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D.2.  Pratt certificate for subgroup order

1.  Introduction

  This document specifies a type of elliptic curve cryptography (ECC)
  using the curve

    2y^2=x^3+x / GF(8^91+5).

  This curve is useful as part of a multi-curve ECC system that
  combines a diverse set of curves for extra security.

  The extra security in using multiple curves is a strongest-link,
  multi-layer, fail-safe, defense-in-depth against potential (but not
  yet known) attacks against one or more of the curves.

    Note: Using multiple curves adds a nonzero cost to an ECC system.
    On a current personal computer, this extra cost includes up to 1
    millisecond of runtime and sending an extra 34 bytes, per ECC
    transaction.  In low-end devices, the time may be higher due to
    slower processors, making the cost might be unaffordable.  Even in
    high-end devices, the benefit-to-cost comparison is quite
    questionable: is the little extra security (against a potential
    but unlikely and unknown threat) even worth the cost of extra
    runtime and traffic?  The answer may depend on the data being
    protected.  If the answer is deemed to be "yes", then multi-curve
    ECC is useful, and curve 2y^2=x^3+x/GF(8^91+5) can contribute to
    this security.

  Comparing single curves when used in isolation, which is current ECC
  tradition, curve 2y^2=x^3+x/GF(8^91+5) is arguably riskier than the
  more well-established curves (such as NIST P-256, Curve25519, and
  even Brainpool).

  In traditional single-curve ECC systems, the curve
  2y^2=x^3+x/GF(8^91+5) SHOULD NOT be used, due to its risk begin
  greater than more well-established curves.

  Multi-curve ECC is not noticeably more secure than ECC if all of the
  multiple curves are the actually the same curve.  Therefore, a
  diversity of dissimilar curves is needed to achieve extra security,
  with each curve hedging against a failure in dissimilar curves.
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  The curve 2y^2=x^3+x/GF(8^91+5) has features marking it as
  dissimilar from some of well-established curves: especially lower
  Kolmogorov complextiy and complex multiplication by i.

1.1.  Background

  This document presumes that its reader already has familiarity with
  elliptic curve cryptography (ECC).

1.1.1.  Notation

  The symbol '^', as used in '2y^2=x^3+x' and '8^91+5' means
  exponentiation, also known as powering.  For example, y^3=yyy, or
  y*y*y, if * is used for multiplication, and 8^91 = 8*8*...*8, with
  91 eights in the product on the right.

    Note: This document does not use '^' the way that C (and similar
    programming languages) does (as a bit-wise exclusive-or).

  In hexadecimal (base 16, big-endian) notation, the number 8^91+5 is

  200000000000000000000000000000000000000000000000000000000000000000005

  with with 67 zeros between 2 and 5.

    Note: For a lack of a better term, standard ECC terminology uses
    the a slight misnomer, "scalar multiplication" for the computation
    dP = P + ... + P for the P a point on the curve, d an integer, +
    the elliptic curve group addition and law, and the right hand side
    implying d terms.  This suggests calling the integer d a scalar.
    This is a misnomer, because, in other areas of mathematics,
    scalars are used to multiply vectors, but elliptic curve scalar
    multiplication is not really vector multiplication, and risks the
    suggestion of confusing d(x,y) with (dx,dy).  (That said, an
    elliptic curve group, like any abelian group, is a module over the
    ring of integers.  Since a module is to a ring the analogue of a
    vector space to a field, the terminology is arguably justifiable.)

1.1.2.  Basic features

  The underlying field (for defining the curve) is a prime, p=8^91+5.
  It is very close to a power of two, which is sometimes known as a
  Crandall prime, making reduction modulo p relatively efficient.
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  The prime p being slightly larger (not smaller) than a power of two,
  means that common algorithms for computing inverses, Legendre
  symbols, and square roots are relatively simple (and slightly more
  efficient).

  The curve equation 2y^2=x^3+x has Montgomery form,

     by^2=x^3+ax^2+x,

  with (a,b) = (0,2).  This permits the Montgomery ladder scalar point
  multiplication algorithm to be used, which makes it relatively
  efficient, and also easier to protect against side channels.

  The curve 2y^2=x^3+x has complex multiplication by i, given by the
  map

   (x,y) -> (-x,iy).

  This permits the Gallant--Lambert--Vanstone (GLV) scalar
  multiplication algorithm, which makes it relatively efficient.  (The
  GLV method can also be combined with Bernstein's two-dimensional
  variant of the Montgomery ladder algorithm.)

  The curve has j-invariant 1728.

    Note: Over the complex numbers, j-invariant 0 and 1728 are
    special, being the only two non-smooth orbifold points the moduli
    space of elliptic curves, which also means that the curves have
    extra symmetry.

  The curve 2y^2=x^3+x is not supersingular (as defined over the prime
  p=8^91+5).

  The curve has order 72q for a large prime q, meaning it has cofactor
  72, so it is not vulnerable Pohlig--Hellman attack, and it not
  vulnerable to the Semaev--Araki--Satoh--Smart attack.

  The cofactor 72 is divisible by 4 (and also 3), meaning it is
  isomorphic to a curve with an Edwards equation (and also to cure
  with a Hessian equation), which may permit yet more efficient
  implementation (and yet further combination with the GLV method).

  The curve has a large embedding degree, so it has no efficient
  pairing operation.  It is therefore also not vulnerable to the
  Menezes--Okamoto--Vanstone attack.
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  The best known algorithm to solve the discrete logarithm in the
  group are Pollard rho algorithms and its variants, (with minor
  enhancements due to Gallant, Lambert, Vanstone, which take advantage
  of the extra map for complex multiplication), which takes
  approximately sqrt(q) point additions to compute a discrete
  logarithm (with success rate 1/2).

1.1.3.  Multi-curve ECC

  This document does not specify how to do multi-curve elliptic curve
  cryptography, but some ideas are sketch without much detail.

  Multi-curve Diffie--Hellman key agreement could perhaps compute 10
  shared secrets (hashed) with 10 very different curves, and then XOR
  them together to get one secret.  Presumably, as long as one of the
  Diffie--Hellman secrets is secure, the XOR of 10 is secure.  All the
  Diffie--Hellman private keys (scalars) should be independent and so
  on.

  For signatures, one might just apply multiple signatures, with
  different curves (and perhaps different signature algorithms).

  This document does not specifically recommend which other curves
  should be combined with 2y^2=x^3+x/GF(8^91+5), but suggests the
  at least following:

    - Use one or more well-established curves, such as NIST P-256 or
      Curve25519.

    - Use one or more curves without complex multiplication, such as
      NIST P-256 or Curve25519.

    - Use one or more pseudo-randomized curves, such as NIST P-256 or
      Brainpool or something else.

    - Use one or more curves whose security features complement those
      2y^2=x^3+x/GF(8^91+5) in any other way.

    - Use at least three or more curves, since is likely two rather
      different curves are reasonably less risky than
      2y^2=x^3+x/GF(8^91+5).
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1.2.  Speculative security motivation

  The section explain why to use 2y^2=x^3+x/GF(8^91+5) in a set of
  three of more curves, rather than a set of three or more curves
  without the curve 2y^2=x^3+x/GF(8^91+5).

  The main motivation for the specific curve is that its description
  of the curve is very short (for an otherwise secure elliptic curve),
  thereby reducing the room for a possible secretly embedded trapdoor,
  as in [Teske].

  A lesser motivation for the curve is its special features.  A very
  remote potential catastrophe in ECC would be attack on most curves.
  In this disaster scenario, perhaps only a few curves survive, saved
  by some special feature.  Complex multiplication by i is perhaps one
  of those features.  Surviving such a disaster would be a fluke, but
  diversity is perhaps the best possible hedge against this event.
  More probable than such a disaster would be an attack that exploits
  precisely the special features of curve 2y^2=x^3+x/GF(8^91+5) which
  makes it different from better established curves.  So, it is only
  really sensible to use the curve in combination with other very
  different curves.

  More detailed motivations for curve 2y^2=x^3+x over field 8^91+5 are
  discussed in Appendix B (and in [AB] and [B1]).

2.  Requirements Language (RFC 2119)

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [BCP14].

3.  Encoding points

  Elliptic curve cryptography uses points for public keys and raw
  shared secrets.

  Abstractly, points are mathematical objects.  For curve 2y^2=x^3+x,
  a point is either a pair (x,y), where x and y are elements of
  mathematical field, or a special point O, both of whose coordinates
  may be deemed as infinity.

  For curve 2y^2=x^3+x/GF(8^91+5), the coordinates x and y of the
  point (x,y) are integers modulo 8^91+5, which can be represented as
  integers in the interval [0,8^91+4].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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    Note: for practicality, an implementation will often internally
    represent the x-coordinate as a ratio [X:Z] of field elements.
    Each field element has multiple representations, but [x:1] can
    viewed as normal representation of x.  (Infinity can be then
    represented by [1:0], though one must be careful.)

  To interoperably communicate, points must be encoded as byte
  strings.

  This draft specifies an encoding of finite points (x,y) as strings
  of 34 bytes, as described in the following sections.

    Note: The 34-byte encoding is not injective. Each point is
    generally among a group of four points that share the same byte
    encoding.

    Note: The 34-byte encoding is not surjective.  Approximately half
    of 34-byte strings do not encode a point (x,y).

    Note: In many typical ECC schemes, the 34-byte encoding works
    well, despite being neither injective nor surjective.

3.1.  Point encoding process

3.1.1.  Summary

  A point (x,y) is encoded by the little-endian byte representation of
  x or -x, whichever fits into 34 bytes.

3.1.2.  Details

  A point (x,y) is encoded into 34 bytes, as follows.

