
Internet-Draft D. Brown
Intended status: Experimental BlackBerry
Expires: 2020-04-05 2019-10-03

 Elliptic curve 2y^2=x^3+x over field size 8^91+5
 <draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-04.txt>

Abstract

 In elliptic curve cryptography, 2y^2=x^3+x/GF(8^91+5) hedges a
 remote risk of potential weakness in other curves, if used in
 multi-curve Diffie--Hellman, for example. This curve features:
 isomorphism to Miller curves from 1985; low Kolmogorov complexity
 (little room for secretly embedded trapdoors of Gordon, Young--Yung,
 or Teske); likeness to a Bitcoin curve; 34-byte keys; prime field;
 5*64-bit field arithmetic; easy reduction, inversion, Legendre
 symbol, and square root; Montgomery ladder or Edwards unified curve
 arithmetic (Hisil--Carter--Dawson--Wong); multiplication by i
 (Gallant--Lambert--Vanstone); and string-as-point encoding.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note that
 other groups may also distribute working documents as
 Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 This document may not be modified, and derivative works of it may
 not be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

https://datatracker.ietf.org/doc/html/draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-04.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Brown 2y^2=x^3+x over 8^91+5 [Page 1]

Internet-Draft 2019-10-03

Brown 2y^2=x^3+x over 8^91+5 [Page 2]

Internet-Draft 2019-10-03

Table of Contents

1. Introduction
1.1. Background
1.1.1. Notation
1.1.2. Basic features
1.1.3. Multi-curve ECC
1.2. Speculative security motivation
2. Requirements Language (RFC 2119)
3. Encoding points
3.1. Point encoding process
3.1.1. Summary
3.1.2. Details
3.2. Point decoding process
3.2.1. Summary
3.2.2. Detail
4. Point validation
4.1. When to validate
4.1.1. Mandatory validation
4.1.2. Simplified validation
4.1.4. Minimal validation
4.2. Point validation process
5. OPTIONAL encodings
5.1. Encoding scalars
5.2. Encoding strings as points
6. IANA Considerations
7. Security considerations
7.1. Field choice
7.2. Curve choice
7.3. Encoding choices
7.4. General subversion concerns
7.5. Concerns about 'aegis'
8. References
8.1. Normative References
8.2. Informative References
Appendix A. Test vectors
Appendix B. Minimizing trapdoors and backdoors
Appendix C. Pseudocode
C.1. Scalar multiplication of 34-byte strings
C.1.1. Field arithmetic for GF(8^91+5)
C.1.2. Montgomery ladder scalar multiplication
C.1.3. Bernstein's 2-dimensional Montgomery ladder
C.1.4. GLV in Edwards coordinates (Hisil--Carter--Dawson--Wong)
C.2 Pseudocode for test vectors
C.3. Pseudocode for a command-line demo of Diffie--Hellman
C.4 Pseudocode for public-key validation and twist insecurity
C.5. Elligator i
D. Primality proofs and certificates
D.1. Pratt certificate for the field size 8^91+5

https://datatracker.ietf.org/doc/html/rfc2119

Brown 2y^2=x^3+x over 8^91+5 [Page 3]

Internet-Draft 2019-10-03

D.2. Pratt certificate for subgroup order

1. Introduction

 This document specifies a type of elliptic curve cryptography (ECC)
 using the curve

 2y^2=x^3+x / GF(8^91+5).

 This curve is useful as part of a multi-curve ECC system that
 combines a diverse set of curves for extra security.

 The extra security in using multiple curves is a strongest-link,
 multi-layer, fail-safe, defense-in-depth against potential (but not
 yet known) attacks against one or more of the curves.

 Note: Using multiple curves adds a nonzero cost to an ECC system.
 On a current personal computer, this extra cost includes up to 1
 millisecond of runtime and sending an extra 34 bytes, per ECC
 transaction. In low-end devices, the time may be higher due to
 slower processors, making the cost might be unaffordable. Even in
 high-end devices, the benefit-to-cost comparison is quite
 questionable: is the little extra security (against a potential
 but unlikely and unknown threat) even worth the cost of extra
 runtime and traffic? The answer may depend on the data being
 protected. If the answer is deemed to be "yes", then multi-curve
 ECC is useful, and curve 2y^2=x^3+x/GF(8^91+5) can contribute to
 this security.

 Comparing single curves when used in isolation, which is current ECC
 tradition, curve 2y^2=x^3+x/GF(8^91+5) is arguably riskier than the
 more well-established curves (such as NIST P-256, Curve25519, and
 even Brainpool).

 In traditional single-curve ECC systems, the curve
 2y^2=x^3+x/GF(8^91+5) SHOULD NOT be used, due to its risk begin
 greater than more well-established curves.

 Multi-curve ECC is not noticeably more secure than ECC if all of the
 multiple curves are the actually the same curve. Therefore, a
 diversity of dissimilar curves is needed to achieve extra security,
 with each curve hedging against a failure in dissimilar curves.

Brown 2y^2=x^3+x over 8^91+5 [Page 4]

Internet-Draft 2019-10-03

 The curve 2y^2=x^3+x/GF(8^91+5) has features marking it as
 dissimilar from some of well-established curves: especially lower
 Kolmogorov complextiy and complex multiplication by i.

1.1. Background

 This document presumes that its reader already has familiarity with
 elliptic curve cryptography (ECC).

1.1.1. Notation

 The symbol '^', as used in '2y^2=x^3+x' and '8^91+5' means
 exponentiation, also known as powering. For example, y^3=yyy, or
 y*y*y, if * is used for multiplication, and 8^91 = 8*8*...*8, with
 91 eights in the product on the right.

 Note: This document does not use '^' the way that C (and similar
 programming languages) does (as a bit-wise exclusive-or).

 In hexadecimal (base 16, big-endian) notation, the number 8^91+5 is

 20005

 with with 67 zeros between 2 and 5.

 Note: For a lack of a better term, standard ECC terminology uses
 the a slight misnomer, "scalar multiplication" for the computation
 dP = P + ... + P for the P a point on the curve, d an integer, +
 the elliptic curve group addition and law, and the right hand side
 implying d terms. This suggests calling the integer d a scalar.
 This is a misnomer, because, in other areas of mathematics,
 scalars are used to multiply vectors, but elliptic curve scalar
 multiplication is not really vector multiplication, and risks the
 suggestion of confusing d(x,y) with (dx,dy). (That said, an
 elliptic curve group, like any abelian group, is a module over the
 ring of integers. Since a module is to a ring the analogue of a
 vector space to a field, the terminology is arguably justifiable.)

1.1.2. Basic features

 The underlying field (for defining the curve) is a prime, p=8^91+5.
 It is very close to a power of two, which is sometimes known as a
 Crandall prime, making reduction modulo p relatively efficient.

Brown 2y^2=x^3+x over 8^91+5 [Page 5]

Internet-Draft 2019-10-03

 The prime p being slightly larger (not smaller) than a power of two,
 means that common algorithms for computing inverses, Legendre
 symbols, and square roots are relatively simple (and slightly more
 efficient).

 The curve equation 2y^2=x^3+x has Montgomery form,

 by^2=x^3+ax^2+x,

 with (a,b) = (0,2). This permits the Montgomery ladder scalar point
 multiplication algorithm to be used, which makes it relatively
 efficient, and also easier to protect against side channels.

 The curve 2y^2=x^3+x has complex multiplication by i, given by the
 map

 (x,y) -> (-x,iy).

 This permits the Gallant--Lambert--Vanstone (GLV) scalar
 multiplication algorithm, which makes it relatively efficient. (The
 GLV method can also be combined with Bernstein's two-dimensional
 variant of the Montgomery ladder algorithm.)

 The curve has j-invariant 1728.

 Note: Over the complex numbers, j-invariant 0 and 1728 are
 special, being the only two non-smooth orbifold points the moduli
 space of elliptic curves, which also means that the curves have
 extra symmetry.

 The curve 2y^2=x^3+x is not supersingular (as defined over the prime
 p=8^91+5).

 The curve has order 72q for a large prime q, meaning it has cofactor
 72, so it is not vulnerable Pohlig--Hellman attack, and it not
 vulnerable to the Semaev--Araki--Satoh--Smart attack.

 The cofactor 72 is divisible by 4 (and also 3), meaning it is
 isomorphic to a curve with an Edwards equation (and also to cure
 with a Hessian equation), which may permit yet more efficient
 implementation (and yet further combination with the GLV method).

 The curve has a large embedding degree, so it has no efficient
 pairing operation. It is therefore also not vulnerable to the
 Menezes--Okamoto--Vanstone attack.

Brown 2y^2=x^3+x over 8^91+5 [Page 6]

Internet-Draft 2019-10-03

 The best known algorithm to solve the discrete logarithm in the
 group are Pollard rho algorithms and its variants, (with minor
 enhancements due to Gallant, Lambert, Vanstone, which take advantage
 of the extra map for complex multiplication), which takes
 approximately sqrt(q) point additions to compute a discrete
 logarithm (with success rate 1/2).

1.1.3. Multi-curve ECC

 This document does not specify how to do multi-curve elliptic curve
 cryptography, but some ideas are sketch without much detail.

 Multi-curve Diffie--Hellman key agreement could perhaps compute 10
 shared secrets (hashed) with 10 very different curves, and then XOR
 them together to get one secret. Presumably, as long as one of the
 Diffie--Hellman secrets is secure, the XOR of 10 is secure. All the
 Diffie--Hellman private keys (scalars) should be independent and so
 on.

 For signatures, one might just apply multiple signatures, with
 different curves (and perhaps different signature algorithms).

 This document does not specifically recommend which other curves
 should be combined with 2y^2=x^3+x/GF(8^91+5), but suggests the
 at least following:

 - Use one or more well-established curves, such as NIST P-256 or
 Curve25519.

 - Use one or more curves without complex multiplication, such as
 NIST P-256 or Curve25519.

 - Use one or more pseudo-randomized curves, such as NIST P-256 or
 Brainpool or something else.

 - Use one or more curves whose security features complement those
 2y^2=x^3+x/GF(8^91+5) in any other way.

 - Use at least three or more curves, since is likely two rather
 different curves are reasonably less risky than
 2y^2=x^3+x/GF(8^91+5).

Brown 2y^2=x^3+x over 8^91+5 [Page 7]

Internet-Draft 2019-10-03

1.2. Speculative security motivation

 The section explain why to use 2y^2=x^3+x/GF(8^91+5) in a set of
 three of more curves, rather than a set of three or more curves
 without the curve 2y^2=x^3+x/GF(8^91+5).

 The main motivation for the specific curve is that its description
 of the curve is very short (for an otherwise secure elliptic curve),
 thereby reducing the room for a possible secretly embedded trapdoor,
 as in [Teske].

