
Internet-Draft D. Brown
Intended status: Experimental BlackBerry
Expires: 2019-10-06 2019-04-04

 Elliptic curve 2y^2=x^3+x over field size 8^91+5
 <draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-03.txt>

Abstract

 This document recommends using a special elliptic curve alongside
 dissimilar curves, such as NIST P-256, Curve25519, sect283k1,
 Brainpool, and random curves, as a cryptographic defense against an
 unlikely, undisclosed attack against mainstream curves. Features of
 this curve 2y^2=x^3+x/GF(8^91+5) are: isomorphism to Miller curves
 from 1985; Montgomery form mappable to Edwards; simple field
 powering for inversion, Legendre symbol, and square roots; efficient
 endomorphism to speed up Diffie--Hellman with Bernstein's 2-D
 ladder; 34-byte keys; similarity to Bitcoin curve; hashing-to-point;
 low Kolmogorov complexity (low risk of backdoor).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note that
 other groups may also distribute working documents as
 Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

Brown 2y^2=x^3+x over 8^91+5 [Page 1]

https://datatracker.ietf.org/doc/html/draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-03.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft 2019-04-04

 This document may not be modified, and derivative works of it may
 not be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

Brown 2y^2=x^3+x over 8^91+5 [Page 2]

Internet-Draft 2019-04-04

Table of Contents

 1. Introduction
 1.1. Background
 1.1.1. Notation
 1.2. Motivation
 2. Requirements Language (RFC 2119)
 3. Encoding a point into 34 bytes
 3.1. Encoding a point into bytes
 3.2. Decoding bytes into a point
 4. Point validation
 4.1. When a public key MAY, SHOULD or MUST be validated
 4.1.1. Precautionary mandatory validation
 4.1.2. Simplified validation
 4.1.3. Relatively safe cases of non-validation
 4.1.4. Minimal validation
 4.2. How to validate a point (given only x)
 5. OPTIONAL encodings
 5.1. Encoding scalar multipliers as 34 bytes
 5.2. Encoding 34 bytes into a point (sketch)
 6. IANA Considerations
 7. Security considerations
 7.1. Field choice
 7.2. Curve choice
 7.3. Encoding choices
 7.4. General subversion concerns
 7.5. Concerns about 'aegis'
 8. References
 8.1. Normative References
 8.2. Informative References

Appendix A. Test vectors
Appendix B. Motivation: minimizing the room for backdoors
Appendix C. Pseudocode

 C.1. Byte encoding
 C.2. Byte decoding
 C.3. Fermat inversion
 C.4. Branchless Legendre symbol computation
 C.5. Field multiplication and squaring
 C.6. Field element partial reduction
 C.7. Field element final reduction
 C.8. Scalar point multiplication
 C.9. Diffie--Hellman pseudocode
 C.10. Elligator i
 D. Primality proofs and certificates
 D.1. Pratt certificate for the field size 8^91+5
 D.2. Pratt certificate for subgroup order

https://datatracker.ietf.org/doc/html/rfc2119

Brown 2y^2=x^3+x over 8^91+5 [Page 3]

Internet-Draft 2019-04-04

1. Introduction

 This document relates to elliptic curve cryptography (ECC). It
 specifies methods for using the elliptic curve 2y^2=x^3+x over the
 field of size 8^91+5. It recommends using this curve in combination
 with a diverse set of curves, as a strongest-link multi-layer
 defense-in-depth against undisclosed attacks against some subset of
 curves.

1.1. Background

 This document presumes that its reader already has familiarity with
 elliptic curve cryptography (ECC).

1.1.1. Notation

 The symbol '^', as used in '2y^2=x^3+x' and '8^91+5' means
 exponentiation, also known as powering. For example, y^3=yyy, or
 y*y*y, if * is used for multiplication, and 8^91 = 8*8*...*8, with
 91 eights in the product on the right.

 Note: This document does not use '^' the way that C (and similar
 programming languages) use it as bit-wise exclusive-or.

 In hexadecimal (base 16, big-endian) notation, the number 8^91+5 is

 20005

 with with 67 zeros between 2 and 5.

1.2. Motivation

 The main motivation is that the description of the curve is very
 short (for an otherwise secure elliptic curve), thereby reducing the
 room for a secretly embedded trapdoor, as in [Teske].

 The best countermeasure against a secretly embedded trapdoor in an
 elliptic curve is to use a diverse combination of elliptic curves.
 So, this curve is only recommended for use in such a combination.

 The detailed motivations for curve 2y^2=x^3+x over field 8^91+5 are
 discussed in Appendix B (and in [B1]).

Brown 2y^2=x^3+x over 8^91+5 [Page 4]

Internet-Draft 2019-04-04

2. Requirements Language (RFC 2119)

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [BCP14].

3. Encoding a point into 34 bytes

 Elliptic curve cryptography uses points for public keys and raw
 shared secrets.

 Abstractly, points are mathematical objects. For curve 2y^2=x^3+x,
 a point is either a pair (x,y), where x and y are elements of
 mathematical field, or a special point O, both of whose coordinates
 may be deemed as infinity.

 For 2y^2=x^3+x, the coordinates are x and y are field elements for
 this curve are integers modulo 8^91+5.

 Note: for practicality, an implementation will often represented
 the x-coordinate as a ratio [X:Z] of field elements. Each field
 element has multiple representations, but [x:1] can viewed as
 normal representation of x. (Infinity can be then represented by
 [1:0], though one must be careful.)

 To interoperably communicate, points must be encoded as byte
 strings.

 This draft specifies an encoding of finite points (x,y) as strings
 of 34 bytes, as described in the following sections.

 Note: The 34-byte encoding is not injective. Each point is
 generally among a group of four points that share the same byte
 encoding.

 Note: The 34-byte encoding is not surjective. Approximately half
 of 34-byte strings do not encode a finite point (x,y).

 Note: In many typical ECC schemes, the 34-byte encoding works
 well, despite being neither injective nor surjective.

3.1. Encoding a point into bytes

 In short: a finite point (x,y) is encoded by the little-endian byte
 representation of x or -x, whichever fits into 34 bytes.

Brown 2y^2=x^3+x over 8^91+5 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft 2019-04-04

 In detail: a point (x,y) is encoded into 34 bytes, as follows.

 First, ensure that x is fully reduced mod p=8^91+5, so that

 0 <= x < 8^91+5.

 Second, further reduce x by a flipping its sign. Let

 x' =: min(x,p-x) mod 2^272.

 Third, set the byte string b to be the little-endian encoding of the
 reduced integer x', by finding the unique integers b[i] such that
 0<=b[i]<256 and

 (x' mod 2^272) = sum (0<=i<=33, b[i]*256^i).

 Pseudocode can be found in Appendix C.

 Note: the loss of information that happens upon replacing x by -x
 represents applying a complex multiplication by i on the curve,
 since [i](x,y) = (-x,iy) = (u,v) is also a point on the curve,
 because 2u^2 = 2(iy)^2 = -2y^2 = -(x^3+x) = (-x)^3 + (-x) = v^3 +
 v. In many application, particularly Diffie--Hellman key
 agreement, this loss of information is carried through the final
 shared secret, which means that Alice and Bob can agree on the
 same secret 34 bytes.

 In elliptic curve algorithms where the original x coordinate and the
 decoded x coordinate need to match exactly, then the 34-byte
 encoding is probably not usable unless the following pre-encoding
 procedure is practical:

 Given a point x where x is larger than min(x,p-x), first replace x
 by x'=p-x, on the encoder's side, using the new value x' (instead of
 x) for any further step in the algorithm. In other words, replace
 the point (x,y) by the point (x',y')=(-x,iy). Most algorithms will
 also require a discrete logarithm d of (x,y), meaning (x,y) = [d] G
 for some point G. Since (x',y') = [i](x,y), we can replace by d'
 such that [d']=[i][d]. Usually, [i] can be represented by an
 integer, say j, and we can compute d' = jd (mod ord(G)).

