Network Working Group T. Brunner _T0C

University of Applied

Internet-Draft .
Sciences,

Intended status:

. Rapperswil
Experimental bP

Expires: October 18,

April 16, 2008
2008

IKEv2 Mediation Extension
draft-brunner-ikev2-mediation-00

Status of This Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on October 18, 2008.

Abstract

This document describes the IKEv2 Mediation Extension (IKE-ME), a
connectivity extension to the Internet Key Exchange IKEv2. IKE-ME
allows two peers, each behind one or more Network Address Translators
(NATs) or firewalls to establish a direct and secure connection without
the need to configure any of the intermediate network devices. To
establish this direct connection, a process similar to Interactive
Connectivity Establishment (ICE) is used.

Table of Contents

1. Introduction
1.1. Terminology and Notation

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

2.

Protocol Overview

Basic Operation

Example Protocol Exchanges
Mediation Connection

Initial IKE Exchanges
CREATE_CHILD_SA Exchange
Obtaining Endpoints

3.1.

2.1,
2.2,

3.1.
3.2.
3.3.

3.

3.

3.3.2.1. Considerations Concerning TURN
3.3.2.2. O0Obtaining Server Reflexive Endpoints from

Mediation

e

@

™

[®

«©

3.

3.

.3.5.1. Recommended Formula
3.

3.
Initiating a Connection
.4.1.

4.2,
.4.3.

3.

w

w W

3.2.

Host Endpoints
Server Reflexive and Relayed Endpoints

Servers

3

3.
3.

3.
3.

3

4.

5.

6.

7.

4.4.

Peer Reflexive Endpoints
The Base of Local Endpoints
Prioritizing Endpoints

Guidelines for Choosing Type and IP Address Preferences
Eliminating Redundant Endpoints

ME_CONNECT Exchange

Receiving a ME_CONNECT Request
Receiving a ME_CONNECT Response
Timeout for the Overall Transaction

Building Endpoint Pairs
Connectivity Checks
Forming Connectivity Checks

5.1.

5.1.1.

5.2.
5.3.

5.3.1.
5.3.2.
5.3.3.

ME_CONNECTAUTH

Responding to Connectivity Checks
Processing Connectivity Checks

Failure Cases
Success Cases
Stopping the Checks and Selecting the Endpoints

Mediated Connection

Initiating the Mediated Connection
Payload Formats

Identification Payload - Peer Identity
Notify Messages - Error Types

2.1.

6.1.

7.1.
7.2,

7.

7.3.

.3.1.

7.

~N NN NN N
W (W (W W |w |w
N o (o s e [N

ME_CONNECT_FAILED Notify Payload

Notify Messages - Status Types

3.

ME_MEDIATION Notify Payload
ME_ENDPOINT Notify Payloads
ME_CALLBACK Notify Payload
ME_CONNECTID Notify Payload
ME_CONNECTKEY Notify Payload
ME_CONNECTAUTH Notify Payload
ME_RESPONSE Notify Payload

Security Considerations
Trusting the Mediation Servers
IANA Considerations

8.1.

10. IAB Considerations

11. Acknowledgements
12. References
12.1. Normative References
12.2. Informative References
Appendix A. Open Issues
A.1. Is the second ME_CONNECTKEY required?
A.2. Different NAT, Same Subnet
A.3. Relaying Provided by the Mediation Server
A.4. Compatibility/Synergy with MOBIKE
Appendix B. Design Decisions
B.1. Two exchanges between mediation server and second peer
B.2. Why the ME_RESPONSE Notify payload is needed
Appendix C. Changelog
C.1. Changes from -.3 to -00
C.2. Changes from -.2 to -.3
C.3. Changes from -.1 to -.2
C.4. Changes from -.0 to -.1

1. Introduction TOC

IKEv2 [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,”
December 2005.) inherently supports the traversal of Network Address
Translators (NATs) by doing automatic NAT discovery during the IPsec
connection setup. If a NAT situation is detected, IKE floats to UDP
source and destination ports 4500 and after a CHILD_SA has been
successfully established, ESP packets encapsulated in UDP datagrams
[RFC3948] (Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
Stenberg, “UDP Encapsulation of IPsec ESP Packets,” January 2005.) will
share the same floated ports. While both IPsec and IKEv2 are peer-to-
peer protocols by their nature, NATs and firewalls often restrict these
protocols to a unidirectional mode where only the peer on the inside is
able to actively set up a connection. If both peers are hidden by NATs
or firewalls, the IKEv2 protocol usually fails to establish IPsec
connectivity.