 A lesser motivation for the curve is its special features. A very
 remote potential catastrophe in ECC would be attack on most curves.
 In this disaster scenario, perhaps only a few curves survive, saved
 by some special feature. Complex multiplication by i is perhaps one
 of those features. Surviving such a disaster would be a fluke, but
 diversity is perhaps the best possible hedge against this event.
 More probable than such a disaster would be an attack that exploits
 precisely the special features of curve 2y^2=x^3+x/GF(8^91+5) which
 makes it different from better established curves. So, it is only
 really sensible to use the curve in combination with other very
 different curves.

 More detailed motivations for curve 2y^2=x^3+x over field 8^91+5 are
 discussed in Appendix B (and in [AB] and [B1]).

2. Requirements Language (RFC 2119)

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [BCP14].

3. Encoding points

 Elliptic curve cryptography uses points for public keys and raw
 shared secrets.

 Abstractly, points are mathematical objects. For curve 2y^2=x^3+x,
 a point is either a pair (x,y), where x and y are elements of
 mathematical field, or a special point O, both of whose coordinates
 may be deemed as infinity.

 For curve 2y^2=x^3+x/GF(8^91+5), the coordinates x and y of the
 point (x,y) are integers modulo 8^91+5, which can be represented as
 integers in the interval [0,8^91+4].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Brown 2y^2=x^3+x over 8^91+5 [Page 8]

Internet-Draft 2019-10-03

 Note: for practicality, an implementation will often internally
 represent the x-coordinate as a ratio [X:Z] of field elements.
 Each field element has multiple representations, but [x:1] can
 viewed as normal representation of x. (Infinity can be then
 represented by [1:0], though one must be careful.)

 To interoperably communicate, points must be encoded as byte
 strings.

 This draft specifies an encoding of finite points (x,y) as strings
 of 34 bytes, as described in the following sections.

 Note: The 34-byte encoding is not injective. Each point is
 generally among a group of four points that share the same byte
 encoding.

 Note: The 34-byte encoding is not surjective. Approximately half
 of 34-byte strings do not encode a point (x,y).

 Note: In many typical ECC schemes, the 34-byte encoding works
 well, despite being neither injective nor surjective.

3.1. Point encoding process

3.1.1. Summary

 A point (x,y) is encoded by the little-endian byte representation of
 x or -x, whichever fits into 34 bytes.

3.1.2. Details

 A point (x,y) is encoded into 34 bytes, as follows.

 First, ensure that x is fully reduced mod p=8^91+5, so that

 0 <= x < 8^91+5.

 Second, further reduce x by a flipping its sign, as explained next.
 Let

 x' =: min(x,p-x) mod 2^272.

 Third, set the byte string b to be the little-endian encoding of the
 reduced integer x', by finding the unique integers b[i] such that
 0<=b[i]<256 and

 (x' mod 2^272) = sum (0<=i<=33, b[i]*256^i).

Brown 2y^2=x^3+x over 8^91+5 [Page 9]

Internet-Draft 2019-10-03

 Pseudocode can be found in Appendix C.

 Note: The loss of information that happens upon replacing x by -x
 corresponds to applying complex multiplication by i on the curve,
 because i(x,y) = (-x,iy) is also a point on the curve. (To see
 this: note 2(iy)^2 = -(2y^2) = -(x^3+x) = (-x)^3+(-x).) In many
 applications, particularly Diffie--Hellman key agreement, this
 loss of information is carried through the final shared secret,
 which means that Alice and Bob can agree on the same secret 34
 bytes.

 In ECC systems where the original x-coordinate and the decoded
 x-coordinate need to match exactly, then the 34-byte encoding is
 probably not usable unless the following pre-encoding procedure is
 practical:

 Given a point x where x is larger than min(x,p-x), first replace x
 by x'=p-x, on the encoder's side, using the new value x' (instead of
 x) for any further step in the algorithm. In other words, replace
 the point (x,y) by the point (x',y')=(-x,iy). Most algorithms will
 also require a discrete logarithm d of (x,y), meaning (x,y) = [d] G
 for some point G. Since (x',y') = [i](x,y), we can replace by d'
 such that [d']=[i][d]. Usually, [i] can be represented by an
 integer, say j, and we can compute d' = jd (mod ord(G)).

3.2. Point decoding process

3.2.1. Summary

 The bytes are little-endian decoded into an integer which
 becomes the x-coordinate. Public-key validation done if needed. If
 needed, the y-coordinate is recovered.

3.2.2. Detail

 If byte i is b[i], with an integer value between 0 and 255
 inclusive, then

 x = sum(0<=i<=33, b[i]*256^i)

 Note: a value of -x (mod p) will also be suitable, and results in
 a point (-x,y') which might be different from the originally
 encoded point. However, it will be one of the points [i](x,y) or
 -[i](x,y) where [i] means complex multiplication by [i].

Brown 2y^2=x^3+x over 8^91+5 [Page 10]

Internet-Draft 2019-10-03

 In many cases, such as Diffie--Hellman key agreement using the
 Montgomery ladder, neither the original value of x or -x nor
 coordinate y of the point is needed. In these cases, the decoding
 steps can be considered completed.

 +---+
 | |
 | \ W / /A\ |R) |N | I |N | /G ! |
 | \/ \/ / \ |^\ | \| | | \| _7 0 |
 | |
 | |
 | WARNING: Some byte strings b decode to an invalid |
 | point (x,y) that does not belong to the curve |
 | 2y^2=x^3+x. In some situations, such invalid b can |
 | lead to a severe attack. In these situations, the |
 | decoded point (x,y) MUST be validated, as described |
 | below in Section 4. |
 | |
 +---+

 In cases where a value for at least one of y, -y, iy, or -iy is
 needed such as Diffie--Hellman key agreement using some other
 coordinate system (such as one might need when converting to Edwards
 coordinates), the candidate value can be obtained by computing a
 square root:

 y = ((x^3+x)/2)^(1/2).

 In some cases, it is important for the decoded value of x to match
 the original value of x exactly. In that case, the encoder should
 use the procedure that replace x by p-x, and adjusts the discrete
 logarithm appropriately. These steps can be done by the encoder,
 with the decoder doing nothing.

4. Point validation

 In elliptic curve cryptography, scalar multiplying an invalid public
 key by a private key risks leaking information about the private
 key.

 Note: For curve 2y^2=x^3+x over 8^91+5, the underlying attacks are
 a little milder than the average a typical elliptic curve.

 To avoid leaking information about the private, the public key can
 be validated, which includes various checks on the public key.

Brown 2y^2=x^3+x over 8^91+5 [Page 11]

Internet-Draft 2019-10-03

4.1. When to validate

 This section specifies several strategies.

4.1.1. Mandatory validation

 As a precautionary defense-in-depth, an impelementation MAY opt to
 apply mandatory validation, meaning every public key (and point) is
 validated.

4.1.2. Simplified validation

 A small, general-purpose, implementation aiming for high speed might
 not be able to afford the cost of mandatory validation from Section
4.1.1, because each validation costs about 10% of a scalar

 multiplication.

 As a practical middle groun, an impelmentatio MAY opt to apply
 simplified validation, which is the rule is that a distrusted public
 key is validated before being scalar multiplied by a static secret
 key.

 +---+
 | STATIC |
 | SECRET |
 | KEY ------\ _ ___ |
 | +) PUBLIC |\/| | | (_` | |
 | UNTRUSTED ------/ KEY | | _/ ._) | BE VALIDATED. |
 | PUBLIC |
 | KEY |
 +---+

 Note: Simplified validation implies that when the secret key is
 ephemeral (for example, used in one Diffie--Hellman transaction),
 the public key need not be validated.

 Note: Simplified validation implies that when the point being
 scalar multiplied, is a known valid fixed point, or a previously
 validated public key (including a public key from a certificate in
 which the certification authority has a policy to valid public
 keys), then validation is not needed.

4.1.4. Minimal validation

 An implementation MAY opt to use minimal validation, meaning doing
 as little point validation as possible, just enough to resist known
 attack against the implementation.

Brown 2y^2=x^3+x over 8^91+5 [Page 12]

Internet-Draft 2019-10-03

 The curve 2y^2=x^3+x is not twist-secure: using the Montgomery
 ladder for scalar multiplication is not enough to thwart invalid
 public key attacks.

 Note: the twist of 2y^2=x^3+x/GF(8^91+5) curve has order:

 2^2 * 5 * 1526119141 * 788069478421 * 182758084524062861993 *
 3452464930451677330036005252040328546941

 For example, consider a static hashed-ECDH implementation
 implemeneted with a Montgomery ladder, such that the static secret
 key is used at most ten million times hashed-ECDH transactions.
 Even if exposed to invalid points on the twist, the secruity risk is
 nearly negligible.

4.2. Point validation process

 Upon decoding a 34-byte string into x, the next step is to compute
 z=2(x^3+x). Then one checks if z has a nonzero square root (in the
 field of size 8^91+5). If z has a nonzero square root, then the
 represented point is valid, otherwise it is not valid.

 Equivalently, one can check that x^3 + x has no square root (that
 is, x^3+x is a quadratic non-residue).

 To check z for a square root, one can compute the Legendre symbol
 (z/p) and check that is 1. (Equivalently, one can check that
 ((x^3+x)/p)=-1.)

 The Legendre symbol can be computed using Gauss' quadratic
 reciprocity law, but this requires implementing modular integer
 arithmetic for moduli smaller than 8^91+5.

 More slowly, but perhaps more simply, one can compute the Legendre
 symbol using powering in the field: (z/p) = z^((p-1)/2) =
 z^(2^272+2). This will have value 0,1 or p-1 (which is equivalent
 to -1).

 More generally, in signature applications (such as [B2]), where the
 y-coordinate is also needed, the computation of y, which involves
 computing a square root will generally include a check that x is
 valid.

 OPTIONAL: In some rare situations, it is also necessary to ensure
 that the point has large order, not just that it is on the curve.

Brown 2y^2=x^3+x over 8^91+5 [Page 13]

Internet-Draft 2019-10-03

 For points on this curve, each point has large order, unless it has
 torsion by 12. In other words, if [12]P != O, then the point P has
 large order.

 OPTIONAL: In even rarer situations, it may be necessary to ensure
 that a point P also has a prime order n = ord(G). The costly method
 to check this is checking that [n]P = O. An alternative method is
 to try to solve for Q in the equation [12]Q=P, which involves
 methods such a division polynomials.

 To be completed.

5. OPTIONAL encodings

 The following two encodings are not usually required to obtain
 interoperability in the typical ECC applications, but can sometimes
 be useful.

5.1. Encoding scalars

 Scalar (integer point multipliers) sometimes needed to be encoding
 as byte strings, at least internally to an implementation.

 Basically, little-endian byte encoding of integers is recommended.

 In Diffie--Hellman only implementations, the scalars s and p-s
 really have not significant distinction, so all scalars can be
 represented with 34 bytes.

 Applications:

 - Digital signature in ECC generallly require scalar encodings.
 This draft does not specify signature algorithms in detail, only
 providing some general suggestions.