3.2. Decoding bytes into a point

 In short: the bytes are little-endian decoded into an integer which
 becomes the x-coordinate. Public-key validation done if needed. If
 needed, the y-coordinate is recovered.

Brown 2y^2=x^3+x over 8^91+5 [Page 6]

Internet-Draft 2019-04-04

 In greater detail: if byte i is b[i], with an integer value
 between 0 and 255 inclusive, then

 x = sum(0<=i<=33, b[i]*256^i)

 Note: a value of -x (mod p) will also be suitable, and results in
 a point (-x,y') which might be different from the originally
 encoded point. However, it will be one of the points [i](x,y) or
 -[i](x,y) where [i] means complex multiplication by [i].

 In many cases, such as Diffie--Hellman key agreement using the
 Montgomery ladder, neither the original value of x or -x nor
 coordinate y of the point is needed. In these cases, the decoding
 steps can be considered completed.

 +---+
 | |
 | \ W / /A\ |R) |N | I |N | /G ! |
 | \/ \/ / \ |^\ | \| | | \| _7 0 |
 | |
 | |
 | WARNING: Some byte strings b decode to an invalid |
 | point (x,y) that does not belong to the curve |
 | 2y^2=x^3+x. In some situations, such invalid b can |
 | lead to a severe attack. In these situations, the |
 | decoded point (x,y) MUST be validated, as described |
 | below in Section 4. |
 | |
 +---+

 In cases, where a value for at least of y, -y, iy, or -iy is needed
 such as Diffie--Hellman key agreement using some other coordinate
 system (such as one might need when converting to Edwards
 coordinates), the candidate value can be obtained by computing a
 square root:

 y = ((x^3+x)/2)^(1/2).

 In some cases, it is important for the decoded value of x to match
 the original value of x exactly. In that case, the encoder should
 use the procedure that replace x by p-x, and adjusts the discrete
 logarithm appropriately. These steps can be done by the encoder,
 with the decoder doing nothing.

Brown 2y^2=x^3+x over 8^91+5 [Page 7]

Internet-Draft 2019-04-04

4. Point validation

 In elliptic curve cryptography, scalar multiplying an invalid public
 key by a private key risks leaking information about the private
 key.

 Note: For curve 2y^2=x^3+x over 8^91+5, the underlying attacks are
 a little milder than the average a typical elliptic curve.

4.1. When a public key MAY, SHOULD or MUST be validated

4.1.1. Precautionary mandatory validation

 Every public key (and point) MAY be validated, as an extra
 precaution (i.e., defense in depth.

4.1.2. Simplified validation

 If small but general implementation aims for high speed, then the
 implementation might not be able to the cost mandatory public key
 validation.

 It SHOULD follow at least the rule that an distrusted public key is
 validated before combination with a static secret key.

 +---+
 | STATIC |
 | SECRET |
 | KEY ------\ _ ___ |
 | +) PUBLIC |\/| | | (_` | |
 | UNPROVEN ------/ KEY | | _/ ._) | BE VALIDATED. |
 | PUBLIC |
 | KEY |
 +---+

4.1.3. Relatively safe cases of non-validation

 In some application an implementation of ECC seem not to suffer an
 invalid curve attack. This section lists these situations.

 Note: The main reason to omit public key validation is save
 time.

Brown 2y^2=x^3+x over 8^91+5 [Page 8]

Internet-Draft 2019-04-04

 We classify these situations at two levels: safe, if it seems that
 no harm is possible, and relatively safe, if it there the attack is
 both no worse than another attack and requires something else to be
 broken.

 To be verified.

 If the secret key is ephemeral, the public key is trusted (signed)
 and a Montgomery ladder is used, then omitting validation of the
 public key seems relatively safe. This is mostly because if the
 holder of the public key is the attacker, then the trust system has
 been broken. Furthermore, the attacker, as the intended recipient
 in a typical communication, should already be able to receive any
 data hidden by the secret key.

 To be extended.

4.1.4. Minimal validation

 To maximize efficiency, an implementation may wish to minimize the
 amount of validation done down to the point of only resisting a
 known
 attack.

 To be completed.

 Note: a given point need only be validated once, if the
 implementation can track validation state.

 The curve 2y^2=x^3+x is not twist-secure: using the Montgomery
 ladder for scalar multiplication is not enough to thwart invalid
 public key attacks.

 Note: the twist of 2y^2=x^3+x/GF(8^91+5) curve has order:

 2^2 * 5 * 1526119141 * 788069478421 * 182758084524062861993 *
 3452464930451677330036005252040328546941

4.2. How to validate a point (given only x)

 Upon decoding the 34 bytes into x, the next step is to compute
 z=2(x^3+x). Then one checks if z has a nonzero square root (in the
 field of size 8^91+5). If z has a nonzero square root, then the
 represented point is valid, otherwise it is not valid.

 Equivalently, one can check that x^3 + x has no square root (that
 is, x^3+x is a quadratic non-residue).

Brown 2y^2=x^3+x over 8^91+5 [Page 9]

Internet-Draft 2019-04-04

 To check z for a square root, one can compute the Legendre symbol
 (z/p) and check that is 1. (Equivalently, one can check that
 ((x^3+x)/p)=-1.)

 The Legendre symbol can be computed using Gauss' quadratic
 reciprocity law, but this requires implementing modular integer
 arithmetic for moduli smaller than 8^91+5.

 More slowly, but perhaps more simply, one compute the Legendre
 symbol using powering in the field: (z/p) = z^((p-1)/2) =
 z^(2^272+2). This will have value 0,1 or p-1 (which is equivalent
 to -1).

 More generally, in signature applications, where the y-coordinate is
 also needed, the computation of y, which involves computing a square
 root will generally include a check that x is valid.

 OPTIONAL: In some rare situations, it is also necessary to ensure
 that the point has large order, not just that it is on the curve.

 For points on this curve, each point has large order, unless it has
 torsion by 12. In other words, if [12]P != O, then the point P has
 large order.

 OPTIONAL: In even rarer situations, it may be necessary to ensure
 that a point P also has a prime order n = ord(G). The costly method
 to check this is checking that [n]P = O. An alternative method is
 to try to solve for Q in the equation [12]Q=P, which involves
 methods such a division polynomials.

 To be completed.

5. OPTIONAL encodings

 The following two encodings are not usually required to obtain
 interoperability in the typical ECC applications, but can sometimes
 be useful.

5.1. Encoding scalar multipliers as 34 bytes

 To be completed.

 Basically, little-endian byte encoding of integers is recommended.

 The main application is to signatures.

Brown 2y^2=x^3+x over 8^91+5 [Page 10]

Internet-Draft 2019-04-04

 Another application is for test vectors (to be completed).

5.2. Encoding 34 bytes into a point (sketch)

 In niche applications, it may be desired to encode arbitrary bytes
 as
 points.

 Note: This type of encoding is sometimes called hashing to a
 curve.

 Note: Diffie--Hellman key exchange or digital signatures do not
 require encoding of arbitrary byte strings.

 Example reasons are anonymity, or hiding the presence of a key
 exchange.

 Note: the point encoding described earlier does a different job.
 It encodes every point as a byte string. The task here is the
 opposite: to encode every byte string as a point.

 Note: Encoding a byte string as a point yields biased elliptic
 curve points, but has the advantage that the byte-strings are
 unbiased.

 The encoding is called Elligator i, (see also [B1]), and is just a
 minor variation of the Elligator 2 construction [Elligator].
 Elligator 2 fails for curves with j-invariant 1728, which includes
 2y^2=x^3+x, so a minor tweak is made, obtain Elligator i.

 Fix a square root i of -1 in the field.