  First, ensure that x is fully reduced mod p=8^91+5, so that

    0 <= x < 8^91+5.

  Second, further reduce x by a flipping its sign, as explained next.
  Let

   x' =: min(x,p-x) mod 2^272.

  Third, set the byte string b to be the little-endian encoding of the
  reduced integer x', by finding the unique integers b[i] such that
  0<=b[i]<256 and

   (x' mod 2^272) = sum (0<=i<=33, b[i]*256^i).
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  Pseudocode can be found in Appendix C.

    Note: The loss of information that happens upon replacing x by -x
    corresponds to applying complex multiplication by i on the curve,
    because i(x,y) = (-x,iy) is also a point on the curve.  (To see
    this: note 2(iy)^2 = -(2y^2) = -(x^3+x) = (-x)^3+(-x).)  In many
    applications, particularly Diffie--Hellman key agreement, this
    loss of information is carried through the final shared secret,
    which means that Alice and Bob can agree on the same secret 34
    bytes.

  In ECC systems where the original x-coordinate and the decoded
  x-coordinate need to match exactly, then the 34-byte encoding is
  probably not usable unless the following pre-encoding procedure is
  practical:

  Given a point x where x is larger than min(x,p-x), first replace x
  by x'=p-x, on the encoder's side, using the new value x' (instead of
  x) for any further step in the algorithm.  In other words, replace
  the point (x,y) by the point (x',y')=(-x,iy).  Most algorithms will
  also require a discrete logarithm d of (x,y), meaning (x,y) = [d] G
  for some point G.  Since (x',y') = [i](x,y), we can replace by d'
  such that [d']=[i][d].  Usually, [i] can be represented by an
  integer, say j, and we can compute d' = jd (mod ord(G)).

3.2.  Point decoding process

3.2.1.  Summary

  The bytes are little-endian decoded into an integer which
  becomes the x-coordinate.  Public-key validation done if needed.  If
  needed, the y-coordinate is recovered.

3.2.2.  Detail

  If byte i is b[i], with an integer value between 0 and 255
  inclusive, then

   x = sum( 0<=i<=33, b[i]*256^i)

    Note: a value of -x (mod p) will also be suitable, and results in
    a point (-x,y') which might be different from the originally
    encoded point.  However, it will be one of the points [i](x,y) or
    -[i](x,y) where [i] means complex multiplication by [i].
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  In many cases, such as Diffie--Hellman key agreement using the
  Montgomery ladder, neither the original value of x or -x nor
  coordinate y of the point is needed.  In these cases, the decoding
  steps can be considered completed.

    +-------------------------------------------------------+
    |                                                       |
    |        \  W  / /A\  |R) |N | I |N | /G   !            |
    |         \/ \/ /   \ |^\ | \| | | \| \_7  0            |
    |                                                       |
    |                                                       |
    |  WARNING: Some byte strings b decode to an invalid    |
    |  point (x,y) that does not belong to the curve        |
    |  2y^2=x^3+x.  In some situations, such invalid b can  |
    |  lead to a severe attack.  In these situations, the   |
    |  decoded point (x,y) MUST be validated, as described  |
    |  below in Section 4.                                  |
    |                                                       |
    +-------------------------------------------------------+

  In cases where a value for at least one of y, -y, iy, or -iy is
  needed such as Diffie--Hellman key agreement using some other
  coordinate system (such as one might need when converting to Edwards
  coordinates), the candidate value can be obtained by computing a
  square root:

    y = ((x^3+x)/2)^(1/2).

  In some cases, it is important for the decoded value of x to match
  the original value of x exactly.  In that case, the encoder should
  use the procedure that replace x by p-x, and adjusts the discrete
  logarithm appropriately.  These steps can be done by the encoder,
  with the decoder doing nothing.

4.  Point validation

  In elliptic curve cryptography, scalar multiplying an invalid public
  key by a private key risks leaking information about the private
  key.

    Note: For curve 2y^2=x^3+x over 8^91+5, the underlying attacks are
    a little milder than the average a typical elliptic curve.

  To avoid leaking information about the private, the public key can
  be validated, which includes various checks on the public key.
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4.1.  When to validate

  This section specifies several strategies.

4.1.1.  Mandatory validation

  As a precautionary defense-in-depth, an impelementation MAY opt to
  apply mandatory validation, meaning every public key (and point) is
  validated.

4.1.2.  Simplified validation

  A small, general-purpose, implementation aiming for high speed might
  not be able to afford the cost of mandatory validation from Section
4.1.1, because each validation costs about 10% of a scalar

  multiplication.

  As a practical middle groun, an impelmentatio MAY opt to apply
  simplified validation, which is the rule is that a distrusted public
  key is validated before being scalar multiplied by a static secret
  key.

    +---------------------------------------------------------------+
    |   STATIC                                                      |
    |   SECRET                                                      |
    |    KEY      ------\                     _  ___                |
    |     +              )   PUBLIC |\/| | | (_`  |                 |
    |  UNTRUSTED  ------/    KEY    |  | \_/ ._)  |  BE VALIDATED.  |
    |   PUBLIC                                                      |
    |    KEY                                                        |
    +---------------------------------------------------------------+

    Note: Simplified validation implies that when the secret key is
    ephemeral (for example, used in one Diffie--Hellman transaction),
    the public key need not be validated.

    Note: Simplified validation implies that when the point being
    scalar multiplied, is a known valid fixed point, or a previously
    validated public key (including a public key from a certificate in
    which the certification authority has a policy to valid public
    keys), then validation is not needed.

4.1.4.  Minimal validation

  An implementation MAY opt to use minimal validation, meaning doing
  as little point validation as possible, just enough to resist known
  attack against the implementation.
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  The curve 2y^2=x^3+x is not twist-secure: using the Montgomery
  ladder for scalar multiplication is not enough to thwart invalid
  public key attacks.

    Note: the twist of 2y^2=x^3+x/GF(8^91+5) curve has order:

    2^2 * 5 * 1526119141 * 788069478421 * 182758084524062861993 *
    3452464930451677330036005252040328546941

  For example, consider a static hashed-ECDH implementation
  implemeneted with a Montgomery ladder, such that the static secret
  key is used at most ten million times hashed-ECDH transactions.
  Even if exposed to invalid points on the twist, the secruity risk is
  nearly negligible.

4.2.  Point validation process

  Upon decoding a 34-byte string into x, the next step is to compute
  z=2(x^3+x). Then one checks if z has a nonzero square root (in the
  field of size 8^91+5).  If z has a nonzero square root, then the
  represented point is valid, otherwise it is not valid.

  Equivalently, one can check that x^3 + x has no square root (that
  is, x^3+x is a quadratic non-residue).

  To check z for a square root, one can compute the Legendre symbol
  (z/p) and check that is 1.  (Equivalently, one can check that
  ((x^3+x)/p)=-1.)

  The Legendre symbol can be computed using Gauss' quadratic
  reciprocity law, but this requires implementing modular integer
  arithmetic for moduli smaller than 8^91+5.

  More slowly, but perhaps more simply, one can compute the Legendre
  symbol using powering in the field: (z/p) = z^((p-1)/2) =
  z^(2^272+2).  This will have value 0,1 or p-1 (which is equivalent
  to -1).

  More generally, in signature applications (such as [B2]), where the
  y-coordinate is also needed, the computation of y, which involves
  computing a square root will generally include a check that x is
  valid.

  OPTIONAL: In some rare situations, it is also necessary to ensure
  that the point has large order, not just that it is on the curve.
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  For points on this curve, each point has large order, unless it has
  torsion by 12.  In other words, if [12]P != O, then the point P has
  large order.

  OPTIONAL: In even rarer situations, it may be necessary to ensure
  that a point P also has a prime order n = ord(G).  The costly method
  to check this is checking that [n]P = O.  An alternative method is
  to try to solve for Q in the equation [12]Q=P, which involves
  methods such a division polynomials.

  To be completed.

5.  OPTIONAL encodings

  The following two encodings are not usually required to obtain
  interoperability in the typical ECC applications, but can sometimes
  be useful.

5.1.  Encoding scalars

  Scalar (integer point multipliers) sometimes needed to be encoding
  as byte strings, at least internally to an implementation.

  Basically, little-endian byte encoding of integers is recommended.

  In Diffie--Hellman only implementations, the scalars s and p-s
  really have not significant distinction, so all scalars can be
  represented with 34 bytes.

  Applications:

   - Digital signature in ECC generallly require scalar encodings.
     This draft does not specify signature algorithms in detail, only
     providing some general suggestions.

   - An implementation needs to store scalars, because scalars are
     used at least twice, and must be stored between these two uses.
     For example, in elliptic curve Diffie--Hellman, Alice has scalar
     a, sends Bob point aG, keeps scalar a until she receives point
     B from Bob, to which she then applies aB.  (If a is ephemeral,
     she then deletes a.)  An implementation is free to use any
     encoding of scalar, but implementation are often constructed in
     modular pieces, and any pieces handling the same scalar need to
     be able to convey the scalar.
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5.2.  Encoding strings as points

  In niche applications, it may be desired to encode an arbtirary
  string as a point on a curve.  Example reasons to encode arbitrary
  34-byte strings include:

    - Encoding passwords (or their hashes) for use in
      password-authenticated key exchange.

    - Hiding the fact that ECC is being used.

  To this end, this section sketches a method to reversibly encode
  any 34-byte string as a point.

    Note: To encode variable-length strings as points, one can first
    compute a 34-byte hash of the variable-length string, and then
    encode the hash.  Encoding of variable-length strings is not, and
    cannot be, reversible.

    Note: The point decoding scheme of Section 3.2 does not suffice to
    encode strings, becausse only about half of all 34-byte strings
    are decodable.