 - An implementation needs to store scalars, because scalars are
 used at least twice, and must be stored between these two uses.
 For example, in elliptic curve Diffie--Hellman, Alice has scalar
 a, sends Bob point aG, keeps scalar a until she receives point
 B from Bob, to which she then applies aB. (If a is ephemeral,
 she then deletes a.) An implementation is free to use any
 encoding of scalar, but implementation are often constructed in
 modular pieces, and any pieces handling the same scalar need to
 be able to convey the scalar.

Brown 2y^2=x^3+x over 8^91+5 [Page 14]

Internet-Draft 2019-10-03

5.2. Encoding strings as points

 In niche applications, it may be desired to encode an arbtirary
 string as a point on a curve. Example reasons to encode arbitrary
 34-byte strings include:

 - Encoding passwords (or their hashes) for use in
 password-authenticated key exchange.

 - Hiding the fact that ECC is being used.

 To this end, this section sketches a method to reversibly encode
 any 34-byte string as a point.

 Note: To encode variable-length strings as points, one can first
 compute a 34-byte hash of the variable-length string, and then
 encode the hash. Encoding of variable-length strings is not, and
 cannot be, reversible.

 Note: The point decoding scheme of Section 3.2 does not suffice to
 encode strings, becausse only about half of all 34-byte strings
 are decodable.

 Note: The string-as-point encoding has the the property that only
 about half of all points are decodable as 34-bytes strings.
 Encoding a uniformly distributed 34-byte string as a point yields
 non-uniformly distributed points.

 The encoding is called Elligator i.

 Note: The Elligator i encoding is a minor variation of the
 Elligator 2 construction [Elligator], introduced in [B1]. The
 variation is necessary because Elligator 2 fails for curves with
 j-invariant 1728, and curve 2y^2=x^3+x has j-invariant 1728.

 Fix a square root i of -1 in the field in GF(8^91+5). For example,
 2^(8^89+1) mod 8^91+5.

 To encode a 34-byte string b,

Brown 2y^2=x^3+x over 8^91+5 [Page 15]

Internet-Draft 2019-10-03

 1. Let b represent a field element r, using little-endian base
 256.

 2. Compute x = i-3i/(1-ir^2). Let j=1.

 3. If 2y^2=x^3+x has no solution y, then replace x by x+i and j by
 j+1.

 4. Find two solutions y[1] and y[2] to 2y^2=x^3+x, such that
 y[1]<y[2].

 5. Compute y=y[j].

 Now (x,y) is a point on the curve 2y^2=x^3+x.

 The Elligator i encoding is reversible, because it has the decoding
 sketched below.

 If y>p-y, replace x by x-i. Solve for s = -i - 3/(i-x). Let r =
 sqrt(s). If r > p-r, replace r by p-r. Write r in little-endian
 base 256 to get a 34-byte string b.

 Note: Just to illustrate a constrast between Elligator i encoding
 and the normal point encoding, consider the useless example of
 applying both encodings. Start with 34-byte string b. Apply
 Elligator i encoding to get a point (x,y). Apply the point
 encoding to (x,y) to get a 34-byte string b'. In summary,
 b'=encode(encode(b)). The byte string b' has no significant
 relation to b. The map b->b' from 34-byte strings to themselves
 is lossy (non-injective) with ratio ~4:1, and the image set is
 about one quarter of all 34-byte strings.

6. IANA Considerations

 This document requires no actions by IANA, yet.

7. Security considerations

 No cryptographic algorithm is without risk.

 Theoretically, therefore, cryptographic risk analysis should be
 comparative: so that the least risky cryptographic algorithm can be
 chosen. Practically, however, it is difficult to compare an
 algorithm to all others.

Brown 2y^2=x^3+x over 8^91+5 [Page 16]

Internet-Draft 2019-10-03

 For practicality, this section lists the most plausible risks of
 2y^2=x^3+x/GF(8^91+5), comparing these against a general background
 of any curve in ECC. To a lesser degree, this section contrasts
 these risks to a few other well-established and standardized
 specific curves.

7.1. Field choice

 The field 8^91+5 has the following risks.

 - 8^91+5 is a special prime. As such, it is perhaps vulnerable to
 some kind of attack. For example, for some curve shapes, the
 supersingularity depends on the prime, and the curve size is
 related in a simple way to the field size, causing a potential
 correlation between the field size and the effectiveness of an
 attack, such as the Pohlig--Hellman attack. In summary, field
 size is positively correlated to some known attacks, and perhaps a
 special field size is positively correlated to a potential attack.

 Nonetheless, many other standard curves, such as the NIST P-256
 and Curve25519, also use special prime field sizes. In this
 regard, all these special field curves have a similar risk.

 Yet other standard curves, such as the Brainpool curves, use
 pseudorandom field sizes, reducing their risk to potential
 special-field attack.

 - 8^91+5 arithmetic implementation, while implementable in five
 64-bit words, has some risk of overflowing, or of not fully
 reducing properly. Perhaps a smaller field, such as that used in
 Curve25519, has a simpler reduction and overflow-avoidance
 properties.

 - 8^91+5, by virtue of being well-above 256 bits in size, risks its
 user doing extra, and perhaps unnecessary, computation to protect
 their 128-bit keys, whereas smaller curves might be faster (as
 expected) yet still provide enough security. In other words, the
 extra computational cost for exceeding 256 bits is wasteful, and
 partially a form of denial of service.

 - 8^91+5 is smaller than some other six-symbol primes: 8^95-9,
 9^99+4 and 9^87+4. Therefore, arguably, 8^91+5 fails to
 absolutely maximize field size relative to Kolmogorov complexity.
 In particular, curves defined over larger field size have better
 Pollard rho resistance (of the ECDLP).

Brown 2y^2=x^3+x over 8^91+5 [Page 17]

Internet-Draft 2019-10-03

 Nonetheless, the primes 9^99+4 and 9^87+4 are not close to a power
 of two, so probably suffer from much slower implementation than
 8^91+5, which is a significant runtime cost, and perhaps also a
 security risk (due to implementation bugs).

 The prime 8^95-9 is, just like 8^91+5, very close to a power of
 two. So should have comparable efficiency for basic field
 arithmetic operations, such as addition, multiplication and
 reduction. The field 8^95-9 is a little larger, but can still be
 implemented using five 64-bit words. Being larger, 8^95-9, it has
 a slightly greater risk than 8^91+5 of leading to an arithmetic
 overflow implementation fault in field arithmetic. Field size
 8^95-9 has much less simple powering algorithms for computing
 field inverses, Legendre symbols, and square roots: so these
 operations, often important for ECC, may require more code, more
 runtime, and perhaps more risk of implementation bug.

 - 8^91+5 is smaller than 2^283 (the field size for curve sect283k1
 [SEC2], [Zigbee]), and many other five-symbol and four-symbol
 prime powers (such as 9^97). It provides less resistance to
 Pollard rho than such larger prime powers. Recent progress in the
 elliptic curve discrete logarithm problem, [HPST] and [Nagao], is
 the main reason to prefer prime fields instead of power of prime
 fields. A second reason to prefer a prime field (including the
 field of size 8^91+5) over small characteristic fields is the
 generally better software speed of large characteristic field.
 (Better software speed is mainly due to general-purpose hardware
 often having dedicated fast multiplication circuits:
 special-purpose hardware should make small characteristic field
 faster.)

 - The Kolmogorov complexity of 8^91+5 as six symbols is only minimal
 for decimal exponential complexity: but it is not minimal if other
 types of complexity measures are allowed. For example, if we
 allow the exclamation mark for the factorial operation -- which is
 quite standard notation! -- primes larger than 8^91+5 expressible
 in fewer symbols. For example, 94!-1 is a 485-bit prime number,
 expressible in five symbols. Such numbers, so far as I know, are
 not close to a power of two, so would have similar inefficiency
 and implementability defects to primes like 9^99+4 and 9^87+4.
 Such inefficiencies could resaonably by the curve choice criteria,
 ruling out such primes.

Brown 2y^2=x^3+x over 8^91+5 [Page 18]

Internet-Draft 2019-10-03

 Arguably, in traditional mathematical notation, the symbol '^' is
 not actually written, with operation being marked by the use of
 superscripts. In this view, using an ASCII character count
 arugably gives unduly low weight to the factorial operation as
 compared to exponentiation.

 See [B1] for further discussion about the relative merits of 8^91+5.

 Note: For any form of ECC, finite field multiplication can be
 achieved most quickly by using hardware integer multiplication
 circuits. It is critical that those circuits have no bugs or
 backdoors. Furthermore, those circuits typically can only
 multiply integers smaller than the field elements. Larger inputs
 to the circuits will cause overflows. It is critical to avoid
 these overflows, not just to avoid interoperability failures, but
 also to avoid attacks where the attackers supply inputs likely
 induce overflows [bug attacks], [IT].

 To be completed:

 Projective coordinates are not suitable as the final representation
 of an elliptic curve point, for two reasons.

 - Projective coordinates for a point are generally not unique: each
 point can be represented in projective coordinates in multiple
 different ways. So, projective coordinates are unsuitable for
 finalizing a shared secret, because the two parties computing the
 shared secret point may end up with different projective
 coordinates.

 - Projective coordinates have been shown to leak information about
 the scalar multiplier [PSM], which could be the private
 key. It would be unacceptable for a public key to leak
 information about the private key. In digital signatures, even a
 few leaked bits can be fatal, over a few signatures
 [Bleichenbacher].

 Therefore, the final computation of an elliptic curve point, after
 scalar multiplication, should translate the point to a unique
 representation, such as the affine coordinates described in this
 report.

 For example, when using a Montgomery ladder, scalar multiplication
 yields a representation (X:Z) of the point in projective
 coordinates. Its x-coordinate is then x=X/Z, which can be computed
 by computing the 1/Z and then multiplying by X.

Brown 2y^2=x^3+x over 8^91+5 [Page 19]

Internet-Draft 2019-10-03

 The safest, most prudent way to compute 1/Z is to use a side-channel
 resistant method, in particular at least, a constant-time method.
 This reduces the risk of leaking information about Z, which might in
 turn leak information about X or the scalar multiplier. Fermat
 inversion, computation of Z^(p-2) mod p, is one method to compute
 the inverse in constant time (if the inverse exists).

7.2. Curve choice

 A first risk of using 2y^2=x^3+x is the fact that it is a special
 curve. It is special in having complex multiplication leading
 to an efficient endomorphism. Miller, in 1985, already suggested
 exercising prudence when considering such special curves. Gallant,
 Lambert and Vanstone found ways to slightly speed up Pollard rho
 given such an endomorphism, but no other attacks have been found.

 Menezes, Okamoto and Vanstone (MOV) found an attack on special
 elliptic curves, of low embedding degree. The curve
 2y^2=x^3+x/GF(8^91+5) is not vulnerable to their attack, but if one
 changes the underlying to some different primes, say p', the
 resulting curve 2y^2=x^3+x/GF(p') is vulnerable to their attack for
 about half of all primes. Because the MOV was later than Miller's
 caution from 1984, Miller's prudence seems prescient. Perhaps he
 was also prescient about yet other potential attacks (still
 unpublished), and these attacks might affect 2y^2=x^3+x/GF(8^91+5).