In the area of multimedia communications the Interactive Connectivity
Establishment protocol [I-D.jietf-mmusic-ice] (Rosenberg, J.,
“Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols,”

October 2007.) has been developed to solve the NAT and firewall
problems mentioned above. Unfortunately the proposed solution is rather
closely bound to the Session Initiation Protocol (SIP) and Session
Description Protocol (SDP), and generally tends to solve problems
specific to voice and/or video media streams.

The IKEv2 Mediation Extension (IKE-ME) adapts the connectivity
establishment methods known from ICE to the IPsec domain, allowing
secure IP connections to be established in environments with multiple
NATs or firewalls.

The IKEv2 Mediation Extension protocol uses a mediation server to
locate other peers and allows them to exchange their communication
endpoints. It implements an ICE-like mechanism with a minimum impact on
the standard IKEv2 protocol. IKEv2 exchanges are used for communication
between peers and the mediation server to simplify implementation in
existing IKEv2 products.

1.1. Terminology and Notation TOC
The following terms are used throughout this document:

Peer
A peer is an IKEv2 host that supports the protocol defined in
this document and wants to establish a direct connection with
another peer.

Mediation Server
A server is an IKEv2 host that helps peers to establish a direct
connection between them. The server has to be reachable by all
peers involved in the mediation scheme.

Transport Address
A transport address is the combination of an IP address, a
transport protocol (limited to UDP in this specification), and a
port number.

Endpoint
An endpoint is a transport address that is obtained in order to
be used in a direct connection. In addition to a plain transport
address it has a type, a priority, and a base. The term endpoint
may also be used to simply indicate the end of a connection. The
actual meaning should be clear from the context.

Host Endpoint

An endpoint directly obtained from a local interface.

Server Reflexive Endpoint

Server reflexive endpoints are endpoints allocated on a NAT and
are learned by a method such as Session Traversal Utilities for
NAT (STUN).

Relayed Endpoint
Relayed endpoints are like remote host endpoints. Traversal Using
Relays around NAT (TURN) is a possible source for relayed
endpoints.

Peer Reflexive Endpoint

Peer reflexive endpoints are learned during connectivity checks.
See Section 5 (Connectivity Checks) for how this is done.

Base

The base of an endpoint is the transport address from which
messages are actually sent. For instance, a peer cannot send
messages directly from a server reflexive endpoint which it got
allocated on a NAT, but only from the host endpoint from which it
obtained the server reflexive endpoint. See Section 3.3
(Obtaining Endpoints) for details.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

2. Protocol Overview TOC

2.1. Basic Operation TOC

In order to establish a direct connection between them, two peers need
to connect to a mediation server first. The mediation server is
required to forward the endpoints on which a peer is potentially
reachable by another peer. Figure 1 (Overview) provides a general
overview of the most common situation. Peer 1 and Peer 2 want to
establish a secure direct connection between them. Since both are
behind a NAT they cannot reach one another directly - they most likely
don't even know where to try. This is where the mediation server comes

into play. It helps to locate other peers and to exchange endpoints
over which a peer may be reachable.

S —— +
| Mediation |
| Server |
T +--+
I I
Mediation Connection | | Mediation Connection
e + e +
I I
T + +
|/ Mediated Connection \ |
+----- e —_— + +----- e —_— +
| NAT 1 | | NAT 2|
B pep——— E pep——— + B pep——— E pep—— +
I I
+----- +----- + Secure Connection LR +
| Peer 1 | ===========================| Peer 2 |
[R + [R +

Figure 1: Overview

Each peer registers itself with the mediation server in order to
announce its online presence. It does so by setting up an IKE_SA
including special mediation payloads. No CHILD_SA is established
between a peer and the mediation server because there is no need to
exchange any encrypted IP payloads.