    Note: The string-as-point encoding has the the property that only
    about half of all points are decodable as 34-bytes strings.
    Encoding a uniformly distributed 34-byte string as a point yields
    non-uniformly distributed points.

  The encoding is called Elligator i.

    Note: The Elligator i encoding is a minor variation of the
    Elligator 2 construction [Elligator], introduced in [B1].  The
    variation is necessary because Elligator 2 fails for curves with
    j-invariant 1728, and curve 2y^2=x^3+x has j-invariant 1728.

  Fix a square root i of -1 in the field in GF(8^91+5).  For example,
  2^(8^89+1) mod 8^91+5.

  To encode a 34-byte string b,
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    1. Let b represent a field element r, using little-endian base
       256.

    2. Compute x = i-3i/(1-ir^2).  Let j=1.

    3. If 2y^2=x^3+x has no solution y, then replace x by x+i and j by
       j+1.

    4. Find two solutions y[1] and y[2] to 2y^2=x^3+x, such that
       y[1]<y[2].

    5. Compute y=y[j].

  Now (x,y) is a point on the curve 2y^2=x^3+x.

  The Elligator i encoding is reversible, because it has the decoding
  sketched below.

  If y>p-y, replace x by x-i.  Solve for s = -i - 3/(i-x).  Let r =
  sqrt(s).  If r > p-r, replace r by p-r.  Write r in little-endian
  base 256 to get a 34-byte string b.

    Note: Just to illustrate a constrast between Elligator i encoding
    and the normal point encoding, consider the useless example of
    applying both encodings.  Start with 34-byte string b.  Apply
    Elligator i encoding to get a point (x,y).  Apply the point
    encoding to (x,y) to get a 34-byte string b'.  In summary,
    b'=encode(encode(b)).  The byte string b' has no significant
    relation to b.  The map b->b' from 34-byte strings to themselves
    is lossy (non-injective) with ratio ~4:1, and the image set is
    about one quarter of all 34-byte strings.

6.  IANA Considerations

  This document requires no actions by IANA, yet.

7.  Security considerations

  No cryptographic algorithm is without risk.

  Theoretically, therefore, cryptographic risk analysis should be
  comparative: so that the least risky cryptographic algorithm can be
  chosen.  Practically, however, it is difficult to compare an
  algorithm to all others.
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  For practicality, this section lists the most plausible risks of
  2y^2=x^3+x/GF(8^91+5), comparing these against a general background
  of any curve in ECC.  To a lesser degree, this section contrasts
  these risks to a few other well-established and standardized
  specific curves.

7.1.  Field choice

  The field 8^91+5 has the following risks.

  - 8^91+5 is a special prime.  As such, it is perhaps vulnerable to
    some kind of attack.  For example, for some curve shapes, the
    supersingularity depends on the prime, and the curve size is
    related in a simple way to the field size, causing a potential
    correlation between the field size and the effectiveness of an
    attack, such as the Pohlig--Hellman attack.  In summary, field
    size is positively correlated to some known attacks, and perhaps a
    special field size is positively correlated to a potential attack.

    Nonetheless, many other standard curves, such as the NIST P-256
    and Curve25519, also use special prime field sizes.  In this
    regard, all these special field curves have a similar risk.

    Yet other standard curves, such as the Brainpool curves, use
    pseudorandom field sizes, reducing their risk to potential
    special-field attack.

  - 8^91+5 arithmetic implementation, while implementable in five
    64-bit words, has some risk of overflowing, or of not fully
    reducing properly.  Perhaps a smaller field, such as that used in
    Curve25519, has a simpler reduction and overflow-avoidance
    properties.

  - 8^91+5, by virtue of being well-above 256 bits in size, risks its
    user doing extra, and perhaps unnecessary, computation to protect
    their 128-bit keys, whereas smaller curves might be faster (as
    expected) yet still provide enough security.  In other words, the
    extra computational cost for exceeding 256 bits is wasteful, and
    partially a form of denial of service.

  - 8^91+5 is smaller than some other six-symbol primes: 8^95-9,
    9^99+4 and 9^87+4.  Therefore, arguably, 8^91+5 fails to
    absolutely maximize field size relative to Kolmogorov complexity.
    In particular, curves defined over larger field size have better
    Pollard rho resistance (of the ECDLP).
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    Nonetheless, the primes 9^99+4 and 9^87+4 are not close to a power
    of two, so probably suffer from much slower implementation than
    8^91+5, which is a significant runtime cost, and perhaps also a
    security risk (due to implementation bugs).

    The prime 8^95-9 is, just like 8^91+5, very close to a power of
    two.  So should have comparable efficiency for basic field
    arithmetic operations, such as addition, multiplication and
    reduction.  The field 8^95-9 is a little larger, but can still be
    implemented using five 64-bit words.  Being larger, 8^95-9, it has
    a slightly greater risk than 8^91+5 of leading to an arithmetic
    overflow implementation fault in field arithmetic.  Field size
    8^95-9 has much less simple powering algorithms for computing
    field inverses, Legendre symbols, and square roots: so these
    operations, often important for ECC, may require more code, more
    runtime, and perhaps more risk of implementation bug.

  - 8^91+5 is smaller than 2^283 (the field size for curve sect283k1
    [SEC2], [Zigbee]), and many other five-symbol and four-symbol
    prime powers (such as 9^97).  It provides less resistance to
    Pollard rho than such larger prime powers.  Recent progress in the
    elliptic curve discrete logarithm problem, [HPST] and [Nagao], is
    the main reason to prefer prime fields instead of power of prime
    fields.  A second reason to prefer a prime field (including the
    field of size 8^91+5) over small characteristic fields is the
    generally better software speed of large characteristic field.
    (Better software speed is mainly due to general-purpose hardware
    often having dedicated fast multiplication circuits:
    special-purpose hardware should make small characteristic field
    faster.)

  - The Kolmogorov complexity of 8^91+5 as six symbols is only minimal
    for decimal exponential complexity: but it is not minimal if other
    types of complexity measures are allowed.  For example, if we
    allow the exclamation mark for the factorial operation -- which is
    quite standard notation! -- primes larger than 8^91+5 expressible
    in fewer symbols.  For example, 94!-1 is a 485-bit prime number,
    expressible in five symbols.  Such numbers, so far as I know, are
    not close to a power of two, so would have similar inefficiency
    and implementability defects to primes like 9^99+4 and 9^87+4.
    Such inefficiencies could resaonably by the curve choice criteria,
    ruling out such primes.
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    Arguably, in traditional mathematical notation, the symbol '^' is
    not actually written, with operation being marked by the use of
    superscripts.  In this view, using an ASCII character count
    arugably gives unduly low weight to the factorial operation as
    compared to exponentiation.

  See [B1] for further discussion about the relative merits of 8^91+5.

    Note: For any form of ECC, finite field multiplication can be
    achieved most quickly by using hardware integer multiplication
    circuits.  It is critical that those circuits have no bugs or
    backdoors.  Furthermore, those circuits typically can only
    multiply integers smaller than the field elements.  Larger inputs
    to the circuits will cause overflows.  It is critical to avoid
    these overflows, not just to avoid interoperability failures, but
    also to avoid attacks where the attackers supply inputs likely
    induce overflows [bug attacks], [IT].

  To be completed:

  Projective coordinates are not suitable as the final representation
  of an elliptic curve point, for two reasons.

  - Projective coordinates for a point are generally not unique: each
    point can be represented in projective coordinates in multiple
    different ways.  So, projective coordinates are unsuitable for
    finalizing a shared secret, because the two parties computing the
    shared secret point may end up with different projective
    coordinates.

  - Projective coordinates have been shown to leak information about
    the scalar multiplier [PSM], which could be the private
    key.  It would be unacceptable for a public key to leak
    information about the private key.  In digital signatures, even a
    few leaked bits can be fatal, over a few signatures
    [Bleichenbacher].

  Therefore, the final computation of an elliptic curve point, after
  scalar multiplication, should translate the point to a unique
  representation, such as the affine coordinates described in this
  report.

  For example, when using a Montgomery ladder, scalar multiplication
  yields a representation (X:Z) of the point in projective
  coordinates.  Its x-coordinate is then x=X/Z, which can be computed
  by computing the 1/Z and then multiplying by X.
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  The safest, most prudent way to compute 1/Z is to use a side-channel
  resistant method, in particular at least, a constant-time method.
  This reduces the risk of leaking information about Z, which might in
  turn leak information about X or the scalar multiplier.  Fermat
  inversion, computation of Z^(p-2) mod p, is one method to compute
  the inverse in constant time (if the inverse exists).

7.2.  Curve choice

  A first risk of using 2y^2=x^3+x is the fact that it is a special
  curve.  It is special in having complex multiplication leading
  to an efficient endomorphism.  Miller, in 1985, already suggested
  exercising prudence when considering such special curves.  Gallant,
  Lambert and Vanstone found ways to slightly speed up Pollard rho
  given such an endomorphism, but no other attacks have been found.

  Menezes, Okamoto and Vanstone (MOV) found an attack on special
  elliptic curves, of low embedding degree.  The curve
  2y^2=x^3+x/GF(8^91+5) is not vulnerable to their attack, but if one
  changes the underlying to some different primes, say p', the
  resulting curve 2y^2=x^3+x/GF(p') is vulnerable to their attack for
  about half of all primes.  Because the MOV was later than Miller's
  caution from 1984, Miller's prudence seems prescient.  Perhaps he
  was also prescient about yet other potential attacks (still
  unpublished), and these attacks might affect 2y^2=x^3+x/GF(8^91+5).