 Many other standard curves, NIST P-256 [NIST-P-256], Curve25519,
 Brainpool [Brainpool], do not have any efficient complex
 multiplication endomorphisms. Arguably, these curves comply to
 Miller's advice to be prudent about special curves.

 Yet other (fairly) standard curves do, such as NIST K-283 (used in
 [Zigbee]) and secp256k1 (see [SEC2] and [BitCoin]). Furthermore, it
 is not implausible [KKM] that special curves, including those
 efficient endomorphisms, may survive an attack on random curves.

 A second risk of 2y^2=x^3+x over 8^91+5 is the fact that it is not
 twist-secure. What may happen is that an implementer may use the
 Montgomery ladder in Diffie--Hellman and re-use private keys. They
 may think, despite the (ample?) warnings in this document, that
 public key validation in unnecessary, modeling their implementation
 after Curve25519 or some other twist-secure curve. This implementer
 is at risk of an invalid public key attack. Moreover, the
 implementer has an incentive to skip public-key validation, for
 better performance. Finally, even if the implementer uses
 public-key validation, then the cost of public-key validation is
 non-negligible.

Brown 2y^2=x^3+x over 8^91+5 [Page 20]

Internet-Draft 2019-10-03

 A third risk is a biased ephemeral private key generation in a
 digital signature scheme. Most standard curves lack this risk
 because the field size is close to a power of two, and the cofactor
 is a power of two. Curve 2y^2=x^3+x over 8^91+5 has a base point
 order which is approximately a power of two divided by nine (because
 its cofactor is 72=8*9.) As such, it is more vulnerable than
 typical curves to biased ephemeral keys in a signature scheme.

 A fourth risk is a Cheon-type attack. Few standard curves address
 this risk, and 2y^2=x^3+x over 8^91+5 is not much different.

 A fifth risk is a small-subgroup confinement attack, which can also
 leak a few bits of the private key. Curve 2y^2=x^3+x over 8^91+5
 has 72 elements whose order divides 12.

7.3. Encoding choices

 To be completed.

7.4. General subversion concerns

 Although the main motivation of curve 2y^2=x^3+x over 8^91+5 is to
 minimize the risk of subversion via a backdoor ([Gordon], [YY],
 [Teske]), it is only fair to point out that its appearance in this
 very document can be viewed with suspicion as an possible effort at
 subversion (via a front-door). (See [BCCHLV] for some further
 discussion.)

 Any other standardized curve can be view with a similar suspicion
 (except, perhaps, by the honest authors of those standards for whom
 such suspicion seems absurd and unfair). A skeptic can then examine
 both (a) the reputation of the (alleged) author of the standard,
 making an ad hominem argument, and (b) the curve's intrinsic merits.

 By the very definition of this document, the reader is encouraged to
 take an especially skeptical viewpoint of curve 2y^2=x^3+x over
 8^91+5. So, it is expected that skeptical users of the curve will
 either

 - use the curve for its other merits (other than its backdoor
 mitigations), such as efficient endomorphism, field inversion,
 high Pollard rho resistance within five 64-bit words, meanwhile
 holding to the evidence-supported belief ECC that is now so mature
 that worries about subverted curves are just far-fetched nonsense,
 or

Brown 2y^2=x^3+x over 8^91+5 [Page 21]

Internet-Draft 2019-10-03

 - as an additional of layer of security in addition to other
 algorithms (ECC or otherwise), as an extra cost to address the
 non-zero probability of other curves being subverted.

 To paraphrase, consider users seriously worried about subverted
 curves (or other cryptographic algorithms), either because they
 estimate as high either the probability of subversion or the value
 of the data needing protection. These users have good reason to
 like 2y^2=x^3+x over 8^91+5 for its compact description.
 Nevertheless, the best way to resist subversion of cryptographic
 algorithms seems to be combine multiple dissimilar cryptographic
 algorithms, in a strongest-link manner. Diversity hedges against
 subversion, and should the first defense against it.

7.5. Concerns about 'aegis'

 The exact curve 2y^2=x^3+x/GF(8^91+5) was (seemingly) first
 described to the public in 2017 [AB]. So, it has a very low age, at
 least compare to more established curves.

 Furthermore, it has not been submitted for a publication with peer
 review to any cryptographic forum such as the IACR conferences like
 Crypto and Eurocrypt. So, it has only been reviewed by very few
 eyes.

 Arguably, other reviewers have little incentive to study it
 critically, for several reasons. The looming threat of a quantum
 computer has diverted many researchers towards studying post-quantum
 cryptography, such as supersingular isogeny Diffie--Hellman. The
 past disputes over NIST P-256 and Curve25519 (and several other
 alternatives) have perhaps tired some reviewers, many of whom
 reasonably wish to concentrate on deployment of ECC.

 So, under the metric of aegis, as in age times eyes (times
 incentive), 2y^2=x^3+x/GF(8^91+5) scores low. Counting myself (but
 not quantifying incentive) it gets an aegis score of 0.1 (using a
 rating 0.1 of my eyes factor in the aegis score: I have not
 discovered any major ECC attacks of my own.) This is far smaller
 than my estimates (see below) some more well-studied curves.

 Nonetheless, the curve 2y^2=x^3+x over 8^91+5 at least has some
 similarities to some of the better-studied curves with much higher
 aegis:

Brown 2y^2=x^3+x over 8^91+5 [Page 22]

Internet-Draft 2019-10-03

 - Curve25519: has field size 8^85-19, which a little similar to
 8^91+5; has equation of the form by^2=x^3+ax+x, with b and a
 small, which is similar to 2y^2=x^3+x. Curve25519 has been around
 for over 10 years, has (presumably) many eyes looking at it, and
 has been deployed thereby creating an incentive to study. An
 estimated aegis for Curve25519 is 10000.

 - NIST P-256: has a special field size, and maybe an estimated aegis
 of 200000. (It is a high-incentive target. Also, it has received
 much criticism, showing some intent of cryptanalysis. Indeed,
 there has been incremental progress in finding minor weakness
 (implementation security flaws), suggestive of actual
 cryptanalytic effort.) The similarity to 2y^2=x^3+x over 8^91+5
 is very minor, so very little of the P-256 aegis would be relevant
 to this document.

 - secp256k1: has a special field size, though not quite as special
 as 8^91+5, and has special field equation with an efficient
 endomorphism by a low-norm complex algebraic integer, quite
 similar to 2y^2=x^3+x. It is about 17 years old, and though not
 studied much in academic work, its deployment in Bitcoin has at
 least created an incentive to attack it. An estimated aegis for
 secp256k1 is 10000.

 - Miller's curve: Miller's 1985 paper introducing ECC suggested,
 among other choices, a curve equation y^2=x^3-ax, where a is a
 quadratic non-residue. Curve 2y^2=x^3+x is isomorphic to
 y^2=x^3-x, essentially one of Miller's curves, except that a=1 is
 a quadratic residue. Miller's curve may not have been studied
 intensely as other curves, but its age matches that ECC itself.
 Miller also hinted that it was not prudent to use a special curve
 y^2=x^3-ax: such a comment may have encouraged some cryptanalysts,
 but discouraged cryptographers, perhaps balancing out the effect
 on the eyes factor the aegis. An estimated aegis for Miller's
 curves is 300.

 Obvious cautions to the reader:

 - Small changes in a cryptographic algorithm sometimes cause large
 differences in security. So security arguments based on
 similarity in cryptographic schemes should be given low priority.

Brown 2y^2=x^3+x over 8^91+5 [Page 23]

Internet-Draft 2019-10-03

 - Security flaws have sometimes remained undiscovered for years,
 despite both incentives and peer reviews (and lack of hard
 evidence of conspiracy). So, the eyes-part of the aegis score is
 very subjective, and perhaps vulnerable false positives by a herd
 effect. Despite this caveat, it is not recommended to ignore the
 eyes factor in the aegis score: don't just flip through old books
 (of say, fiction), looking for cryptographic algorithms that might
 never have been studied.

8. References

8.1. Normative References

 [BCP14] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/bcp14>.

8.2. Informative References

 To be completed.

 [AB] A. Allen and D. Brown. ECC mod 8^91+5, presentation to CFRG,
 2017.
 <https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/>

 [AMPS] Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and
 Juraj Somorovsky. Prime and Prejudice: Primality Testing Under
 Adversarial Conditions, IACR ePrint,
 2018. <https://ia.cr/2018/749>

 [B1] D. Brown. ECC mod 8^91+5, IACR ePrint, 2018.
 <https://ia.cr/2018/121>

 [B2] D. Brown. RKHD ElGamal signing and 1-way sums, IACR ePrint,
 2018. <http://ia.cr/2018/186>

 [KKM] A. Koblitz, N. Koblitz and A. Menezes. Elliptic Curve
 Cryptography: The Serpentine Course of a Paradigm Shift, IACR
 ePrint, 2008. <https://ia.cr/2008/390>

 [BCCHLV] D. Bernstein, T. Chou, C. Chuengsatiansup, A. Hulsing,
 T. Lange, R. Niederhagen and C. van Vredendaal. How to
 manipulate curve standards: a white paper for the black hat, IACR
 ePrint, 2014. <https://ia.cr/2014/571>

 [Elligator] (((To do:))) fill in this reference.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/bcp14
https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/
https://ia.cr/2018/749
https://ia.cr/2018/121
http://ia.cr/2018/186
https://ia.cr/2008/390
https://ia.cr/2014/571

Brown 2y^2=x^3+x over 8^91+5 [Page 24]

Internet-Draft 2019-10-03

 [NIST-P-256] (((To do:))) NIST recommended 15 elliptic curves for
 cryptography, the most popular of which is P-256.

 [Zigbee] (((To do:))) Zigbee allows the use of a
 small-characteristic
 special curve, which was also recommended by NIST, called K-283,
 and also known as sect283k1. These types of curves were
 introduced by Koblitz. These types of curves were not
 recommended by NSA in Suite B.

 [Brainpool] (((To do:))) the Brainpool consortium (???) recommended
 some elliptic curves in which both the field size and the curve
 equation were derived pseudorandomly from a nothing-up-my-sleeve
 number.

 [SEC2] Standards for Efficient Cryptography. SEC 2: Recommended
 Elliptic Curve Domain Parameters, version 2.0, 2010.
 <http://www.secg.org/sec2-v2.pdf>

 [IT] T. Izu and T. Takagi. Exceptional procedure attack on elliptic
 curve cryptosystems, Public key cryptography -- PKC 2003, Lecture
 Notes in Computer Science, Springer, pp. 224--239, 2003.

 [PSM] (((To do:))) Pointcheval, Smart, Malone-Lee. Projective
 coordinates leak.