Before a peer can connect to other peers it has to collect a number of
endpoints on which it is potentially reachable by other hosts. To
obtain endpoints an arbitrary method can be used. For instance, STUN
might be used to learn server reflexive endpoints and TURN could be
used to obtain a relayed endpoint. A client may also request a server
reflexive endpoint from the mediation server. By connecting to the
mediation server, the peer automatically gets transport addresses
allocated on the intermediate NATs. The transport address on the NAT
nearest to the mediation server is the source from which the mediation
server receives the messages from the peer. This transport address can
be requested from the mediation server and provides a server reflexive
endpoint.

If a peer requests a connection to another peer that is already
registered, the mediation server acts as a relay to allow the peers to
exchange their endpoints.

Each peer then performs connectivity checks on all available endpoint
pairs constructed by combining its own with the received endpoints.
After all path combinations have been probed and the best suited
endpoint pair has been elected, the initiating peer then goes on to set
up an IKE_SA using the standard IKEv2 protocol and including at least
one request for a CHILD_SA.

The protocol is designed to establish connectivity between peers in any
network topology. As local endpoints are included in the checks, peers
in the same (private) network can establish a connection directly.
Depending on the NAT implementation, the used hole punching mechanism
may not work. If both NAT are too restrictive, a relayed endpoint may
be used to establish an IKE_SA between the peers.

2.2. Example Protocol Exchanges TOC

This section illustrates some example protocol exchanges. The notation
is based on [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEvV2)
Protocol,” December 2005.), Section 1.2. In addition, the source/
destination IP addresses and ports are shown for each packet: here
IP_P1, IP_P2, and IP_MS represent IP addresses used by the two peers
and the mediation server, respectively. Referring to Figure 1
(Overview), the two peers are each located behind a NAT. Thus, the
modifications on outgoing packets, as performed by the NATs, are also
shown. At this, IP_N1 and IP_N2 denote the public addresses of the
NATs.

In a first step, Peer 1 connects to the mediation server starting with
an IKE_SA INIT exchange.

Initiator Responder

1) IP_P1:500 -> IP_MS:500
\--> IP_N1:1201 -> IP_MS:500
HDR, SAil, KEi, Ni,
N(ME_MEDIATION),
N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP) -->

IP_MS:500 -> IP_N1:1201
<-- HDR, SAri, KEr, Nr,
N(ME_MEDIATION),
N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)
[, CERTREQ]

The IKEv2 NAT_DETECTION_SOURCE_IP and NAT_DETECTION_DESTINATION_IP
Notify payloads are used to detect if there is any NAT between the peer
and the mediation server. The new ME_MEDIATION Notify payload announces
the request for a mediation connection. As mentioned above, we assume
that both peers are behind a NAT. Therefore Peer 1 floats to UDP port
4500 before continuing with a modified IKE_AUTH exchange that does not
contain a CHILD_SA proposal.

2) IP_P1:4500 -> IP_MS:4500
\--> IP_N1:1202 -> IP_MS:4500
HDR, SK { IDi, [CERT,] [CERTREQ,]
[IDr,] AUTH, N(ME_ENDPOINT) } -->

IP_MS:4500 -> IP_N1:1202
<-- HDR, SK { IDr, [CERT,] AUTH,
N(ME_ENDPOINT) }

The peer uses the new ME_ENDPOINT Notify payload to request a server
reflexive endpoint from the mediation server. After this exchange Peer
1 is connected to the mediation server and thus available for mediation
with any other peer, as well as eligible to request a mediated
connection itself. Peer 2 connects to the mediation server using the
same procedure.