  Many other standard curves, NIST P-256 [NIST-P-256], Curve25519,
  Brainpool [Brainpool], do not have any efficient complex
  multiplication endomorphisms.  Arguably, these curves comply to
  Miller's advice to be prudent about special curves.

  Yet other (fairly) standard curves do, such as NIST K-283 (used in
  [Zigbee]) and secp256k1 (see [SEC2] and [BitCoin]).  Furthermore, it
  is not implausible [KKM] that special curves, including those
  efficient endomorphisms, may survive an attack on random curves.

  A second risk of 2y^2=x^3+x over 8^91+5 is the fact that it is not
  twist-secure.  What may happen is that an implementer may use the
  Montgomery ladder in Diffie--Hellman and re-use private keys.  They
  may think, despite the (ample?) warnings in this document, that
  public key validation in unnecessary, modeling their implementation
  after Curve25519 or some other twist-secure curve.  This implementer
  is at risk of an invalid public key attack.  Moreover, the
  implementer has an incentive to skip public-key validation, for
  better performance.  Finally, even if the implementer uses
  public-key validation, then the cost of public-key validation is
  non-negligible.
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  A third risk is a biased ephemeral private key generation in a
  digital signature scheme.  Most standard curves lack this risk
  because the field size is close to a power of two, and the cofactor
  is a power of two.  Curve 2y^2=x^3+x over 8^91+5 has a base point
  order which is approximately a power of two divided by nine (because
  its cofactor is 72=8*9.)  As such, it is more vulnerable than
  typical curves to biased ephemeral keys in a signature scheme.

  A fourth risk is a Cheon-type attack.  Few standard curves address
  this risk, and 2y^2=x^3+x over 8^91+5 is not much different.

  A fifth risk is a small-subgroup confinement attack, which can also
  leak a few bits of the private key.   Curve 2y^2=x^3+x over 8^91+5
  has 72 elements whose order divides 12.

7.3.  Encoding choices

  To be completed.

7.4.  General subversion concerns

  Although the main motivation of curve 2y^2=x^3+x over 8^91+5 is to
  minimize the risk of subversion via a backdoor ([Gordon], [YY],
  [Teske]), it is only fair to point out that its appearance in this
  very document can be viewed with suspicion as an possible effort at
  subversion (via a front-door).  (See [BCCHLV] for some further
  discussion.)

  Any other standardized curve can be view with a similar suspicion
  (except, perhaps, by the honest authors of those standards for whom
  such suspicion seems absurd and unfair).  A skeptic can then examine
  both (a) the reputation of the (alleged) author of the standard,
  making an ad hominem argument, and (b) the curve's intrinsic merits.

  By the very definition of this document, the reader is encouraged to
  take an especially skeptical viewpoint of curve 2y^2=x^3+x over
  8^91+5.  So, it is expected that skeptical users of the curve will
  either

  - use the curve for its other merits (other than its backdoor
    mitigations), such as efficient endomorphism, field inversion,
    high Pollard rho resistance within five 64-bit words, meanwhile
    holding to the evidence-supported belief ECC that is now so mature
    that worries about subverted curves are just far-fetched nonsense,
    or
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  - as an additional of layer of security in addition to other
    algorithms (ECC or otherwise), as an extra cost to address the
    non-zero probability of other curves being subverted.

  To paraphrase, consider users seriously worried about subverted
  curves (or other cryptographic algorithms), either because they
  estimate as high either the probability of subversion or the value
  of the data needing protection.  These users have good reason to
  like 2y^2=x^3+x over 8^91+5 for its compact description.
  Nevertheless, the best way to resist subversion of cryptographic
  algorithms seems to be combine multiple dissimilar cryptographic
  algorithms, in a strongest-link manner.  Diversity hedges against
  subversion, and should the first defense against it.

7.5.  Concerns about 'aegis'

  The exact curve 2y^2=x^3+x/GF(8^91+5) was (seemingly) first
  described to the public in 2017 [AB].  So, it has a very low age, at
  least compare to more established curves.

  Furthermore, it has not been submitted for a publication with peer
  review to any cryptographic forum such as the IACR conferences like
  Crypto and Eurocrypt.  So, it has only been reviewed by very few
  eyes.

  Arguably, other reviewers have little incentive to study it
  critically, for several reasons.  The looming threat of a quantum
  computer has diverted many researchers towards studying post-quantum
  cryptography, such as supersingular isogeny Diffie--Hellman.  The
  past disputes over NIST P-256 and Curve25519 (and several other
  alternatives) have perhaps tired some reviewers, many of whom
  reasonably wish to concentrate on deployment of ECC.

  So, under the metric of aegis, as in age times eyes (times
  incentive), 2y^2=x^3+x/GF(8^91+5) scores low.  Counting myself (but
  not quantifying incentive) it gets an aegis score of 0.1 (using a
  rating 0.1 of my eyes factor in the aegis score: I have not
  discovered any major ECC attacks of my own.)  This is far smaller
  than my estimates (see below) some more well-studied curves.

  Nonetheless, the curve 2y^2=x^3+x over 8^91+5 at least has some
  similarities to some of the better-studied curves with much higher
  aegis:
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  - Curve25519: has field size 8^85-19, which a little similar to
    8^91+5; has equation of the form by^2=x^3+ax+x, with b and a
    small, which is similar to 2y^2=x^3+x.  Curve25519 has been around
    for over 10 years, has (presumably) many eyes looking at it, and
    has been deployed thereby creating an incentive to study.  An
    estimated aegis for Curve25519 is 10000.

  - NIST P-256: has a special field size, and maybe an estimated aegis
    of 200000.  (It is a high-incentive target.  Also, it has received
    much criticism, showing some intent of cryptanalysis.  Indeed,
    there has been incremental progress in finding minor weakness
    (implementation security flaws), suggestive of actual
    cryptanalytic effort.)  The similarity to 2y^2=x^3+x over 8^91+5
    is very minor, so very little of the P-256 aegis would be relevant
    to this document.

  - secp256k1: has a special field size, though not quite as special
    as 8^91+5, and has special field equation with an efficient
    endomorphism by a low-norm complex algebraic integer, quite
    similar to 2y^2=x^3+x.  It is about 17 years old, and though not
    studied much in academic work, its deployment in Bitcoin has at
    least created an incentive to attack it.  An estimated aegis for
    secp256k1 is 10000.

  - Miller's curve: Miller's 1985 paper introducing ECC suggested,
    among other choices, a curve equation y^2=x^3-ax, where a is a
    quadratic non-residue.  Curve 2y^2=x^3+x is isomorphic to
    y^2=x^3-x, essentially one of Miller's curves, except that a=1 is
    a quadratic residue.  Miller's curve may not have been studied
    intensely as other curves, but its age matches that ECC itself.
    Miller also hinted that it was not prudent to use a special curve
    y^2=x^3-ax: such a comment may have encouraged some cryptanalysts,
    but discouraged cryptographers, perhaps balancing out the effect
    on the eyes factor the aegis.  An estimated aegis for Miller's
    curves is 300.

  Obvious cautions to the reader:

  - Small changes in a cryptographic algorithm sometimes cause large
    differences in security.  So security arguments based on
    similarity in cryptographic schemes should be given low priority.
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  - Security flaws have sometimes remained undiscovered for years,
    despite both incentives and peer reviews (and lack of hard
    evidence of conspiracy).  So, the eyes-part of the aegis score is
    very subjective, and perhaps vulnerable false positives by a herd
    effect.  Despite this caveat, it is not recommended to ignore the
    eyes factor in the aegis score: don't just flip through old books
    (of say, fiction), looking for cryptographic algorithms that might
    never have been studied.
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  [YY] (((To do:))) Yung and Young, generalized Gordon's ideas into
     Secretly-embedded trapdoor ... also known as a backdoor.

Appendix A.  Test vectors

  The following are some test vectors.

  000000000000000029352b31395e382846472f782b335e783d325e79322054534554
  00000000000000000000000000000000000000000000000000000000000000000117
  c8c0f2f404a9fabc91c939d8ea1b9e258d82e21a427b549f05c832cf8d48296ffad7
  5f336f56f86de3d52b0eab85e527f2ac7b9d77605c0d5018f5faa4243fd462b1badd
  fc023b3f03b469dca32446db80d9b388d753cc77aa4c3ee7e2bb86e99e7bed38f509
  8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221
  8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221

  The test vectors are explained as follows.  (Pseudocode generating
  them is supplied in Appendix C.2.)

  Each line is 34 bytes, representing a non-negative 272-bit integer.
  The integer encoding is hexadecimal, with most significant hex
  digits on the left: which is big-endian.

    Note:  Public keys are encoded as 34-byte strings are little, so
    one reverses the order of the bytes found in the test vectors.
    The pseudocode in Appendix C.2 should make this clear.

  Each integer is either a scalar (a multiplier of curve points), or
  the byte representation of a point P through its x-coordinate or the
  x-coordinate of iP (which is the the mod 8^91+5 negation of the
  x-coordinate of P).

  The first line is a scalar integer x, which would serve as a very
  insecure private key.  Its nonzero bytes are the ASCII
  representation of the string "TEST 2y^2=x^3+x/GF(8^91+5)", with the
  byte order reversed.

  The second line is a representation of G, a base point on the curve.

  The third line is the representation of z = xG.

  The fourth and fifth lines represent updated values of x and z,
  obtained after application of the following 100000 scalar
  multiplications.
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  A loop of 50000 iterations is performed.  Each iteration consists of
  two re-assignments: z = xz and x = zG via scalar multiplications.
  In the second assignment, the byte representation of the input point
  z is used as the byte representation of an scalar.  Similarly, the
  output x is the byte representation of the point, which is will used
  as as the byte representation of the scalar.