 [BitCoin] (((To do:))) BitCoin uses curve secp256k1, which has an
 efficient endomorphism.

 [Bleichenbacher] To do: Bleichenbacher showed how to attack DSA
 using a bias in the per-message secrets.

 [Gordon] (((To do:))) Gordon showed how to embed a trapdoor in DSA
 parameters.

 [HPST] Y. Huang, C. Petit, N. Shinohara and T. Takagi. On
 Generalized First Fall Degree Assumptions, IACR ePrint 2015.
 <https://ia.cr/2015/358>

 [Nagao] K. Nagao. Equations System coming from Weil descent and
 subexponential attack for algebraic curve cryptosystem, IACR
 ePrint, 2015. <http://ia.cr/2013/549>

 [Teske] E. Teske. An Elliptic Curve Trapdoor System, IACR ePrint,
 2003. <http://ia.cr/2003/058>

http://www.secg.org/sec2-v2.pdf
https://ia.cr/2015/358
http://ia.cr/2013/549
http://ia.cr/2003/058

Brown 2y^2=x^3+x over 8^91+5 [Page 25]

Internet-Draft 2019-10-03

 [YY] (((To do:))) Yung and Young, generalized Gordon's ideas into
 Secretly-embedded trapdoor ... also known as a backdoor.

Appendix A. Test vectors

 The following are some test vectors.

 000000000000000029352b31395e382846472f782b335e783d325e79322054534554
 000117
 c8c0f2f404a9fabc91c939d8ea1b9e258d82e21a427b549f05c832cf8d48296ffad7
 5f336f56f86de3d52b0eab85e527f2ac7b9d77605c0d5018f5faa4243fd462b1badd
 fc023b3f03b469dca32446db80d9b388d753cc77aa4c3ee7e2bb86e99e7bed38f509
 8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221
 8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221

 The test vectors are explained as follows. (Pseudocode generating
 them is supplied in Appendix C.2.)

 Each line is 34 bytes, representing a non-negative 272-bit integer.
 The integer encoding is hexadecimal, with most significant hex
 digits on the left: which is big-endian.

 Note: Public keys are encoded as 34-byte strings are little, so
 one reverses the order of the bytes found in the test vectors.
 The pseudocode in Appendix C.2 should make this clear.

 Each integer is either a scalar (a multiplier of curve points), or
 the byte representation of a point P through its x-coordinate or the
 x-coordinate of iP (which is the the mod 8^91+5 negation of the
 x-coordinate of P).

 The first line is a scalar integer x, which would serve as a very
 insecure private key. Its nonzero bytes are the ASCII
 representation of the string "TEST 2y^2=x^3+x/GF(8^91+5)", with the
 byte order reversed.

 The second line is a representation of G, a base point on the curve.

 The third line is the representation of z = xG.

 The fourth and fifth lines represent updated values of x and z,
 obtained after application of the following 100000 scalar
 multiplications.

Brown 2y^2=x^3+x over 8^91+5 [Page 26]

Internet-Draft 2019-10-03

 A loop of 50000 iterations is performed. Each iteration consists of
 two re-assignments: z = xz and x = zG via scalar multiplications.
 In the second assignment, the byte representation of the input point
 z is used as the byte representation of an scalar. Similarly, the
 output x is the byte representation of the point, which is will used
 as as the byte representation of the scalar.

 The purpose of the large number of iterations is to catch a bug that
 has probability larger than 1/100000 of arising on pseudorandom
 inputs. The iterations do nothing to find rarer bugs (that an
 adversary can invoke), or silent bugs (side channel leaks).

 The sixth and seventh lines are equal to each other. As explained
 below, the equality of these lines represents the fact the Alice and
 Bob can compute the same shared DH secret. The purpose of these
 lines is not catch any more bugs, but simply a sanity check that
 Diffie--Hellman is likely to work.

 Alice initializes her DH private key to x, as already computed on
 the fourth line of the test vectors (which was the result of 100000
 iterations). She then replaces this x by x^900 mod q (where q is
 the prime which is the order of the order of the base point G).

 Bob sets his private key y as follows. He begins with y being the
 34-byte ASCII string whose initial characters are "yet another test"
 (not including the quotes, of course). He then reverses the order
 of bytes, considers this to be a scalar, and reassigning y with the
 equation y = yG. (So, the y on the left is new, the y on the right
 is old, they are not the same.) Then another reassignment is done,
 as y = yy, where the on the right side of the equation one y is
 treated as a scalar, the other as a point. The left side is the new
 value of y. Finally, Bob's replaces y by y^900 mod order(G), just
 as Alice did.

 Both lines are xyG. The first can be computed as y(xG), and the
 second as x(yG). The equality of the two lines can be used to
 self-test an implementation, even if the implementation being tested
 disagrees with the test vectors above.

Appendix B. Minimizing trapdoors and backdoors

 To main advantage of curve 2y^2=x^3+x/GF(8^91+5) over almost all
 other elliptic curves is that its almost minimal Kolmogorov
 complexity among curves of sufficient resistance to the Pollard rho
 attack on the discrete logarithm problem.

 See [AB] and [B1] for some details.

Brown 2y^2=x^3+x over 8^91+5 [Page 27]

Internet-Draft 2019-10-03

 The curve can be described with 21 characters:

 2 y ^ 2 = x ^ 3 + x / G F (8 ^ 9 1 + 5)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 Those familiar with ECC will recognize that these 21 characters
 suffice to specify the curve up to the level of detail needed to
 describe the cost of the Pollard rho algorithm, as well as many
 other security properties (especially resistance to other known
 attacks on the discrete logarithm problem, such as Pohlig--Hellman
 and Menezes--Okamoto--Vanstone).

 Note: The letters GF mean Galois Field, and are quite traditional
 mathematics, and every elliptic curve in cryptographic needs to
 use some notation for the finite field.

 We may therefore describe the curve's Kolmogorov complexity as 21
 characters.

 Note: The idea of low Kolmogorov complexity is hard to specify
 exactly. Nonetheless, a claim of nearly minimal Kolmogorov
 complexity is quite falsifiable. The falsifier need merely
 specify several (secure) elliptic curves using 21 or fewer
 characters. (But if the specification new interpretations, then
 new interpretation might also be used to further compress the
 specification of 2y^2=x^3+x/GF(8^91+5) to below 21 characters.)

 The curve is actually isomorphic to a curve specifiable in 20
 characters:

 y^2=x^3-x/GF(8^91+5)

 Generally, isomorphic curves have essentially equivalently hard
 discrete logarithm problems, so one could argue that curve
 2y^2=x^3+x/GF(8^91+5) could be rated as having Kolmogorov complexity
 at most 20 characters. Isomorphic curves, however, may differ
 slightly in security, due to issues of efficiency, and
 implementability. The 21-character specification uses an equation
 in Montgomery form, which creates an incentive to use the Montgomery
 ladder algorithm, which is both safe and efficient [Bernstein?].

 Allowing for non-prime fields, then the binary-field curve known
 sect283k1 has a 22-character description:

 y^2+xy=x^3+1/GF(2^283)

Brown 2y^2=x^3+x over 8^91+5 [Page 28]

Internet-Draft 2019-10-03

 This has a shorter field specification. Perhaps an isomorphic curve
 can be found (one with three terms), so that total length is 20 or
 fewer characters.

 However, a non-prime field tends to be slower in software, and is
 perhaps riskier due to some recent research on attacking non-prime
 field discrete logarithms and elliptic curves, such as recent
 asymptotic advances on discrete logarithms in low-characteristic
 fields [HPST] and [Nagao]. According to [Teske], some
 characteristic-two elliptic curves could be equipped with a secretly
 embedded backdoor.

 The units of characters as measuring Kolmogorov complexity is not
 calibrated as bits of information. Doing so formally would be very
 difficult, but the following approach might be reasonable.

 Set the criteria for the elliptic curve. For example, e.g. prime
 field, size, resistance (of say 2^128 bit operations) to known
 attacks on the discrete logarithm problem (Pollard rho, MOV, etc.).
 Then list all the possible ECC curve specification with Kolmogorov
 complexity of 21 characters or less. Take the base two logarithm of
 this number. This is then an calibrated estimate of the number of
 bits needed to specify the curve. It should be viewed as a lower
 bound, in case some curves were missed. To be completed.

 Low Kolmogorov complexity is not directly correlated with security
 of the curve.

 Note: Indeed, as shown further below, the very insecure examples
 exist with lower complexity, by choosing a defective curve
 equation.

 The benefit of low Kolmogorov complexity is an idea, which general
 to cryptography, sometimes called nothing-up-my-sleeve, or
 subversion-resistance, or similar. For elliptic curves, the benefit
 may be stated as the two following gains.

 - Low Kolmogorov complexity defends against insertion of a keyed
 trapdoor, meaning the curve can broken using a secret trapdoor,
 by an algorithm (eventually discovered by the public at large).
 For example, the Dual EC DRBG is known to capable of having such
 a trapdoor. Such a trapdoor would information-theoretically
 imply an amount of information, comparable the size of the
 secret, to be embedded in the curve specification. If the
 calibrated estimate for the number of bits is sufficiently
 accurate, then such a key cannot be large.

Brown 2y^2=x^3+x over 8^91+5 [Page 29]

Internet-Draft 2019-10-03

 - Low Kolmogorov complexity defends against a secret attack
 (presumably difficult to discover), which affects a subset of
 curves such that (a) whether or not a specific curve is affected
 is a somewhat pseudorandom function of its natural
 specification, and (b) the probably of a curve being affected
 (when drawn uniformly from some sensible of curve
 specification), is low. For an example of real-world attacks
 meeting the conditions (a) and (b) consider the MOV attack.
 Exhaustively finding curve meeting these two conditions is
 likely to prevent low Kolmogorov complexity, essentially by the
 low probability of the attack, and the independence of attack's
 success from the natural Kolmogorov complexity.

 - Even more hypothetically, there may yet exist undisclosed
 classes of weak curves, or attacks, for which
 2y^2=x^3+x/GF(8^91+5) is lucky enough to avoid. This would be a
 fluke. A real-world example is prime-order, or low cofactor
 curves, which are are among all curves, but which better resist
 the Pohlig--Hellman attack.

 Of course, low Kolmogorov complexity is not a panacea. The worst
 failure would be attacks that increase in strength as Kolmogorov
 complexity gets lower. Two examples illustrate this strongly.

 Singular cubics, though not formally elliptic curves, are arguably
 among the same class of object, and can be described similarly,
 using equations and so. For smooth singular curves (irreducible
 cubics) a group can be define, using more or less the same
 arithmetic as for a elliptic curve. For example y^2=x^3/GF(8^91+5)
 is such a cubic. The resulting group has an easy discrete logarithm
 problem, because it can be mapped to the field.