3) IP_P2:500 -> IP_MS:500
\--> IP_N2:1024 -> IP_MS:500
HDR, SAil, KEi, Ni,
N(ME_MEDIATION),
N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP) -->

IP_MS:500 -> IP_N2:1024

<-- HDR, SArl, KEr, Nr,
N(ME_MEDIATION),
N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)

[, CERTREQ]
4) IP_P2:4500 -> IP_MS:4500
\--> IP_N2:1025 -> IP_MS:4500
HDR, SK { IDi, [CERT,] [CERTREQ,]
[IDr,] AUTH, N(ME_ENDPOINT) } -->

IP_MS:4500 -> IP _N2:1025
<-- HDR, SK { IDr, [CERT,] AUTH,
N(ME_ENDPOINT) }

A direct connection is initiated by Peer 1 with the transmission of a
ME_CONNECT request to the mediation server. Peers are identified by the
ID with which they authenticate against the mediation server. So, this
request includes the ID of the other peer, denoted IDp2, and several
endpoints on which Peer 1 is potentially reachable by the other peer.
Also included are a randomly generated ID and a randomly generated key
that are mainly used for the ensuing connectivity checks.

5) IP_P1:4500 -> IP_MS:4500
\--> IP_N1:1202 -> IP_MS:4500
HDR, SK { IDp2, N(ME_CONNECTID), N(ME_CONNECTKEY),
N(ME_ENDPOINT), N(ME_ENDPOINT) } -->

IP_MS:4500 -> IP_N1:1202
<-- HDR, SK {}

The mediation server relays this ME_CONNECT request to the other peer,
but replaces the IDp payload with the ID of Peer 1.

IP_MS:4500 -> IP_N2:1025
HDR, SK { IDp1, N(ME_CONNECTID), N(ME_CONNECTKEY),
N(ME_ENDPOINT), N(ME_ENDPOINT) } -->

IP P2:4500 -> IP_MS:4500
\--> IP_N2:1025 -> IP_MS:4500
<-- HDR, SK {}

Peer 2 answers with a ME_CONNECT exchange of its own, including the
initiating peer's ID, the connect ID, as well as its own randomly
generated key and obtained endpoints. To mark the exchange as a
response a ME_RESPONSE Notify payload is included. The mediation server
extracts this information and forwards it back to Peer 1, again,
exchanging the IDp accordingly.

6) IP_P2:4500 -> IP_MS:4500
\--> IP_N2:1025 -> IP_MS:4500
HDR, SK { IDpi1, N(ME_RESPONSE), N(ME_CONNECTID),
N(ME_CONNECTKEY), N(ME_ENDPOINT),
N(ME_ENDPOINT) } -->

IP_MS:4500 -> IP_N2:1025
<-- HDR, SK {}

IP_MS:4500 -> IP_N1:1202

HDR, SK { IDp2, N(ME_RESPONSE), N(ME_CONNECTID),
N(ME_CONNECTKEY), N(ME_ENDPOINT),
N(ME_ENDPOINT) } -->

IP P1:4500 -> IP_MS:4500
\--> IP_N1:1202 -> IP_MS:4500
<-- HDR, SK {}

Both peers now pair their own endpoints with those received from the
other end and proceed with connectivity checks. Connectivity checks are
done using unprotected INFORMATIONAL exchanges that include the connect
ID, an ME_ENDPOINT payload, and a ME_CONNECTAUTH Notify payload, which
contains a MAC to authenticate the sender of the check. In this example
we assume that both NATs perform endpoint independent mapping and
filtering.

7) IP_P1:4500 -> IP_P2:4500
HDR, N(ME_CONNECTID), N(ME_ENDPOINT),
N(ME_CONNECTAUTH) --> ! NOT REACHABLE

IP_P1:4500 -> IP_N2:1025

\--> IP_N1:1202 -> IP_N2:1025

HDR, N(ME_CONNECTID), N(ME_ENDPOINT),
N(ME_CONNECTAUTH) -->

IP _P2:4500 -> IP_N1:12602
\--> IP_N2:1025 -> IP_N1:1202
<- - HDR

Peer 2 does the same in the opposite direction. If at least one
connectivity check is successful, the initiating peer proceeds with a
normal IKE_SA INIT request using the endpoints from the successful
check.

