
Internet-Draft D. Brown
Intended status: Experimental BlackBerry
Expires: 2021-04-05 2020-10-02

 Elliptic curve 2y^2=x^3+x over field size 8^91+5
 <draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-06.txt>

Abstract

 Multi-curve elliptic curve cryptography with curve
 2y^2=x^3+x/GF(8^91+5) hedges a risk of new curve-specific attacks.
 This curve features: isomorphism to Miller's curve from 1985; low
 Kolmogorov complexity (little room for embedded weaknesses of
 Gordon, Young--Yung, or Teske); similarity to a Bitcoin curve;
 Montgomery form; complex multiplication by i
 (Gallant--Lambert--Vanstone); prime field; easy reduction,
 inversion, Legendre symbol, and square root; five 64-bit-word field
 arithmetic; string-as-point encoding; and 34-byte keys.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF). Note that
 other groups may also distribute working documents as
 Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 This document may not be modified, and derivative works of it may
 not be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

https://datatracker.ietf.org/doc/html/draft-brown-ec-2y2-x3-x-mod-8-to-91-plus-5-06.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 1]

Internet-Draft 2020-10-02

Contents

1. Introduction
2. Requirements Language (RFC 2119)
3. Use ONLY in multi-curve ECC
4. Encoding points
4.1. Point encoding process
4.1.1. Summary
4.1.2. Details
4.2. Point decoding process
4.2.1. Summary
4.2.2. Detail
5. Point validation
5.1. When to validate
5.1.1. Mandatory validation
5.1.2. Simplified validation
5.1.3. Minimal validation
5.2. Point validation process
6. OPTIONAL encodings
6.1. Encoding scalars
6.2. Encoding strings as points
7. IANA considerations
8. Security considerations
8.1. Field choice
8.2. Curve choice
8.3. Encoding choices
8.4. General subversion concerns
8.5. Concerns about 'aegis'
9. References
9.1. Normative References
9.2. Informative References

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 2]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft 2020-10-02

Appendix A. Why 2y^2=x^3+x/GF(8^91+5)?
A.1. Not for single-curve ECC
A.2. Risks of new curve-specific attacks
A.2.1. What would be considered a "new curve-specific" attack?
A.2.2.1. What would be considered a "new" attack?
A.2.2.2. What is, would be, considered a "curve-specific attack"?
A.2.2.3. Rarity of published curve-specific attacks
A.2.2.4. Correlation of curve-specific efficiency and attacks
A.3. Mitigations against new curve-specific attacks
A.3.1. Fixed curve mitigations
A.3.1.2. Existing fixed-curve mitigations
A.3.1.2. Migitations used by 2y^2=x^3+x/GF(8^91+5)
A.3.2. Multi-curve ECC
A.3.2.1. Multi-curve ECC is a redundancy strategy
A.3.2.2. Whether to use multi-ECC
A.3.2.2.1. Benefits of multi-curve ECC
A.3.2.2.2. Costs of multi-curve ECC
A.3.2.3. Applying multi-curve ECC
A.4. General features of curve 2y^2=x^3+x/GF(8^91+5)
A.4.1. Field features
A.4.3. Equation features
A.4.4. Finite curve features
A.4.4.1. Curve size and cofactor
A.4.4.2. Pollard rho security
A.4.4.3. Pohlig--Hellman security
A.4.4.2. Menezes--Okamoto--Vanstone security
A.4.4.3. Semaev--Araki--Satoh--Smart security
A.4.4.4. Edwards and Hessian form
A.4.4.5. Bleichenbacher security
A.4.4.6. Bernstein's "twist" security
A.4.4.7. Cheon security
A.4.4.8 Reductionist security assurance for Diffie--Hellman
Appendix B. Test vectors
Appendix C. Sample code (pseudocode)
C.1. Scalar multiplication of 34-byte strings
C.1.1. Field arithmetic for GF(8^91+5)
C.1.2. Montgomery ladder scalar multiplication
C.1.3. Bernstein's 2-dimensional Montgomery ladder
C.1.4. GLV in Edwards coordinates (Hisil--Carter--Dawson--Wong)
C.2. Sample code for test vectors
C.3. Sample code for a command-line demo of Diffie--Hellman
C.4. Sample code for public-key validation and curve basics
C.5. Elligator i
Appendix D. Minimizing trapdoors and backdoors
D.1. Decimal exponential complexity
D.1.1. A shorter isomorophic curve
D.1.2. Other short curves
D.1.3. Converting DEC characters to bits
D.1.4. Common acceptance of decimal exponential notation

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 3]

Internet-Draft 2020-10-02

D.2. General benefits of low Kolmogorov complexity to ECC
D.2.1. Precedents of low Komogorov complexity in ECC
D.3. Risks of low Kolmogorov complexity
D.4. Alternative measures of Kolmogorov complexity
Appendix E. Primality proofs and certificates
E.1. Pratt certificate for the field size 8^91+5
E.2. Pratt certificate for subgroup order

1. Introduction

 Elliptic curve cryptography (ECC) is now part of several IETF
 protocols.

 Multi-curve ECC can mitigate the risk of new curve-specific attacks
 on ECC.

 This document aims to contribute to multi-curve ECC by describing
 how to use the curve

 2y^2=x^3+x / GF(8^91+5)

 for elliptic curve Diffie--Hellman (ECDH).

Appendix A expands on why and when 2y^2=x^3+x/GF(8^91+5) is useful
 in multi-curve ECC.

2. Requirements Language (RFC 2119)

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [BCP14].

3. Use ONLY in multi-curve ECC

 An implementation using curve 2y^2=x^3+x/GF(8^91+5) in elliptic
 curve cryptography MUST use it in a combination with other curves,
 such as Curve25519 or NIST P-256 (as a second layer of defense
 against unlikely security failures in the other curves).

Appendix A expands on why and when 2y^2=x^3+x/GF(8^91+5) is useful
 in multi-curve ECC.

4. Encoding points

 Elliptic curve cryptography uses points for public keys and raw
 shared secret keys.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 4]

Internet-Draft 2020-10-02

 Abstractly, points are mathematical objects. For curve 2y^2=x^3+x,
 a point is either a pair (x,y), where x and y are elements of
 mathematical field, or a special point O (whose x and y coordinates
 may be deemed as infinity).

 Note: The special point O should never be used as a key in
 practice. In theory, point O is needed for the points to form a
 mathematical group.

 For curve 2y^2=x^3+x/GF(8^91+5), the coordinates x and y of the
 point (x,y) are integers modulo 8^91+5, which can be represented as
 integers in the interval [0,8^91+4].

 Note: An implementation will often internally represent the
 x-coordinate as a ratio [X:Z] of field elements. Each field
 element has multiple such representations, but [x:1] can viewed as
 normal representation of x. (Infinity can be then represented by
 [1:0].)

 To interoperably communicate, points must be encoded as byte
 strings.

 This draft specifies an encoding of finite points (x,y) as strings
 of 34 bytes, as described in the following sections.

 Note: The 34-byte encoding is not injective. Each point is
 generally among a group of four points that share the same byte
 encoding.

 Note: The 34-byte encoding is not surjective. Approximately half
 of 34-byte strings do not encode a point (x,y).

 Note: In elliptic Diffie--Helman (ECDH), the 34-byte encoding
 works well, despite being neither injective nor surjective.

4.1. Point encoding process

4.1.1. Summary

 A point (x,y) is encoded by the little-endian byte representation of
 x or -x, whichever fits into 34 bytes.

4.1.2. Details

 A point (x,y) is encoded into 34 bytes, as follows.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 5]

Internet-Draft 2020-10-02

 First, ensure that x is fully reduced mod p=8^91+5, so that

 0 <= x < 8^91+5.

 Second, further reduce x by a flipping its sign, as explained next.
 Let

 x' =: min(x,p-x) mod 2^272.

 Third, set the byte string b to be the little-endian encoding of the
 reduced integer x', by finding the unique integers b[i] such that
 0<=b[i]<256 and

 (x' mod 2^272) = sum (0<=i<=33, b[i]*256^i).

 Pseudocode can be found in Appendix C.

 Note: The loss of information that happens upon replacing x by -x
 corresponds to applying complex multiplication by i on the curve,
 because i(x,y) = (-x,iy) is also a point on the curve. (To see
 this: note 2(iy)^2 = -(2y^2) = -(x^3+x) = (-x)^3+(-x).) In many
 applications, particularly Diffie--Hellman key agreement, this
 loss of information is carried through to the final shared secret,
 which means that Alice and Bob can agree on the same secret 34
 bytes.

 In ECC systems where the original x-coordinate and the decoded
 x-coordinate need to match exactly, the 34-byte encoding is probably
 not usable unless the following pre-encoding procedure is practical:

 Given a point x where x is larger than min(x,p-x), first replace x
 by x'=p-x, on the encoder's side, using the new value x' (instead
 of x) for any further step in the algorithm. In other words,
 replace the point (x,y) by the point (x',y')=(-x,iy). Most
 algorithms will also require a discrete logarithm d of (x,y),
 meaning (x,y) = [d] G for some point G. Since (x',y') = [i](x,y),
 we can replace by d' such that [d']=[i][d]. Usually, [i] can be
 represented by an integer, say j, and we can compute d' = jd (mod
 ord(G)).

4.2. Point decoding process

4.2.1. Summary

 The bytes are little-endian decoded into an integer which becomes
 the x-coordinate. Public-key validation is done when needed. If
 needed, the y-coordinate is recovered.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 6]

Internet-Draft 2020-10-02

4.2.2. Detail

 If byte i is b[i], with an integer value between 0 and 255
 inclusive, then

 x = sum(0<=i<=33, b[i]*256^i)

 Note: a value of -x (mod p) will also be suitable, and results in
 a point (-x,y') which might be different from the originally
 encoded point. However, it will be one of the points [i](x,y) or
 -[i](x,y) where [i] means complex multiplication by [i].

 In many cases, such as Diffie--Hellman key agreement using the
 Montgomery ladder, neither the original value of coordinate x (among
 x and -x) nor coordinate y of the point is needed. In these cases,
 the decoding steps can be considered completed.

 +---+
 | |
 | \ W / /A\ |R) |N | I |N | /G ! |
 | \/ \/ / \ |^\ | \| | | \| _7 0 |
 | |
 | |
 | WARNING: Some byte strings b decode to an invalid |
 | point (x,y) that does not belong to the curve |
 | 2y^2=x^3+x. Some applications would suffer from a |
 | severe attack if they allow use of (x,y) not on |
 | the curve. Such vulnerable applications MUST |
 | validate that the decoded point (x,y) is on the |
 | curve, as described in Section 5. |
 | |
 +---+

 In cases where a value for at least one of y, -y, iy, or -iy is
 needed (such as in Diffie--Hellman key agreement using Edwards
 coordinates), a candidate value for y can be obtained by computing a
 square root:

 y = ((x^3+x)/2)^(1/2).

 In some specialized applications (not Diffie--Hellman), it is
 important for the decoded value of x to match the original value of
 x exactly. In that case, the encoder should use the procedure that
 replaces x by p-x, and adjusts the discrete logarithm appropriately.
 These steps can be done by the encoder, with the decoder doing
 nothing.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 7]

Internet-Draft 2020-10-02

5. Point validation

 In elliptic curve cryptography, scalar multiplying an invalid public
 key by a private key risks leaking information about the private
 key.

 Note: For curve 2y^2=x^3+x over 8^91+5, the underlying attacks are
 slightly milder than is average for a typical elliptic curve.

 To avoid leaking information about the private, the public key can
 be validated, which includes various checks on the public key.

5.1. When to validate

 This section specifies three strategies (mandatory, simplified, and
 minimal) about deciding when to validate whether a given point (x,y)
 is on the curve 2y^2=x^3+x/GF(8^91+5).

5.1.1. Mandatory validation

 As a precautionary defense-in-depth, an impelementation MAY opt to
 apply mandatory validation, meaning every public key (and point) is
 validated.

5.1.2. Simplified validation

 A small, general-purpose, implementation aiming for high speed might
 not be able to afford the cost of mandatory validation from Section
4.1.1, because each validation costs about 10% of a scalar

 multiplication.

 As a practical middle ground, an impelmentation MAY opt to apply
 simplified validation, which is the rule is that a distrusted public
 key is validated before being scalar multiplied by a static secret
 key.

 +---+
 | STATIC |
 | SECRET |
 | KEY ------\ _ ___ |
 | +) PUBLIC |\/| | | (_` | |
 | UNTRUSTED ------/ KEY | | _/ ._) | BE VALIDATED. |
 | PUBLIC |
 | KEY |
 +---+

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 8]

Internet-Draft 2020-10-02

 Note: Simplified validation implies that when the secret key is
 ephemeral (for example, used in one Diffie--Hellman transaction),
 the public key need not be validated.

 Note: Simplified validation implies that when the point being
 scalar multiplied is a known valid fixed point, or a previously
 validated public key (including a public key from a certificate in
 which the certification authority has a policy to valid public
 keys), then validation is not needed.

5.1.3. Minimal validation

 An implementation MAY opt to use minimal validation, meaning doing
 as little point validation as possible, just enough to resist known
 attack against the implementation.

 The curve 2y^2=x^3+x is not twist-secure: using the Montgomery
 ladder for scalar multiplication is not enough to thwart invalid
 public key attacks.

 For example, consider a static hashed-ECDH implementation
 implemented with a Montgomery ladder, such that the static secret
 key is used in at most ten million times hashed-ECDH transactions.
 Even if exposed to invalid points on the twist, the security risk is
 nearly negligible -- so minimal validation would not validate the
 peer's public keys.

5.2. Point validation process

 Upon decoding a 34-byte string into x, the next step is to compute
 z=2(x^3+x). Then one checks if z has a nonzero square root (in the
 field of size 8^91+5). If z has a nonzero square root, then the
 represented point is valid, otherwise it is not valid.

 Equivalently, one can check that x^3 + x has no square root (that
 is, x^3+x is a quadratic non-residue).

 To check z for a square root, one can compute the Legendre symbol
 (z/p) and check that is 1. (Equivalently, one can check that
 ((x^3+x)/p)=-1.)

 The Legendre symbol can be computed using Gauss' quadratic
 reciprocity law, but this requires implementing modular integer
 arithmetic for integral moduli smaller than 8^91+5.

 Instead, one can compute the Legendre symbol using powering in the
 field: (z/p) = z^((p-1)/2) = z^(2^272+2). This is much slower than
 using quadratic reciprocity, but is perhaps simpler.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 9]

Internet-Draft 2020-10-02

 More generally, in signature applications (such as [B2]), where the
 y-coordinate is also needed, the computation of y, which involves
 computing a square root will generally implicitly include a check
 that x is valid.

 OPTIONAL: In some rare situations, it is also necessary to ensure
 that the point has large order, not just that it is on the curve.

 For points on this curve, each point has large order, unless it has
 torsion by 12. In other words, if [12]P != O, then the point P has
 large order.

 OPTIONAL: In even rarer situations, it may be necessary to ensure
 that a point P also has a prime order q = ord(G). The costly method
 to check this is checking that [q]P = O. An alternative method is
 to try to solve for R in the equation [12]R=P, which involves
 methods such as division polynomials. To be completed.

6. OPTIONAL encodings

 The following two encodings are not usually needed to obtain
 interoperability in the typical ECC applications, such as
 Diffie--Hellman (or digital signatures). In more specialized
 application, these encodings can be useful.

6.1. Encoding scalar multipliers

 Scalar (integer point multipliers) sometimes need to be encoding as
 byte strings. Typical examples are the following applications.