 Given any random field element r, compute

 x=i- 3i/(1-ir^2)

 If there is no y solving 2y^2=x^3+x for this x, then replace x by
 x+i and try to solve for y once again.

 If the first x fails, then the second x succeeds.

 So, now r determines a unique x. To determine y, solve it per the
 equation, getting two roots. Label the 2 roots y0 and y1 according
 to a deterministic rule. Then choose y0 if the first x works, else
 choose y2. This ensures that the map from r^2 to (x,y) is
 injective.

Brown 2y^2=x^3+x over 8^91+5 [Page 11]

Internet-Draft 2019-04-04

 Finally, to encode a byte string b, just let it represent a field
 element r. Note that -r will be require more than 34 bytes. So the
 map from b to (x,y) is now injective.

 The Elligator i map is reversible.

 To be completed.

6. IANA Considerations

 This document requires no actions by IANA, yet.

7. Security considerations

 No cryptographic algorithms is without risks. Consequently, risks
 are comparative. This section will not fully list the risks of all
 other forms of elliptic curve cryptography. Instead it will list
 the most plausible risks of this curve, and only to a limited degree
 contrast these to a few other standardized curves.

7.1. Field choice

 The field 8^91+5 has the following risks.

 - 8^91+5 is a special prime. As such, it is perhaps vulnerable to
 some kind of attack. For example, for some curve shapes, the
 supersingularity depends on the prime, and the curve size is
 related in a simple way to the field size, causing a potential
 correlation between the field size and the effectiveness of an
 attack, such as the Pohlig--Hellman attack.

 Many other standard curves, such as the NIST P-256 and
 Curve25519, also use special prime field sizes, so have a similar
 risk. Yet other standard curves, such as the Brainpool, use
 pseudorandom field sizes, so have less risk to this threat.

 - 8^91+5, while implementable in five 64-bit words, has some risk of
 overflowing, or of not fully reducing properly. Perhaps a smaller
 field, such as that used in Curve25519, has a simpler reduction
 and overflow-avoidance properties.

 - 8^91+5, by virtue of being well-above 256 bits in size, risks its
 user doing extra, and perhaps unnecessary, computation to protect
 their 128-bit keys, whereas smaller curves might be faster (as
 expected) yet still provide enough security. In other words, the
 extra cost is wasteful, and partially a form of denial of service.

Brown 2y^2=x^3+x over 8^91+5 [Page 12]

Internet-Draft 2019-04-04

 - 8^91+5 is smaller than some other six-symbol primes: 8^95-9,
 9^99+4 and 9^87+4. Arguably, 8^91+5 fails to maximize field size,
 and thus potential Pollard rho resistance of the ECDLP, among
 six-symbol primes. The primes 9^99+4 and 9^87+4 are not close to
 a power of two, so probably suffer from much slower implementation
 than 8^91+5, which is a significant cost. The prime 8^95-9 is
 just a little below a power of two, so should have comparable
 efficiency for basic field arithmetic. The field 8^95-9 is a
 little larger, but can still be implemented using five 64-bit
 words. Being larger, 8^85-9, it has a slightly greater risk than
 8^91+5 of leading to an arithmetic overflow implementation fault
 in field arithmetic. Also, field size 8^91+5 has very simple
 powering algorithms for computing field inverses, Legendre
 symbols, and square roots, all because it is just slightly above a
 power of two. For field size 8^85-9, these powering algorithms
 require more complicated algorithms.

 - 8^91+5 is smaller than 2^283 (the field size for curve sect283k1
 [SEC2], [Zigbee]), and many other five-symbol and four-symbol
 prime powers (such as 9^97). It provides less resistance to
 Pollard rho than such larger prime powers. Recent progress in the
 elliptic curve discrete logarithm problem, [HPST] and [Nagao], is
 the main reason to prefer prime fields instead of power of prime
 fields. A second reason to prefer a prime field (including the
 field of size 8^91+5) over small characteristic fields is the
 generally better software speed of large characteristic field.
 (Better software speed is mainly due to general-purpose hardware
 often having dedicated fast multiplication circuits:
 special-purpose hardware should make small characteristic field
 faster.)

 See [B1] for further discussion.

7.2. Curve choice

 A first risk of using 2y^2=x^3+x is the fact that it is a special
 curve, with complex multiplication leading to an efficient
 endomorphism. Many other standard curves, NIST P-256 [NIST-P-256],
 Curve25519, Brainpool [Brainpool], do not have any efficient
 endomorphisms. Yet some standard curves do, NIST K-283 and
 secp256k1 (see [SEC2] and [BitCoin]). Furthermore, it is not
 implausible [KKM] that special curves, including those efficient
 endomorphisms, may survive an attack on random curves.

Brown 2y^2=x^3+x over 8^91+5 [Page 13]

Internet-Draft 2019-04-04

 A second risk of 2y^2=x^3+x over 8^91+5 is the fact that it is not
 twist-secure. What may happen is that an implementer may use the
 Montgomery ladder in Diffie--Hellman and re-use private keys. They
 may think, despite the (ample?) warnings in this document, that
 public key validation in unnecessary, modeling their implementation
 after Curve25519 or some other twist-secure curve. This implementer
 is at risk of an invalid public key attack. Moreover, the
 implementer has an incentive to skip public-key validation, for
 better performance. Finally, even if the implementer uses
 public-key validation, then the cost of public-key validation is
 non-negligible.

 A third risk is a biased ephemeral private key generation in a
 digital signature scheme. Most standard curves lack this risk
 because the field size is close to a power of two, and the cofactor
 is a power of two. Curve 2y^2=x^3+x over 8^91+5 has a base point
 order which is approximately a power of two divided by nine (because
 its cofactor is 72=8*9.) As such, it is more vulnerable than
 typical curves to biased ephemeral keys in a signature scheme.

 A fourth risk is a Cheon-type attack. Few standard curves address
 this risk, and 2y^2=x^3+x over 8^91+5 is not much different.

 A fifth risk is a small-subgroup confinement attack, which can also
 leak a few bits of the private key. Curve 2y^2=x^3+x over 8^91+5
 has 72 elements whose order divides 12.

7.3. Encoding choices

 To be completed.

7.4. General subversion concerns

 Although the main motivation of curve 2y^2=x^3+x over 8^91+5 is to
 minimize the risk of subversion via a backdoor ([Gordon], [YY],
 [Teske]), it is only fair to point out that its appearance in this
 very document can be viewed with suspicion as an possible effort at
 subversion (via a front-door). (See [BCCHLV] for some further
 discussion.)

 Any other standardized curve can be view with a similar suspicion
 (except, perhaps, by the honest authors of those standards for whom
 such suspicion seems absurd and unfair). A skeptic can then examine
 both (a) the reputation of the (alleged) author of the standard,
 making an ad hominem argument, and (b) the curve's intrinsic merits.

Brown 2y^2=x^3+x over 8^91+5 [Page 14]

Internet-Draft 2019-04-04

 By the very definition of this document, the reader is encouraged to
 take an especially skeptical viewpoint of curve 2y^2=x^3+x over
 8^91+5. So, it is expected that skeptical users of the curve will
 either

 - use the curve for its other merits (other than its backdoor
 mitigations), such as efficient endomorphism, field inversion,
 high Pollard rho resistance within five 64-bit words, meanwhile
 holding to the evidence-supported belief ECC that is now so mature
 that worries about subverted curves are just far-fetched nonsense,
 or

 - as an additional of layer of security in addition to other
 algorithms (ECC or otherwise), as an extra cost to address the
 non-zero probability of other curves being subverted.

 To paraphrase, consider users seriously worried about subverted
 curves (or other cryptographic algorithms), either because they
 estimate as high either the probability of subversion or the value
 of the data needing protection. These users have good reason to
 like 2y^2=x^3+x over 8^91+5 for its compact description.
 Nevertheless, the best way to resist subversion of cryptographic
 algorithms seems to be combine multiple dissimilar cryptographic
 algorithms, in a strongest-link manner. Diversity hedges against
 subversion, and should the first defense against it.