3. Mediation Connection TOC

This section describes the protocol between peers and the mediation
server.

3.1. Initial IKE Exchanges TOC

To establish a mediation connection with a mediation server an
implementation MUST include a ME_MEDIATION notification in the
IKE_SA_INIT exchange. The initiator MUST stop the initiation if the
responder does not include a ME_MEDIATION notification in its response.
The format of the ME_MEDIATION notification is described in Section 7
(Payload Formats).

If the transport address used to communicate with the mediation server
is also to be used as Host endpoint (see Section 3.3.2.2 (Obtaining
Server Reflexive Endpoints from Mediation Servers)), the peer MUST now
float to port 4500 even if no NAT is detected between the peer and the
mediation server. Because connectivity checks are sent with non-ESP
marker in front of the IKE header it would be confusing for
implementations to receive such packets on port 500.

As no CHILD_SAs are established on mediation connections, the IKE_AUTH
exchange differs from [RFC4306] (Kaufman, C., “Internet Key Exchange
(IKEv2) Protocol,” December 2005.). The payloads SAi2 and TSi, and SAr2

and TSr MUST be omitted from request and response, respectively. If any
of these payloads are found included in the request, an implementation
MUST respond with a NO_ADDITIONAL_SAS notification without any other
payloads, and then delete the IKE_SA. All other payloads of the
IKE_AUTH exchange remain as defined in [RFC4306] (Kaufman, C.,
“Internet Key Exchange (IKEv2) Protocol,” December 2005.).

A peer MUST NOT have more than one connection to a specific mediation
server at the same time. Thus, a mediation server MUST delete an
existing IKE_SA with a peer upon receipt of a valid IKE_AUTH request of
the same peer.

An implementation that supports MOBIKE [RFC4555] (Eronen, P., “IKEv2
Mobility and Multihoming Protocol (MOBIKE),” June 2006.) SHALL include
the MOBIKE_SUPPORTED notification in the IKE_AUTH exchange.

Optionally, a peer MAY obtain a server reflexive endpoint from the
mediation server, as described in Section 3.3.2.2 (Obtaining Server
Reflexive Endpoints from Mediation Servers).

3.2. CREATE_CHILD_SA Exchange TOC

The absence of CHILD_SAs on mediation connections also affects the
allowed usages of the CREATE_CHILD_SA exchange. Exchanges of this type
SHALL only be used to rekey the IKE_SA. An implementation MUST respond
to CREATE_CHILD_SA requests that demand the creation of a CHILD_SA with
a NO_ADDITIONAL_SAS notification, without any other payloads.

3.3. Obtaining Endpoints TOC

A peer obtains endpoints before requesting a mediated connection or
before responding to such a request. There are four types of endpoints
defined in this document - host, peer reflexive, server reflexive, and
relayed endpoints. Since every peer decides on its own which endpoints
it wants to share with other peers, the methods to obtain these
endpoints can vary widely.

3.3.1. Host Endpoints TOC

Host endpoints are obtained by binding ports to an IP address on a
peer's host. A peer could use the same endpoint it uses to communicate
with the mediation server, but it could also use a different port. If a
peer is multihomed, it SHOULD obtain endpoints for every available IP
address.

3.3.2. Server Reflexive and Relayed Endpoints TOC

Server reflexive and relayed endpoints can be obtained from various
sources. One possibility is to use STUN ([I-D.ietf-behave-rfc3489bis]
(Rosenberg, J., Mahy, R., Matthews, P., and D. Wing, “Session Traversal
Utilities for (NAT) (STUN),” February 2008.)) and its Binding Discovery
and Relay Usages ([I-D.ietf-behave-turn] (Rosenberg, J., Mahy, R., and
P. Matthews, “Traversal Using Relays around NAT (TURN): Relay
Extensions to Session Traversal Utilities for NAT (STUN),”

February 2008.)). This specification does not restrict implementations
on the methods used to obtain such endpoints. But a peer SHOULD obtain
server reflexive and MAY obtain relayed endpoints for each host
endpoint, to increase the probability of a successful connection.