 - Digital signature in ECC generallly require scalar encodings.
 This draft does not specify signature algorithms in detail, only
 providing some general suggestions.

 - An implementation needs to store scalars, because scalars are
 used at least twice, and must be stored between these two uses.
 For example, in elliptic curve Diffie--Hellman, Alice has scalar
 a, sends Bob point aG, keeps scalar a until she receives point
 B from Bob, to which she then applies aB. (If a is ephemeral,
 she then deletes a.) An implementation is free to use any
 encoding of scalar, but implementation are often constructed in
 modular pieces, and any pieces handling the same scalar need to
 be able to convey the scalar.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 10]

Internet-Draft 2020-10-02

 In Diffie--Hellman implementations based on G which has prime order
 q, where q is approximately p/72, the value of scalar s usually only
 matters mod q. So, one can reduce s, replacing it by s mod q,
 making s<q. Since q < 2^267 < 256^34, a value s can be represented
 in 34 bytes.

 Basically, little-endian byte encoding of scalars is recommended,
 for consistency the little-endian byte encoding of field elements.

6.2. Encoding strings as points

 In niche applications, it may be desired to encode an arbtirary
 string as a point on a curve. Example reasons to encode arbitrary
 34-byte strings include:

 - Encoding passwords (or their hashes) in a password-authenticated
 key exchange (PAKE).

 - Hiding the fact that ECC is being used.

 To this end, this section sketches a method to reversibly encode
 any 34-byte string as a point.

 Note: To encode variable-length strings as points, one can first
 compute a 34-byte hash of the variable-length string, and then
 encode the hash. Encoding of variable-length strings is not, and
 cannot be, reversible.

 Note: The point decoding scheme of Section 4.2 does not suffice to
 encode strings, because only about half of all 34-byte strings are
 decodable.

 Note: The string-as-point encoding has the the property that only
 about half of all points are decodable as 34-bytes strings.
 Encoding a uniformly distributed 34-byte string as a point yields
 non-uniformly distributed points.

 The encoding is called Elligator i.

 Note: The Elligator i encoding is a minor variation of the
 Elligator 2 construction [Elligator], introduced in [B1]. A minor
 variation is necessary because Elligator 2 fails for curves with
 j-invariant 1728, and curve 2y^2=x^3+x has j-invariant 1728.

 Fix a square root i of -1 in the field in GF(8^91+5). For example,
 2^(8^89+1) mod 8^91+5.

 To encode a 34-byte string b,

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 11]

Internet-Draft 2020-10-02

 1. Let b represent a field element r, using little-endian base
 256.

 2. Compute x = i-3i/(1-ir^2). Let j=1.

 3. If 2y^2=x^3+x has no solution y, then replace x by x+i and j by
 j+1.

 4. Find two solutions y[1] and y[2] to 2y^2=x^3+x, such that
 y[1]<y[2].

 5. Compute y=y[j].

 Now (x,y) is a point on the curve 2y^2=x^3+x.

 The Elligator i encoding is reversible, because it has the decoding
 sketched below.

 If y>p-y, replace x by x-i. Solve for s = -i - 3/(i-x). Let r =
 sqrt(s). If r > p-r, replace r by p-r. Write r in little-endian
 base 256 to get a 34-byte string b.

 Note: Just to illustrate a constrast between Elligator i encoding
 and the normal point encoding, consider the useless example of
 applying both encodings. Start with 34-byte string b. Apply
 Elligator i encoding to get a point (x,y). Apply the point
 encoding to (x,y) to get a 34-byte string b'. In summary,
 b'=encode(encode(b)). The byte string b' has no significant
 relation to b. The map b->b' from 34-byte strings to themselves
 is lossy (non-injective) with ratio ~4:1, and the image set is
 about one quarter of all 34-byte strings.

7. IANA considerations

 This document requires no actions by IANA, yet.

8. Security considerations

 No cryptographic algorithm is without risk.

 Possible security risks of 2y^2=x^3+x/GF(8^91+5) are listed in this
 section.

 Risk is difficult to estimate, especially aginst possible unknown
 attacks. Relative risk is slightly easier to estimate, if a
 comparable cryptographic system is available as a benchmark.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 12]

Internet-Draft 2020-10-02

 The security risks of 2y^2=x^3+x/GF(8^91+5) are compared to the
 risks of a typical generic curve in ECC, or to the risks of specific
 well-established curves in ECC (such as NIST P-256 and Curve25519).

 Note: Because 2y^2=x^3+x/GF(8^91+5) MUST be used only in
 multi-curve ECC, comparison to other curves is mainly for the
 purposes of benchmarking, and for selection among selection of a
 secondary or tertiary cuve in a multi-curve ECC implementation.

 Note: For possible security benefits of 2y^2=x^3+x/GF(8^91+5), see
Appendix A.

8.1. Field choice

 The field 8^91+5 has the following risks.

 - 8^91+5 is a special prime. As such, it is perhaps vulnerable to
 some kind of attack. For example, for some curve shapes, the
 supersingularity depends on the prime, and the curve size is
 related in a simple way to the field size, causing a potential
 correlation between the field size and the effectiveness of an
 attack, such as the Pohlig--Hellman attack. In summary, field
 size is positively correlated to some known attacks, and perhaps a
 special field size is positively correlated to a potential attack.

 Nonetheless, many other standard curves, such as the NIST P-256
 and Curve25519, also use special prime field sizes. In this
 regard, all these special field curves have a similar risk.

 Yet other standard curves, such as the Brainpool curves, use
 pseudorandom field sizes, reducing their risk to potential
 special-field attack.

 - 8^91+5 arithmetic implementation, while implementable in five
 64-bit words, has some risk of overflowing, or of not fully
 reducing properly. A smaller field, such as that used in
 Curve25519, should simpler reduction and overflow-avoidance
 properties.

 - 8^91+5, by virtue of being well-above 256 bits in size, risks its
 user doing extra, and perhaps unnecessary, computation to protect
 their 128-bit keys, whereas smaller curves might be faster (as
 expected) yet still provide enough security. In other words, the
 extra computational cost for exceeding 256 bits is wasteful, and
 partially a form of denial of service.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 13]

Internet-Draft 2020-10-02

 - 8^91+5 is smaller than some other six-symbol primes: 8^95-9,
 9^99+4 and 9^87+4. Therefore, arguably, 8^91+5 fails to
 absolutely maximize field size relative to decimal exponential
 complexity. In particular, curves defined over larger field size
 have better Pollard rho resistance (of the ECDLP).

 Nonetheless, the primes 9^99+4 and 9^87+4 are not close to a power
 of two, so probably suffer from about two time slower
 implementation than 8^91+5, which is a significant runtime cost,
 and perhaps also a security risk (due to implementation bugs).

 The prime 8^95-9 is, just like 8^91+5, very close to a power of
 two. It may thus have efficiency comparable to 8^91+5 for basic
 field arithmetic operations, such as addition, multiplication and
 reduction. The field 8^95-9 is a little larger, but is likely
 also implementable using five 64-bit words. Being larger, 8^95-9
 has a slightly greater risk than 8^91+5 of leading to an
 arithmetic overflow implementation fault in field arithmetic.
 Field size 8^95-9 has much less simple powering algorithms for
 computing field inverses, Legendre symbols, and square roots: so
 these operations, often important for ECC, may require more code,
 more runtime, and perhaps more risk of implementation bugs.

 - 8^91+5 is smaller than 2^283 (the field size for curve sect283k1
 [SEC2], [Zigbee]), and many other five-symbol and four-symbol
 prime powers (such as 9^97). It provides less resistance to
 Pollard rho than such larger prime powers. Recent progress in the
 elliptic curve discrete logarithm problem, [HPST] and [Nagao], is
 the main reason to prefer prime fields instead of power of prime
 fields. A second reason to prefer a prime field (including the
 field of size 8^91+5) over small characteristic fields is the
 generally better software speed of large characteristic field.
 (Better software speed is mainly due to general-purpose hardware
 often having dedicated fast multiplication circuits:
 special-purpose hardware should make small characteristic field
 faster.)

 - The Kolmogorov complexity of 8^91+5 as six symbols is only minimal
 for decimal exponential complexity: but it is not minimal if other
 types of complexity measures are allowed. For example, if we
 allow the exclamation mark for the factorial operation -- which is
 quite standard notation! -- primes larger than 8^91+5 expressible
 in fewer symbols. For example, 94!-1 is a 485-bit prime number,
 expressible in five symbols. Such numbers, so far as I know, are
 not close to a power of two, so would have similar inefficiency
 and implementability defects to primes like 9^99+4 and 9^87+4.
 Such inefficiencies could resaonably by the curve choice criteria,
 ruling out such primes.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 14]

Internet-Draft 2020-10-02

 Arguably, in traditional mathematical notation, the symbol '^' is
 not actually written, with operation being marked by the use of
 superscripts. In this view, using an ASCII character count
 arguably gives unduly low weight to the factorial operation as
 compared to exponentiation.

 See [B1] for further discussion about the relative merits of 8^91+5.

8.2. Curve choice

 A first risk of using 2y^2=x^3+x is the fact that it is a special
 curve. It is special in having complex multiplication leading
 to an efficient endomorphism. Miller, in 1985, already suggested
 exercising prudence when considering such special curves. Gallant,
 Lambert and Vanstone found ways to slightly speed up Pollard rho
 given such an endomorphism, but no other attacks have been found.

 Menezes, Okamoto and Vanstone (MOV) found an attack on special
 elliptic curves, of low embedding degree. The curve
 2y^2=x^3+x/GF(8^91+5) is not vulnerable to their attack, but if one
 changes the underlying to some different primes, say p', the
 resulting curve 2y^2=x^3+x/GF(p') is vulnerable to their attack for
 about half of all primes. Because the MOV was later than Miller's
 caution from 1984, Miller's prudence seems prescient. Perhaps he
 was also prescient about yet other potential attacks (still
 unpublished), and these attacks might affect 2y^2=x^3+x/GF(8^91+5).

 Many other standard curves, NIST P-256 [NIST-P-256], Curve25519,
 Brainpool [Brainpool], do not have any efficient complex
 multiplication endomorphisms. Arguably, these curves comply to
 Miller's advice to be prudent about special curves.

 Yet other (fairly) standard curves do, such as NIST K-283 (used in
 [Zigbee]) and secp256k1 (see [SEC2] and [BitCoin]). Furthermore, it
 is not implausible [KKM] that special curves, including those
 efficient endomorphisms, may survive an attack on random curves.

 A second risk of 2y^2=x^3+x over 8^91+5 is the fact that it is not
 twist-secure. What may happen is that an implementer may use the
 Montgomery ladder in Diffie--Hellman and re-use private keys. They
 may think, despite the (ample?) warnings in this document, that
 public key validation in unnecessary, modeling their implementation
 after Curve25519 or some other twist-secure curve. This implementer
 is at risk of an invalid public key attack. Moreover, the
 implementer has an incentive to skip public-key validation, for
 better performance. Finally, even if the implementer uses
 public-key validation, then the cost of public-key validation is
 non-negligible.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 15]

Internet-Draft 2020-10-02

 A third risk is a biased ephemeral private key generation in a
 digital signature scheme. Most standard curves lack this risk
 because the field size is close to a power of two, and the cofactor
 is a power of two. Curve 2y^2=x^3+x over 8^91+5 has a base point
 order which is approximately a power of two divided by nine (because
 its cofactor is 72=8*9.) As such, it is more vulnerable than
 typical curves to biased ephemeral keys in a signature scheme.

 A fourth risk is a Cheon-type attack. Few standard curves address
 this risk, and 2y^2=x^3+x over 8^91+5 is not much different.

 A fifth risk is a small-subgroup confinement attack, which can also
 leak a few bits of the private key. Curve 2y^2=x^3+x over 8^91+5
 has 72 elements whose order divides 12.

8.3. Encoding choices

 To be completed.

 As in all ECC, projective coordinates are not suitable as the final
 representation of an elliptic curve point, for two reasons.

 - Projective coordinates for a point are generally not unique: each
 point can be represented in projective coordinates in multiple
 different ways. So, projective coordinates are unsuitable for
 finalizing a shared secret, because the two parties computing the
 shared secret point may end up with different projective
 coordinates.

 - Projective coordinates have been shown to leak information about
 the scalar multiplier [PSM], which could be the private
 key. It would be unacceptable for a public key to leak
 information about the private key. In digital signatures, even a
 few leaked bits can be fatal, over a few signatures
 [Bleichenbacher].

 Therefore, the final computation of an elliptic curve point, after
 scalar multiplication, should translate the point to a unique
 representation, such as the affine coordinates described in this
 specification.

 For example, when using a Montgomery ladder, scalar multiplication
 yields a representation (X:Z) of the point in projective
 coordinates. Its x-coordinate is then x=X/Z, which can be computed
 by computing the 1/Z and then multiplying by X.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 16]

Internet-Draft 2020-10-02

 The safest, most prudent way to compute 1/Z is to use a side-channel
 resistant method, in particular at least, a constant-time method.
 This reduces the risk of leaking information about Z, which might in
 turn leak information about X or the scalar multiplier. Fermat
 inversion, computation of Z^(p-2) mod p, is one method to compute
 the inverse in constant time (if the inverse exists).

8.4. General subversion concerns

 Although the main motivation of curve 2y^2=x^3+x over 8^91+5 is to
 minimize the risk of subversion via a backdoor ([Gordon], [YY],
 [Teske]), it is only fair to point out that its appearance in this
 very document can be viewed with suspicion as an possible effort at
 subversion (via a front-door). (See [BCCHLV] for some further
 discussion.)

 Any other standardized curve can be view with a similar suspicion
 (except, perhaps, by the honest authors of those standards for whom
 such suspicion seems absurd and unfair). A skeptic can then examine
 both (a) the reputation of the (alleged) author of the standard,
 making an ad hominem argument, and (b) the curve's intrinsic merits.

 By the very definition of this document, the reader is encouraged to
 take an especially skeptical viewpoint of curve 2y^2=x^3+x over
 8^91+5. So, it is expected that skeptical users of the curve will
 either

 - use the curve for its other merits (other than its backdoor
 mitigations), such as efficient endomorphism, field inversion,
 high Pollard rho resistance within five 64-bit words, meanwhile
 holding to the evidence-supported belief ECC that is now so mature
 that worries about subverted curves are just far-fetched nonsense,
 or

 - as an additional of layer of security in addition to other
 algorithms (ECC or otherwise), as an extra cost to address the
 non-zero probability of other curves being subverted.

 To paraphrase, consider users seriously worried about subverted
 curves (or other cryptographic algorithms), either because they
 estimate as high either the probability of subversion or the value
 of the data needing protection. These users have good reason to
 like 2y^2=x^3+x over 8^91+5 for its compact description.
 Nevertheless, the best way to resist subversion of cryptographic
 algorithms seems to be combine multiple dissimilar cryptographic
 algorithms, in a strongest-link manner. Diversity hedges against
 subversion, and should the first defense against it.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 17]

Internet-Draft 2020-10-02

 Note: For any form of ECC, finite field multiplication can be
 achieved most quickly by using hardware integer multiplication
 circuits. It is critical that those circuits have no bugs or
 backdoors. Furthermore, those circuits typically can only
 multiply integers smaller than the field elements. Larger inputs
 to the circuits will cause overflows. It is critical to avoid
 these overflows, not just to avoid interoperability failures, but
 also to avoid attacks where the attackers supply inputs likely
 induce overflows [bug attacks], [IT].

8.5. Concerns about 'aegis'

 The exact curve 2y^2=x^3+x/GF(8^91+5) was (seemingly) first
 described to the public in 2017 [AB]. So, it has a very low age, at
 least compare to more established curves.