  The purpose of the large number of iterations is to catch a bug that
  has probability larger than 1/100000 of arising on pseudorandom
  inputs.  The iterations do nothing to find rarer bugs (that an
  adversary can invoke), or silent bugs (side channel leaks).

  The sixth and seventh lines are equal to each other.  As explained
  below, the equality of these lines represents the fact the Alice and
  Bob can compute the same shared DH secret.  The purpose of these
  lines is not catch any more bugs, but simply a sanity check that
  Diffie--Hellman is likely to work.

  Alice initializes her DH private key to x, as already computed on
  the fourth line of the test vectors (which was the result of 100000
  iterations).  She then replaces this x by x^900 mod q (where q is
  the prime which is the order of the order of the base point G).

  Bob sets his private key y as follows.  He begins with y being the
  34-byte ASCII string whose initial characters are "yet another test"
  (not including the quotes, of course).  He then reverses the order
  of bytes, considers this to be a scalar, and reassigning y with the
  equation y = yG.  (So, the y on the left is new, the y on the right
  is old, they are not the same.)  Then another reassignment is done,
  as y = yy, where the on the right side of the equation one y is
  treated as a scalar, the other as a point.  The left side is the new
  value of y.  Finally, Bob's replaces y by y^900 mod order(G), just
  as Alice did.

  Both lines are xyG.  The first can be computed as y(xG), and the
  second as x(yG).  The equality of the two lines can be used to
  self-test an implementation, even if the implementation being tested
  disagrees with the test vectors above.

Appendix B.  Minimizing trapdoors and backdoors

  To main advantage of curve 2y^2=x^3+x/GF(8^91+5) over almost all
  other elliptic curves is that its almost minimal Kolmogorov
  complexity among curves of sufficient resistance to the Pollard rho
  attack on the discrete logarithm problem.

  See [AB] and [B1] for some details.
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  The curve can be described with 21 characters:

     2  y  ^  2  =  x  ^  3  +  x  /  G  F  (  8  ^  9  1  +  5  )
     1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21

  Those familiar with ECC will recognize that these 21 characters
  suffice to specify the curve up to the level of detail needed to
  describe the cost of the Pollard rho algorithm, as well as many
  other security properties (especially resistance to other known
  attacks on the discrete logarithm problem, such as Pohlig--Hellman
  and Menezes--Okamoto--Vanstone).

    Note: The letters GF mean Galois Field, and are quite traditional
    mathematics, and every elliptic curve in cryptographic needs to
    use some notation for the finite field.

  We may therefore describe the curve's Kolmogorov complexity as 21
  characters.

     Note: The idea of low Kolmogorov complexity is hard to specify
     exactly.  Nonetheless, a claim of nearly minimal Kolmogorov
     complexity is quite falsifiable.  The falsifier need merely
     specify several (secure) elliptic curves using 21 or fewer
     characters.  (But if the specification new interpretations, then
     new interpretation might also be used to further compress the
     specification of 2y^2=x^3+x/GF(8^91+5) to below 21 characters.)

  The curve is actually isomorphic to a curve specifiable in 20
  characters:

    y^2=x^3-x/GF(8^91+5)

  Generally, isomorphic curves have essentially equivalently hard
  discrete logarithm problems, so one could argue that curve
  2y^2=x^3+x/GF(8^91+5) could be rated as having Kolmogorov complexity
  at most 20 characters.  Isomorphic curves, however, may differ
  slightly in security, due to issues of efficiency, and
  implementability.  The 21-character specification uses an equation
  in Montgomery form, which creates an incentive to use the Montgomery
  ladder algorithm, which is both safe and efficient [Bernstein?].

  Allowing for non-prime fields, then the binary-field curve known
  sect283k1 has a 22-character description:

    y^2+xy=x^3+1/GF(2^283)
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  This has a shorter field specification.  Perhaps an isomorphic curve
  can be found (one with three terms), so that total length is 20 or
  fewer characters.

  However, a non-prime field tends to be slower in software, and is
  perhaps riskier due to some recent research on attacking non-prime
  field discrete logarithms and elliptic curves, such as recent
  asymptotic advances on discrete logarithms in low-characteristic
  fields [HPST] and [Nagao].  According to [Teske], some
  characteristic-two elliptic curves could be equipped with a secretly
  embedded backdoor.

  The units of characters as measuring Kolmogorov complexity is not
  calibrated as bits of information.  Doing so formally would be very
  difficult, but the following approach might be reasonable.

  Set the criteria for the elliptic curve.  For example, e.g. prime
  field, size, resistance (of say 2^128 bit operations) to known
  attacks on the discrete logarithm problem (Pollard rho, MOV, etc.).
  Then list all the possible ECC curve specification with Kolmogorov
  complexity of 21 characters or less.  Take the base two logarithm of
  this number.  This is then an calibrated estimate of the number of
  bits needed to specify the curve.  It should be viewed as a lower
  bound, in case some curves were missed.  To be completed.

  Low Kolmogorov complexity is not directly correlated with security
  of the curve.

   Note: Indeed, as shown further below, the very insecure examples
   exist with lower complexity, by choosing a defective curve
   equation.

  The benefit of low Kolmogorov complexity is an idea, which general
  to cryptography, sometimes called nothing-up-my-sleeve, or
  subversion-resistance, or similar.  For elliptic curves, the benefit
  may be stated as the two following gains.

    - Low Kolmogorov complexity defends against insertion of a keyed
      trapdoor, meaning the curve can broken using a secret trapdoor,
      by an algorithm (eventually discovered by the public at large).
      For example, the Dual EC DRBG is known to capable of having such
      a trapdoor.  Such a trapdoor would information-theoretically
      imply an amount of information, comparable the size of the
      secret, to be embedded in the curve specification.  If the
      calibrated estimate for the number of bits is sufficiently
      accurate, then such a key cannot be large.
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    - Low Kolmogorov complexity defends against a secret attack
      (presumably difficult to discover), which affects a subset of
      curves such that (a) whether or not a specific curve is affected
      is a somewhat pseudorandom function of its natural
      specification, and (b) the probably of a curve being affected
      (when drawn uniformly from some sensible of curve
      specification), is low.  For an example of real-world attacks
      meeting the conditions (a) and (b) consider the MOV attack.
      Exhaustively finding curve meeting these two conditions is
      likely to prevent low Kolmogorov complexity, essentially by the
      low probability of the attack, and the independence of attack's
      success from the natural Kolmogorov complexity.

    - Even more hypothetically, there may yet exist undisclosed
      classes of weak curves, or attacks, for which
      2y^2=x^3+x/GF(8^91+5) is lucky enough to avoid.  This would be a
      fluke.  A real-world example is prime-order, or low cofactor
      curves, which are are among all curves, but which better resist
      the Pohlig--Hellman attack.

  Of course, low Kolmogorov complexity is not a panacea.  The worst
  failure would be attacks that increase in strength as Kolmogorov
  complexity gets lower.  Two examples illustrate this strongly.

  Singular cubics, though not formally elliptic curves, are arguably
  among the same class of object, and can be described similarly,
  using equations and so.  For smooth singular curves (irreducible
  cubics) a group can be define, using more or less the same
  arithmetic as for a elliptic curve.  For example y^2=x^3/GF(8^91+5)
  is such a cubic.  The resulting group has an easy discrete logarithm
  problem, because it can be mapped to the field.

  Supersingular elliptic curves can also be specified with low
  Kolmogorov complexity, and these are vulnerable to MOV attack.
  Worse, a low Kolmogorov complexity curve can be described that
  suffers from three attacks simultaneously: y^2=x^3+1/GF(2^127-1).
  To be completed.

  Of course, the weak cubics are vulnerable to extremely well-known
  attacks, so when estimating the bits of information in the
  Kolmogorov complexity of curves that resist known attacks, we can
  ignore such examples.  The point of these examples, however, is to
  demonstrate that there exists known attacks that affect curves of
  low Kolmogorov complexity, and therefore secret attacks might have
  the same property.
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  So, it is sensible to disclaim any resistance to secret attacks of
  such a nature.  For this reason, 2y^2=x^3+x/GF(8^91+5) should be
  used with other elliptic curves.

Appendix C.  Pseudocode

  This section uses a C-like pseudocode to demonstrate both the
  well-known algorithms one can use implement this curve, and some
  details particular to this curve.

    Note: Some implementers, such as C programmers, may prefer such
    pseudocode over the wordy and formulaic specifications given
    earlier in this draft.  Besides the principles and algorithms are
    well-known, so I have opted to put the pseudocode in a more
    runnable form than traditional language-agnostic pseudocode.

    Note: The pseudocode is not standard C (e.g., it uses non-standard
    C type __int128), not portable, not thoroughly hardened against
    side channels or any other implementation attacks.

    Note: The pseudocode is highly constricted to minimize line and
    character counts, with Python-like indentation and Lisp-like
    clumping of closing delimiters.  Tools may exist that can put
    transform the pseudocode into more conventional C indentation.
    The pseudocode borrows various yet further C brevities: some
    idiomatic and conventional, some altogether peculiar.  Anything
    too indecipherable deserves explanation in a future revision of
    this draft.

    Note: this pseudocode has not yet received any independent review.

C.1.  Scalar multiplication of 34-byte strings

  The pseudocode for scalar multiplication provides an interface for
  scalar multiplication.  A function takes as input 3 pointer to
  unsigned character strings; it also returns a Boolean value,
  indicating success or failure.

  The pseudocode is to be consider to form a single file, pseudo.c,
  which is then include into other 3 pieces pseudocode: one to
  generate test vectors, one to demo a command-line Diffie--Hellman,
  one to demo public-key validation and twist insecurity of the curve.