7.5. Concerns about 'aegis'

 The exact curve 2y^2=x^3+x over 8^91+5 was (seemingly) first
 described to the public in 2017 [AB]. So, it has a very low age.

 Furthermore, it has not been submitted for a publication with peer
 review to any cryptographic forum such as the IACR conferences like
 Crypto and Eurocrypt. So, it has only been reviewed by very few
 eyes, most of which had little incentive to study it critically.

 Under the metric of aegis, as in age * eyes, it scores low.
 Counting myself (but not quantifying incentive) it gets an aegis
 score of 0.1 (using a rating 0.1 of my eyes factor in the aegis
 score: I have not discovered any major ECC attacks of my own.) This
 is far smaller than some more well-studied curves.

 However, in its defense, the curve 2y^2=x^3+x over 8^91+5 has
 similarities to some of the better-studied curves with much higher
 aegis:

Brown 2y^2=x^3+x over 8^91+5 [Page 15]

Internet-Draft 2019-04-04

 - Curve25519: has field size 8^85-19, which a little similar to
 8^91+5; has equation of the form by^2=x^3+ax+x, with b and a
 small, which is similar to 2y^2=x^3+x. Curve25519 has been around
 for over 10 years, has (presumably) many eyes looking at it, and
 has been deployed thereby creating an incentive to study. An
 estimated aegis for Curve25519 is 10000.

 - P-256: has a special field size, and maybe an estimated aegis of
 200000. (It is a high-incentive target. Also, it has received
 much criticism, showing some intent of cryptanalysis. Indeed,
 there has been incremental progress in finding minor weakness
 (implementation security flaws), suggestive of actual
 cryptanalytic effort.) The similarity to 2y^2=x^3+x over 8^91+5
 is very minor, so very little of the P-256 aegis would be relevant
 to this document.

 - secp256k1: has a special field size, though not quite as special
 as 8^91+5, and has special field equation with an efficient
 endomorphism by a low-norm complex algebraic integer, quite
 similar to 2y^2=x^3+x. It is about 17 years old, and though not
 studied much in academic work, its deployment in Bitcoin has at
 least created an incentive to attack it. An estimated aegis for
 secp256k1 is 10000.

 - Miller's curve: Miller's 1985 paper introducing ECC suggested,
 among other choices, a curve equation y^2=x^3-ax, where a is a
 quadratic non-residue. Curve 2y^2=x^3+x is isomorphic to
 y^2=x^3-x, essentially one of Miller's curves, except that a=1 is
 a quadratic residue. Miller's curve may not have been studied
 intensely as other curves, but its age matches that ECC itself.
 Miller also hinted that it was not prudent to use a special curve
 y^2=x^3-ax: such a comment may have encouraged some cryptanalysts,
 but discouraged cryptographers, perhaps balancing out the effect
 on the eyes factor the aegis. An estimated aegis for Miller's
 curves is 300.

 Obvious cautions to the reader:

 - Small changes in a cryptographic algorithm sometimes cause large
 differences in security. So security arguments based on
 similarity in cryptographic schemes should be given low priority.

Brown 2y^2=x^3+x over 8^91+5 [Page 16]

Internet-Draft 2019-04-04

 - Security flaws have sometimes remained undiscovered for years,
 despite both incentives and peer reviews (and lack of hard
 evidence of conspiracy). So, the eyes-part of the aegis score is
 very subjective, and perhaps vulnerable false positives by a herd
 effect. Despite this caveat, it is not recommended to ignore the
 eyes factor in the aegis score: don't just flip through old books
 (of say, fiction), looking for cryptographic algorithms that might
 never have been studied.

8. References

8.1. Normative References

 [BCP14] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/bcp14>.

8.2. Informative References

 To be completed.

 [AB] A. Allen and D. Brown. ECC mod 8^91+5, presentation to CFRG,
 2017.
 <https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/>

 [AMPS] Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and
 Juraj Somorovsky. Prime and Prejudice: Primality Testing Under
 Adversarial Conditions, IACR ePrint,
 2018. <https://ia.cr/2018/749>

 [B1] D. Brown. ECC mod 8^91+5, IACR ePrint, 2018.
 <https://ia.cr/2018/121>

 [B2] D. Brown. RKHD ElGamal signing and 1-way sums, IACR ePrint,
 2018. <http://ia.cr/2018/186>

 [KKM] A. Koblitz, N. Koblitz and A. Menezes. Elliptic Curve
 Cryptography: The Serpentine Course of a Paradigm Shift, IACR
 ePrint, 2008. <https://ia.cr/2008/390>

 [BCCHLV] D. Bernstein, T. Chou, C. Chuengsatiansup, A. Hulsing,
 T. Lange, R. Niederhagen and C. van Vredendaal. How to
 manipulate curve standards: a white paper for the black hat, IACR
 ePrint, 2014. <https://ia.cr/2014/571>

 [Elligator] (((To do:))) fill in this reference.

Brown 2y^2=x^3+x over 8^91+5 [Page 17]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/bcp14
https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/
https://ia.cr/2018/749
https://ia.cr/2018/121
http://ia.cr/2018/186
https://ia.cr/2008/390
https://ia.cr/2014/571

Internet-Draft 2019-04-04

 [NIST-P-256] (((To do:))) NIST recommended 15 elliptic curves for
 cryptography, the most popular of which is P-256.

 [Zigbee] (((To do:))) Zigbee allows the use of a
 small-characteristic
 special curve, which was also recommended by NIST, called K-283,
 and also known as sect283k1. These types of curves were
 introduced by Koblitz. These types of curves were not
 recommended by NSA in Suite B.

 [Brainpool] (((To do:))) the Brainpool consortium (???) recommended
 some elliptic curves in which both the field size and the curve
 equation were derived pseudorandomly from a nothing-up-my-sleeve
 number.

 [SEC2] Standards for Efficient Cryptography. SEC 2: Recommended
 Elliptic Curve Domain Parameters, version 2.0, 2010.
 <http://www.secg.org/sec2-v2.pdf>

 [IT] T. Izu and T. Takagi. Exceptional procedure attack on elliptic
 curve cryptosystems, Public key cryptography -- PKC 2003, Lecture
 Notes in Computer Science, Springer, pp. 224--239, 2003.

 [PSM] (((To do:))) Pointcheval, Smart, Malone-Lee. Projective
 coordinates leak.

 [BitCoin] (((To do:))) BitCoin uses curve secp256k1, which has an
 efficient endomorphism.

 [Bleichenbacher] To do: Bleichenbacher showed how to attack DSA
 using a bias in the per-message secrets.

 [Gordon] (((To do:))) Gordon showed how to embed a trapdoor in DSA
 parameters.

 [HPST] Y. Huang, C. Petit, N. Shinohara and T. Takagi. On
 Generalized First Fall Degree Assumptions, IACR ePrint 2015.
 <https://ia.cr/2015/358>

 [Nagao] K. Nagao. Equations System coming from Weil descent and
 subexponential attack for algebraic curve cryptosystem, IACR
 ePrint, 2015. <http://ia.cr/2013/549>

 [Teske] E. Teske. An Elliptic Curve Trapdoor System, IACR ePrint,
 2003. <http://ia.cr/2003/058>

Brown 2y^2=x^3+x over 8^91+5 [Page 18]

http://www.secg.org/sec2-v2.pdf
https://ia.cr/2015/358
http://ia.cr/2013/549
http://ia.cr/2003/058

Internet-Draft 2019-04-04

 [YY] (((To do:))) Yung and Young, generalized Gordon's ideas
 [Gordon] into
 Secretly-embedded trapdoor ... also known as a backdoor.

Appendix A. Test vectors

 To be completed.