 Furthermore, it has not been submitted for a publication with peer
 review to any formally peer-reviewed academic cryptographer forum
 such as the IACR conferences like Crypto and Eurocrypt. So, it has
 most like been reviewed by very few eyes.

 Arguably, other reviewers have little incentive to study it
 critically, for several reasons. The looming threat of a quantum
 computer has diverted many researchers towards studying post-quantum
 cryptography, such as supersingular isogeny Diffie--Hellman. The
 past disputes over NIST P-256 and Curve25519 (and several other
 alternatives) have perhaps tired some reviewers, many of whom
 reasonably wish to concentrate on deployment of ECC.

 So, under the metric of aegis, as in age times eyes (times
 incentive), 2y^2=x^3+x/GF(8^91+5) scores low. Counting myself (but
 not quantifying incentive) it gets an aegis score of 0.1 (using a
 rating 0.1 of my eyes factor in the aegis score: I have not
 discovered any major ECC attacks of my own.) This is far smaller
 than my estimates (see below) some more well-studied curves.

 Nonetheless, the curve 2y^2=x^3+x over 8^91+5 at least has some
 similarities to some of the better-studied curves with much higher
 aegis:

 - Curve25519: has field size 8^85-19, which a little similar to
 8^91+5; has equation of the form by^2=x^3+ax+x, with b and a
 small, which is similar to 2y^2=x^3+x. Curve25519 has been around
 for over 10 years, has (presumably) many eyes looking at it, and
 has been deployed thereby creating an incentive to study. An
 estimated aegis for Curve25519 is 10000.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 18]

Internet-Draft 2020-10-02

 - NIST P-256: has a special field size, and maybe an estimated aegis
 of 200000. (It is a high-incentive target. Also, it has received
 much criticism, showing some intent of cryptanalysis. Indeed,
 there has been incremental progress in finding minor weakness
 (implementation security flaws), suggestive of actual
 cryptanalytic effort.) The similarity to 2y^2=x^3+x over 8^91+5
 is very minor, so very little of the P-256 aegis would be relevant
 to this document.

 - secp256k1: has a special field size, though not quite as special
 as 8^91+5, and has special field equation with an efficient
 endomorphism by a low-norm complex algebraic integer, quite
 similar to 2y^2=x^3+x. It is about 17 years old, and though not
 studied much in academic work, its deployment in Bitcoin has at
 least created an incentive to attack it. An estimated aegis for
 secp256k1 is 10000.

 - Miller's curve: Miller's 1985 paper introducing ECC suggested,
 among other choices, a curve equation y^2=x^3-ax, where a is a
 quadratic non-residue. Curve 2y^2=x^3+x is isomorphic to
 y^2=x^3-x, essentially one of Miller's curves, except that a=1 is
 a quadratic residue. Miller's curve may not have been studied
 intensely as other curves, but its age matches that ECC itself.
 Miller also hinted that it was not prudent to use a special curve
 y^2=x^3-ax: such a comment may have encouraged some cryptanalysts,
 but discouraged cryptographers, perhaps balancing out the effect
 on the eyes factor the aegis. An estimated aegis for Miller's
 curves is 300.

 Obvious cautions to the reader:

 - Small changes in a cryptographic algorithm sometimes cause large
 differences in security. So security arguments based on
 similarity in cryptographic schemes should be given low priority.

 - Security flaws have sometimes remained undiscovered for years,
 despite both incentives and peer reviews (and lack of hard
 evidence of conspiracy). So, the eyes-part of the aegis score is
 very subjective, and perhaps vulnerable false positives by a herd
 effect. Despite this caveat, it is not recommended to ignore the
 eyes factor in the aegis score: don't just flip through old books
 (of say, fiction), looking for cryptographic algorithms that might
 never have been studied.

9. References

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 19]

Internet-Draft 2020-10-02

9.1. Normative References

 [BCP14] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/bcp14>.

9.2. Informative References

 To be completed.

 [AB] A. Allen and D. Brown. ECC mod 8^91+5, presentation to CFRG,
 2017.
 <https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/>

 [AMPS] Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and
 Juraj Somorovsky. Prime and Prejudice: Primality Testing Under
 Adversarial Conditions, IACR ePrint,
 2018. <https://ia.cr/2018/749>

 [B1] D. Brown. ECC mod 8^91+5. IACR ePrint, 2018.
 <https://ia.cr/2018/121>

 [B2] D. Brown. RKHD ElGamal signing and 1-way sums. IACR ePrint,
 2018. <http://ia.cr/2018/186>

 [B3] D. Brown. Rolling up sleeves when subversion's in the field?
 IACR eprint, 2020. <https://ia.cr/2020/074>

 [KKM] A. Koblitz, N. Koblitz and A. Menezes. Elliptic Curve
 Cryptography: The Serpentine Course of a Paradigm Shift, IACR
 ePrint, 2008. <https://ia.cr/2008/390>

 [BCCHLV] D. Bernstein, T. Chou, C. Chuengsatiansup, A. Hulsing,
 T. Lange, R. Niederhagen and C. van Vredendaal. How to
 manipulate curve standards: a white paper for the black hat, IACR
 ePrint, 2014. <https://ia.cr/2014/571>

 [Elligator] (((To do:))) fill in this reference.

 [NIST-P-256] (((To do:))) NIST recommended 15 elliptic curves for
 cryptography, the most popular of which is P-256.

 [Zigbee] (((To do:))) Zigbee allows the use of a
 small-characteristic special curve, which was also recommended by
 NIST, called K-283, and also known as sect283k1. These types of
 curves were introduced by Koblitz. These types of curves were
 not recommended by NSA in Suite B.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/bcp14
https://datatracker.ietf.org/doc/slides-99-cfrg-ecc-mod-8915/
https://ia.cr/2018/749
https://ia.cr/2018/121
http://ia.cr/2018/186
https://ia.cr/2020/074
https://ia.cr/2008/390
https://ia.cr/2014/571

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 20]

Internet-Draft 2020-10-02

 [Brainpool] (((To do:))) the Brainpool consortium (???) recommended
 some elliptic curves in which both the field size and the curve
 equation were derived pseudorandomly from a nothing-up-my-sleeve
 number.

 [SEC2] Standards for Efficient Cryptography. SEC 2: Recommended
 Elliptic Curve Domain Parameters, version 2.0, 2010.
 <http://www.secg.org/sec2-v2.pdf>

 [IT] T. Izu and T. Takagi. Exceptional procedure attack on elliptic
 curve cryptosystems, Public key cryptography -- PKC 2003, Lecture
 Notes in Computer Science, Springer, pp. 224--239, 2003.

 [PSM] (((To do:))) Pointcheval, Smart, Malone-Lee. Projective
 coordinates leak.

 [BitCoin] (((To do:))) BitCoin uses curve secp256k1, which has an
 efficient endomorphism.

 [Bleichenbacher] To do: Bleichenbacher showed how to attack DSA
 using a bias in the per-message secrets.

 [Gordon] (((To do:))) Gordon showed how to embed a trapdoor in DSA
 parameters.

 [HPST] Y. Huang, C. Petit, N. Shinohara and T. Takagi. On
 Generalized First Fall Degree Assumptions, IACR ePrint 2015.
 <https://ia.cr/2015/358>

 [Nagao] K. Nagao. Equations System coming from Weil descent and
 subexponential attack for algebraic curve cryptosystem, IACR
 ePrint, 2015. <http://ia.cr/2013/549>

 [Teske] E. Teske. An Elliptic Curve Trapdoor System, IACR ePrint,
 2003. <http://ia.cr/2003/058>

 [YY] (((To do:))) Yung and Young, generalized Gordon's ideas into
 Secretly-embedded trapdoor ... also known as a backdoor.

Appendix A. Why 2y^2=x^3+x/GF(8^91+5)?

 This sections says why curve 2y^2=x^3+x/GF(8^91+5) can improve ECC,
 if used properly in multi-curve ECC.

 Note: Later sections (especially 4, 5, 6, 8, A, B, C, and D) cover
 some relatively routine ECC details about how to use
 2y^2=x^3+x/GF(8^91+5).

http://www.secg.org/sec2-v2.pdf
https://ia.cr/2015/358
http://ia.cr/2013/549
http://ia.cr/2003/058

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 21]

Internet-Draft 2020-10-02

A.1. Not for single-curve ECC

 Curve 2y^2=x^3+x/GF(8^91+5) SHOULD NOT be used in single-curve ECC.

 It is riskier than other IETF-approved curves, such as NIST P-256
 and Curve25519, for at least the following reasons:

 - it is newer, so riskier, all else equal, and

 - it is special, with complex multiplication by i: consensus
 continues to agree with Miller's original 1985 opinion that
 using (such) special curves is not "prudent".

 Koblitz, Koblitz and Menezes [KKM] somewhat dissent from the
 consensus against special curves. They list several plausible cases
 of special curves -- including some with complex multiplication --
 that they argue might well be safer than random curves. (Others go
 even further, dismissing prudence against special curves as myth
 [ref-tba].)

 Despite this dissent, this report adheres to the consensus, which is
 to prefer other curves for single-curve ECC.

 The relative newness of 2y^2=x^3+x/GF(8^91+5) is not entire. The
 curve equation is isomorphic to one proposed by Miller in 1985,
 making it older than the isomorphism class of curve equations in
 NIST P-256 or Curve25519. The field size, the prime 8^91+5=2^273+5,
 is a prime likely to have been considered before the field size
 primes NIST P-256 or Curve25519, but probably not in an application
 to ECC (i.e. probably in surveys of special primes).

A.2. Risks of new curve-specific attacks

 A risk for all ECC is new curve-specific attacks, especially attacks
 on the elliptic curve discrete logarithm problem. A new
 curve-specific attack could break any ECC using the affected curves.

 The main benefit to ECC of curve 2y^2=x^3+x/GF(8^91+5) is to reduce
 this risk in multi-curve variant of ECC.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 22]

Internet-Draft 2020-10-02

 Note: an arguably larger risk, a quantum computer capable of
 running Shor's algorithm, looms over all of ECC. The probability
 of this risk is basically independent of the probability new
 curve-specific attack, but the impacts are heavily dependent, if a
 quantum attack impacts ECC, then the new curve-specific attacks
 are totally moot. Also, even if no quantum attack on ECC emerges,
 but PQC supplements or replaces ECC, then a new curve-specific
 attack becomes much more tolerable. For sake of argument, suppose
 probabilities 1% for a new curve-specific attack by 2030, and 10%
 for a quantum-attack on ECC by 2030. Addressing the 10%
 probability risk is more urgent, but there is still a 90% chance
 that of no-quantum-attack. Assuming that PQC is combined with ECC
 (instead of replacing it) and assuming that the 10% and 1%
 probabilities above are formally independent, then there is 0.9%
 probability that new-curve specific on ECC by 2030 would affect
 PQC+ECC systems, reducing their security to that of PQC only.

A.2.1. What would be considered a "new curve-specific" attack?

 The idea of new curve-specific attacks is now discussed. The
 purpose is to remind the reader of the risks, by comparison to past
 curve-specific attacks, so that a user can estimate the benefits of
 addressing the risk. Ultimately, the reader should make an informed
 as possible decision whether the extra cost of multi-curve is
 warranted.

A.2.2.1. What would be considered a "new" attack?

 The "new" in "new curve-specific attack" means hypothetical and not
 yet published, and hence, either future or hidden. This
 contemplates an adversary with superior cryptanalytic capability
 than current state-of-the-art knowledge.

A.2.2.2. What is, would be, considered a "curve-specific attack"?

 The "curve-specific" in "new curve-specific attakc" means that the
 following conditions on the attack are true

 - it affects almost ECC algorithms using the specific curve
 (typically, if the discrete logarithm problem is easy for that
 curve, or in some cases, the decision Diffie--Hellman problem),

 - it does not affect ECC using at least one other curve
 (typically, many other curves), and

 - it would not affect a generic group of the same size of the
 secure ECC group.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 23]

Internet-Draft 2020-10-02

 Note: For example, the naive Pollard-rho attack is not
 "curve-specific" because it fails the second condition and third
 condition (it affects all curves and all generic groups of equal
 or smaller size than the attacked curve). The Pohlig--Hellman
 attack (on smooth order groups) is not curve-specific because it
 fails the third condition.

 Note: A side-channel attack on an ECC implementation is not
 necessarily "curve-specific" in the strict sense above, if
 another ECC implementation using the same curve resists the
 attack. Some curves may be more prone than others to side-channel
 attacks, here we refer to that situtation "curve-specific
 implementation-vulnerability".

 Prime-field curves were affected by two curve-specific attacks (on
 the discrete logarithm): the MOV attacks, and the SASS attack, both
 from before 2001. For the decision Diffie--Hellman problem, a
 generalization of the MOV attack can be considered as
 curve-specific.

 For non-prime-field curves, more recent curve-specific attacks have
 been discovered, some asymptotically polynomial-time. (To be
 completed.)

A.2.2.3. Rarity of published curve-specific attacks

 To be completed.

 The known curve-specific attacks against prime-field curves are rare
 in the sense of having negligible probability of affecting a random
 curve (over a given prime-field).

 Some of these are attacks are also field-specific too.
 These attacks somewhat rare among all possible non-prime-field
 curves (though in some cases the probability among certain class of
 curves is non-negligible).

 If the rarity of the known curve-specific attacks carries over to
 any new curve-specific attacks, then truly random curves should
 resist the new curve-specific attacks, except with negligible
 probability. Honestly generated, non-random curves should also
 resist the new curve-specific attacks, except in the unfortunate
 case the new curve-specific attack is correlated with the honest
 curve generation criteria.

A.2.2.4. Correlation of curve-specific efficiency and attacks

 To be completed.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 24]

Internet-Draft 2020-10-02

 Many of the known curve-specific attacks affected previously
 proposed curves, and presumably honestly generated curves. For
 example, supersingular curves were proposed for their slightly
 greater efficiency over ordinary curves, but then turned out to be
 vulnerable to the MOV attack. (Similarly, curves vulnerable to the
 SASS attack were proposed for slight efficiencies, before the SASS
 attack was published.) So, such correlations are not only
 plausible, but the real-world pattern for ECC. Accidents have
 already happened for such non-random curves.

 Worse yet, if a non-random curve is chosen maliciously, a
 correlation between a hidden curve-specific attack and some sensible
 curve generation criteria might well make it possible for a
 maliciously chosen non-random curve to be made vulnerable to a
 hidden curve-specific attack.

A.3. Mitigations against new curve-specific attacks

 Because the risk of new curve-specific attack is nonzero, applying
 mitigations against the risk potentially improves security, albeit
 at some cost.

A.3.1. Fixed curve mitigations

 Often, a single fixed curve is used across a system of ECC users,
 generally for reasons of efficiency. This exposes the system to the
 nonzero risk of new curve-specific attacks.

A.3.1.2. Existing fixed-curve mitigations

 Some of the better established fixed curve have sensibly included
 mitigations against the nonzero risk of new curve-specific attacks.

 - NIST curve P-256 has coefficients derived from the ouptut of
 SHA-1, perhaps aiming to avoid any new curve-specific weakness
 that would appply rarely to random curves, although inadequately
 so, because the seed input to the hash is utterly inexplicable,
 and plausibly manipulable.

 - Bernstein's Curve25519 results from a "rigid", non-random design
 process, favoring efficiency over all else, perhaps eliminating
 intentional subversion towards a new curve-specifc weakness.