  The file pseudo.c has two sections, one for field arithmetic, and
  one form scalar multiplication using Montgomery's ladder.
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    Note: I have been able to improve the speed of Montgomery's ladder
    by ~10% using Bernstein's 2-D ladder.  I have also been to improve
    the speed by ~20% using Gallant--Lambert--Vanstone and Edwards
    coordinates.  These improvements are not likely to carry through
    to a proper optimization regime, since I never used any assembly
    optimizations.  Also these improvements involve more complex
    algorithms, which may suffer higher risk of implementation
    attacks.

  To be completed.

C.1.1.  Field arithmetic for GF(8^91+5)

  The field arithmetic pseudocode, is the first part of the file
  pseudo.c, implements all the necessary field operations to implement
  a Montgomery for elliptic curve 2y^2=x^3+x.  This means that it does
  not include a square computation: instead it has a Legendre symbol
  computation.

    Note: The Legendre symbol is used for public-key validation.  The
    pseudocode implements field inversion and the Legendre symbol
    using exponentiation, with the aim of being simple and
    constant-time.  Alternative algorithms for these tasks are known
    to experts.
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  <CODE BEGINS>
  #define RZ return z
  #define B 34
  #define F4j i j=5;for(;j--;)
  #define FIX(j,r,k) q=z[j]>>r, z[j]-=q<<r, z[(j+1)%5]+=q*k
  #define CMP(a,b) ((a>b)-(a<b))
  #define XY(j,k) x[j]*(ii)y[k]
  #define R(j,k) (zz[j]>>55*k&((k<2)*M-1))
  #define MUL(m,E)\
    zz[0]=m(0,0)E(1,4)E(2,3)E(3,2)E(4,1),\
    zz[1]=m(0,1)m(1,0)E(2,4)E(3,3)E(4,2),\
    zz[2]=m(0,2)m(1,1)m(2,0)E(3,4)E(4,3),\
    zz[3]=m(0,3)m(1,2)m(2,1)m(3,0)E(4,4),\
    zz[4]=m(0,4)m(1,3)m(2,2)m(3,1)m(4,0);\
    z[0]=R(0,0)-R(4,1)*20-R(3,2)*20,\
    z[1]=R(1,0)+R(0,1)-R(4,2)*20,\
    z[2]=R(2,0)+R(1,1)+R(0,2),\
    z[3]=R(3,0)+R(2,1)+R(1,2),\
    z[4]=R(4,0)+R(3,1)+R(2,2);\
    z[1]+=z[0]>>55; z[0]&=M-1;
  typedef long long i;typedef i*f,F[5];typedef __int128 ii,FF[5];
  i M=((i)1)<<55;F O={0},I={1};
  f fix(f z){i j=0,q;
    for(;j<5*2;j++) FIX(j%5,(j%5<4?55:53),(j%5<4?1:-5));
    z[0]+=(q=z[0]<0)*5; z[4]+=q<<53; RZ;}
  i cmp(f x,f y){i z=(fix(x),fix(y),0); F4j z+=!z*CMP(x[j],y[j]); RZ;}
  f add(f z,f x,f y){F4j z[j]=x[j]+y[j]; RZ;}
  f sub(f z,f x,f y){F4j z[j]=x[j]-y[j]; RZ;}
  f mal(f z,i s,f y){F4j z[j]=y[j]*s; RZ;}
  f mul(f z,f x,f y){FF zz; MUL(+XY,-20*XY); {F4j zz[j]=0;} RZ;}
  f squ(f z,f x){mul(z,x,x); RZ;}
  i inv(f z){F t;i j=272; for(mul(z,z,squ(t,z));j--;) squ(t,t);
    return mul(z,t,z), (sub(t,t,t)), cmp(O,z);}
  i leg(f y){F t;i j=270; for(squ(t,squ(y,y));j--;) squ(t,t);
    return j=cmp(I,mul(y,y,t)), (sub(y,y,y),sub(t,t,t)), !j;}
  <CODE ENDS>

  This pseudocode makes uses of some extra C-like pseudocode features:

  - #define is used to create macros, which expand within the source
    code (as in C pre-processing).

  - type ii is 128-bit integer

  - multiplying a type i by a type ii variable yields a type ii
    variable.  If both inputs can fit into a type i variable, then
    the result has no overflow or reduction: it is exact as a product
    of integers.
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  - type ff is array of five type ii values.  It is used to represent
    a field in a radix expansion, except the limbs (digits) can be
    128-bits instead of 64-bits.  The variable zz has type ff and is
    used to intermediately store the product of two field element
    variables x and y (of type f).

  - function mod takes an ff variable and produce f variable
    representing the same field element.  A pseudocode example may be
    defined further below.

  TO DO: Add some notes (answer these questions):

  - How small the limbs of the inputs to function mul and squ must be
    to ensure no overflow occurs?

  - How small are the limbs of the output of functions mul and squ?

  TO DO: add notes answering these questions:

  - How small must be the input limbs to avoid overflow?

  - How small are the output limbs (to know how to safely use of
    output in further calculations).

  Note: The partial reduction technique used in the multiplication
  pseudocode is sometimes known as lazy reduction.  It aims to do
  just enough calculation to avoid overflow errors, and thus it may be
  regarded as attempt at optimization.

  To be completed.

  The input variable is x and the output variable is b.  The declared
  types and functions are as follows:

  - type c: curve representative, length-34 array of non-negative
    8-bit integers ("characters"),

  - type f: field element, a length-5 array of 64-bit integers
    (negatives allowed), representing a field element as an integer in
    base 2^55,

  - type i: 64-bit integers (e.g. entries of f),

  - function mal: multiply a field element by a small integer (result
    stored in 1st argument),

  - function fix: fully reduce an integer modulo 8^91+5,
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  - function cmp: compare two field element (after fixing), returning
    -1, 0 or 1.

    Note: The two for-loops in the pseudocode are just radix
    conversion, from base 2^55 to base 2^8.  Because both bases are
    powers of two, this amount to moving bits around.  The entries of
    array b are compute modulo 256.  The second loop copies the bits
    that the first loop misses (the bottom bits of each entry of f).

    Note: Encoding is lossy, several different (x,y) may encode to the
    same byte string b.  Usually, if (x,y) generated as a part of
    Diffie--Hellman key exchange, this lossiness has no effect.

    Note: Encoding should not be confused with encryption.  Encoding
    is merely a conversion or representation process, whose inverse is
    called decoding.

  - the expression (i)b[j] means that 8-bit integer b[j] is converted
    to a 64-bit integer (so is no longer treated modulo 256).  (In C,
    this is operation is called casting.)

    Note: the decode function 'feed' only has 1 for-loop, which is the
    approximate inverse of the first of the 2 for-loops in the encode
    function 'bite'.  The reason the 'bite' needs the 2nd for-loop is
    due to the lossy conversion from integers to bytes, whereas in the
    other direction the conversion is not lossy.  The second loop
    recovers the lost information.

C.1.2.  Montgomery ladder scalar multiplication

  The pseudocode below, the second part of the file pseudo.c,
  implements Montgomery's well-known ladder algorithm for elliptic
  curve scalar point multiplication, as it applies to the curve
  2y^2=x^3+x.

  Again, the pseudocode is a continuation of the pseudocode for field
  arithmetic, and all previous definitions are assumed.
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  <CODE BEGINS>
  #define X z[0]
  #define Z z[1]
  typedef void _;typedef volatile unsigned char *c,C[B];
  typedef F*e,E[2];typedef E*v,V[2];
  f feed(f x,c z){i j=((mal(x,0,x)),B);
    for(;j--;) x[j/7]+=((i)z[j])<<((8*j)%55); return fix(x);}
  c bite(c z,f x){F t;i j=((fix(mal(x,cmp(mal(t,-1,x),x),x))), B),k=5;
    for(;j--;) z[j]=x[j/7]>>((8*j)%55); {(sub(t,t,t));}
    for(;--k;) z[7*k-1]+=x[k]<<(8-k); {(sub(x,x,x));} RZ;}
  i lift(e z,f x,i t){F y;return mal(X,1,x),mal(Z,1,I),t||
    leg(mal(y,2,add(y,x,mul(y,x,squ(y,x)))));}
   i drop(f x,e z){return
  inv(Z)&&mul(x,X,Z)&&(sub(X,X,X)&&sub(Z,Z,Z));}
  _ let(e z,e y){i j=2;for(;j--;)mal(z[j],1,y[j]);}
  _ smv(v z,v y){i j=4;for(;j--;)add(((e)z)[j],((e)z)[j],((e)y)[j]);}
  v mav(v z,i a){i j=4;for(;j--;)mal(((e)z)[j],a,((e)z)[j]);RZ;}
  _ due(e z){F a,b,c,d;
    mal(X,2,mul(X,squ(a,add(a,X,Z)),squ(b,sub(b,X,Z))));
    mul(Z,add(c,a,b),sub(d,a,b));}
  _ ade(e z,e u,f w){F a,b,c,d;f ad=a,bc=b;
    mul(ad,add(a,u[0],u[1]),sub(d,X,Z)),
    mul(bc,sub(b,u[0],u[1]),add(c,X,Z));
    squ(X,add(X,ad,bc)),mul(Z,w,squ(Z,sub(Z,ad,bc)));}
  _ duv(v a,e z){ade(a[1],a[0],z[0]);due(a[0]);}
  v adv(v z,i b){V t;
   let(t[0],z[1]),let(t[1],z[0]);smv(mav(z,!b),mav(t,b));mav(t,0);RZ;}
   e mule(e z,c d){V a;E o={{1}};i
  b=0,c,n=(let(a[0],o),let(a[1],z),8*B);
    for(;n--;) c=1&d[n/8]>>n%8,duv(adv(a,c!=b),z),b=c;
    let(z,*adv(a,b)); (due(*mav(a,0))); RZ;}
  C G={23,1};
  i mulch(c db,c d,c b){F x;E p; return
    lift(p,feed(x,b),(db==d||b==G))&&drop(x,mule(p,d))&&bite(db,x);}
  <CODE ENDS>

  The pseudocode function mulch -- which multiplies byte string
  (character) representations of point b by the byte string
  representation of integer d -- omits public key validation of the
  input point b if the base of scalar multiplication is the chosen
  fixed base, or if the input integer d and output point db have the
  same location.