Appendix B. Motivation: minimizing the room for backdoors

 To be completed.

 See [AB] and [B1] for some details.

 The field and curve are described with very few symbols, while
 retaining many basic security and speed features.

 A prime field was chosen due to recent asymptotic advances on
 discrete logarithms in low-characteristic fields [HPST] and
 [Nagao]. According to [Teske], some characteristic-two elliptic
 curves could be equipped with a secretly embedded backdoor.

 Note: this curve is isomorphic to the non-Montgomery curve
 y^2=x^3-x, which requires just 9 symbols in its description, 1
 fewer than required by 2y^2=x^3+x.

Appendix C. Pseudocode

 This section uses a C-like pseudocode to describe some of the
 algorithms useful for implementing this curve.

 Real-world implementations adapting this pseudocode had better
 harden this pseudocode against real-world implementation issues.
 Better yet, real-world code could start from scratch, using the
 pseudocode only for comparison.

 Note: the pseudocode relies on some C idioms (hacks?), which might
 make the pseudocode unclear to those unfamiliar with these idioms.

 Note: this pseudocode was adapted from a few different
 experimental prototypes of the author, (which might not be
 consistent). The pseudocode has not yet received any independent
 review.

Brown 2y^2=x^3+x over 8^91+5 [Page 19]

Internet-Draft 2019-04-04

 Note: this pseudocode uses a terse non-conventional coding style,
 partly as an exercise in arbitrary source code compression (code
 golf), but also in the mathematics tradition of using many
 single-letter variable names, which enables seeing an entire
 formula in a single view and emphasizes the essential mathematical
 operations rather than the variable's purpose.

 Note: the pseudocode does not use the C operator ^ for bitwise XOR
 of integers, which (luckily) avoid possible confusion with the use
 of ^ as exponentiation operator in the rest of this document.

C.1. Byte encoding

 Pseudocode for byte representation encoding process is

 <CODE BEGINS>
 bite(c b,f x) {
 i j=34,k=5; f t;
 mal(t,-1,x);
 mal(x,cmp(t,x),x);
 fix(x);
 for(;j--;) b[j]=x[j/7]>>((8*j)%55);
 for(;--k;) b[7*k-1]+=x[k]<<(8-k);
 }
 <CODE ENDS>

 The input variable is x and the output variable is b. The declared
 types and functions are as follows:

 - type c: curve representative, length-34 array of non-negative
 8-bit integers ("characters"),

 - type f: field element, a length-5 array of 64-bit integers
 (negatives allowed), representing a field element as an integer in
 base 2^55,

 - type i: 64-bit integers (e.g. entries of f),

 - function mal: multiply a field element by a small integer (result
 stored in 1st argument),

 - function fix: fully reduce an integer modulo 8^91+5,

 - function cmp: compare two field element (after fixing), returning
 -1, 0 or 1.

Brown 2y^2=x^3+x over 8^91+5 [Page 20]

Internet-Draft 2019-04-04

 Note: The two for-loops in the pseudocode are just radix
 conversion, from base 2^55 to base 2^8. Because both bases are
 powers of two, this amount to moving bits around. The entries of
 array b are compute modulo 256. The second loop copies the bits
 that the first loop misses (the bottom bits of each entry of f).

 Note: Encoding is lossy, several different (x,y) may encode to the
 same byte string b. Usually, if (x,y) generated as a part of
 Diffie--Hellman key exchange, this lossiness has no effect.

 Note: Encoding should not be confused with encryption. Encoding
 is merely a conversion or representation process, whose inverse is
 called decoding.

C.2. Byte decoding

 Pseudocode for decoding is:

 <CODE BEGINS>
 feed(f x,c b) {
 i j=34;
 mal(x,0,x);
 for(;j--;) x[j/7]+=((i)b[j])<<((8*j)%55);
 fix(x);
 }
 <CODE ENDS>

 with similar conventions as used in the pseudocode function bite
 (defined in the section on encoding), and some extra conventions:

 - the expression (i)b[j] means that 8-bit integer b[j] is converted
 to a 64-bit integer (so is no longer treated modulo 256). (In C,
 this is operation is called casting.)

 Note: the decode function 'feed' only has 1 for-loop, which is the
 approximate inverse of the first of the 2 for-loops in the encode
 function 'bite'. The reason the 'bite' needs the 2nd for-loop is
 due to the lossy conversion from integers to bytes, whereas in the
 other direction the conversion is not lossy. The second loop
 recovers the lost information.

C.3. Fermat inversion

 Projective coordinates help avoid costly inversion steps during
 scalar multiplication.

Brown 2y^2=x^3+x over 8^91+5 [Page 21]

Internet-Draft 2019-04-04

 Projective coordinates are not suitable as the final representation
 of an elliptic curve point, for two reasons.

 - Projective coordinates for a point are generally not unique: each
 point can be represented in projective coordinates in multiple
 different ways. So, projective coordinates are unsuitable for
 finalizing a shared secret, because the two parties computing the
 shared secret point may end up with different projective
 coordinates.

 - Projective coordinates have been shown to leak information about
 the scalar multiplier [PSM], which could be the private
 key. It would be unacceptable for a public key to leak
 information about the private key. In digital signatures, even a
 few leaked bits can be fatal, over a few signatures
 [Bleichenbacher].

 Therefore, the final computation of an elliptic curve point, after
 scalar multiplication, should translate the point to a unique
 representation, such as the affine coordinates described in this
 report.

 For example, when using a Montgomery ladder, scalar multiplication
 yields a representation (X:Z) of the point in projective
 coordinates. Its x-coordinate is then x=X/Z, which can be computed
 by computing the 1/Z and then multiplying by X.

 The safest, most prudent way to compute 1/Z is to use a side-channel
 resistant method, in particular at least, a constant-time method.
 This reduces the risk of leaking information about Z, which might in
 turn leak information about X or the scalar multiplier. Fermat
 inversion, computation of Z^(p-2) mod p, is one method to compute
 the inverse in constant time (if the inverse exists).

 Pseudocode for Fermat inversion is:

Brown 2y^2=x^3+x over 8^91+5 [Page 22]

Internet-Draft 2019-04-04

 <CODE BEGINS>
 i inv(f y,f x) {
 i j=272;f z;
 squ(z,x);
 mul(y,x,z);
 for(;j--;) squ(z,z);
 mul(y,z,y);
 return !!cmp(y,(f){});
 }
 <CODE ENDS>

 Other inversion techniques, such as the binary extended GCD, may be
 faster, but generally run in variable-time.

 When field elements are sometimes secret keys, using a variable-time
 algorithm risk leaking these secrets, and defeating security.

C.4. Branchless Legendre symbol computation

 Pseudocode for branchlessly computing if a field element x has a
 square root:

 <CODE BEGINS>
 i has_root(f x) {
 i j=270;f y,z;
 squ(y,x);squ(z,y);
 for(;j--;)squ(z,z);
 mul(y,y,z);
 return 0==cmp(y,(f){1});
 }
 <CODE ENDS>

 Note: Legendre symbol is usually most appropriately applied to
 public keys, which mostly obviates the need for side-channel
 resistance. In this case, the implementer can use quadratic
 reciprocity for greater speed.

C.5. Field multiplication and squaring

 To be completed.

Brown 2y^2=x^3+x over 8^91+5 [Page 23]

Internet-Draft 2019-04-04

 Note (on security): Field multiplication can be achieved most
 quickly by using hardware integer multiplication circuits. It is
 critical that those circuits have no bugs or backdoors.
 Furthermore, those circuits typically can only multiple integers
 smaller than the field elements. Larger inputs to the circuits
 will cause overflows. It is critical to avoid these overflows,
 not just to avoid interoperability failures, but also to avoid
 attacks where the attackers supplies inputs likely induce
 overflows [bug attacks], [IT]. The following pseudocode
 should therefore be considered only for illustrative purposes.
 The implementer is responsible for ensuring that inputs cannot
 cause overflows or bugs.