 - Brainpool's curves are derived using hash functions applied to
 nothing-up-my-sleeve numbers, perhaps aiming to mitigate both
 intentional subversion and accidental rare weakness.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 25]

Internet-Draft 2020-10-02

 Note: A reasonable inference from these curves is that risk of new
 curve-specific attacks warranted the mitigations used (as listed
 above). The risk may be less now that further time has passed,
 because no other curve-specific attacks against prime-field curves
 arose in the interim. The risk is still not zero, so the
 mitigations may still be warranted.

A.3.1.2. Migitations used by 2y^2=x^3+x/GF(8^91+5)

 The curve 2y^2=x^3+x/GF(8^91+5) includes similar fixed-curve
 mitigations against the risk of new curve-specific attacks:

 - a short description (low Kolmogorov compelxity), aiming to have
 little wiggle for an intentional embedded weakness (somewhat like
 a nothing-up-my-sleeve number used in the Brainpool curves),

 - a set of special efficiencies, such as a curve endomorphism,
 Montgomery form, and fast field operation (somewhat like the
 "rigid" properties of Curve25519 favor efficiency as a mitigation
 to fight off intentional embedded weakness),

 - a prime field, to stay clear of recent curve-specific attacks on
 non-prime-field ECC.

 These mitigations do not suffice to justify its use in single-curve
 ECC (instead of more established non-special curves).

 Note: The mitigations above, like those of NIST P-256 and
 Curve25519, have a cost which consists mostly of a one-time
 computation. The mitigations are somewhat warranted, even if
 multi-curve ECC, because the aim of multi-curve is to hedge the
 risk of curve-specific attacks, so it makes sense for each
 individual curve to include mitigations against this risk.

A.3.2. Multi-curve ECC

 This section further motivates the value of multi-curve ECC over
 single-curve ECC, but does specify a detailed way to do multi-curve
 ECC.

 Multi-curve ECC is only really effective if used with a diverse set
 of curves. Multi-curve ECC SHOULD use a set of curves including the
 three curves:

 NIST P-256, Curve25519, and 2y^2=x^3+x/GF(8^91+5).

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 26]

Internet-Draft 2020-10-02

 Multi-curve ECC aims to further mitigate the risk of curve-specific
 attack, by securely combining a diverse set of curves. The aim is
 that at least one of the curves used in multi-curve ECC resists a
 new curve-specific attack (if a new attack ever appears). This aim
 is only plausible if the set of curves used is diverse, in features
 or in authorship.

 This curve contributes to the diversity necessary for multi-curve
 ECC, with special technical features distinct from established
 curves NIST P-256 and Curve25519 (and Brainpool):

 - complex multiplication by i (low discrimiant, rather than high),

 - a greater emphasis on low Kolmogorov descriptional complexity
 (rather than hashed coefficient or efficiency).

A.3.2.1. Multi-curve ECC is a redundancy strategy

 Multi-curve ECC is an instance of a strategy often called
 redundancy, applied to ECC. Redundancy is quite general in that it
 can be applied to other types of cryptography, to other types of
 information security, and even to safety systems. Other names for
 redundant strategies include:

 strongest-link, defense-in-depth, hybrid, hedged, composite,
 fail-safe, diversified, resilient, belt-and-suspenders, fault
 tolerant, robust, multi-layer, robustness, compound, combination,
 etc.

A.3.2.2. Whether to use multi-ECC

 Multi-curve ECC mitigates the risk of new curve-specific attacks, so
 ought to be used instead of single-curve ECC if affordable, such as
 when

 - the privacy of the data being protected has higher value than
 the extra cost of multi-curve ECC, which may be the case for at
 least financial, medical, or personally-identifying data, and

 - ECC is only a tiny portion of the overall system costs, which
 would be the case if the data is human-generated or high-volume,
 or if ECC is combined with slow or large post-quantum
 cryptography (PQC).

A.3.2.2.1. Benefits of multi-curve ECC

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 27]

Internet-Draft 2020-10-02

 The benefit of multi-curve ECC is difficult to quantify. The aimed
 benefit over single-curve ECC is extra security, in the event of a
 signficant curve-specific attack.

 No extra security results if all the curves used are the same. The
 curves must be diverse, so that a potential attack on one is somehow
 unlikely to affect the other. This diversity is difficult to
 assess. Intuitively, a geometric metaphor of a polygon for the
 space of all choices might help. Maximally distant points in a
 polygon tend to be vertices, the extremities of the polygon.
 Translating this intuition suggests choosing curves at the extremes
 of features.

 Note: By contrast, in a single-curve ECC, the geometric
 metaphor suggests a central internal point, on the grounds that
 each vertex is more likely to be affected to a special attack.
 Carrying this over to multi-curve suggests that a diverse set
 ought to include a non-extreme curve too.

 As always, the benefit of security is really the negative of the
 cost of an attack, including the risk.

 The contextual benefit of multi-curve ECC therefore depends very
 much on the application, involving the assessing both the
 probability of attack, and the impact of the attack.

 Higher value private data has greater impact if attacked, and
 perhaps also higher probability, if the adversary is more motivated
 to attack it.

 Low probability of attacks are mostly inferred through failed but
 extensive cryptanalysis efforts. Normally, this is only intuited,
 but approaches to quantifiably estimate these probabilities is
 possible too, under sufficiently strong assumptions.

 To be completed.

A.3.2.2.2. Costs of multi-curve ECC

 The cost of multi-curve ECC is fairly easy to quantify (easier than
 quantifying the benefit).

 The cost of multi-curve is meant to be compared to the cost of
 single-curve ECC.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 28]

Internet-Draft 2020-10-02

 The cost ratio is approximately the number of curves used. The cost
 difference depends on the devices implementing the ECC.

 For example, on a current personal computer, the extra cost per ECC
 transaction can include up to 1 millisecond of runtime and sending
 an extra 30 bytes or more. In low-end devices, the time may be
 higher due to slower processors.

 The contextual cost of ECC depends on the application context. In
 some applications, such as personal messages between two users, the
 cost (milliseconds and a few hundred bytes) is affordable relative
 to the time users spent writing and reading the messages. In other
 applications, such as automated inter-device communication with
 frequent brief messages, single-curve ECC may already be a
 bottleneck, costing most of the run-time.

A.3.2.3. Applying multi-curve ECC

 For key establishment, NIST recently proposed (in a draft amendment
 to Special Publication 800-133 on key derivation) a mechanism to
 support deriving a single symmetric key from the result of multiple
 key establishments. In summary, the mechansim is that the raw ECDH
 shared secrets would be concatenated and fed into a hash-based key
 derivation function.

 An alternative would be to XOR multiple shared symmetric-key
 together.

 So, multi-curve elliptic curve Diffie--Hellman (ECDH) key agreement
 could use one of these mechanism to derive a single key from
 multi-curve ECDH.

 A mechanism to support sending more than one ECDH public key
 (usually ephemeral), with an indication of the curve for each ECDH
 key, would also be needed.

 For signatures, the simplest approach is to attach multiple
 signatures to each message. (For signatures providing message
 recovery, then an approach is to apply the results, with outer
 signatures recover the inner signed message, and so on.)

A.4. General features of curve 2y^2=x^3+x/GF(8^91+5)

 This subsection describes some general features of the curve

 2y^2=x^3+x/GF(8^91+5),

 presuming a familiarity with elliptic curve cryptography (ECC).

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 29]

Internet-Draft 2020-10-02

 Each of a set of well-established features, such as Pollard rho
 security or Mongtomgery form, for ECC in general are evaluated and
 summarized for the specific curve 2y^2=x^3+x/GF(8^91+5).

 Note: Interoperable ECC requires a few more details than are
 deducible from mathematical description 2y^2=x^3+x/GF(8^91+5) of
 the curve, such encoding points as byte strings. These details
 are discussed in Sections 4, 5, and 6.

A.4.1. Field features

 The curve's field of definition, GF(8^91+5), is a finite field, as
 is always the case in ECC. (Finite fields are Galois field, and the
 field of size is p is written as GF(p).)

 The field size is the prime p=8^91+5. (See the appendix for a
 Pratt primality certificate.)

 In hexadecimal (base 16, big-endian) notation, the number 8^91+5 is

 20005

 with with 67 zeros between 2 and 5.

 The most recent known curve-specific attacks on
 prime-field ECC are from 2000.

 Prime fields in ECC tend be more efficient in software than in
 hardware.

 The prime p is very close to a power of two. Primes very close to a
 power of two are sometimes known as Crandall primes. Reduction
 modulo p is more efficient for Crandall primes than for most other
 primes (or at least random primes). Perhaps Crandall primes are
 more resistant to side-channel attacks or implementation faults than
 than most other primes.

 The fact that p is slightly larger than a power of two -- rather
 than slightly lower -- means that powering algorithms to compute
 inverses, Legendre symbols, and square roots are simpler and
 slightly more efficient (than would be for prime below a 2-power).

A.4.3. Equation features

 The curve equation 2y^2=x^3+x has Montgomery form,

 by^2=x^3+ax^2+x,

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 30]

Internet-Draft 2020-10-02

 with (a,b) = (0,2). This permits the Montgomery ladder scalar point
 multiplication algorithm to be used, which makes it relatively
 efficient, and also easier to protect against side channels.

 The curve 2y^2=x^3+x has complex multiplication by i, given an
 endomorphism

 (x,y) -> (-x,iy).

 Note: Strictly speaking, over some fields, the curve would be
 supersingular, in which the term "complex mutliplication" is not
 used, because the curve then has quaternionic multiplication.

 The endomorphism permits the Gallant--Lambert--Vanstone (GLV) scalar
 multiplication algorithm, which makes it relatively efficient. (The
 GLV method can also be combined with Bernstein's two-dimensional
 variant of the Montgomery ladder algorithm.)

 The curve has j-invariant 1728, because it has complex
 multiplication by i.

 Note: The j-invariants 0 and 1728 are special in that the curves
 with these j-invariants have more than two automorphisms.
 (Relatedly, over complex numbers, the moduli space of elliptic
 curves is an orbifold, with exactly two non-smooth points, at j=0
 and j=1728.)

A.4.4. Finite curve features

 This section describes features of 2y^2=x^3+x/GF(8^91+5) as a finite
 curve consisting, the points (x,y) for x,y in GF(p), and also the
 point at infinity. In other words, these features are specific to
 the combination of both the finite field and the curve equation.

 Note: In algebraic geometry, these points are said to rational
 over k=GF(p), and the set of rational points written as E[k] =
 (2y^2=x^3+x)[GF(8^91+5)], to distinguish from points with
 coordinates in the alebraic closure of k=GF(p).

 Many security properties, and a few performance properties, of ECC
 are specific to a finite curve.

A.4.4.1. Curve size and cofactor

 The curve (of points rational over GF(8^91+5)) has size (order) 72q
 for a large prime q, which is, in hexadecimal,

 71C71C71C71C71C71C71C71C71C71C71C7A4ACED12AE9418569B932B8A7B80438A9

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 31]

Internet-Draft 2020-10-02

 NOTE: Appendix E has a Pratt primality certifcate for q.

 So, the curve has cofactor 72.

 The curve size can verified by implementing the curve's elliptic
 curve arithmetic, and scalar multiplying random points on the curve
 by the claimed size. It can be partially verified using the complex
 multiplication theory, and a little big integer arithmetic.

 The prime p=8^91+5 has p=1 mod 4, so a theorem of Fermat says there
 exist integers u and v such that p=u^2+v^2. Numbers u and v can
 found using a special case of Cornacchia's algorithm, and are listed
 further below.

 Complex multiplication theory says that a curve with complex
 multiplication by i has size s=(u+1)^2+v^2 = p+2u+1. By negation
 and swapping u and v, there are four possible sizes, p+2u+1, p-2u+1,
 p+2v+1, p-2v+1 (sometimes known as the twist sizes).

 Curve 2y^2=x^3+x/GF(8^91+5) has one of these four sizes. In this
 case, its size s is divisible by 72, and has large prime factor q =
 s / 72.

 The following 'bc' program includes values for u and v applicable to
 2y^2=x^3+x/GF(8^91+5), verifies these calculations, and outputs q.

 p = 8^91+5
 u = 104303302790113346778702926977288705144769
 v = 65558536801757875228360405858731806281506
 if (p != u^2+v^2) { "u and v incorrect" ; halt }
 s = (u+1)^2 + v^2
 if (0 != (s % 72)) { "size not divisible by 72" ; halt}
 q = s/72
 q

 Note: Theory only indicates that s has one of four values, so an
 extra step is needed to verify which of the four values is the
 size. Scalar multiplication by s is a general method. A faster
 method, specific to 2y^2=x^3+x/GF(8^91+5), is to show that only
 one of the four candidate sizes is divisible by 3, and then
 demostrate a point of order 3 on this curve. Symbolic calculation
 with elliptic curve arithmetic show that the point (x,y) has order
 3 if 3x^4 + 1 = 0 in GF(p). The big integer calculation
 (-(1+2p)/3)^((p-1)/4) = 1 mod p shows that such an x exists in
 GF(p).

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 32]

Internet-Draft 2020-10-02

 Note: The Schoof--Elkies--Atkin (SEA) point-counting algorithm can
 compute the size of any general curve, but is slower than methods
 for some special curves, which is why Miller suggested special
 curves 1985.

A.4.4.2. Pollard rho security

 The prime q is 267-bit number. The Pollard rho algorithm for
 discrete logarithem to the base G (or any order q point) takes
 (proportional to) sqrt(q) ~ 2^133 elliptic curve operations. The
 curve provides at least 2^128 security against Pollard rho attacks,
 with about 5 bits to spare.

 Note: Arguably, the fact ECC operations are slower than
 symmetric-key operartions (such as hashing or block ciphers),
 means that ECC security should be granted a few extra bits,
 perhaps 5-10 bits, of security when trying to match ECC security
 with symmetric-key security. In this case, one might say that
 2y^2=x^3+x/GF(8^91+5) resists Pollard-rho with 2^140 security,
 providing 12 bits of extra security. The extra security can be
 viewed as a safety margin for error, or as an excessive to the
 extent the smaller, and faster curves would more than suffice to
 match 2^128 security of SHA-256 and AES-128.

 Gallant, Lambert, Vanstone, show how to speed up Pollard rho
 algorithms when the group has an extra endormorphism, which would
 apply to 2y^2=x^3+x. The speed-up here amounts to a couple of bits
 in the security,

A.4.4.3. Pohlig--Hellman security

 The small cofactor means the curve effectively resists
 Pohlig--Hellman attack (a generic algorithm to solve discrete
 logarithms in any group in time sqrt(m) where m is the largest
 prime factor of the group size).

 Note: Consensus in ECC is to recommend a small factor, such as 1,
 2, 4, or 8, despite the fact that, for random curves, the typical
 cofactor is approximately p^(1/3), which is much larger. The
 small cofactor helps resists Pohlig--Hellman without increasing
 the field size. (A larger field size would be less efficient.)

A.4.4.2. Menezes--Okamoto--Vanstone security

 The curve has a large embedding degree. More precisely, the curve
 size 72q has q with embedding degree (q-1)/2.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 33]

Internet-Draft 2020-10-02

 This means that the discrete logarithms to base G (a point of order
 q) resist Menezes--Okamoto--Vanstone attack.

 The large embedding degree also means that that no feasible pairings
 exist that could be used solve the decision Diffie--Hellman problem
 (for points of order q). Similarly, the larger embedding degree
 also means, it cannot be used for pairing-based cryptography (and it
 would already too small to be used for pairing-based cryptography).