 Supersingular elliptic curves can also be specified with low
 Kolmogorov complexity, and these are vulnerable to MOV attack.
 Worse, a low Kolmogorov complexity curve can be described that
 suffers from three attacks simultaneously: y^2=x^3+1/GF(2^127-1).
 To be completed.

 Of course, the weak cubics are vulnerable to extremely well-known
 attacks, so when estimating the bits of information in the
 Kolmogorov complexity of curves that resist known attacks, we can
 ignore such examples. The point of these examples, however, is to
 demonstrate that there exists known attacks that affect curves of
 low Kolmogorov complexity, and therefore secret attacks might have
 the same property.

Brown 2y^2=x^3+x over 8^91+5 [Page 30]

Internet-Draft 2019-10-03

 So, it is sensible to disclaim any resistance to secret attacks of
 such a nature. For this reason, 2y^2=x^3+x/GF(8^91+5) should be
 used with other elliptic curves.

Appendix C. Pseudocode

 This section uses a C-like pseudocode to demonstrate both the
 well-known algorithms one can use implement this curve, and some
 details particular to this curve.

 Note: Some implementers, such as C programmers, may prefer such
 pseudocode over the wordy and formulaic specifications given
 earlier in this draft. Besides the principles and algorithms are
 well-known, so I have opted to put the pseudocode in a more
 runnable form than traditional language-agnostic pseudocode.

 Note: The pseudocode is not standard C (e.g., it uses non-standard
 C type __int128), not portable, not thoroughly hardened against
 side channels or any other implementation attacks.

 Note: The pseudocode is highly constricted to minimize line and
 character counts, with Python-like indentation and Lisp-like
 clumping of closing delimiters. Tools may exist that can put
 transform the pseudocode into more conventional C indentation.
 The pseudocode borrows various yet further C brevities: some
 idiomatic and conventional, some altogether peculiar. Anything
 too indecipherable deserves explanation in a future revision of
 this draft.

 Note: this pseudocode has not yet received any independent review.

C.1. Scalar multiplication of 34-byte strings

 The pseudocode for scalar multiplication provides an interface for
 scalar multiplication. A function takes as input 3 pointer to
 unsigned character strings; it also returns a Boolean value,
 indicating success or failure.

 The pseudocode is to be consider to form a single file, pseudo.c,
 which is then include into other 3 pieces pseudocode: one to
 generate test vectors, one to demo a command-line Diffie--Hellman,
 one to demo public-key validation and twist insecurity of the curve.

 The file pseudo.c has two sections, one for field arithmetic, and
 one form scalar multiplication using Montgomery's ladder.

Brown 2y^2=x^3+x over 8^91+5 [Page 31]

Internet-Draft 2019-10-03

 Note: I have been able to improve the speed of Montgomery's ladder
 by ~10% using Bernstein's 2-D ladder. I have also been to improve
 the speed by ~20% using Gallant--Lambert--Vanstone and Edwards
 coordinates. These improvements are not likely to carry through
 to a proper optimization regime, since I never used any assembly
 optimizations. Also these improvements involve more complex
 algorithms, which may suffer higher risk of implementation
 attacks.

 To be completed.

C.1.1. Field arithmetic for GF(8^91+5)

 The field arithmetic pseudocode, is the first part of the file
 pseudo.c, implements all the necessary field operations to implement
 a Montgomery for elliptic curve 2y^2=x^3+x. This means that it does
 not include a square computation: instead it has a Legendre symbol
 computation.

 Note: The Legendre symbol is used for public-key validation. The
 pseudocode implements field inversion and the Legendre symbol
 using exponentiation, with the aim of being simple and
 constant-time. Alternative algorithms for these tasks are known
 to experts.

Brown 2y^2=x^3+x over 8^91+5 [Page 32]

Internet-Draft 2019-10-03

 <CODE BEGINS>
 #define RZ return z
 #define B 34
 #define F4j i j=5;for(;j--;)
 #define FIX(j,r,k) q=z[j]>>r, z[j]-=q<<r, z[(j+1)%5]+=q*k
 #define CMP(a,b) ((a>b)-(a<b))
 #define XY(j,k) x[j]*(ii)y[k]
 #define R(j,k) (zz[j]>>55*k&((k<2)*M-1))
 #define MUL(m,E)\
 zz[0]=m(0,0)E(1,4)E(2,3)E(3,2)E(4,1),\
 zz[1]=m(0,1)m(1,0)E(2,4)E(3,3)E(4,2),\
 zz[2]=m(0,2)m(1,1)m(2,0)E(3,4)E(4,3),\
 zz[3]=m(0,3)m(1,2)m(2,1)m(3,0)E(4,4),\
 zz[4]=m(0,4)m(1,3)m(2,2)m(3,1)m(4,0);\
 z[0]=R(0,0)-R(4,1)*20-R(3,2)*20,\
 z[1]=R(1,0)+R(0,1)-R(4,2)*20,\
 z[2]=R(2,0)+R(1,1)+R(0,2),\
 z[3]=R(3,0)+R(2,1)+R(1,2),\
 z[4]=R(4,0)+R(3,1)+R(2,2);\
 z[1]+=z[0]>>55; z[0]&=M-1;
 typedef long long i;typedef i*f,F[5];typedef __int128 ii,FF[5];
 i M=((i)1)<<55;F O={0},I={1};
 f fix(f z){i j=0,q;
 for(;j<5*2;j++) FIX(j%5,(j%5<4?55:53),(j%5<4?1:-5));
 z[0]+=(q=z[0]<0)*5; z[4]+=q<<53; RZ;}
 i cmp(f x,f y){i z=(fix(x),fix(y),0); F4j z+=!z*CMP(x[j],y[j]); RZ;}
 f add(f z,f x,f y){F4j z[j]=x[j]+y[j]; RZ;}
 f sub(f z,f x,f y){F4j z[j]=x[j]-y[j]; RZ;}
 f mal(f z,i s,f y){F4j z[j]=y[j]*s; RZ;}
 f mul(f z,f x,f y){FF zz; MUL(+XY,-20*XY); {F4j zz[j]=0;} RZ;}
 f squ(f z,f x){mul(z,x,x); RZ;}
 i inv(f z){F t;i j=272; for(mul(z,z,squ(t,z));j--;) squ(t,t);
 return mul(z,t,z), (sub(t,t,t)), cmp(O,z);}
 i leg(f y){F t;i j=270; for(squ(t,squ(y,y));j--;) squ(t,t);
 return j=cmp(I,mul(y,y,t)), (sub(y,y,y),sub(t,t,t)), !j;}
 <CODE ENDS>

 This pseudocode makes uses of some extra C-like pseudocode features:

 - #define is used to create macros, which expand within the source
 code (as in C pre-processing).

 - type ii is 128-bit integer

 - multiplying a type i by a type ii variable yields a type ii
 variable. If both inputs can fit into a type i variable, then
 the result has no overflow or reduction: it is exact as a product
 of integers.

Brown 2y^2=x^3+x over 8^91+5 [Page 33]

Internet-Draft 2019-10-03

 - type ff is array of five type ii values. It is used to represent
 a field in a radix expansion, except the limbs (digits) can be
 128-bits instead of 64-bits. The variable zz has type ff and is
 used to intermediately store the product of two field element
 variables x and y (of type f).

 - function mod takes an ff variable and produce f variable
 representing the same field element. A pseudocode example may be
 defined further below.

 TO DO: Add some notes (answer these questions):

 - How small the limbs of the inputs to function mul and squ must be
 to ensure no overflow occurs?

 - How small are the limbs of the output of functions mul and squ?

 TO DO: add notes answering these questions:

 - How small must be the input limbs to avoid overflow?

 - How small are the output limbs (to know how to safely use of
 output in further calculations).

 Note: The partial reduction technique used in the multiplication
 pseudocode is sometimes known as lazy reduction. It aims to do
 just enough calculation to avoid overflow errors, and thus it may be
 regarded as attempt at optimization.

 To be completed.

 The input variable is x and the output variable is b. The declared
 types and functions are as follows:

 - type c: curve representative, length-34 array of non-negative
 8-bit integers ("characters"),

 - type f: field element, a length-5 array of 64-bit integers
 (negatives allowed), representing a field element as an integer in
 base 2^55,

 - type i: 64-bit integers (e.g. entries of f),

 - function mal: multiply a field element by a small integer (result
 stored in 1st argument),

 - function fix: fully reduce an integer modulo 8^91+5,

Brown 2y^2=x^3+x over 8^91+5 [Page 34]

Internet-Draft 2019-10-03

 - function cmp: compare two field element (after fixing), returning
 -1, 0 or 1.

 Note: The two for-loops in the pseudocode are just radix
 conversion, from base 2^55 to base 2^8. Because both bases are
 powers of two, this amount to moving bits around. The entries of
 array b are compute modulo 256. The second loop copies the bits
 that the first loop misses (the bottom bits of each entry of f).

 Note: Encoding is lossy, several different (x,y) may encode to the
 same byte string b. Usually, if (x,y) generated as a part of
 Diffie--Hellman key exchange, this lossiness has no effect.

 Note: Encoding should not be confused with encryption. Encoding
 is merely a conversion or representation process, whose inverse is
 called decoding.

 - the expression (i)b[j] means that 8-bit integer b[j] is converted
 to a 64-bit integer (so is no longer treated modulo 256). (In C,
 this is operation is called casting.)

 Note: the decode function 'feed' only has 1 for-loop, which is the
 approximate inverse of the first of the 2 for-loops in the encode
 function 'bite'. The reason the 'bite' needs the 2nd for-loop is
 due to the lossy conversion from integers to bytes, whereas in the
 other direction the conversion is not lossy. The second loop
 recovers the lost information.

C.1.2. Montgomery ladder scalar multiplication

 The pseudocode below, the second part of the file pseudo.c,
 implements Montgomery's well-known ladder algorithm for elliptic
 curve scalar point multiplication, as it applies to the curve
 2y^2=x^3+x.

 Again, the pseudocode is a continuation of the pseudocode for field
 arithmetic, and all previous definitions are assumed.