 The pseudocode below for multiplying and squaring: uses unrolled
 loops for efficiency, uses refactoring for source code compression,
 relies on a compiler optimizer to detect common sub-expressions (in
 squaring).

 <CODE BEGINS>
 #define TRI(m,_)\
 zz[0]=m(0,0)_(1,4)_(2,3)_(3,2)_(4,1);\
 zz[1]=m(0,1)_(1,0)_(2,4)_(3,3)_(4,2);\
 zz[2]=m(0,2)_(1,1)_(2,0)_(3,4)_(4,3);\
 zz[3]=m(0,3)_(1,2)_(2,1)_(3,0)_(4,4);\
 zz[4]=m(0,4)_(1,3)_(2,2)_(3,1)_(4,0);
 #define CYC(M) ff zz; TRI(+M,-20*M); mod(z,zz);
 #define MUL(j,k) x[j]*(ii)y[k]
 #define SQR(j,k) x[j]*(ii)x[k]
 #define SQU(j,k) SQR(j>k?j:k,j<k?j:k)
 mul(f z,f x,f y) {CYC(MUL);}
 squ(f a,f x) {CYC{SQU};}
 <CODE ENDS>

 This pseudocode makes uses of some extra C-like pseudocode features:

 - #define is used to create macros, which expand within the source
 code (as in C pre-processing).

 - type ii is 128-bit integer

 - multiplying a type i by a type ii variable yields a type ii
 variable. If both inputs can fit into a type i variable, then
 the result has no overflow or reduction: it is exact as a product
 of integers.

Brown 2y^2=x^3+x over 8^91+5 [Page 24]

Internet-Draft 2019-04-04

 - type ff is array of five type ii values. It is used to represent
 a field in a radix expansion, except the limbs (digits) can be
 128-bits instead of 64-bits. The variable zz has type ff and is
 used to intermediately store the product of two field element
 variables x and y (of type f).

 - function mod takes an ff variable and produce f variable
 representing the same field element. A pseudocode example may be
 defined further below.

 TO DO: Add some notes (answer these questions):

 - How small the limbs of the inputs to function mul and squ must be
 to ensure no overflow occurs?

 - How small are the limbs of the output of functions mul and squ?

C.6. Field element partial reduction

 To be completed.

 The function mod used by pseudocode function mul and squ above is
 defined below.

 <CODE BEGINS>
 #define QUO(x)(x>>55)
 #define MOD(x)(x&((((i)1)<<5)-1))
 #define Q(j) QUO(QUO(zz[j]))
 #define P(j) MOD(QUO(zz[j]))
 #define R(j) MOD(zz[j])
 mod(f z,ff zz){
 z[0]=R(0)-P(4)*20-Q(3)*20;
 z[1]=R(1)-P(0)-Q(4)*20;
 z[2]=R(2)-P(1)-Q(0);
 z[3]=R(3)-P(2)-Q(1);
 z[4]=R(4)-P(3)-Q(2);
 z[1]+=QUO(z[0]);
 z[0]=MOD(z[0]);
 }
 <CODE ENDS>

 TO DO: add notes answering these questions:

 - How small must be the input limbs to avoid overflow?

 - How small are the output limbs (to know how to safely use of
 output in further calculations).

Brown 2y^2=x^3+x over 8^91+5 [Page 25]

Internet-Draft 2019-04-04

C.7. Field element final reduction

 To be completed.

 The partial reduction technique is sometimes known as lazy
 reduction. It is an optimization technique. It aims to do only
 enough calculation to avoid overflow errors.

 For interoperability, field elements need to be fully reduced,
 because partial reduction means the elements still have multiple
 different representations.

 Pseudocode that aims for final reduction is the following:

 <CODE BEGINS>
 #define FIX(j,r,k) {q=x[j]>>r;\
 x[j]-=q<<r; x[(j+1)%5]+=q*k;}
 fix(f x) {
 i j,q,t=2;
 for(;t--;) for(j=0;j<5;j++) FIX(j,(j<4?55:53),(j<4?1:-5));
 q=x[0]<0;
 x[0]+=q*5; x[4]+=q>>53;
 }
 <CODE ENDS>

C.8. Scalar point multiplication

 Work in progress.

 A recommended method of scalar point multiplication is the
 Montgomery ladder. However, the curve 2y^2=x^3+x has an efficient
 endomorphism. So, this can be used to speed-up scalar point
 multiplication, as suggested by Gallant, Lambert and Vanstone.

 Combining both GLV and Montgomery is also possible, such as
 suggested as by Bernstein.

 Note: The following pseudocode is not entirely consistent with
 previous pseudocode examples.

 Note and Warning: The following pseudocode uses secret indices to
 access (small) arrays. This has a risk of cache-timing attacks.

Brown 2y^2=x^3+x over 8^91+5 [Page 26]

Internet-Draft 2019-04-04

 <CODE BEGINS>
 typedef f p[2];
 typedef struct rung {i x0; i x1; i y; i z;} k[137];
 monty_2d (f ps,k sk,f px) {
 i j,h; f z; p w[3],x[3],y[2]={{{},{1}}},z[2];
 fix(px);mal(y[0][0],1,px);
 endomorphism_1_plus_i(z[0],px);
 endo_i(y[1],y[0]); endo_i(z[1],z[0]);
 copy(x[1],y[0]); copy(x[2],z[0]);
 double_xz(x[0],y[0]);
 for(j=0;j<137;j+=){
 double_xz(w[0], x[sk[j].x0 /* cache attack here? */]);
 diff_add (w[1],x[1],x[sk[j].x1],y[sk[j].y]);
 diff_add (2[2],x[2],x[0], z[sk[j].z]);
 for(h=0;h<3;h++) {copy(x[h],w[h]);}
 }
 inv(ps,x[1][1]);
 mul(ps,x[1][0],ps);
 fix(ps);
 }
 <CODE ENDS>

 Note: The pseudocode uses some other functions not defined here,
 but whose meaning can be inferred by ECC experts.

 Note: The pseudocode uses a specialized format for the scalar.
 Normal scalars would have to be re-coded into this format, and
 re-coding has non-negligible run-time. Perhaps in
 Diffie--Hellman, re-coding is not necessary if one can ensure that
 uniformly selection of coded scalars is not a security risk.

 TO DO:
 - Define the functions used by monty_2d.
 - Prove that these function avoid overflow.
 - Define functions to re-code scalars for monty_2d.

C.9. Diffie--Hellman pseudocode

 To be completed.

 This pseudocode would show how to use to scalar multiplication,
 combined with point validation, and so on.

C.10. Elligator i

 To be completed.

Brown 2y^2=x^3+x over 8^91+5 [Page 27]

Internet-Draft 2019-04-04

 This pseudocode would show how to implement to the Elligator i map
 from byte strings to points.