 Note: Intuitively, a near-miss or a close-call could describe this
 curve's resistance to the MOV attack. For about half of all primes
 P, then curve 2y^2=x^3+x is supersingular over GF(P), with
 embedding degree 2, making them vulnerable to the MOV attack
 reduces the elliptic curve discrete logarithm to the finite field
 discrete logarithm over GF(P^2). Miller suggested in 1985 to use
 isomorphic equations, y^2=x^3-ax, without knowing about the 1992
 MOV attack. These special curves would then be vulnerable with
 ~50% chance of being, depending on the prime P. This curve was
 chosen in full knowledge of the MOV attack.

 Note: The near-miss or close-call intuition is misleading, because
 many cryptographic algorithms become insecure based on the
 slightest adjustment to the algorithm.

 Note: The non-supersingularity means that the endomorphism ring is
 commutative. For this curve the endomorphism ring is isomorphic
 to the ring Z[i] of Gaussian integers.

A.4.4.3. Semaev--Araki--Satoh--Smart security

 The fact that the curve size 72q does not equal p, means that the
 curve resists the Semaev--Araki--Satoh--Smart attack.

A.4.4.4. Edwards and Hessian form

 The cofactor 72 is divisible by 4, so the curve isomorphic to a
 curve with an Edwards equation, permitting implementation even more
 efficient than the Montgomery ladder.

 The Edwards form makes possible the Gallant--Lambert--Vanstone
 method that used the efficient endomorphism.

 The cofactor 72 is also divisible by 3, so the curve is isomorphic
 to a curve with a Hessian equation, which is another type of
 equation permmitting efficient implementation.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 34]

Internet-Draft 2020-10-02

 Note: It is probably too optimisitic and speculative to hope that
 future research will show how to take advantage by combining the
 efficiencies of Edwards and Hessian curve equations.

A.4.4.5. Bleichenbacher security

 Bleichenbacher's attack against faulty implementations
 discrete-log-based signatures fully affects 2y^2=x^3+x/GF(8^91+5),
 because the base point order q is not particularly close to a power
 of two. (Some other curves, such as NIST P-256 and Curve25519, have
 the base point order is close to a power of two, which provides
 built-in resistant to Bleicenbacher's faulty signature attack.)

 Note: Bleichenbacher's attack exploits the signature implmentation
 fault of naively reducing uniformly random bit strings modulo q,
 the order of the base point, which results in a number biased
 towards the lower end of the interval [0,q-1].

 So, q-uniformization of the pre-message secret numbers is critical
 for signature applications of 2y^2=x^3+x/GF(8^91+5). Various
 uniformization methods are known, such as reducing extra large
 numbers, repeated sampling, and so on.

A.4.4.6. Bernstein's "twist" security

 Unlike Curve25519, curve 2y^2=x^3+x/GF(8^91+5) is not
 "twist-secure", so a Montgomery ladder implementation for static
 private keys often requires public-key validation, which is
 achievable by comptuation of a Legendre symbol related to the
 received public key.

 In particular, a Montgomery ladder x-only implementation that does
 not implement public-key validation will process a value x for which
 no y satsifying the equation exists in GF(p). More precsiely, a y
 does exist, but it belongs to the extension field GF(p^2). In this
 case, the Montgomery ladder treats x as though it were (x,y) where x
 is GF(p) but y is not. Such points belong to a "twist" group, and
 this group has order:

 2^2 * 5 * 1526119141 * 788069478421 * 182758084524062861993 *
 3452464930451677330036005252040328546941

 An adversary can exploit this, by finding such invalid x that
 correspond to a lower order group element, and thereby try to learn
 partial information about a static private key used by a
 non-validating Montgomery ladder implementation.

A.4.4.7. Cheon security

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 35]

Internet-Draft 2020-10-02

 Niche applications in ECC involve revealing points [d^e]G for one
 secret number d, and many different integer e, or at least one large
 e. One way such points could be reveal is in protocols that employ
 a static Diffie--Hellman oracle, a function to compute [d]P from any
 point P, which might be applied e times, if e is reasonably small.

 Typical ECDH, to be clear, would never reveal such points, for at
 least two reasons:

 - ECDH is ephemeral, so that the same d is never re-used across
 ECDH sessions (because d is used to compute [d]G and [d]Q, and
 then discarded),

 - ECDH is hashed, so though P=[d]G is sent, the point [d]Q is
 hashed to get k = H([d]Q), and then [d]Q is discarded, so the
 fact that hash is one-way means that k should not reveal [d]Q,
 if k is ever somehow revealed.

 The Brown--Gallant--Cheon q-1 algorithm finds d, given [d^e]G, if
 e|(q-1). It uses approximately sqrt(q/e) elliptic curve operations.
 The Cheon q+1 algorithm finds d, given all the points [d]G, [d^2]G,
 ..., [d^e]G, if e|(q+1), and takes a similar amount of computation.
 These two algorithms rely on factors e of q-1 or q+1, so the
 factorization of these numbers affects the security against the
 algorithm.

 Cheon security refers to the ability to resist these algorithms.

 It is possible seek out special curves with relatively high Cheon
 security, becasue q-1 and q+1 have no suitable factors e.

 The curve 2y^2=x^3+x/GF(8^91+5) has typical Cheon security in terms
 of the factorization of q-1 and q+1. Therefore, in the niche
 applications that reveal the requisite points, mitigations ought to
 be applied, such as limiting the rate of revealing points, or using
 different value d as much as possible (one d per recipient).

 For 2y^2=x^3+x/GF(8^91+5) the factorization of q-1 and q+1 are:

 q-1 = 2^3 * 101203 * 23810182454264420359 *
 10934784357463776473342498062299965925956115086976992657
 and

 q+1 = 2 * 3 * 11 * 21577 * 54829 * 392473 * 854041 *
 8054201530811151253753936635581206856381779711451564813041

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 36]

Internet-Draft 2020-10-02

 The q-1 and q+1 algorithms convert an oracle for function P -> [d]P
 into a way to find d. This may be viewed as a reduction of the
 discrete logarithm problem to the problem of computing the function
 P -> [d]P for the target d. In other words, computing P -> [d]P is
 almost as difficulty as solving the discrete logartithm problem. In
 many systems with a static Diffie--Hellman secret d, computing the
 function P -> [d]P needs to be difficult, or the security will be
 defeated. In these case, an efficient q-1 or q+1 algorithm provides
 a security assurance, that the computing P -> [d]P without knowing d
 is about as hard as solving the discrete logarithm problem.

 To be completed.

A.4.4.8 Reductionist security assurance for Diffie--Hellman

 A series of research work, from den Boer, from Maurer and Wolf, and
 from Boneh and Lipton, shows that Diffie--Hellman oracle can be used
 to solve a discrete logarithm, under certain conditions. In other
 words, the discrete logarithm problem can sometimes be reduced to
 the Diffie--Hellman problem.

 This can be interpreted as a security assurance that Diffie--Hellman
 problem is at least as hard the discrete logarithm problem, albeit
 perhaps with some gap in the difficulty. This formalized security
 assurance supplements the standard conjecture that the
 Diffie--Hellman problem is at least as hard as the discrete
 logarithm. (A contrarian view is that special conditions under
 which such a reduction algorithm is possible might coincide with
 special conditions under which the discrete logarithm problem is
 easier.)

 The general idea is to consider a Diffie--Hellman oracle in a group
 of order q to provide multiplication in a special representation
 field of order q. Recovering the ordinary field representation from
 the special field representation amounts to solving the discrete
 logarithm problem.

 To receover the ordinary representation, the idea is to construct an
 auxiliary group of smooth order, where the group is an algebraic
 groups over the field of size q. Solving a discrete logarithm in
 the auxiliary group is possible using the Pohlig--Hellman problem,
 and solving the discrete logarithm in the auxiliary reveals the
 ordinary representation of the field, which, as already noted
 reveals the discrete logarithm in the original group.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 37]

Internet-Draft 2020-10-02

 The most obvious auxiliary groups have orders q-1 and q+1, but these
 are not smooth numbers. The next most obvious auxiliary are
 elliptic curve groups with complex multiplication by i, but none of
 these four group have smooth orders either.

 A peculiar strategy to show the existence of an auxiliary group of
 smooth order without having any effective means of constructing the
 group. This can be done by finding a smooth number in the Hasse
 interval of q.

 To be completed.

Appendix B. Test vectors

 The following are some test vectors.

 000000000000000029352b31395e382846472f782b335e783d325e79322054534554
 000117
 c8c0f2f404a9fabc91c939d8ea1b9e258d82e21a427b549f05c832cf8d48296ffad7
 5f336f56f86de3d52b0eab85e527f2ac7b9d77605c0d5018f5faa4243fd462b1badd
 fc023b3f03b469dca32446db80d9b388d753cc77aa4c3ee7e2bb86e99e7bed38f509
 8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221
 8c2b0d58eb27185715a48d6071657273dfbb861e515ac8bac9bfe58f2baa85908221

 The test vectors are explained as follows. (Pseudocode generating
 them is supplied in Appendix C.2.)

 Each line is 34 bytes, representing a non-negative 272-bit integer.
 The integer encoding is hexadecimal, with most significant hex
 digits on the left, which is to say, big-endian.

 Note: Public keys are encoded as 34-byte strings are
 little-endian. Encoded public keys reverse the order of the bytes
 found in the test vectors. The pseudocode in Appendix C.2 should
 make this clear: since bytes are printed in reverse order.

 Each integer is either a scalar (a multiplier of curve points), or
 the byte representation of a point P through its x-coordinate or the
 x-coordinate of iP (which is the the mod 8^91+5 negation of the
 x-coordinate of P).

 The first line is a scalar integer x. Its nonzero bytes are the
 ASCII representation of the string "TEST 2y^2=x^3+x/GF(8^91+5)",
 with the byte order reversed. As a private key, this value of x
 would be totally insecure, because it is too small, and like any
 test vector, it is public.

 The second line is a representation of G, a base point on the curve.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 38]

Internet-Draft 2020-10-02

 The third line is the representation of z = xG.

 The fourth and fifth lines represent updated values of x and z,
 obtained after application of the following 100000 scalar
 multiplications.

 A loop of 50000 iterations is performed. Each iteration consists of
 two re-assignments: z = xz and x = zG via scalar multiplications.
 In the second assignment, the byte representation of the input point
 z is used as the byte representation of an scalar. Similarly, the
 output x is the byte representation of the point, which is will used
 as as the byte representation of the scalar.

 The purpose of the large number of iterations is to catch a bug that
 has probability larger than 1/100000 of arising on pseudorandom
 inputs. The iterations do nothing to find rarer bugs (such as those
 that an adversary can invoke), or silent bugs (side channel leaks).

 The sixth and seventh lines are equal to each other. As explained
 below, the equality of these lines represents the fact the Alice and
 Bob can compute the same shared DH secret. The purpose of these
 lines is not to catch any more bugs, but rather a sanity check that
 Diffie--Hellman is likely to work.

 Alice initializes her DH private key to x, as already computed on
 the fourth line of the test vectors (which was the result of 100000
 iterations). She then replaces this x by x^900 mod q (where q is
 the prime which is the order of the order of the base point G).

 Bob sets his private key y as follows. He begins with y being the
 34-byte ASCII string whose initial characters are "yet another test"
 (not including the quotes, of course). He then reverses the order
 of bytes, considers this to be a scalar, and reassigns y to yG.
 (So, the y on the left is new, the y on the right is old, they are
 not the samem, after the assignment.) Another reassignment is done,
 as y -> yy, where the on the right side of the equation one y is
 treated as a scalar, the other as a point. Finally, Bob's replaces
 y by y^900 mod order(G), similarly to Alice's transformation.

 The test code in C.2 does not compute x^900 directly. Instead it
 uses 900 scalar multiplication by x, to achieve multiplication by
 x^900. The same is done for y^900.

 Both lines are xyG. The first can be computed as y(xG), and the
 second as x(yG). The equality of the two lines can be used to
 self-test an implementation, even if the implementation being tested
 disagrees with the test vectors above.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 39]

Internet-Draft 2020-10-02

Appendix C. Sample code (pseudocode)

 This section has sample C code that illustrates well-known elliptic
 algorithms, adaptations specific to 2y^2=x^3+x/GF(8^91+5).

 As a warning: the sample code has not been fully hardened against
 side channels or any other implementation attacks; also, no
 independent party has reivewed the sample code.

 Note: The quality of the sample code is similar to pseudocode, not
 reference code, or software. It compiles and runs on my personal
 devices, but has not otherwise been tested for quality.

 Note: Non-standard C language extensions are used the sample code:
 the type __int128, available as an C language extension in the GNU
 C compiler (gcc).

 Note: Non-portable C is used (beyond the non-standard C), for
 convenience. Two's complement integer representation of integers
 is assumed. Bit-shifts negative integers are used, in a way that
 considered non-portable under strict C, even though commonly used
 elsewhere.

 Note: Manually minified C is used: to reduce line and character
 counts, and also to (arguably) aid objective code inspection by
 cramming as much code into a single screen and by not misleading
 reviewers with long comments or variable names.

 Note: Automated tools, such as indent (used as in "gcc -E pseudo.c
 | indent"), can partially revert the C sample code spacing to a
 more conventional style, though other aspects of minification are
 not so easy to remove.

 Note: The minification is not total. It tries to organize the
 code into meaningful units, such as placing single short functions
 on one line or placing all variable declarations on the same line
 with the function parameters. Python-like indentation is kept.
 (Per Lisp styling, the code clumps closing delimiters (that mainly
 serve the compilers.))

 Note: Long sequence expressions, using the C comma operator, in
 place of multiple expression statements, which would be more
 conventional and terminated by semicolons, save some braces in
 control statements, such as "for" loops and "if" conditionals, and
 enable extra intializations in declarations.

C.1. Scalar multiplication of 34-byte strings

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 40]

Internet-Draft 2020-10-02

 The sample code for scalar multiplication provides an interface for
 scalar multiplication. A function "mulch" takes as input 3 pointer
 to unsigned character strings. The first input is the location
 of the result, the second is the muliplier, and the third is the
 base point.

 Note: The input ordering follows the convention of C assignment
 expressions z=x*y.

 Note: The function name "mulch" is short for multiply charcater
 strings.

 Mulch returns a Boolean value, indicating success or failure.
 Failure is returned only if validation is requested, and the base
 point is invalid.

 Requesting validation is done implicitly, by comparison of pointers.
 Validation is requested unless the base point is the known valid
 base point G, or if the scalar multiple (2nd input) and the output
 (1st input) pointers are equal, meaning that the scalar multiple
 will be overwritten.

 Note: The motivation here for implicitly requesting validation is
 that if the scalar multiple is really ephemeral, the caller should
 be willing, and eager, to overwrite it as soon as possible, in
 order to achieve forward secrecy. In this case, the need for
 input validation is usually negligible.

 The sample code is to be considered as a single file, pseudo.c.

 The file pseudo.c has two sections. The first section implements
 arithmetic for the field GF(8^91+5). The second section implemetns
 Montgomery's ladder for curve 2y^2=x^3+x. The two sections are not
 entirely independent. In particular, the field arithmetic section
 is not general-purpose, and could produce errors if used for
 different elliptic curve algorithms, such as Edwards coordinates.

 Note: The scalar muliplication sample code pseudo.c file is
 included into 3 other sample (using a the C preprocessor directive
 #include "pseudo.c").