  The reason for the latter omission of public key validation is the
  integer d is overwritten presumably the caller of mulch intended to
  use d only once, so that d is likely to be an ephemeral secret,
  largely obviating the need to validate b.



Brown                2y^2=x^3+x over 8^91+5                 [Page 36]



Internet-Draft                                             2019-10-03

  In other words, the caller of mulch can control whether public key
  validation is done by choosing the locations of db, b, b
  appropriately.  (An alternative would be for mulch to include a flag
  to indicate whether b needs to be validated.  Instead, the
  pseudocode tries to make mulch do the sensible choice for
  Diffie--Hellman if the caller forgets whether public key validation
  is necessary.)

  The pseudocode files tv.c, dhe.c and pkv.c, define in the sections
  below, demonstrate the use of mulch, and its features regarding
  public key validation.

  In case, mulch returns a Boolean-valued integer indicating whether b
  was valid.  If validation was requested by the interface, and b is
  invalid, then mulch return false (0), and the memory location db
  should remain unaltered.

    Note: the pseudocode makes types c and C volatile, with the aim
    that the C compiler will preserve attempts to zeroize values of
    this type.  Such zeroization steps in the pseudocode do add
    clutter to the code, but have usually been delimited by
    parentheses or braces to indicate their implementation-specific
    purpose.

C.1.3.  Bernstein's 2-dimensional Montgomery ladder

  Bernstein's 2-dimensional ladder is a variant of Montgomery's ladder
  that computes aP+bQ, for any two points P and Q, more quickly than
  computing aP and bQ separately.

  Curve 2y^2=x^3+x has an efficient endomorphism, which allows a point
  Q = [i+1]P to compute efficiently.  Gallant, Lambert and Vanstone
  introduced a method (now called the GLV method), to compute dP more
  efficiently, given such an efficient endomorphism.  They write d = a
  + eb where e is the integer multiplier corresponding to the
  efficient endomorphism, and a and b are integers smaller than d.
  (For example, 17 bytes each instead of 34 bytes.)

  The GLV method can be combined with Bernstein's 2D ladder algorithm
  to be applied to compute dP = (a+be)P = aP + beP = aP + bQ, where
  e=i+1.

  This algorithm is not implemented by any pseudocode in the version
  the draft.  (Previous versions had it.)

  See [B1] for further explanation and example pseudocode.
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  I have estimate a ~10% speedup of this method compared to the plain
  Montgomery ladder.  However, the code is more complicated, and
  potentially more vulnerable to implementation-based attacks.

C.1.4.  GLV in Edwards coordinates (Hisil--Carter--Dawson--Wong)

  To be completed.

  It is also possible to convert to Edwards coordinates, and then use
  the Hisil--Carter--Dawson--Wong (HCDW) elliptic curve arithmetic.

  The HCDW arithmetic can be combined with the GLV techniques to
  obtain a scalar multiplication potentially more efficient than
  Bernstein's 2-dimensional Montgomery.  The downside is that it may
  require key-dependent array look-ups, which can be a security risk.

  I have implemented this, finding ~20% speed-up over my
  implementation of the Montgomery ladder.  However, this speed-up may
  disappear upon further optimization (e.g. assembly), or further
  security hardening (safe table lookup code).

C.2  Pseudocode for test vectors

  The following pseudocode, describing the contents of a file tv.c,
  includes the previously defined file pseudo.c, and stdio.h, and then
  generates some test vectors.

  <CODE BEGINS>
  #include <stdio.h>
  #include "pseudo.c"
  #define M mulch
  void hx(c x){i j=B;for(;j--;)printf("%02x",x[j]);printf("\n");}
  int main (void){i j=1e5/2,wait=/*your mileage may vary*/7000;
    C x="TEST 2y^2=x^3+x/GF(8^91+5)",y="yet another test",z;
    M(z,x,G); hx(x),hx(G),hx(z);
    fprintf(stderr,"%30s(wait=~%ds, ymmv)","",j/wait);
    for(;j--;)if(fprintf(stderr,"\r%7d\r",j),!(M(z,x,z)&&M(x,z,G)))
     j=0*printf("Mulch fail rate ~%f :(\n",(2*j)/1e5);//else//debug
    hx(x),hx(z);
    M(y,y,G);M(y,y,y);
    for(M(z,G,G),j=900;j--;)M(z,x,z);for(j=900;j--;)M(z,y,z);hx(z);
    for(M(z,G,G),j=900;j--;)M(z,y,z);for(j=900;j--;)M(z,x,z);hx(z);}
  <CODE ENDS>

  To be completed: Explain this properly, if possible.

  The test vectors should output this:
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  000000000000000029352b31395e382846472f782b335e783d325e79322054534554
  00000000000000000000000000000000000000000000000000000000000000000117
  c8c0f2f404a9fabc91c939d8ea1b9e258d82e21a427b549f05c832cf8d48296ffad7
  5f336f56f86de3d52b0eab85e527f2ac7b9d77605c0d5018f5faa4243fd462b1badd
  fc023b3f03b469dca32446db80d9b388d753cc77aa4c3ee7e2bb86e99e7bed38f509
  8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221
  8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221

C.3.  Pseudocode for a command-line demo of Diffie--Hellman

  The following code, representing a file dhe.c, is a bilingual: being
  valid C and bash script.

  As a bash script, it will compile the C code as dhe, then run it
  twice, once as Alice and once as Bob, piping the ephemeral public
  keys, and writing the resulting Diffie--Hellman agreed secret keys
  into pipes.  The agreed secret keys are fed into SHA-256 to
  demonstrate their equality, but also to show the typical way to use
  DH agree keys (to hash them rather than use them directly).

  This pseudocode assumes a Linux-like system.

  <CODE BEGINS>
  #include "pseudo.c" /* dhe.c (also a bash script)
  : demos ephemeral DH, also creates, clobbers files dhba dha dhb
  : -- Dan Brown, BlackBerry, '19 */
  #include <stdio.h>
  _ get(c p,_*f){if(f)while(!fread((_*)p,B,1,f));}
  _ put(c p,_*f){if(f)fwrite((_*)p,B,1,f),fflush(f); bite(p,O);}
  int main (_){C s="/dev/urandom",p="EPHEMERAL s => OK if p INVALID";
    get(s,fopen((_*)s,"r")), mulch(p,s,G), put(p,stdout);
    get(p,stdin),            mulch(s,s,p), put(s,stderr);} /*'
  [ dhe.c -nt dhe ] && gcc -O3 dhe.c -o dhe && echo "$(<dhe.c)"
  mkfifo dh{a,b,ba} 2>/dev/null || ([ ! -p dhba ] && :> dhba)
  ./dhe <dhba 2>dha | ./dhe >dhba 2>dhb &
  sha256sum dha & sha256sum dhb  # these should be equal
  (for f in dh{a,b,ba} ; do [ -f $f ] && \rm -f $f; done)# '*/
  <CODE ENDS>

C.4  Pseudocode for public-key validation and twist insecurity

  The following pseudocode, describing a file pkv.c, demonstrates the
  public-key validation features of mulch from pseudo.c, by
  deliberately supplying invalid points to mulch.  It also
  demonstrates how to turn PKV on and off using the mulch interface.
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  It also demonstrates the need for PKV despite using the Montgomery
  by finding points of low order on the twist of the curve, and
  showing that such points can leak bits of the secret multiplier.

  It further demonstrates the order of the curve, and complex
  multiplication by i, and the fact the 34-byte representation of
  points is unaffected by multiplication by i.

  <CODE BEGINS>
  #include <stdio.h>
  #include "pseudo.c"
  #define M mulch // works with +/- x, so P ~ -P ~ iP ~ -iP
  void hx(c x){i j=B;for(;j--;)printf("%02x",x[j]);printf("\n");}
  int main (void){i j;// sanity check, PKV, twist insecurity demo
    C y="TEST 2y^2=x^3+x/GF(8^91+5)",z="zzzzzzzzzzzzzzzzzzzz",
    q = "\xa9\x38\x04\xb8\xa7\xb8\x32\xb9\x69\x85\x41\xe9\x2a"
    "\xd1\xce\x4a\x7a\x1c\xc7\x71\x1c\xc7\x71\x1c\xc7\x71\x1c"
    "\xc7\x71\x1c\xc7\x71\x1c\x07", // q=order(G)
    i = "\x36\x5a\xa5\x56\xd6\x4f\xb9\xc4\xd7\x48\x74\x76\xa0"
    "\xc4\xcb\x4e\xa5\x18\xaf\xf6\x8f\x74\x48\x4e\xce\x1e\x64"
    "\x63\xfc\x0a\x26\x0c\x1b\x04", // i^2=-1 mod q
    w5= "\xb4\x69\xf6\x72\x2a\xd0\x58\xc8\x40\xe5\xb6\x7a\xfc"
    "\x3b\xc4\xca\xeb\x65\x66\x66\x66\x66\x66\x66\x66\x66\x66"
    "\x66\x66\x66\x66\x66\x66\x66"; // w5=(2p+2-72q)/5
   for(j=0;j<=3;j++)M(z,(C){j},G),hx(z); // {0,1,2,3}G, but reject 0G
    M(z,q,G),hx(z); // reject qG; but qG=O, under hood:
    {F x;E p;lift(p,feed(x,G),1);mule(p,q);hx(bite(z,p[1]));}
    for(j=0;j<0*25;j++){F x;E p;lift(p,feed(x,(C){j,1}),1);mule(p,q);
    printf("%3d ",j),hx(bite(z,p[1]));}// see j=23 for choice of G
    for(j=3;j--;)q[0]-=1,M(z,q,G),hx(z);// (q-{1,2,3})G ~ {1,2,3}G
   M(z,i,G),hx(z); i[0]+=1,M(z,i,G),M(z,i,z),hx(z);// iG~G,(i+1)^2G~2G
   M(w5,w5,(C){5}),hx(w5);// twist, ord(w5)=5, M(z,z,p) skipped PKV(p)
    M(G,(C){1},w5),hx(G);// reject w5 (G unch.); but w5 leaks z mod 5:
    for(j=10;j--;)M(z,y,G),z[0]+=j,M(z,z,w5),hx(z);}
  <CODE ENDS>

C.5.  Elligator i

  To be deleted (or completed).