Brown 2y^2=x^3+x over 8^91+5 [Page 35]

Internet-Draft 2019-10-03

 <CODE BEGINS>
 #define X z[0]
 #define Z z[1]
 typedef void _;typedef volatile unsigned char *c,C[B];
 typedef F*e,E[2];typedef E*v,V[2];
 f feed(f x,c z){i j=((mal(x,0,x)),B);
 for(;j--;) x[j/7]+=((i)z[j])<<((8*j)%55); return fix(x);}
 c bite(c z,f x){F t;i j=((fix(mal(x,cmp(mal(t,-1,x),x),x))), B),k=5;
 for(;j--;) z[j]=x[j/7]>>((8*j)%55); {(sub(t,t,t));}
 for(;--k;) z[7*k-1]+=x[k]<<(8-k); {(sub(x,x,x));} RZ;}
 i lift(e z,f x,i t){F y;return mal(X,1,x),mal(Z,1,I),t||
 leg(mal(y,2,add(y,x,mul(y,x,squ(y,x)))));}
 i drop(f x,e z){return
 inv(Z)&&mul(x,X,Z)&&(sub(X,X,X)&&sub(Z,Z,Z));}
 _ let(e z,e y){i j=2;for(;j--;)mal(z[j],1,y[j]);}
 _ smv(v z,v y){i j=4;for(;j--;)add(((e)z)[j],((e)z)[j],((e)y)[j]);}
 v mav(v z,i a){i j=4;for(;j--;)mal(((e)z)[j],a,((e)z)[j]);RZ;}
 _ due(e z){F a,b,c,d;
 mal(X,2,mul(X,squ(a,add(a,X,Z)),squ(b,sub(b,X,Z))));
 mul(Z,add(c,a,b),sub(d,a,b));}
 _ ade(e z,e u,f w){F a,b,c,d;f ad=a,bc=b;
 mul(ad,add(a,u[0],u[1]),sub(d,X,Z)),
 mul(bc,sub(b,u[0],u[1]),add(c,X,Z));
 squ(X,add(X,ad,bc)),mul(Z,w,squ(Z,sub(Z,ad,bc)));}
 _ duv(v a,e z){ade(a[1],a[0],z[0]);due(a[0]);}
 v adv(v z,i b){V t;
 let(t[0],z[1]),let(t[1],z[0]);smv(mav(z,!b),mav(t,b));mav(t,0);RZ;}
 e mule(e z,c d){V a;E o={{1}};i
 b=0,c,n=(let(a[0],o),let(a[1],z),8*B);
 for(;n--;) c=1&d[n/8]>>n%8,duv(adv(a,c!=b),z),b=c;
 let(z,*adv(a,b)); (due(*mav(a,0))); RZ;}
 C G={23,1};
 i mulch(c db,c d,c b){F x;E p; return
 lift(p,feed(x,b),(db==d||b==G))&&drop(x,mule(p,d))&&bite(db,x);}
 <CODE ENDS>

 The pseudocode function mulch -- which multiplies byte string
 (character) representations of point b by the byte string
 representation of integer d -- omits public key validation of the
 input point b if the base of scalar multiplication is the chosen
 fixed base, or if the input integer d and output point db have the
 same location.

 The reason for the latter omission of public key validation is the
 integer d is overwritten presumably the caller of mulch intended to
 use d only once, so that d is likely to be an ephemeral secret,
 largely obviating the need to validate b.

Brown 2y^2=x^3+x over 8^91+5 [Page 36]

Internet-Draft 2019-10-03

 In other words, the caller of mulch can control whether public key
 validation is done by choosing the locations of db, b, b
 appropriately. (An alternative would be for mulch to include a flag
 to indicate whether b needs to be validated. Instead, the
 pseudocode tries to make mulch do the sensible choice for
 Diffie--Hellman if the caller forgets whether public key validation
 is necessary.)

 The pseudocode files tv.c, dhe.c and pkv.c, define in the sections
 below, demonstrate the use of mulch, and its features regarding
 public key validation.

 In case, mulch returns a Boolean-valued integer indicating whether b
 was valid. If validation was requested by the interface, and b is
 invalid, then mulch return false (0), and the memory location db
 should remain unaltered.

 Note: the pseudocode makes types c and C volatile, with the aim
 that the C compiler will preserve attempts to zeroize values of
 this type. Such zeroization steps in the pseudocode do add
 clutter to the code, but have usually been delimited by
 parentheses or braces to indicate their implementation-specific
 purpose.

C.1.3. Bernstein's 2-dimensional Montgomery ladder

 Bernstein's 2-dimensional ladder is a variant of Montgomery's ladder
 that computes aP+bQ, for any two points P and Q, more quickly than
 computing aP and bQ separately.

 Curve 2y^2=x^3+x has an efficient endomorphism, which allows a point
 Q = [i+1]P to compute efficiently. Gallant, Lambert and Vanstone
 introduced a method (now called the GLV method), to compute dP more
 efficiently, given such an efficient endomorphism. They write d = a
 + eb where e is the integer multiplier corresponding to the
 efficient endomorphism, and a and b are integers smaller than d.
 (For example, 17 bytes each instead of 34 bytes.)

 The GLV method can be combined with Bernstein's 2D ladder algorithm
 to be applied to compute dP = (a+be)P = aP + beP = aP + bQ, where
 e=i+1.

 This algorithm is not implemented by any pseudocode in the version
 the draft. (Previous versions had it.)

 See [B1] for further explanation and example pseudocode.

Brown 2y^2=x^3+x over 8^91+5 [Page 37]

Internet-Draft 2019-10-03

 I have estimate a ~10% speedup of this method compared to the plain
 Montgomery ladder. However, the code is more complicated, and
 potentially more vulnerable to implementation-based attacks.

C.1.4. GLV in Edwards coordinates (Hisil--Carter--Dawson--Wong)

 To be completed.

 It is also possible to convert to Edwards coordinates, and then use
 the Hisil--Carter--Dawson--Wong (HCDW) elliptic curve arithmetic.

 The HCDW arithmetic can be combined with the GLV techniques to
 obtain a scalar multiplication potentially more efficient than
 Bernstein's 2-dimensional Montgomery. The downside is that it may
 require key-dependent array look-ups, which can be a security risk.

 I have implemented this, finding ~20% speed-up over my
 implementation of the Montgomery ladder. However, this speed-up may
 disappear upon further optimization (e.g. assembly), or further
 security hardening (safe table lookup code).

C.2 Pseudocode for test vectors

 The following pseudocode, describing the contents of a file tv.c,
 includes the previously defined file pseudo.c, and stdio.h, and then
 generates some test vectors.

 <CODE BEGINS>
 #include <stdio.h>
 #include "pseudo.c"
 #define M mulch
 void hx(c x){i j=B;for(;j--;)printf("%02x",x[j]);printf("\n");}
 int main (void){i j=1e5/2,wait=/*your mileage may vary*/7000;
 C x="TEST 2y^2=x^3+x/GF(8^91+5)",y="yet another test",z;
 M(z,x,G); hx(x),hx(G),hx(z);
 fprintf(stderr,"%30s(wait=~%ds, ymmv)","",j/wait);
 for(;j--;)if(fprintf(stderr,"\r%7d\r",j),!(M(z,x,z)&&M(x,z,G)))
 j=0*printf("Mulch fail rate ~%f :(\n",(2*j)/1e5);//else//debug
 hx(x),hx(z);
 M(y,y,G);M(y,y,y);
 for(M(z,G,G),j=900;j--;)M(z,x,z);for(j=900;j--;)M(z,y,z);hx(z);
 for(M(z,G,G),j=900;j--;)M(z,y,z);for(j=900;j--;)M(z,x,z);hx(z);}
 <CODE ENDS>

 To be completed: Explain this properly, if possible.

 The test vectors should output this:

Brown 2y^2=x^3+x over 8^91+5 [Page 38]

Internet-Draft 2019-10-03

 000000000000000029352b31395e382846472f782b335e783d325e79322054534554
 000117
 c8c0f2f404a9fabc91c939d8ea1b9e258d82e21a427b549f05c832cf8d48296ffad7
 5f336f56f86de3d52b0eab85e527f2ac7b9d77605c0d5018f5faa4243fd462b1badd
 fc023b3f03b469dca32446db80d9b388d753cc77aa4c3ee7e2bb86e99e7bed38f509
 8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221
 8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221

C.3. Pseudocode for a command-line demo of Diffie--Hellman

 The following code, representing a file dhe.c, is a bilingual: being
 valid C and bash script.

 As a bash script, it will compile the C code as dhe, then run it
 twice, once as Alice and once as Bob, piping the ephemeral public
 keys, and writing the resulting Diffie--Hellman agreed secret keys
 into pipes. The agreed secret keys are fed into SHA-256 to
 demonstrate their equality, but also to show the typical way to use
 DH agree keys (to hash them rather than use them directly).

 This pseudocode assumes a Linux-like system.

 <CODE BEGINS>
 #include "pseudo.c" /* dhe.c (also a bash script)
 : demos ephemeral DH, also creates, clobbers files dhba dha dhb
 : -- Dan Brown, BlackBerry, '19 */
 #include <stdio.h>
 _ get(c p,_*f){if(f)while(!fread((_*)p,B,1,f));}
 _ put(c p,_*f){if(f)fwrite((_*)p,B,1,f),fflush(f); bite(p,O);}
 int main (_){C s="/dev/urandom",p="EPHEMERAL s => OK if p INVALID";
 get(s,fopen((_*)s,"r")), mulch(p,s,G), put(p,stdout);
 get(p,stdin), mulch(s,s,p), put(s,stderr);} /*'
 [dhe.c -nt dhe] && gcc -O3 dhe.c -o dhe && echo "$(<dhe.c)"
 mkfifo dh{a,b,ba} 2>/dev/null || ([! -p dhba] && :> dhba)
 ./dhe <dhba 2>dha | ./dhe >dhba 2>dhb &
 sha256sum dha & sha256sum dhb # these should be equal
 (for f in dh{a,b,ba} ; do [-f $f] && \rm -f $f; done)# '*/
 <CODE ENDS>

C.4 Pseudocode for public-key validation and twist insecurity

 The following pseudocode, describing a file pkv.c, demonstrates the
 public-key validation features of mulch from pseudo.c, by
 deliberately supplying invalid points to mulch. It also
 demonstrates how to turn PKV on and off using the mulch interface.

Brown 2y^2=x^3+x over 8^91+5 [Page 39]

Internet-Draft 2019-10-03

 It also demonstrates the need for PKV despite using the Montgomery
 by finding points of low order on the twist of the curve, and
 showing that such points can leak bits of the secret multiplier.

 It further demonstrates the order of the curve, and complex
 multiplication by i, and the fact the 34-byte representation of
 points is unaffected by multiplication by i.