 Note: Compiler optimizations make a large difference when used on
 the field arithmetic (for versions of the sample code where the
 field and curve arithmetic are in separate source files). This
 suggests that field arithmetic efficiency has room for further
 improvement by hand assembly. (The curve arithmetic might be
 improved by re-writing the source code.) In case, the sample code
 should not be considered to fully optimized.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 41]

Internet-Draft 2020-10-02

 Note: Montgomery's ladder might not be the fastest scalar
 multiplication algorithm for 2y^2=x^3+x/GF(8^91+5). Experimental
 C implementations using Bernstein's 2-D ladder algorithm seem
 about ~10% faster. The experimental code somewhat more
 complicated, and thus more likely to vulnerable to side channels
 or overflows. Even more aggressive C code seems about ~20%
 faster, using Edwards coordinates, Hisil--Carter--Dawson--Wong,
 and Gallant--Lambert--Vanstone, and pre-computed windows. Again,
 these faster methods are more complicated, and may be more
 vulnerable implementation attacks. The 10% and 20% gains may be
 lost upon more thorough hardening against implemenatioon attacks,
 or upon more thorough hand-assembly optimizations.

 To be completed.

C.1.1. Field arithmetic for GF(8^91+5)

 The field arithmetic sample code, is the first part of the file
 pseudo.c. It implements the field operations used in the Montgomery
 ladder algorithm for elliptic curve 2y^2=x^3+x. For example, point
 decompression is not used in Montgomery ladders, so the square root
 operation is not included the sample code. (The Legendre symbol
 computation is included for validation, and is quite similar to the
 square root operation.)

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 42]

Internet-Draft 2020-10-02

 <CODE BEGINS>
 #define RZ return z
 #define F4j i j=5;for(;j--;)
 #define FIX(j,r,k) q=z[j]>>r, z[j]-=q<<r, z[(j+1)%5]+=q*k
 #define CMP(a,b) ((a>b)-(a<b))
 #define XY(j,k) x[j]*(ii)y[k]
 #define R(j,k) (zz[j]>>55*k&((k<2)*M-1))
 #define MUL(m,E)\
 zz[0]= m(0,0)E(1,4)E(2,3)E(3,2)E(4,1),\
 zz[1]= m(0,1)m(1,0)E(2,4)E(3,3)E(4,2),\
 zz[2]= m(0,2)m(1,1)m(2,0)E(3,4)E(4,3),\
 zz[3]= m(0,3)m(1,2)m(2,1)m(3,0)E(4,4),\
 zz[4]= m(0,4)m(1,3)m(2,2)m(3,1)m(4,0);\
 z[0]=R(0,0)-R(4,1)*20-R(3,2)*20, z[1]=R(1,0)+R(0,1)-R(4,2)*20,\
 z[2]=R(2,0)+R(1,1)+R(0,2), z[3]=R(3,0)+R(2,1)+R(1,2),\
 z[4]=R(4,0)+R(3,1)+R(2,2); z[1]+=z[0]>>55; z[0]&=M-1;
 typedef long long i;typedef i*f,F[5];typedef __int128 ii,FF[5];
 i M=((i)1)<<55;F O={0},I={1};
 f fix(f z){i j=0,q;
 for(;j<5*2;j++) FIX(j%5,(j%5<4?55:53),(j%5<4?1:-5));
 z[0]+=(q=z[0]<0)*5; z[4]+=q<<53; RZ;}
 i cmp(f x,f y){i z=(fix(x),fix(y),0); F4j z+=!z*CMP(x[j],y[j]); RZ;}
 f add(f z,f x,f y){F4j z[j]=x[j]+y[j]; RZ;}
 f sub(f z,f x,f y){F4j z[j]=x[j]-y[j]; RZ;}
 f mal(f z,i s,f y){F4j z[j]=y[j]*s; RZ;}
 f mul(f z,f x,f y){FF zz; MUL(+XY,-20*XY); {F4j zz[j]=0;} RZ;}
 f squ(f z,f x){mul(z,x,x); RZ;}
 i inv(f z){F t;i j=272; for(mul(z,z,squ(t,z));j--;) squ(t,t);
 return mul(z,t,z), (sub(t,t,t)), cmp(O,z);}
 i leg(f y){F t;i j=270; for(squ(t,squ(y,y));j--;) squ(t,t);
 return j=cmp(I,mul(y,y,t)), (sub(y,y,y),sub(t,t,t)), (2-j)%3-1;}
 <CODE ENDS>

 Field elements are stored as five-element of arrays of limbs. Each
 limb is an integer, possibly negative, with array z representing
 integer

 z[0] + z[1]*2^55 + z[2]*2^110 + z[3]*2^165 + z[4]*2^220

 In other words, the radix (base) is 2^55. Say that z has m-bit
 limbs if each |z[i]| < 2^m.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 43]

Internet-Draft 2020-10-02

 The field arithmetic function input order follows the C assignment
 order, as input z=x*y, so usually the first input is the location
 for the result of the operation. The return value is usually just a
 pointer to the result's location, the first input, indicated by the
 preprocessor macro RZ. The functions, inv, cmp, and leg, also
 return an integer, which is not a field element, but usually a
 Boolean (or for function leg, a value in {-1,0,1}.)

 The utility functions are fix and cmp. They are meant to take
 inputs with 58-bit limbs, and produce an output with 55-bit
 non-negative limbs, with the highest limb, a 53-bit value. The
 purpose of fix is to provide a single array representation of each
 field element. The function cmp fixes both its inputs, and then
 returns a sigend comparison indicator (in {-1,0,1}).

 The multiplicative functions are mul, squ, inv and leg. They are
 meant to take inputs with 58-bit limbs, and produce either an output
 with 57-bit limbs, or a small integer output. They try to do this
 as follows:

 1. Some of the input limbs are multiplied by 20, then multiplied
 in pairs to 128-bit limbs, and then summed in groups of five
 (with at least one of the pairs having both elements not
 multiplied by 20). The multiplications by 20 should not cause
 64-bit overflow 20*2^58 < 32*2^58=2^63, while the sums of
 128-bit numbers should not cause overflow, because
 (1+4*20)*2^58*2^58 = 81*2^116 < 2^7*2^116 = 2^123.

 2. The five 128-bit limbs are partially reduced to five 57-bit
 limbs. Each the five smaller limbs is obtained by summing two
 55-bit limbs, extracted from sections of the 128-bit limbs, and
 then summing one or two much smaller values summing to less
 than a 55-bit limb. So, the final limbs in the multiplication
 are a sum of at most three 55-bit sub-limbs, making each final
 limb at most a 57-bit limb.

 The additive functions are add, sub and mal. They are meant to take
 inputs with 57-bit limbs, and product an output with 58-bit limbs.

 The utility and multiplicative function can be used repeatedly,
 because they do not lengthen the limbs.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 44]

Internet-Draft 2020-10-02

 The additive functions potentially increase the limb length, because
 they do not perform any reduction on the output. The additive
 functions should not be applied repeatedly. For example, if the
 output of addtive additive function is fed directly as the input to
 an additive function, then the final output might have 59-bit
 limbs. In this case, if 2nd output might not be evaluated corrected
 if given as input to one of the multipilcative functions, an error
 due to overflow of 64-bit arithmetic might occur.

 The lack of reduction in the additive functions trades generality
 for efficiency. The elliptic curve arithmetic code aims to never
 send the output of an additive function directly into the input of
 another additive function.

 Note: Zeroizing temporary field values is attempted by subtracting
 them from themselves. Some compilers might remove these
 zeroization steps.

 Note: The defined types f and F are essentially the equivalent.
 The main difference is that type F is an array, so it can be used
 to allocate new memory (on the stack) for a field value.

C.1.2. Montgomery ladder scalar multiplication

 The second part of the file "pseudo.c" implements Montgomery's
 well-known ladder algorithm for elliptic curve scalar point
 multiplication, as it applies to the curve 2y^2=x^3+x.

 The sample code, as part of the same file, is a continuation of the
 sample code for field arithmetic. All previous definitions are
 assumed.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 45]

Internet-Draft 2020-10-02

 <CODE BEGINS>
 #define X z[0]
 #define Z z[1]
 enum {B=34}; typedef void _;typedef volatile unsigned char *c,C[B];
 typedef F*e,E[2];typedef E*v,V[2];
 f feed(f x,c z){i j=((mal(x,0,x)),B);
 for(;j--;) x[j/7]+=((i)z[j])<<((8*j)%55); return fix(x);}
 c bite(c z,f x){F t;i j=((fix(mal(x,cmp(mal(t,-1,x),x),x))), B),k=5;
 for(;j--;) z[j]=x[j/7]>>((8*j)%55); {(sub(t,t,t));}
 for(;--k;) z[7*k-1]+=x[k]<<(8-k); {(sub(x,x,x));} RZ;}
 i lift(e z,f x,i t){F y;return mal(X,1,x),mal(Z,1,I),t||
 -1==leg(add(y,x,mul(y,x,squ(y,x))));}
 i drop(f x,e z){return inv(Z)&&mul(x,X,Z)&&(sub(X,X,X)&&sub(Z,Z,Z));}
 _ let(e z,e y){i j=2;for(;j--;)mal(z[j],1,y[j]);}
 _ smv(v z,v y){i j=4;for(;j--;)add(((e)z)[j],((e)z)[j],((e)y)[j]);}
 v mav(v z,i a){i j=4;for(;j--;)mal(((e)z)[j],a,((e)z)[j]);RZ;}
 _ due(e z){F a,b,c,d;
 mul(X,squ(a,add(a,X,Z)),mal(d,2,squ(b,sub(b,X,Z))));
 mul(Z,add(c,a,b),sub(d,a,b));}
 _ ade(e z,e u,f w){F a,b,c,d;f ad=a,bc=b;
 mul(ad,add(a,u[0],u[1]),sub(d,X,Z)),
 mul(bc,sub(b,u[0],u[1]),add(c,X,Z));
 squ(X,add(X,ad,bc)),mul(Z,w,squ(Z,sub(Z,ad,bc)));}
 _ duv(v a,e z){ade(a[1],a[0],z[0]);due(a[0]);}
 v adv(v z,i b){V t;
 let(t[0],z[1]),let(t[1],z[0]);smv(mav(z,!b),mav(t,b));mav(t,0);RZ;}
 e mule(e z,c d){V a;E o={{1}};i
 b=0,c,n=(let(a[0],o),let(a[1],z),8*B);
 for(;n--;) c=1&d[n/8]>>n%8,duv(adv(a,c!=b),z),b=c;
 let(z,*adv(a,b)); (due(*mav(a,0))); RZ;}
 C G={23,1};
 i mulch(c db,c d,c b){F x;E p; return
 lift(p,feed(x,b),(db==d||b==G))&&drop(x,mule(p,d))&&bite(db,x);}
 <CODE ENDS>

 This part of the sample code represents points and scalar
 multipliers as character strings of 34 bytes.

 Note: Types c and C are used for these 34-byte encodings.
 Following the previous pattern for f and F, type C is an array,
 used for allocating new memory (on the stack) for these arrays.

 The conversion functions feed and bite convert
 between a 34-byte string and a field value (recall, stored as five
 element array, base 2^55).

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 46]

Internet-Draft 2020-10-02

 The conversion functions lift and drop convert between field
 elements and the projective line point, so that x <-> (X:1). The
 function lift can also test if x is the x-coordinate of the a point
 (x,y) on the curve 2y^2=x^3+x.

 Note: Projective line points are stored in defined types e and E
 (for extended field element).

 Note: The Montgomery ladder can implemented by working with a
 pair of extended field elements.

 The raw scalar multiplication function "mule" takes a projective
 point (with defined type e), multiplies it by a scalar (encoded as
 byte string with defined type c), and then replaces the projective
 point by the multiple.

 The main loop of mule is written a double-and-always-add, acting on
 pair projective line points. Basically it acts on the x-coordinates
 of the points nB and (n+1)B, for n changing.

 Because the Montogomery ladder algorithm is being used, the "adv"
 called by mule function does nothing but swap the two values. With
 an appropriate isogeny, this can be viewed as addition operation.

 The function "duv" called by mule, does the hard work of finding
 (2n)B and (2n+1)B from nB and (n+1)B. It does so, using doubling in
 the function "due" and differntial addition, in the function "ade".

 The functions "due" and "ade" are non-trivial, and use field
 arithmetic. They are fairly specific to 2y^2=x^3+x. They try to
 avoid repeated application of additive field operations.

 The function smv, mav and let are more utilitarian. They are used
 for initialization, swapping, and zeroization.

C.1.3. Bernstein's 2-dimensional Montgomery ladder

 Bernstein's 2-dimensional ladder is a variant of Montgomery's ladder
 that computes aP+bQ, for any two points P and Q, more quickly than
 computing aP and bQ separately.

 Curve 2y^2=x^3+x has an efficient endomorphism, which allows a point
 Q = [i+1]P to compute efficiently. Gallant, Lambert and Vanstone
 introduced a method (now called the GLV method), to compute dP more
 efficiently, given such an efficient endomorphism. They write d = a
 + eb where e is the integer multiplier corresponding to the
 efficient endomorphism, and a and b are integers smaller than d.
 (For example, 17 bytes each instead of 34 bytes.)

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 47]

Internet-Draft 2020-10-02

 The GLV method can be combined with Bernstein's 2D ladder algorithm
 to be applied to compute dP = (a+be)P = aP + beP = aP + bQ, where
 e=i+1.

 This algorithm is not implemented by any pseudocode in the version
 the draft. (Previous versions had it.)

 See [B1] for further explanation and example pseudocode.

 I have estimate a ~10% speedup of this method compared to the plain
 Montgomery ladder. However, the code is more complicated, and
 potentially more vulnerable to implementation-based attacks.

C.1.4. GLV in Edwards coordinates (Hisil--Carter--Dawson--Wong)

 To be completed.

 It is also possible to convert to Edwards coordinates, and then use
 the Hisil--Carter--Dawson--Wong (HCDW) elliptic curve arithmetic.

 The HCDW arithmetic can be combined with the GLV techniques to
 obtain a scalar multiplication potentially more efficient than
 Bernstein's 2-dimensional Montgomery. The downside is that it may
 require key-dependent array look-ups, which can be a security risk.

 I have implemented this, finding ~20% speed-up over my
 implementation of the Montgomery ladder. However, this speed-up may
 disappear upon further optimization (e.g. assembly), or further
 security hardening (safe table lookup code).

C.2. Sample code for test vectors

 The following sample code describes the contents of a file "tv.c",
 with the purpose of generating the test vectors in Appendix B.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 48]

Internet-Draft 2020-10-02

 <CODE BEGINS>
 //gcc tv.c -o tv -O3 -flto -finline-limit=200;strip tv;time ./tv
 #include <stdio.h>
 #include "pseudo.c"
 #define M mulch
 void hx(c x){i j=B;for(;j--;)printf("%02x",x[j]);printf("\n");}
 int main (void){i n=1e5,j=n/2,wait=/*your mileage may vary*/7000;
 C x="TEST 2y^2=x^3+x/GF(8^91+5)",y="yet another test",z;
 M(z,x,G); hx(x),hx(G),hx(z);
 fprintf(stderr,"%30s(wait=~%ds, ymmv)","",j/wait);
 for(;j--;)if(fprintf(stderr,"\r%7d\r",j),!(M(z,x,z)&&M(x,z,G)))
 j=0*printf("Mulch fail rate ~%f :(\n",(2*j)/n);//else//debug
 fprintf(stderr,"\r%30s \r",""),hx(x),hx(z);
 M(y,y,G);M(y,y,y);
 for(M(z,G,G),j=900;j--;)M(z,x,z);for(j=900;j--;)M(z,y,z);hx(z);
 for(M(z,G,G),j=900;j--;)M(z,y,z);for(j=900;j--;)M(z,x,z);hx(z);}
 <CODE ENDS>

 It includes the previously defined file pseudo.c, and the standard
 header file stdio.h.

 The first for-loop in main aims to terminate in the event of the bug
 such that the output of mulch is an invalid value, not on the curve
 2y^2=x^3+x.