Use of relays is expensive, and when using this protocol, relays will
only be utilized when both peers are behind NATs that perform address
and port dependent mapping. Consequently, some deployments might
consider this use case marginal and decide not to use relays.

3.3.2.1. Considerations Concerning TURN TOC

An implementation that opts for STUN's Relay Usage
([I-D.ietf-behave-turn] (Rosenberg, J., Mahy, R., and P. Matthews,
“Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN),” February 2008.)) as source for
relayed endpoints has to consider several implications that result from
that decision. For instance, as long as no active destination is set
for such an endpoint, any IKE or ESP traffic that will be transferred
through that endpoint will be encapsulated in Data Indication messages.
Aside from the overhead of this additional layer of encapsulation, this
also means that the implementation has to be able to process such
traffic. This may be significantly easier for IKE traffic, since IKE
traffic is often processed in user space, whereas ESP traffic is
usually handled in kernel space, where the introduction of an
additional layer of encapsulation might be more difficult to implement.
Therefore, it is RECOMMENDED that an owner of such a relayed endpoint
sets an active destination as soon as it becomes apparent that the
endpoint is being used to establish the mediated connection. Thus, it
depends on the selected pair and the associated endpoints. If the
initiator owns the relayed endpoint of the selected endpoint pair, it
sets the active destination to the remote endpoint of that pair, just
before sending the IKE_SA_INIT request to initiate the mediated
connection. Because the responder does not know which pair finally gets
selected by the initiator, it waits until it gets the IKE_SA_INIT

request and just before sending the IKE_SA_INIT response sets the
active destination to the endpoint provided in the REMOTE-ADDRESS
attribute of the Data Indication message. In the extremely rare case of
the selected pair consisting of two relayed endpoints, the procedure is
the same, with both peers taking appropriate measures. This could
happen, for instance, if both peers are behind a NAT and neither did
provide server reflexive endpoints.

3.3.2.2. Obtaining Server Reflexive Endpoints from Mediation TOC
Servers

A peer MAY obtain a server reflexive endpoint from the mediation
server. To do so, it includes a ME_ENDPOINT Notify payload either in
the IKE_AUTH request or at a later stage in a separate INFORMATIONAL
exchange.

The priority, family, and port fields of this payload are set to zero,
the address field is zero length, and the type field is set to
SERVER_REFLEXIVE. Upon receiving such a payload, the mediation server
includes in its answer a ME_ENDPOINT notification of the same type
filling in the family, address and port of the endpoint it received the
request from.

The mediation server MUST ignore the ME_ENDPOINT Notify payload if the
type is not SERVER_REFLEXIVE [anchordl] (this allows later revisions of
this specification to define a relay usage).

If MOBIKE [RFC4555] (Eronen, P., “IKEv2 Mobility and Multihoming
Protocol (MOBIKE),” June 2006.) is in use on the mediation connection,
detection of changes in NAT mappings SHOULD be activated (as specified
in [RFC4555] (Eronen, P., “IKEv2 Mobility and Multihoming Protocol
(MOBIKE),” June 2006.), Section 3.8). A peer that previously obtained a
server reflexive endpoint from the mediation server SHOULD refresh that
endpoint, whenever MOBIKE indicates that the NAT mapping has changed.

3.3.3. Peer Reflexive Endpoints TOC

Peer reflexive endpoints are different from the previous endpoint
types. Endpoints of this type are never obtained before a connection
attempt, but dynamically learned during the connectivity checks. The
process of how and when these endpoints MAY be learned is explained in
Section 5 (Connectivity Checks).