 Pseudocode (to be verified):

 <CODE BEGINS>
 typedef f xy[2] ;
 #define X p[0]
 #define Y p[1]
 lift(xy p, f r) {
 f t ; i b ;
 fix(r);
 squ(t,r); // r^2
 mul(t,I,t); // ir^2
 sub(t,(f){1},t); // 1-ir^2
 inv(t,t); // 1/(1-ir^2)
 mal(t,3,t); // 3/(1-ir^2)
 mul(t,I,t); // 3i/(1-ir^2)
 sub(X,I,t); // i-3i/(1-ir^2)
 b = get_y(t,X);
 mal(t,1-b,I); // (1-b)i
 add(X,X,t); // EITHER x OR x + i
 get_y(Y,X);
 mal(Y,2*b-1,Y); // (-1)^(1-b)""
 fix(X); fix(Y);
 }

 drop(f r, xy p)
 {
 f t ; i b,h ;
 fix(X); fix(Y);
 get_y(t,X);
 b=eq(t,Y);
 mal(t,1-b,I);
 sub(t,X,t); // EITHER x or x-i
 sub(t,I,t); // i-x
 inv(t,t); // 1/(i-x)
 mal(t,3,t); // 3/(i-x)
 add(t,I,t); // i+ 3/(i-x)
 mal(t,-1,t); // -i-3/(i-x)) = (1-3i/(i-x))/i
 b = root(r,t) ;
 fix(r);
 h = (r[4]<(1LL<<52)) ;
 mal(r,2*h-1,r);
 fix(r);
 }

Brown 2y^2=x^3+x over 8^91+5 [Page 28]

Internet-Draft 2019-04-04

 elligator(xy p,c b) {f r; feed(r,b); lift(p,r);}

 crocodile(c b,xy p) {f r; drop(r,p); bite(b,r);}
 <CODE ENDS>

D. Primality proofs and certificates

 Recent work of Albrecht and others [AMPS] has shown the combination
 of adversarially chosen prime and improper probabilistic primality
 tests can result in attacks.

 The two primes involved for 2y^2=x^3+x/GF(8^91+5) should already
 resist [AMPS] because compact representation of these primes.

 For further assurance, this section provides Pratt primality
 certificates for the two primes.

 Note: Recall that every prime p has a unique Pratt certificate,
 which consists of the factorization of p into primes, and,
 recursively, Pratt primality certificates for each of those
 primes. Verification of a Pratt certificates is also recursive:
 it uses the factorization data to conduct Fermat and Lehmer
 tests, which together verify primality.

D.1. Pratt certificate for the field size 8^91+5

 Define 52 positive integers, a,b,c,...,z,A,...,Z as follows:

 a=2 b=1+a c=1+aa d=1+ab e=1+ac f=1+aab g=1+aaaa h=1+abb i=1+ae
 j=1+aaac k=1+abd l=1+aaf m=1+abf n=1+aacc o=1+abg p=1+al q=1+aaag
 r=1+abcc s=1+abbbb t=1+aak u=1+abbbc v=1+ack w=1+aas x=1+aabbi
 y=1+aco z=1+abu A=1+at B=1+aaaadh C=1+acu D=1+aaav E=1+aeff F=1+aA
 G=1+aB H=1+aD I=1+acx J=1+aaacej K=1+abqr L=1+aabJ M=1+aaaaaabdt
 N=1+abdpw O=1+aaaabmC P=1+aabeK Q=1+abcfgE R=1+abP S=1+aaaaaaabcM
 T=1+aIO U=1+aaaaaduGS V=1+aaaabbnuHT W=1+abffLNQR X=1+afFW
 Y=1+aaaaauX Z=1+aabzUVY.

 Note: variable concatenation is used to indicate multiplication.
 For example, f = 1+aab = 1+2*2*(1+2) = 13.

 Note: Writing % for modular reduction (with lower precedence than
 exponentiation ^), a first step in verifying the Pratt certificate
 is a Fermat pseudoprime test for each prime in the list, meaning
 the all the numbers below are 1:

Brown 2y^2=x^3+x over 8^91+5 [Page 29]

Internet-Draft 2019-04-04

 2^(b-1)%b, 2^(c-1)%c, 3^(d-1)%d, 2^(e-1)%e, 2^(f-1)%f, 3^(g-1)%g,
 2^(h-1)%h, 5^(i-1)%i, 6^(j-1)%j, 3^(k-1)%k, 2^(l-1)%l, 3^(m-1)%m,
 2^(n-1)%n, 5^(o-1)%o, 2^(p-1)%p, 3^(q-1)%q, 6^(r-1)%r, 2^(s-1)%s,
 2^(t-1)%t, 6^(u-1)%u, 7^(v-1)%v, 2^(w-1)%w, 2^(x-1)%x, 14^(y-1)%y,
 3^(z-1)%z, 5^(A-1)%A, 3^(B-1)%B, 7^(C-1)%C, 3^(D-1)%D, 7^(E-1)%E,
 5^(F-1)%F, 2^(G-1)%G, 2^(H-1)%H, 2^(I-1)%I, 3^(J-1)%J, 2^(K-1)%K,
 2^(L-1)%L, 10^(M-1)%M, 5^(N-1)%N, 10^(O-1)%O, 2^(P-1)%P,
 10^(Q-1)%Q, 6^(R-1)%R, 7^(S-1)%S, 5^(T-1)%T, 3^(U-1)%U, 5^(V-1)%V,
 2^(W-1)%W, 2^(X-1)%X, 3^(Y-1)%Y, 7^(Z-1)%Z.

 Note: Each Fermat base above was chosen as the minimal possible
 value. These bases can be deduced from b,c,...,Z by searching
 bases 2,3,4,... until a Fermat is found. The results of these
 search are included above for convenience.

 Note: A second step to verifying a Pratt certificate is to apply
 Lehmer's theorem to each Fermat psuedoprime. To prove b,c,d,...,Z
 are prime, it now suffices to verify that all of following 154
 modular exponentiations result in a value different from 1.

Brown 2y^2=x^3+x over 8^91+5 [Page 30]