 Of the 100,000 scalar multiplication in this for-loop, the aim is
 that 50,000 include public-key validation. All 100,000 include a
 field-inversion, to encode points uniquely as 34-byte strings.

 The second and three for-loops aims to test the compatibilty with
 Diffie--Hellman, by showing the 900 applications of scalar
 multipliers x and y are the same, whether x or y is applied first.

 The 1st line comment suggest possible compilation commands, with
 some optimization options. The run-time depends on the system, and
 should be slower on older and weaker systems.

 Anecdotally, on a ~3 year-old personal computer, it runs in time as
 low as 5.7 seconds, but these were under totally uncontrolled
 conditions (with no objective benchmarking). (Experience has shown
 that on a ~10 year-old personal computer, it could be ~5 times
 slower.)

C.3. Sample code for a command-line demo of Diffie--Hellman

 The next sample code is intended to demonstrate ephemeral (elliptic
 curve) Diffie--Hellman: (EC)DHE in TLS terminology.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 49]

Internet-Draft 2020-10-02

 The code can be considered as a file "dhe.c". It has both C and bash
 code, intermixed within comments and strings. It is bilingual: a
 valid bash script and valid C source code. The file "dhe.c" can be
 made executable (using chmod, for example), so it can be run as a
 bash script.

 <CODE BEGINS>
 #include "pseudo.c" /* dhe.c (also a bash script)
 : demos ephemeral DH, also creates, clobbers files dhba dha dhb
 : -- Dan Brown, BlackBerry, '20 */
 #include <stdio.h>
 _ get(c p,_*f){f&&fread ((_*)p,B,1,f)||mulch(p,p,G);}
 _ put(c p,_*f){f&&fwrite((_*)p,B,1,f)&&fflush(f); bite(p,O);}
 int main (_){C p="not validated",s="/dev/urandom" "\0"__TIME__;
 get(s,fopen((_*)s,"r")), mulch(p,s,G), put(p,stdout);
 get(p,stdin), mulch(s,s,p), put(s,stderr);} /*'
 [dhe.c -nt dhe]&&gcc -O2 dhe.c -o dhe&&strip dhe&&echo "$(<dhe.c)"
 mkfifo dh{a,b,ba} 2>/dev/null || ([! -p dhba] && :> dhba)
 ./dhe <dhba 2>dha | ./dhe >dhba 2>dhb &
 sha256sum dha & sha256sum dhb # these should be equal
 (for f in dh{a,b,ba} ; do [-f $f] && \rm -f $f; done)# '*/
 <CODE ENDS>

 Run as a bash script, file "dhe.c" will check if it needs compile
 its own C code, into an executable named "dhe". Then the bash
 script file "dhe.c" runs the compiled executable "dhe" twice. One
 run is Alice's, and the other Bob's.

 Each run of "dhe" generates an ephemeral secret key, by reading the
 file "/dev/urandom". Each run then writes to "stdout", the
 ephemeral public key. Each run then reads the peer's ephemeral
 public key from "stdin". Each run then writes to "stderr" the
 shared Diffie--Hellman secret. (Public-key validation is mostly
 unnecessary, because the ephemeral is only used once, so it is
 skipped by using the same pointer location for the ephemeral secret
 and final shared secret.)

 The script "dhe.c" connects the input and output of these two using
 pipes. One pipe is generated by the shell command line using the
 shell operator "|". The other pipe is a pipe name "dhab", created
 with "mkfifo". The script captures the shared secrets from each run
 by redirecting "stderr" (as file descriptor 2), to files "dha" and
 "dhb", which will be made named pipes if possible.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 50]

Internet-Draft 2020-10-02

 The scripts fees each shared secret keys into SHA-256. This
 demonstrates their equality. It also illusrates a typical way to
 use Diffie--Hellman, by deriving symmetric keys using a hash
 function. In multi-curve ECC, hashing a concatenation of such
 shared secrets (one for each curve used), could be done instead.

C.4. Sample code for public-key validation and curve basics

 The next sample code demonstrates the public-key validation issues
 specific to 2y^2=x^3+x/GF(8^91+5). It also demonstrates the order
 of the curve. It also demonstrates complex multiplication by i, and
 the fact the 34-byte representation of points is unaffected by
 multiplication by i.

 The code can be considered to describe a file "pkv.c". It uses the
 "mulch" function by including "pseudo.c".

 <CODE BEGINS>
 #include <stdio.h>
 #include "pseudo.c"
 #define M mulch // works with +/- x, so P ~ -P ~ iP ~ -iP
 void hx(c x){i j=B;for(;j--;)printf("%02x",x[j]);printf("\n");}
 int main (void){i j;// sanity check, PKV, twist insecurity demo
 C y="TEST 2y^2=x^3+x/GF(8^91+5)",z="zzzzzzzzzzzzzzzzzzzz",
 q = "\xa9\x38\x04\xb8\xa7\xb8\x32\xb9\x69\x85\x41\xe9\x2a"
 "\xd1\xce\x4a\x7a\x1c\xc7\x71\x1c\xc7\x71\x1c\xc7\x71\x1c"
 "\xc7\x71\x1c\xc7\x71\x1c\x07", // q=order(G)
 i = "\x36\x5a\xa5\x56\xd6\x4f\xb9\xc4\xd7\x48\x74\x76\xa0"
 "\xc4\xcb\x4e\xa5\x18\xaf\xf6\x8f\x74\x48\x4e\xce\x1e\x64"
 "\x63\xfc\x0a\x26\x0c\x1b\x04", // i^2=-1 mod q
 w5= "\xb4\x69\xf6\x72\x2a\xd0\x58\xc8\x40\xe5\xb6\x7a\xfc"
 "\x3b\xc4\xca\xeb\x65\x66\x66\x66\x66\x66\x66\x66\x66\x66"
 "\x66\x66\x66\x66\x66\x66\x66"; // w5=(2p+2-72q)/5
 for(j=0;j<=3;j++)M(z,(C){j},G),hx(z); // {0,1,2,3}G, but reject 0G
 M(z,q,G),hx(z); // reject qG; but qG=O, under hood:
 {F x;E p;lift(p,feed(x,G),1);mule(p,q);hx(bite(z,p[1]));}
 for(j=0;j<0*25;j++){F x;E p;lift(p,feed(x,(C){j,1}),1);mule(p,q);
 printf("%3d ",j),hx(bite(z,p[1]));}// see j=23 for choice of G
 for(j=3;j--;)q[0]-=1,M(z,q,G),hx(z);// (q-{1,2,3})G ~ {1,2,3}G
 M(z,i,G),hx(z); i[0]+=1,M(z,i,G),M(z,i,z),hx(z);// iG~G,(i+1)^2G~2G
 M(w5,w5,(C){5}),hx(w5);// twist, ord(w5)=5, M(z,z,p) skipped PKV(p)
 M(G,(C){1},w5),hx(G);// reject w5 (G unch.); but w5 leaks z mod 5:
 for(j=10;j--;)M(z,y,G),z[0]+=j,M(z,z,w5),hx(z);}
 <CODE ENDS>

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 51]

Internet-Draft 2020-10-02

 The sample code demonstrates the need for public-key validation
 even when using the Montgomery ladder for scalar multiplication. It
 does this by finding points of low order on the twist of the curve.
 This invavlid points can leak bits of the secret multiplier. This
 is because the curve 2y^2=x^3+x/GF(8^91+5) is not fully "twist
 secure". (Its twist security is typical of that of a random curve.)

C.5. Elligator i

 To be deleted (or completed).

 This pseudocode would show how to implement to the Elligator i map
 from byte strings to points.

 This is INCOMPATIBLE with previous samples of code above, and is
 taken from an earlier version of experimental code.

 Pseudocode (to be verified):

 <CODE BEGINS>
 typedef f xy[2] ;
 #define X p[0]
 #define Y p[1]
 lift(xy p, f r) {
 f t ; i b ;
 fix(r);
 squ(t,r); // r^2
 mul(t,I,t); // ir^2
 sub(t,(f){1},t); // 1-ir^2
 inv(t,t); // 1/(1-ir^2)
 mal(t,3,t); // 3/(1-ir^2)
 mul(t,I,t); // 3i/(1-ir^2)
 sub(X,I,t); // i-3i/(1-ir^2)
 b = get_y(t,X);
 mal(t,1-b,I); // (1-b)i
 add(X,X,t); // EITHER x OR x + i
 get_y(Y,X);
 mal(Y,2*b-1,Y); // (-1)^(1-b)""
 fix(X); fix(Y);
 }

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 52]

Internet-Draft 2020-10-02

 drop(f r, xy p)
 {
 f t ; i b,h ;
 fix(X); fix(Y);
 get_y(t,X);
 b=eq(t,Y);
 mal(t,1-b,I);
 sub(t,X,t); // EITHER x or x-i
 sub(t,I,t); // i-x
 inv(t,t); // 1/(i-x)
 mal(t,3,t); // 3/(i-x)
 add(t,I,t); // i+ 3/(i-x)
 mal(t,-1,t); // -i-3/(i-x)) = (1-3i/(i-x))/i
 b = root(r,t) ;
 fix(r);
 h = (r[4]<(1LL<<52)) ;
 mal(r,2*h-1,r);
 fix(r);
 }

 elligator(xy p,c b) {f r; feed(r,b); lift(p,r);}

 crocodile(c b,xy p) {f r; drop(r,p); bite(b,r);}
 <CODE ENDS>

Appendix D. Minimizing trapdoors and backdoors

 The main advantage of curve 2y^2=x^3+x/GF(8^91+5) over almost all
 other elliptic curves is its Kolmogorov complexity is almost minimal
 among curves of sufficient resistance to the Pollard rho attack on
 the discrete logarithm problem.

 See [AB] and [B1] for some details.

D.1. Decimal exponential complexity

 The curve can be described with 21 characters:

 2 y ^ 2 = x ^ 3 + x / G F (8 ^ 9 1 + 5)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 Those familiar with ECC will recognize that these 21 characters
 suffice to specify the curve up to the level of detail needed to
 describe the cost of the Pollard rho algorithm, as well as many
 other security properties (especially resistance to other known
 attacks on the discrete logarithm problem, such as Pohlig--Hellman
 and Menezes--Okamoto--Vanstone).

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 53]

Internet-Draft 2020-10-02

 Note: The letters GF mean Galois Field, and are quite traditional
 mathematics, and every elliptic curve in cryptographic needs to
 use some notation for the finite field.

 We may therefore describe the curve's Kolmogorov complexity as 21
 characters.

 Note: The idea of low Kolmogorov complexity is hard to specify
 exactly. Nonetheless, a claim of nearly minimal Kolmogorov
 complexity is quite falsifiable. The falsifier need merely
 specify several other (secure) elliptic curves using 21 or fewer
 characters. (But if the other curves use a different
 specificaion language, then a fair comparison should re-specify
 2y^2=x^3+x/GF(8^91+5) in this specification language.)

D.1.1. A shorter isomorophic curve

 The curve is isomorphic to a curve specifiable in 20 characters:

 y^2=x^3-x/GF(8^91+5)

 Generally, isomorphic curves have essentially equivalently hard
 discrete logarithm problems, so one could argue that curve
 2y^2=x^3+x/GF(8^91+5) could be rated as having Kolmogorov complexity
 at most 20 characters.

 Isomorphic curves, however, may differ slightly in security, due to
 issues of efficiency, and implementability. The 21-character
 specification uses an equation in Montgomery form, which creates an
 incentive to use the Montgomery ladder algorithm, which is both safe
 and efficient [Bernstein?].

D.1.2. Other short curves

 Allowing for non-prime fields, then the binary-field curve known as
 sect283k1 has a 22-character description:

 y^2+xy=x^3+1/GF(2^283)

 This curve was formerly one of the fifteen curves recommended by
 NIST. Today, a binary curve is curve is considered risky, due to
 advances in elliptic curve discrete logarithm problem over extension
 fields, such as recent asymptotic advances on discrete logarithms in
 low-characteristic fields [HPST] and [Nagao]. According to [Teske],
 some characteristic-two elliptic curves could be equipped with a
 secretly embedded backdoor (but sect283k1's short description should
 help mitigate that risk).

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 54]

Internet-Draft 2020-10-02

 This has a longer overall specification than curve
 2y^2=x^3+x/GF(8^91+5), but the field part is shorter field
 specification. Perhaps an isomorphic curve can be found (one with
 three terms), so that total length is 21 or fewer characters.

 A non-prime field tends to be slower in software. A non-prime field
 is therefore perhaps riskier due to some recent research on
 attacking non-prime field discrete logarithms and elliptic curves,

 To be completed.

D.1.3. Converting DEC characters to bits

 The units of characters as measuring Kolmogorov complexity is not
 calibrated as bits of information. Doing so formally would be very
 difficult, but the following approach might be reasonable.

 Set the criteria for the elliptic curve. For example, e.g. prime
 field, size, resistance (of say 2^128 bit operations) to known
 attacks on the discrete logarithm problem (Pollard rho, MOV, etc.).
 Then list all the possible ECC curve specification with Kolmogorov
 complexity of 21 characters or less. Take the base two logarithm of
 this number. This is then an calibrated estimate of the number of
 bits needed to specify the curve. It should be viewed as a lower
 bound, in case some curves were missed.

 To be completed.

D.1.4. Common acceptance of decimal exponential notation

 The decimal exponentiation notation used in to measure decimal
 exponential complexity is quite commonly accepted, almost standard,
 in mathematical computer programming.

 For example, as evidence of this commmon acceptance, here is a
 slightly edited session of the program "bc" (versions of which are
 standardized in POSIX).

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 55]

Internet-Draft 2020-10-02

 <CODE BEGINS>
 $ BC_LINE_LENGTH=71 bc
 bc 1.06.95
 Copyright ... Free Software Foundation, Inc.
 ...
 p=8^91+5 ; p; obase=16; p

 151771007205135083665582961470587414581438034300948400097797844510851\
 89728165691397

 20005
 define v(b,e,m){
 auto a; for(a=1;e>0;e/=2){
 if(e%2==1) {a=(a*b)%m;}
 b=(b^2)%m;}
 return(a);}
 v(571,p-1,p)
 1
 x = (1*256) + (23*1)
 v(2*(x^3+x),(p-1)/2,p)
 1
 y = (((p+1)/2)*v(2*(x^3+x),(p+3)/8,p))%p
 (2*y^2)%p == (x^3+x)%p
 1
 (2*y^2 -(x^3+x))%(8^91+5)
 0
 <CODE ENDS>

 Note: Input lines have been indented at least two extra spaces,
 and can be pasted into a "bc" session. (Pasting the output lines
 causes a few spurious results.)

 The sample code demonstrates that "bc" directly accepts the
 notations "8^91+5" and "x^3+x": parts parts of the curve
 specification "2y^2=x^3+x/GF(8^91+5)", which goes to show how much
 of the notation used in this specifcation is commonly accepted.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 56]

Internet-Draft 2020-10-02

 Note: Defined function "v" implements modular exponentiation,
 with returning v(b,e,m) returning (b^e mod m). Then, "v" is used
 to show that p=8^91+5 is a Fermat pseudoprime to base 571
 (evidence that p is prime). The value x defined is the
 x-coordinate of the recommend base point G. Then, another
 computation with "v" shows that 2(x^3+x) has Legendre symbol 1,
 which implies (assuming p is prime) that there exists y with
 2y^2=x^3+x, namely y = (1/2)sqrt(2(x^3+x)). The value of y is
 computed, again using "v" (but also a little luck). The curve
 equation is then tested twice with two different expressions,
 somewhat similar to the mathematical curve specification
 2y^2=x^3+x/GF(8^91+5).

