^((S-1)/M)%S,
   5^((T-1)/a)%T, 5^((T-1)/I)%T, 5^((T-1)/O)%T, 3^((U-1)/a)%U,
   3^((U-1)/d)%U, 3^((U-1)/u)%U, 3^((U-1)/G)%U, 3^((U-1)/S)%U,
   5^((V-1)/a)%V, 5^((V-1)/b)%V, 5^((V-1)/n)%V, 5^((V-1)/u)%V,
   5^((V-1)/H)%V, 5^((V-1)/T)%V, 2^((W-1)/a)%W, 2^((W-1)/b)%W,
   2^((W-1)/f)%W, 2^((W-1)/L)%W, 2^((W-1)/N)%W, 2^((W-1)/Q)%W,
   2^((W-1)/R)%W, 2^((X-1)/a)%X, 2^((X-1)/f)%X, 2^((X-1)/F)%X,
   2^((X-1)/W)%X, 3^((Y-1)/a)%Y, 3^((Y-1)/u)%Y, 3^((Y-1)/X)%Y,
   7^((Z-1)/a)%Z, 7^((Z-1)/b)%Z, 7^((Z-1)/z)%Z, 7^((Z-1)/U)%Z,
   7^((Z-1)/V)%Z, 7^((Z-1)/Y)%Z.
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    Note: Each base above is the same as the base in the previous
    Fermat pseudoprime stage, and each list of prime factors is
    deduced from the definition of positive integers b,c,...,Z.  The
    consistency between these stages of the proof must be verified for
    rigor.  For example, the Fermat base for Z was 7, and the
    factorization of Z-1 was aabzUVY, so we must test 7^((Z-1)/a)%Z,
    7^((Z-1)/b)%Z, ..., 7^((Z-1)/Y)%Z.

  This proves that a,b,...,Z are primes.

  Verify that Z=8^91+5 to conclude that 8^91+5 is prime.

    Note: the Pratt certificate is essentially unique for each prime.
    The presentation above is for illustrative purposes: the
    formatting is not intended for an automated verification.  A
    sensible automation of the verification would simply generate the
    154 Lehmer tests from integer definitions and the Fermat
    pseudoprime tests, rather than rely on the listing provided above.
    With only slightly greater cost, the Fermat pseudoprime test can
    be derived from integers, by a separate search for each Fermat
    base.

    Note: A reader who wishes to verify, with greatest certainty, that
    8^91+5 is prime, would be probably be most convinced by running a
    provable prime test entirely independent of this document and the
    primality certificate given in this section.

    Note: the most expensive step in generating the Pratt certificate
    for 8^91+5 was factoring the integer 8^91+4 = Z-1 = aabzUVY.  The
    other integers were generated in reverse alphabetical order, as
    Y,X,...,c,b,a, with each integer appearing as an (seemingly) prime
    factor of one less than number previously computed.  All
    subsequent integer factorizations took time negligible compared to
    the factorization of Z-1.
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    Note: The decimal values for a,b,c,...,Y are given by: a=2, b=3,
    c=5, d=7, e=11, f=13, g=17, h=19, i=23, j=41, k=43, l=53, m=79,
    n=101, o=103, p=107, q=137, r=151, s=163, t=173, u=271, v=431,
    w=653, x=829, y=1031, z=1627, A=2063, B=2129, C=2711, D=3449,
    E=3719, F=4127, G=4259, H=6899, I=8291, J=18041, K=124123,
    L=216493, M=232513, N=2934583, O=10280113, P=16384237, Q=24656971,
    R=98305423, S=446424961, T=170464833767, U=115417966565804897,
    V=4635260015873357770993, W=1561512307516024940642967698779,
    X=167553393621084508180871720014384259,
    Y=1453023029482044854944519555964740294049.  If the reader has a
    tool to generate a Pratt certificate (with decimal notation), the
    reader should be able to find these numbers in the Pratt
    certifcate for 8^91+5. (Since Pratt certificate generation is
    slower than for other primality certificate types, some tools
    require special configuration to generate a Pratt certificate.)

    Note: the Pratt certificate for 8^91+5 might not be shortest
    possible primality certificate (under some measure of length), but
    optimizing the shortness of a primality certificate seems to add
    little value.

D.2 Pratt certificate for size of the large elliptic curve subgroup

  Using the same verification strategy of the previous strategy, but
  now with 56 variables a,b,...,z,A,B,...,Z,!,@,#,$, with new
  definitions:

   a=2 b=1+a c=1+a2 d=1+ab e=1+ac f=1+a2b g=1+a4 h=1+ab2 i=1+ae
   j=1+a2d k=1+a3c l=1+abd m=1+a2f n=1+acd o=1+a3b2 p=1+ak q=1+a5b
   r=1+a2c2 s=1+am t=1+ab2d u=1+abi v=1+ap w=1+a2l x=1+abce y=1+a5e
   z=1+a2t A=1+a3bc2 B=1+a7c C=1+agh D=1+a2bn E=1+a7b2 F=1+abck
   G=1+a5bf H=1+aB I=1+aceg J=1+a3bc3 K=1+abA L=1+abD M=1+abcx N=1+acG
   O=1+aqs P=1+aqy Q=1+abrv R=1+ad2eK S=1+a3bCL T=1+a2bewM U=1+aijsJ
   V=1+auEP W=1+agIR X=1+a2bV Y=1+a2cW Z=1+ab3oHOT !=1+a3SUX @=1+abNY!
   #=1+a4kzF@ $=1+a3QZ#

    Note: numeral after variable names represent powers.  For example,
    f = 1 + a2b = 1 + 2^2 * 3 = 13.

    Note: The use of punctuation for variable names !,@,#,$, does not
    scale (or fit into most programming languages), so is really just
    a hack to avoid a multiplication operator.

  A routine but tedious verification (Fermat and Lehmer tests)
  converts the information above into a proof that $ is prime.  (The
  information above, obtained by repeated factorization, is also
  routine, but more computatinally expensive, because it involves
  integer factorization.)



Brown                2y^2=x^3+x over 8^91+5                 [Page 34]



Internet-Draft                                             2018-10-04

  The last variable, $, is the order of the base point, and the order
  of the curve is 72$.
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