  This pseudocode would show how to implement to the Elligator i map
  from byte strings to points.  This is INCOMPATIBLE with pseudocode
  above.

  Pseudocode (to be verified):
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  <CODE BEGINS>
  typedef f xy[2] ;
  #define X p[0]
  #define Y p[1]
  lift(xy p, f r) {
    f t ; i b ;
    fix(r);
    squ(t,r);        // r^2
    mul(t,I,t);      // ir^2
    sub(t,(f){1},t); // 1-ir^2
    inv(t,t);        // 1/(1-ir^2)
    mal(t,3,t);      // 3/(1-ir^2)
    mul(t,I,t);      // 3i/(1-ir^2)
    sub(X,I,t);      // i-3i/(1-ir^2)
    b = get_y(t,X);
    mal(t,1-b,I);    // (1-b)i
    add(X,X,t);      // EITHER  x  OR  x + i
    get_y(Y,X);
    mal(Y,2*b-1,Y);  // (-1)^(1-b)""
    fix(X);  fix(Y);
  }

  drop(f r, xy p)
  {
    f t ; i b,h ;
    fix(X); fix(Y);
    get_y(t,X);
    b=eq(t,Y);
    mal(t,1-b,I);
    sub(t,X,t);   // EITHER x or x-i
    sub(t,I,t);   // i-x
    inv(t,t);     // 1/(i-x)
    mal(t,3,t);   // 3/(i-x)
    add(t,I,t);   // i+ 3/(i-x)
    mal(t,-1,t);  // -i-3/(i-x)) = (1-3i/(i-x))/i
    b = root(r,t) ;
    fix(r);
    h = (r[4]<(1LL<<52)) ;
    mal(r,2*h-1,r);
    fix(r);
  }
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  elligator(xy p,c b) {f r; feed(r,b); lift(p,r);}

  crocodile(c b,xy p) {f r; drop(r,p); bite(b,r);}
  <CODE ENDS>

D. Primality proofs and certificates

  Recent work of Albrecht and others [AMPS] has shown the combination
  of adversarially chosen prime and improper probabilistic primality
  tests can result in attacks.

  The adversarial primes are generally result of an exhaustive search,
  and therefore contain an amount of information corresponding to the
  length of their search, putting a predictable lower bound on their
  Kolmogorov complexity.

  The two primes involved for 2y^2=x^3+x/GF(8^91+5) should perhaps
  already resist [AMPS] because of compact representation of these
  primes:

    p = 8^91+5
    q = #(2y^2=x^3+x/GF(8^91+5))/72

  The [AMPS] can also be resisted by:

   - properly implementing probabilistic primality test, or
   - implementing provable primality tests.

  Provable primality tests can be very slow, but can be separated into
  two steps: a slow certificate generation, and a fast certificate
  verification.  The certificate is a set of data, representing an
  intermediate step in the provable primality test, after which the
  completion of the test is quite efficient.

  Pratt primality certificate generation for any prime p, involves
  factorizing p-1, which can be very slow, and then recursively
  generating a Pratt primality certificate for each prime factor of
  p-1.  Essentially, each prime has a unique Pratt primality
  certificate.

  Pratt primality certificate verification of (p-1), involves search
  for g such that 1 = (g^(p-1) mod p) and 1 < (g^((p-1)/q) mod p) for
  each q dividing p-1, and then recursively verifying each Pratt
  primality certificate for each prime factor q of p-1.
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  In this document, we specify a Pratt primality certificate as a
  sequence of (candidate) primes each being 1 plus a product of
  previous primes in the list, with certificate stating this product.

  Although Pratt primality certificate verification is quite
  efficient, an ECC implementation can opt to trust 8^91+5 by virtue
  of verifying the certificate once, perhaps before deployment or
  compile time.

D.1.  Pratt certificate for the field size 8^91+5

  Define 52 positive integers, a,b,c,...,z,A,...,Z as follows:

   a=2 b=1+a c=1+aa d=1+ab e=1+ac f=1+aab g=1+aaaa h=1+abb i=1+ae
   j=1+aaac k=1+abd l=1+aaf m=1+abf n=1+aacc o=1+abg p=1+al q=1+aaag
   r=1+abcc s=1+abbbb t=1+aak u=1+abbbc v=1+ack w=1+aas x=1+aabbi
   y=1+aco z=1+abu A=1+at B=1+aaaadh C=1+acu D=1+aaav E=1+aeff F=1+aA
   G=1+aB H=1+aD I=1+acx J=1+aaacej K=1+abqr L=1+aabJ M=1+aaaaaabdt
   N=1+abdpw O=1+aaaabmC P=1+aabeK Q=1+abcfgE R=1+abP S=1+aaaaaaabcM
   T=1+aIO U=1+aaaaaduGS V=1+aaaabbnuHT W=1+abffLNQR X=1+afFW
   Y=1+aaaaauX Z=1+aabzUVY.

    Note: variable concatenation is used to indicate multiplication.
    For example, f = 1+aab = 1+2*2*(1+2) = 13.

    Note: One must verify that Z=8^91+5.

    Note: The Pratt primality certificate involves finding a generator
    g for each the prime (after the initial prime).  It is possible to
    list these in the certificate, which can speed up verification by
    a small factor.

     (2,b), (2,c), (3,d), (2,e), (2,f), (3,g), (2,h), (5,i), (6,j),
     (3,k), (2,l), (3,m), (2,n), (5,o), (2,p), (3,q), (6,r), (2,s),
     (2,t), (6,u), (7,v), (2,w), (2,x), (14,y),(3,z), (5,A), (3,B),
     (7,C), (3,D), (7,E), (5,F), (2,G), (2,H), (2,I), (3,J), (2,K),
     (2,L),(10,M), (5,N), (10,O),(2,P), (10,Q),(6,R), (7,S), (5,T),
     (3,U), (5,V), (2,W), (2,X), (3,Y), (7,Z).
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    Note: The decimal values for a,b,c,...,Y are given by: a=2, b=3,
    c=5, d=7, e=11, f=13, g=17, h=19, i=23, j=41, k=43, l=53, m=79,
    n=101, o=103, p=107, q=137, r=151, s=163, t=173, u=271, v=431,
    w=653, x=829, y=1031, z=1627, A=2063, B=2129, C=2711, D=3449,
    E=3719, F=4127, G=4259, H=6899, I=8291, J=18041, K=124123,
    L=216493, M=232513, N=2934583, O=10280113, P=16384237, Q=24656971,
    R=98305423, S=446424961, T=170464833767, U=115417966565804897,
    V=4635260015873357770993, W=1561512307516024940642967698779,
    X=167553393621084508180871720014384259,
    Y=1453023029482044854944519555964740294049.

D.2.  Pratt certificate for subgroup order

  Define 56 variables a,b,...,z,A,B,...,Z,!,@,#,$, with new
  values:

   a=2 b=1+a c=1+a2 d=1+ab e=1+ac f=1+a2b g=1+a4 h=1+ab2 i=1+ae
   j=1+a2d k=1+a3c l=1+abd m=1+a2f n=1+acd o=1+a3b2 p=1+ak q=1+a5b
   r=1+a2c2 s=1+am t=1+ab2d u=1+abi v=1+ap w=1+a2l x=1+abce y=1+a5e
   z=1+a2t A=1+a3bc2 B=1+a7c C=1+agh D=1+a2bn E=1+a7b2 F=1+abck
   G=1+a5bf H=1+aB I=1+aceg J=1+a3bc3 K=1+abA L=1+abD M=1+abcx N=1+acG
   O=1+aqs P=1+aqy Q=1+abrv R=1+ad2eK S=1+a3bCL T=1+a2bewM U=1+aijsJ
   V=1+auEP W=1+agIR X=1+a2bV Y=1+a2cW Z=1+ab3oHOT !=1+a3SUX @=1+abNY!
   #=1+a4kzF@ $=1+a3QZ#

    Note: numeral after variable names represent powers.  For example,
    f = 1 + a2b = 1 + 2^2 * 3 = 13.

  The last variable, $, is the order of the base point, and the order
  of the curve is 72$.

    Note: Punctuation used for variable names !,@,#,$, would not scale
    for larger primes.  For larger primes, a similar format might work
    by using a prefix-free set of multi-letter variable names.
    E.g. replace, Z,!,@,#,$ by Za,Zb,Zc,Zd,Ze:
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