D.2. General benefits of low Kolmogorov complexity to ECC

 The benefit of low Kolmogorov complexity to cryptography is well
 known, but very informal. The general benefit is believed to a form
 of subversion-resistance, where the attacker is the designer of the
 cryptography.

 Often, fixed numbers in cryptographic algorithms with low Kolmogorov
 complexity are called "nothing-up-my-sleeve" numbers. (Bernstein et
 al. uses terms in "rigid", for a very similar idea, but with an
 emphasis on efficiency instead of compressibility.)

 For elliptic curves, the informal benefit may be stated as the
 following gains.

 - Low Kolmogorov complexity defends against insertion of a keyed
 trapdoor, meaning the curve can broken using a secret trapdoor,
 by an algorithm (eventually discovered by the public at large).
 For example, the Dual EC DRBG is known to capable of having such
 a trapdoor. Such a trapdoor would information-theoretically
 imply an amount of information, comparable the size of the
 secret, to be embedded in the curve specification. If the
 calibrated estimate for the number of bits is sufficiently
 accurate, then such a key cannot be large.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 57]

Internet-Draft 2020-10-02

 - Low Kolmogorov complexity defends against a secret attack
 (presumably difficult to discover), which affects a subset of
 curves such that (a) whether or not a specific curve is affected
 is a somewhat pseudorandom function of its natural
 specification, and (b) the probably of a curve being affected
 (when drawn uniformly from some sensible of curve
 specification), is low. For an example of real-world attacks
 meeting the conditions (a) and (b) consider the MOV attack.
 Exhaustively finding curve meeting these two conditions is
 likely to prevent low Kolmogorov complexity, essentially by the
 low probability of the attack, and the independence of attack's
 success from the natural Kolmogorov complexity.

 - Even more hypothetically, there may yet exist undisclosed
 classes of weak curves, or attacks, for which
 2y^2=x^3+x/GF(8^91+5) is lucky enough to avoid. This would be a
 fluke. A real-world example is prime-order, or low cofactor
 curves, which are are among all curves, but which better resist
 the Pohlig--Hellman attack.

 Of course, low Kolmogorov complexity is not a panacea. The worst
 failure would be attacks that increase in strength as Kolmogorov
 complexity gets lower. Two examples illustrate this strongly.

D.2.1. Precedents of low Komogorov complexity in ECC

 To be completed.

 Basically, the curves sect283k1, Curve25519, and Brainpool curves
 can be argued as mitigating the risk of manipulated designed-in
 weakness, by virtue of the low Kolmogorov complexity.

 To be completed.

D.3. Risks of low Kolmogorov complexity

 Low Kolmogorov complexity is not a panacea for cryptography.

 Indeed, it may even add its own risks, if some weakness are
 positively correleated with low Kolmogorov complexity, making some
 attacks stronger.

 In other words, choosing low Kolmogorov complexity might just
 accidentally weaken the cryptography. Or worse, if attackers find
 and hold secret such weaknesses, then attackers can intentionally
 include the weakness, by using low Kolmogorov serving as a cover,
 thereby subverting the algorithm.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 58]

Internet-Draft 2020-10-02

 Evidence of positive correlations between curve weakness and low
 Kolmogorov complexity might help assess this risk.

 In general cryptography (not ECC), the shortest cryptography
 algorithms may be the least secure, such as the identity function as
 an encryption function.

 Within ECC, however, some minimum threshold of complexity must be
 met for interoperability. But curve size is positively correlated
 with security (via Pollard rho) and negatively correlated with
 complexity (at least for fields, larger fields needs larger
 specifications). Therefore, there is a somewhat negative correlation
 between Pollard rho security of ECC and Kolmogorov complexity of the
 field size.

 Beyond field size in ECC, there is some negative correlations in the
 curve equation.

 Singular cubics have equations that look very simlar to those
 commonly used elliptic curves. For smooth singular curves
 (irreducible cubics) a group can be defined, using more or less the
 same arithmetic as for a elliptic curve. For example
 y^2=x^3/GF(8^91+5) is such a cubic. The resulting group has an easy
 discrete logarithm problem, because it can be mapped to the field.

 Supersingular elliptic curves can also be specified with low
 Kolmogorov complexity, and these are vulnerable to MOV attack,
 another negative correlation.

 Combining the above, a low Kolmogorov complexity elliptic curve,
 y^2=x^3+1/GF(2^127-1), with 21-character decimal exponential
 complexity, suffers from three well-known attacks:

 1. The MOV (Menezes--Okamato--Vanstone) attack.

 2. The Pohlig--Hellman attack (since it has 2^127 points).

 3. The Pollard rho attack (taking 2^63 steps, instead of the 2^126
 of exhaustive).

 Had all three attacks been unknown, an implementer seeking low
 Kolmogorov complexity, might have been drawn to curve
 y^2=x^3+1/GF(2^127-1). (This document's curve 2y^2=x^3+x/GF(8^91+5)
 uses 1 more character and is much slower since, the field size has
 twice as many bits.)

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 59]

Internet-Draft 2020-10-02

 Had an attacker known one of three attacks, the attacker could found
 y^2=x^3+1/GF(2^127-1), proposed it, touted its low Kolmogorov
 complexity, and maybe successfully subverted the system security.

 Note: The curve y^2=x^3+1/GF(2^127-1) not only has low decimal
 exponential complexity, it also has high efficiency: fast field
 arithmetic and fairly fast curve arithmetic (for its bit lengths).
 So high efficiency can also be positively correlated with
 weakness.

 It can be argued, that pseudorandomized curves, such as NIST P-256
 and Brainpool curves, are an effective way mitigate such attacks
 positively correlated with low complexity. More precisely, strong
 pseudorandomization somewhat mitigates the attacker's subversion
 ability, by reducing an easy look up of the weakest curve to an
 exhaustive search by trial and error, intuitively implying a
 probable high Kolmogorov complexity (proportional the rarity of the
 weakness).

 It can be further argued that all major known weak classes of curves
 in ECC are positively correlated with low complexity, in that the
 weakest curves have very low complexity. No major known weak
 classes of curves imply an increase in Kolmogorov complexity, except
 perhaps Teske's class of curves.

 In defense of low complexity, it can be argued that the strongest
 way to resist secret attacks is to find the attacks.

 For these reasons, this specification suggests to use curve
 2y^2=x^3+x/GF(8^91+5) in multi-curve elliptic curve cryptography,
 in combination with at least one pseudo-randomized curve.

 To be completed.

D.4. Alternative measures of Kolmogorov complexity

 Decimal exponential complexity arguably favors decimal and the
 exponentiation operators, rather than the arbitrary notion of
 compressibility.

 Allowing more arbitrary compression schemes introduces another
 possible level of complexity, the compression scheme itself,
 somewhat defeating the purpose of nothing-up-sleeve number. An
 attacker might be able to choose a compression scheme among
 many that somehow favors a weak curve.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 60]

Internet-Draft 2020-10-02

 Despite this potential extra complexity, one can still seek a
 measure more objective than decimal complexity. To this end, in
 [B3], I adapted the Godel's approach for general recursive
 functions, which breaks down all computation into succession,
 composition, repetition, and minimization.

 The adaption is a miniature programming language called Roll to
 describe number-related functions, including constant functions. A
 Roll program for the constant function that always return 8^91+5 is:

 <CODE BEGINS>
 8^91+5 subs 8^91+1 in +4
 8^91+1 subs 2^273 in +1
 2^273 subs 273 in 2^
 273 subs 17 in *16+1
 17 subs 1 in *16+1
 *16+1 roll +16 up 1
 +16 subs +8 in +8
 +8 subs +4 in +4
 +4 subs +2 in +2
 2^ roll *2 up 1
 1 subs in +2
 *2 roll +2 up 0
 +2 subs +1 in +1
 0 subs in +1
 <CODE ENDS>

 A Roll program has complexity measured in its length in number of
 words (space-separated substrings). This program has 68 words.
 Constants (e.g. field sizes) can be compared using roll complexity,
 the shortest known length of their implementations in Roll.

 In [B3], several other ECC field sizes are given programs. The only
 prime field size implemented with 68 or fewer words was 2^521-1.
 (The non-prime field size (2^127-1)^2 has 58-word "roll" program.)
 Further programming effort might produce shorter programs.

 Note: Roll programs have a syntax implying some redundancy.
 Further work may yet establish a reasonable normalization for roll
 programs, resulting in a more calibrated complexity measure in
 bits, making the units closed to a universal kind of Kolmogorov
 complexity.

Appendix E. Primality proofs and certificates

 Recent work of Albrecht and others [AMPS] has shown the combination
 of an adversarially chosen prime, and users using improper
 probabilistic primality tests can make user vulnerable to an attack.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 61]

Internet-Draft 2020-10-02

 The adversarial primes in their attack are typically the result of
 an exhaustive search. These bad primes would therefore typically
 contain an amount of information corresponding to the length of
 their search, putting a predictable lower bound on their Kolmogorov
 complexity.

 The two primes involved for 2y^2=x^3+x/GF(8^91+5) should perhaps
 already resist [AMPS] because of the following compact
 representation of these primes:

 p = 8^91+5
 q = #(2y^2=x^3+x/GF(8^91+5))/72

 This attack [AMPS] can also be resisted by:

 - properly implementing probabilistic primality test, or
 - implementing provable primality tests.

 Provable primality tests can be very slow, but can be separated into
 two steps:

 -- a slow certificate generation, and

 -- a fast certificate verification.

 The certificate is a set of data, representing an intermediate step
 in the provable primality test, after which the completion of the
 test is quite efficient.

 Pratt primality certificate generation for any prime p, involves
 factorizing p-1, which can be very slow, and then recursively
 generating a Pratt primality certificate for each prime factor of
 p-1. Essentially, each prime has a unique Pratt primality
 certificate.

 Pratt primality certificate verification of (p-1), involves search
 for g such that 1 = (g^(p-1) mod p) and 1 < (g^((p-1)/q) mod p) for
 each q dividing p-1, and then recursively verifying each Pratt
 primality certificate for each prime factor q of p-1.

 In this document, we specify a Pratt primality certificate as a
 sequence of (candidate) primes each being 1 plus a product of
 previous primes in the list, with certificate stating this product.

 Although Pratt primality certificate verification is quite
 efficient, an ECC implementation can opt to trust 8^91+5 by virtue
 of verifying the certificate once, perhaps before deployment or
 compile time.

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 62]

Internet-Draft 2020-10-02

E.1. Pratt certificate for the field size 8^91+5

 Define 52 positive integers, a,b,c,...,z,A,...,Z as follows:

 a=2 b=1+a c=1+aa d=1+ab e=1+ac f=1+aab g=1+aaaa h=1+abb i=1+ae
 j=1+aaac k=1+abd l=1+aaf m=1+abf n=1+aacc o=1+abg p=1+al q=1+aaag
 r=1+abcc s=1+abbbb t=1+aak u=1+abbbc v=1+ack w=1+aas x=1+aabbi
 y=1+aco z=1+abu A=1+at B=1+aaaadh C=1+acu D=1+aaav E=1+aeff F=1+aA
 G=1+aB H=1+aD I=1+acx J=1+aaacej K=1+abqr L=1+aabJ M=1+aaaaaabdt
 N=1+abdpw O=1+aaaabmC P=1+aabeK Q=1+abcfgE R=1+abP S=1+aaaaaaabcM
 T=1+aIO U=1+aaaaaduGS V=1+aaaabbnuHT W=1+abffLNQR X=1+afFW
 Y=1+aaaaauX Z=1+aabzUVY.

 Note: variable concatenation is used to indicate multiplication.
 For example, f = 1+aab = 1+2*2*(1+2) = 13.

 Note: One must verify that Z=8^91+5.

 Note: The Pratt primality certificate involves finding a generator
 g for each the prime (after the initial prime). It is possible to
 list these in the certificate, which can speed up verification by
 a small factor.

 (2,b), (2,c), (3,d), (2,e), (2,f), (3,g), (2,h), (5,i), (6,j),
 (3,k), (2,l), (3,m), (2,n), (5,o), (2,p), (3,q), (6,r), (2,s),
 (2,t), (6,u), (7,v), (2,w), (2,x), (14,y),(3,z), (5,A), (3,B),
 (7,C), (3,D), (7,E), (5,F), (2,G), (2,H), (2,I), (3,J), (2,K),
 (2,L),(10,M), (5,N), (10,O),(2,P), (10,Q),(6,R), (7,S), (5,T),
 (3,U), (5,V), (2,W), (2,X), (3,Y), (7,Z).

 Note: The decimal values for a,b,c,...,Y are given by: a=2, b=3,
 c=5, d=7, e=11, f=13, g=17, h=19, i=23, j=41, k=43, l=53, m=79,
 n=101, o=103, p=107, q=137, r=151, s=163, t=173, u=271, v=431,
 w=653, x=829, y=1031, z=1627, A=2063, B=2129, C=2711, D=3449,
 E=3719, F=4127, G=4259, H=6899, I=8291, J=18041, K=124123,
 L=216493, M=232513, N=2934583, O=10280113, P=16384237, Q=24656971,
 R=98305423, S=446424961, T=170464833767, U=115417966565804897,
 V=4635260015873357770993, W=1561512307516024940642967698779,
 X=167553393621084508180871720014384259,
 Y=1453023029482044854944519555964740294049.

E.2. Pratt certificate for subgroup order

 Define 56 variables a,b,...,z,A,B,...,Z,!,@,#,$, with new
 values:

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 63]

Internet-Draft 2020-10-02

 a=2 b=1+a c=1+a2 d=1+ab e=1+ac f=1+a2b g=1+a4 h=1+ab2 i=1+ae
 j=1+a2d k=1+a3c l=1+abd m=1+a2f n=1+acd o=1+a3b2 p=1+ak q=1+a5b
 r=1+a2c2 s=1+am t=1+ab2d u=1+abi v=1+ap w=1+a2l x=1+abce y=1+a5e
 z=1+a2t A=1+a3bc2 B=1+a7c C=1+agh D=1+a2bn E=1+a7b2 F=1+abck
 G=1+a5bf H=1+aB I=1+aceg J=1+a3bc3 K=1+abA L=1+abD M=1+abcx N=1+acG
 O=1+aqs P=1+aqy Q=1+abrv R=1+ad2eK S=1+a3bCL T=1+a2bewM U=1+aijsJ
 V=1+auEP W=1+agIR X=1+a2bV Y=1+a2cW Z=1+ab3oHOT !=1+a3SUX @=1+abNY!
 #=1+a4kzF@ $=1+a3QZ#

 Note: numeral after variable names represent powers. For example,
 f = 1 + a2b = 1 + 2^2 * 3 = 13.

 The last variable, $, is the order of the base point, and the order
 of the curve is 72$.

 Note: Punctuation used for variable names !,@,#,$, would not scale
 for larger primes. For larger primes, a similar format might work
 by using a prefix-free set of multi-letter variable names.
 E.g. replace, Z,!,@,#,$ by Za,Zb,Zc,Zd,Ze:

Acknowledgments

 Thanks to John Goyo and various other BlackBerry employees for past
 technical review, and to Gaelle Martin-Cocher and Takashi Suzuki for
 encouraging work on I-D. Thanks to David Jacobson for sending Pratt
 primality certificates.

Author's Address

 Dan Brown
 BlackBerry
 4701 Tahoe Blvd., 5th Floor
 Mississauga, ON
 Canada
 danibrown@blackberry.com

Brown ECC with 2y^2=x^3+x/GF(8^91+5) [Page 64]