Internet-Draft 2019-04-04

 2^((b-1)/a)%b, 2^((c-1)/a)%c, 3^((d-1)/a)%d, 3^((d-1)/b)%d,
 2^((e-1)/a)%e, 2^((e-1)/c)%e, 3^((f-1)/a)%f, 3^((f-1)/b)%f,
 3^((g-1)/a)%g, 2^((h-1)/a)%h, 2^((h-1)/b)%h, 5^((i-1)/a)%i,
 5^((i-1)/e)%i, 6^((j-1)/a)%j, 6^((j-1)/c)%j, 3^((k-1)/a)%k,
 2^((l-1)/a)%l, 2^((l-1)/f)%l, 3^((m-1)/a)%m, 3^((m-1)/b)%m,
 3^((m-1)/f)%m, 2^((n-1)/a)%n, 2^((n-1)/c)%n, 5^((o-1)/a)%o,
 5^((o-1)/b)%o, 5^((o-1)/f)%o, 2^((p-1)/a)%p, 2^((p-1)/l)%p,
 3^((q-1)/a)%q, 3^((q-1)/g)%q, 6^((r-1)/a)%r, 6^((r-1)/a)%r,
 2^((s-1)/a)%s, 2^((s-1)/b)%s, 2^((t-1)/a)%t, 2^((t-1)/k)%t,
 6^((u-1)/a)%u, 6^((u-1)/b)%u, 6^((u-1)/c)%u, 7^((v-1)/a)%v,
 7^((v-1)/c)%v, 7^((v-1)/k)%v, 2^((w-1)/a)%w, 2^((w-1)/s)%w,
 2^((x-1)/a)%x, 2^((x-1)/b)%x, 2^((x-1)/i)%x, 14^((y-1)/a)%y,
 14^((y-1)/c)%y, 14^((y-1)/o)%y, 3^((z-1)/a)%z, 3^((z-1)/b)%z,
 3^((z-1)/u)%z, 5^((A-1)/a)%A, 5^((A-1)/t)%A, 3^((B-1)/a)%B,
 3^((B-1)/d)%B, 3^((B-1)/h)%B, 7^((C-1)/a)%C, 7^((C-1)/c)%C,
 7^((C-1)/u)%C, 3^((D-1)/a)%D, 3^((D-1)/v)%D, 7^((E-1)/a)%E,
 7^((E-1)/e)%E, 7^((E-1)/f)%E, 5^((F-1)/a)%F, 5^((F-1)/A)%F,
 2^((G-1)/a)%G, 2^((G-1)/B)%G, 2^((H-1)/a)%H, 2^((H-1)/D)%H,
 2^((I-1)/a)%I, 2^((I-1)/c)%I, 2^((I-1)/x)%I, 3^((J-1)/a)%J,
 3^((J-1)/c)%J, 3^((J-1)/e)%J, 3^((J-1)/j)%J, 2^((K-1)/a)%K,
 2^((K-1)/b)%K, 2^((K-1)/q)%K, 2^((K-1)/r)%K, 2^((L-1)/a)%L,
 2^((L-1)/b)%L, 2^((L-1)/J)%L, 10^((M-1)/a)%M, 10^((M-1)/b)%M,
 10^((M-1)/d)%M, 10^((M-1)/t)%M, 5^((N-1)/a)%N, 5^((N-1)/b)%N,
 5^((N-1)/d)%N, 5^((N-1)/p)%N, 5^((N-1)/w)%N, 10^((O-1)/a)%O,
 10^((O-1)/b)%O, 10^((O-1)/m)%O, 10^((O-1)/C)%O, 2^((P-1)/a)%P,
 2^((P-1)/b)%P, 2^((P-1)/e)%P, 2^((P-1)/K)%P, 10^((Q-1)/a)%Q,
 10^((Q-1)/b)%Q, 10^((Q-1)/c)%Q, 10^((Q-1)/f)%Q, 10^((Q-1)/g)%Q,
 10^((Q-1)/E)%Q, 6^((R-1)/a)%R, 6^((R-1)/b)%R, 6^((R-1)/P)%R,
 7^((S-1)/a)%S, 7^((S-1)/b)%S, 7^((S-1)/c)%S, 7^((S-1)/M)%S,
 5^((T-1)/a)%T, 5^((T-1)/I)%T, 5^((T-1)/O)%T, 3^((U-1)/a)%U,
 3^((U-1)/d)%U, 3^((U-1)/u)%U, 3^((U-1)/G)%U, 3^((U-1)/S)%U,
 5^((V-1)/a)%V, 5^((V-1)/b)%V, 5^((V-1)/n)%V, 5^((V-1)/u)%V,
 5^((V-1)/H)%V, 5^((V-1)/T)%V, 2^((W-1)/a)%W, 2^((W-1)/b)%W,
 2^((W-1)/f)%W, 2^((W-1)/L)%W, 2^((W-1)/N)%W, 2^((W-1)/Q)%W,
 2^((W-1)/R)%W, 2^((X-1)/a)%X, 2^((X-1)/f)%X, 2^((X-1)/F)%X,
 2^((X-1)/W)%X, 3^((Y-1)/a)%Y, 3^((Y-1)/u)%Y, 3^((Y-1)/X)%Y,
 7^((Z-1)/a)%Z, 7^((Z-1)/b)%Z, 7^((Z-1)/z)%Z, 7^((Z-1)/U)%Z,
 7^((Z-1)/V)%Z, 7^((Z-1)/Y)%Z.

 Note: The verifier should verify that each base in the Fermat and
 Lehmer test are equal. For example, the Fermat base for Z was 7,
 and the factorization of Z-1 was aabzUVY, so the Lehmer theorem
 test 7^((Z-1)/a)%Z, 7^((Z-1)/b)%Z, ..., 7^((Z-1)/Y)%Z.

 Note: The final step is to verify that Z=8^91+5.

Brown 2y^2=x^3+x over 8^91+5 [Page 31]

Internet-Draft 2019-04-04

 Note: The decimal values for a,b,c,...,Y are given by: a=2, b=3,
 c=5, d=7, e=11, f=13, g=17, h=19, i=23, j=41, k=43, l=53, m=79,
 n=101, o=103, p=107, q=137, r=151, s=163, t=173, u=271, v=431,
 w=653, x=829, y=1031, z=1627, A=2063, B=2129, C=2711, D=3449,
 E=3719, F=4127, G=4259, H=6899, I=8291, J=18041, K=124123,
 L=216493, M=232513, N=2934583, O=10280113, P=16384237, Q=24656971,
 R=98305423, S=446424961, T=170464833767, U=115417966565804897,
 V=4635260015873357770993, W=1561512307516024940642967698779,
 X=167553393621084508180871720014384259,
 Y=1453023029482044854944519555964740294049.

D.2. Pratt certificate for subgroup order

 Define 56 variables a,b,...,z,A,B,...,Z,!,@,#,$, with new
 values:

 a=2 b=1+a c=1+a2 d=1+ab e=1+ac f=1+a2b g=1+a4 h=1+ab2 i=1+ae
 j=1+a2d k=1+a3c l=1+abd m=1+a2f n=1+acd o=1+a3b2 p=1+ak q=1+a5b
 r=1+a2c2 s=1+am t=1+ab2d u=1+abi v=1+ap w=1+a2l x=1+abce y=1+a5e
 z=1+a2t A=1+a3bc2 B=1+a7c C=1+agh D=1+a2bn E=1+a7b2 F=1+abck
 G=1+a5bf H=1+aB I=1+aceg J=1+a3bc3 K=1+abA L=1+abD M=1+abcx N=1+acG
 O=1+aqs P=1+aqy Q=1+abrv R=1+ad2eK S=1+a3bCL T=1+a2bewM U=1+aijsJ
 V=1+auEP W=1+agIR X=1+a2bV Y=1+a2cW Z=1+ab3oHOT !=1+a3SUX @=1+abNY!
 #=1+a4kzF@ $=1+a3QZ#

 Note: numeral after variable names represent powers. For example,
 f = 1 + a2b = 1 + 2^2 * 3 = 13.

 Note: The same process (Fermat and Lehmer tests) verifies that $
 is prime. This process includes search for bases for each of the
 prime. These bases have not been included in the certificate.

 The last variable, $, is the order of the base point, and the order
 of the curve is 72$.

 Note: Punctuation used for variable names !,@,#,$, would not scale
 for larger primes. For larger primes, a similar format might work
 by using a prefix-free set of multil-letter variable names.
 E.g. replace, Z,!,@,#,$ by Za,Zb,Zc,Zd,Ze:

Brown 2y^2=x^3+x over 8^91+5 [Page 32]

Internet-Draft 2019-04-04

 a=2 b=1+a c=1+a2 d=1+ab e=1+ac f=1+a2b g=1+a4 h=1+ab2 i=1+ae
 j=1+a2d k=1+a3c l=1+abd m=1+a2f n=1+acd o=1+a3b2 p=1+ak q=1+a5b
 r=1+a2c2 s=1+am t=1+ab2d u=1+abi v=1+ap w=1+a2l x=1+abce y=1+a5e
 z=1+a2t A=1+a3bc2 B=1+a7c C=1+agh D=1+a2bn E=1+a7b2 F=1+abck
 G=1+a5bf H=1+aB I=1+aceg J=1+a3bc3 K=1+abA L=1+abD M=1+abcx N=1+acG
 O=1+aqs P=1+aqy Q=1+abrv R=1+ad2eK S=1+a3bCL T=1+a2bewM U=1+aijsJ
 V=1+auEP W=1+agIR X=1+a2bV Y=1+a2cW Za=1+ab3oHOT Zb=1+a3SUX
 Zc=1+abNYZb Zd=1+a4kzFZc Ze=1+a3QZaZd

 When parsing this, say 2nd last item Zd=1+a4kzFZc, the string Zd on
 the left of = defines a new variables, while the string on the
 right = gives its value. The string a4kzFZc can be unambiguously
 parsed as a^4*k*z*F*Zc, scanning from left to right for previous
 variables, or integers as powers.

Acknowledgments

 Thanks to John Goyo and various other BlackBerry employees for past
 technical review, to Gaelle Martin-Cocher for encouraging submission
 of this I-D. Thanks to David Jacobson for sending Pratt primality
 certificates.

Author's Address

 Dan Brown
 4701 Tahoe Blvd.
 BlackBerry, 5th Floor
 Mississauga, ON
 Canada
 danibrown@blackberry.com

Brown 2y^2=x^3+x over 8^91+5 [Page 33]