 <CODE BEGINS>
 #include <stdio.h>
 #include "pseudo.c"
 #define M mulch // works with +/- x, so P ~ -P ~ iP ~ -iP
 void hx(c x){i j=B;for(;j--;)printf("%02x",x[j]);printf("\n");}
 int main (void){i j;// sanity check, PKV, twist insecurity demo
 C y="TEST 2y^2=x^3+x/GF(8^91+5)",z="zzzzzzzzzzzzzzzzzzzz",
 q = "\xa9\x38\x04\xb8\xa7\xb8\x32\xb9\x69\x85\x41\xe9\x2a"
 "\xd1\xce\x4a\x7a\x1c\xc7\x71\x1c\xc7\x71\x1c\xc7\x71\x1c"
 "\xc7\x71\x1c\xc7\x71\x1c\x07", // q=order(G)
 i = "\x36\x5a\xa5\x56\xd6\x4f\xb9\xc4\xd7\x48\x74\x76\xa0"
 "\xc4\xcb\x4e\xa5\x18\xaf\xf6\x8f\x74\x48\x4e\xce\x1e\x64"
 "\x63\xfc\x0a\x26\x0c\x1b\x04", // i^2=-1 mod q
 w5= "\xb4\x69\xf6\x72\x2a\xd0\x58\xc8\x40\xe5\xb6\x7a\xfc"
 "\x3b\xc4\xca\xeb\x65\x66\x66\x66\x66\x66\x66\x66\x66\x66"
 "\x66\x66\x66\x66\x66\x66\x66"; // w5=(2p+2-72q)/5
 for(j=0;j<=3;j++)M(z,(C){j},G),hx(z); // {0,1,2,3}G, but reject 0G
 M(z,q,G),hx(z); // reject qG; but qG=O, under hood:
 {F x;E p;lift(p,feed(x,G),1);mule(p,q);hx(bite(z,p[1]));}
 for(j=0;j<0*25;j++){F x;E p;lift(p,feed(x,(C){j,1}),1);mule(p,q);
 printf("%3d ",j),hx(bite(z,p[1]));}// see j=23 for choice of G
 for(j=3;j--;)q[0]-=1,M(z,q,G),hx(z);// (q-{1,2,3})G ~ {1,2,3}G
 M(z,i,G),hx(z); i[0]+=1,M(z,i,G),M(z,i,z),hx(z);// iG~G,(i+1)^2G~2G
 M(w5,w5,(C){5}),hx(w5);// twist, ord(w5)=5, M(z,z,p) skipped PKV(p)
 M(G,(C){1},w5),hx(G);// reject w5 (G unch.); but w5 leaks z mod 5:
 for(j=10;j--;)M(z,y,G),z[0]+=j,M(z,z,w5),hx(z);}
 <CODE ENDS>

C.5. Elligator i

 To be deleted (or completed).

 This pseudocode would show how to implement to the Elligator i map
 from byte strings to points. This is INCOMPATIBLE with pseudocode
 above.

 Pseudocode (to be verified):

Brown 2y^2=x^3+x over 8^91+5 [Page 40]

Internet-Draft 2019-10-03

 <CODE BEGINS>
 typedef f xy[2] ;
 #define X p[0]
 #define Y p[1]
 lift(xy p, f r) {
 f t ; i b ;
 fix(r);
 squ(t,r); // r^2
 mul(t,I,t); // ir^2
 sub(t,(f){1},t); // 1-ir^2
 inv(t,t); // 1/(1-ir^2)
 mal(t,3,t); // 3/(1-ir^2)
 mul(t,I,t); // 3i/(1-ir^2)
 sub(X,I,t); // i-3i/(1-ir^2)
 b = get_y(t,X);
 mal(t,1-b,I); // (1-b)i
 add(X,X,t); // EITHER x OR x + i
 get_y(Y,X);
 mal(Y,2*b-1,Y); // (-1)^(1-b)""
 fix(X); fix(Y);
 }

 drop(f r, xy p)
 {
 f t ; i b,h ;
 fix(X); fix(Y);
 get_y(t,X);
 b=eq(t,Y);
 mal(t,1-b,I);
 sub(t,X,t); // EITHER x or x-i
 sub(t,I,t); // i-x
 inv(t,t); // 1/(i-x)
 mal(t,3,t); // 3/(i-x)
 add(t,I,t); // i+ 3/(i-x)
 mal(t,-1,t); // -i-3/(i-x)) = (1-3i/(i-x))/i
 b = root(r,t) ;
 fix(r);
 h = (r[4]<(1LL<<52)) ;
 mal(r,2*h-1,r);
 fix(r);
 }

Brown 2y^2=x^3+x over 8^91+5 [Page 41]

Internet-Draft 2019-10-03

 elligator(xy p,c b) {f r; feed(r,b); lift(p,r);}

 crocodile(c b,xy p) {f r; drop(r,p); bite(b,r);}
 <CODE ENDS>

D. Primality proofs and certificates

 Recent work of Albrecht and others [AMPS] has shown the combination
 of adversarially chosen prime and improper probabilistic primality
 tests can result in attacks.

 The adversarial primes are generally result of an exhaustive search,
 and therefore contain an amount of information corresponding to the
 length of their search, putting a predictable lower bound on their
 Kolmogorov complexity.

 The two primes involved for 2y^2=x^3+x/GF(8^91+5) should perhaps
 already resist [AMPS] because of compact representation of these
 primes:

 p = 8^91+5
 q = #(2y^2=x^3+x/GF(8^91+5))/72

 The [AMPS] can also be resisted by:

 - properly implementing probabilistic primality test, or
 - implementing provable primality tests.

 Provable primality tests can be very slow, but can be separated into
 two steps: a slow certificate generation, and a fast certificate
 verification. The certificate is a set of data, representing an
 intermediate step in the provable primality test, after which the
 completion of the test is quite efficient.

 Pratt primality certificate generation for any prime p, involves
 factorizing p-1, which can be very slow, and then recursively
 generating a Pratt primality certificate for each prime factor of
 p-1. Essentially, each prime has a unique Pratt primality
 certificate.

 Pratt primality certificate verification of (p-1), involves search
 for g such that 1 = (g^(p-1) mod p) and 1 < (g^((p-1)/q) mod p) for
 each q dividing p-1, and then recursively verifying each Pratt
 primality certificate for each prime factor q of p-1.

Brown 2y^2=x^3+x over 8^91+5 [Page 42]

Internet-Draft 2019-10-03

 In this document, we specify a Pratt primality certificate as a
 sequence of (candidate) primes each being 1 plus a product of
 previous primes in the list, with certificate stating this product.

 Although Pratt primality certificate verification is quite
 efficient, an ECC implementation can opt to trust 8^91+5 by virtue
 of verifying the certificate once, perhaps before deployment or
 compile time.

D.1. Pratt certificate for the field size 8^91+5

 Define 52 positive integers, a,b,c,...,z,A,...,Z as follows:

 a=2 b=1+a c=1+aa d=1+ab e=1+ac f=1+aab g=1+aaaa h=1+abb i=1+ae
 j=1+aaac k=1+abd l=1+aaf m=1+abf n=1+aacc o=1+abg p=1+al q=1+aaag
 r=1+abcc s=1+abbbb t=1+aak u=1+abbbc v=1+ack w=1+aas x=1+aabbi
 y=1+aco z=1+abu A=1+at B=1+aaaadh C=1+acu D=1+aaav E=1+aeff F=1+aA
 G=1+aB H=1+aD I=1+acx J=1+aaacej K=1+abqr L=1+aabJ M=1+aaaaaabdt
 N=1+abdpw O=1+aaaabmC P=1+aabeK Q=1+abcfgE R=1+abP S=1+aaaaaaabcM
 T=1+aIO U=1+aaaaaduGS V=1+aaaabbnuHT W=1+abffLNQR X=1+afFW
 Y=1+aaaaauX Z=1+aabzUVY.

 Note: variable concatenation is used to indicate multiplication.
 For example, f = 1+aab = 1+2*2*(1+2) = 13.

 Note: One must verify that Z=8^91+5.

 Note: The Pratt primality certificate involves finding a generator
 g for each the prime (after the initial prime). It is possible to
 list these in the certificate, which can speed up verification by
 a small factor.

 (2,b), (2,c), (3,d), (2,e), (2,f), (3,g), (2,h), (5,i), (6,j),
 (3,k), (2,l), (3,m), (2,n), (5,o), (2,p), (3,q), (6,r), (2,s),
 (2,t), (6,u), (7,v), (2,w), (2,x), (14,y),(3,z), (5,A), (3,B),
 (7,C), (3,D), (7,E), (5,F), (2,G), (2,H), (2,I), (3,J), (2,K),
 (2,L),(10,M), (5,N), (10,O),(2,P), (10,Q),(6,R), (7,S), (5,T),
 (3,U), (5,V), (2,W), (2,X), (3,Y), (7,Z).

Brown 2y^2=x^3+x over 8^91+5 [Page 43]

Internet-Draft 2019-10-03

 Note: The decimal values for a,b,c,...,Y are given by: a=2, b=3,
 c=5, d=7, e=11, f=13, g=17, h=19, i=23, j=41, k=43, l=53, m=79,
 n=101, o=103, p=107, q=137, r=151, s=163, t=173, u=271, v=431,
 w=653, x=829, y=1031, z=1627, A=2063, B=2129, C=2711, D=3449,
 E=3719, F=4127, G=4259, H=6899, I=8291, J=18041, K=124123,
 L=216493, M=232513, N=2934583, O=10280113, P=16384237, Q=24656971,
 R=98305423, S=446424961, T=170464833767, U=115417966565804897,
 V=4635260015873357770993, W=1561512307516024940642967698779,
 X=167553393621084508180871720014384259,
 Y=1453023029482044854944519555964740294049.

D.2. Pratt certificate for subgroup order

 Define 56 variables a,b,...,z,A,B,...,Z,!,@,#,$, with new
 values:

 a=2 b=1+a c=1+a2 d=1+ab e=1+ac f=1+a2b g=1+a4 h=1+ab2 i=1+ae
 j=1+a2d k=1+a3c l=1+abd m=1+a2f n=1+acd o=1+a3b2 p=1+ak q=1+a5b
 r=1+a2c2 s=1+am t=1+ab2d u=1+abi v=1+ap w=1+a2l x=1+abce y=1+a5e
 z=1+a2t A=1+a3bc2 B=1+a7c C=1+agh D=1+a2bn E=1+a7b2 F=1+abck
 G=1+a5bf H=1+aB I=1+aceg J=1+a3bc3 K=1+abA L=1+abD M=1+abcx N=1+acG
 O=1+aqs P=1+aqy Q=1+abrv R=1+ad2eK S=1+a3bCL T=1+a2bewM U=1+aijsJ
 V=1+auEP W=1+agIR X=1+a2bV Y=1+a2cW Z=1+ab3oHOT !=1+a3SUX @=1+abNY!
 #=1+a4kzF@ $=1+a3QZ#

 Note: numeral after variable names represent powers. For example,
 f = 1 + a2b = 1 + 2^2 * 3 = 13.

 The last variable, $, is the order of the base point, and the order
 of the curve is 72$.

 Note: Punctuation used for variable names !,@,#,$, would not scale
 for larger primes. For larger primes, a similar format might work
 by using a prefix-free set of multi-letter variable names.
 E.g. replace, Z,!,@,#,$ by Za,Zb,Zc,Zd,Ze:

Acknowledgments

 Thanks to John Goyo and various other BlackBerry employees for past
 technical review, to Gaelle Martin-Cocher for encouraging submission
 of this I-D. Thanks to David Jacobson for sending Pratt primality
 certificates.

Brown 2y^2=x^3+x over 8^91+5 [Page 44]

Internet-Draft 2019-10-03

Author's Address

 Dan Brown
 4701 Tahoe Blvd.
 BlackBerry, 5th Floor
 Mississauga, ON
 Canada
 danibrown@blackberry.com

Brown 2y^2=x^3+x over 8^91+5 [Page 45]