T0C

3.3.4. The Base of Local Endpoints

All local endpoints have a Base. This is the transport address used to
send the actual messages for an endpoint. Since it is not possible to
send messages directly from a server reflexive endpoint, the base of
such an endpoint is the host endpoint from which the server reflexive
endpoint was obtained. If the peer is not behind a NAT, the base of a
server reflexive endpoint will equal that endpoint, which is then
redundant and will be eliminated. The base of host endpoints is the
endpoint itself. The same is true for relayed endpoints, since these
are like remote host endpoints. Peer reflexive endpoints also have a
base; it is the base of the local endpoint of the pair from whose
connectivity check the peer reflexive endpoint was learned.

3.3.5. Prioritizing Endpoints TOC

Each obtained endpoint is assigned a unique priority that MUST be a
positive integer between 0 and 2**32 - 1. A peer SHOULD compute this
priority using the formula in Section 3.3.5.1 (Recommended Formula) and
choose its parameters using the guidelines in Section 3.3.6 (Guidelines

for Choosing Type and IP Address Preferences). Using a different
formula will most likely break the coordination in the connectivity
checks, causing the protocol to take longer to converge.

3.3.5.1. Recommended Formula TOC

The priority is based on a preference for each type of endpoint (host,
peer reflexive, server reflexive and relayed) and a preference for each
of a peer's local IP addresses, in case it is multihomed. These two
preferences are combined to compute the priority for an endpoint using
the following formula (which is derived from the formula defined in
[I-D.ietf-mmusic-ice] (Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” October 2007.), Section 4.1.2):

priority = (2**16)*(type preference) +
IP address preference

The type preference MUST be an integer from © to 255 inclusive and
represents the preference for the type of the endpoint. 255 is the
highest preference, and 0 is the lowest. Setting the value to © means
that endpoints of this type will only be used as a last resort. The

type preference MUST be identical for all endpoints of the same type
and MUST be different for endpoints of different types. The type
preference for peer reflexive endpoints MUST be higher than that of
server reflexive endpoints. This is because it is easier for an
attacker to foist a bad server reflexive endpoint on a peer, than it is
to do the same with peer reflexive endpoints.

The IP address preference MUST be an integer from 0 to 65535 inclusive.
It represents a preference for the particular IP address from which the
endpoint was obtained in case a peer is multihomed. 65535 represents
the highest preference and 0 the lowest. When there is only a single IP
address, this value SHOULD be set to 65535. If a peer is dual-stacked
the IP address preference SHOULD be equal to the precedence value for
IP addresses as described in [RFC3484] (Draves, R., “Default Address
Selection for Internet Protocol version 6 (IPv6),” February 2003.).

3.3.6. Guidelines for Choosing Type and IP Address Preferences TOC

The RECOMMENDED values for the type preference are 255 for host
endpoints, 128 for peer reflexive endpoints, 64 for server reflexive
endpoints, and 0 for relayed endpoints.

One criteria for the selection of the IP address preference values is
IP address family. This protocol works with both IPv4 and IPv6. It also
allows dual-stack hosts to prefer connections over IPv6, but to fall
back to IPv4. Other criteria MAY be established as a matter of local
optimization.

3.3.7. Eliminating Redundant Endpoints TOC

After obtaining the endpoints, the peer eliminates redundant ones. An
endpoint is redundant if its transport address equals that of another
endpoint and its base equals the base of that other endpoint. Two
endpoints that share the same transport address but have different
bases are not considered redundant. The peer SHOULD eliminate the
redundant candidate with the lower priority.

3.4. Initiating a Connection TOC

To initiate a direct connection with another peer and to exchange
endpoints, a new exchange type (ME_CONNECT) is defined. The
communication between initiating peer and responding peer passes
through the mediation server and therefore consists of multiple

exchanges. Request and response between the peers are each composed of
two distinct exchanges between the mediation server and the peers. This
results in the following message flow:

Peer 1 Mediation Server Peer 2
/ ME_CONNECT request ->
Re - <- ME_CONNECT response
quest ME_CONNECT request ->
\ <- ME_CONNECT response
/ <- ME_CONNECT request
Re - ME_CONNECT response ->
sponse <- ME_CONNECT request
\ ME_CONNECT response ->

Figure 2: ME_CONNECT Exchanges

3.4.1. ME_CONNECT Exchange T0C

The first payload included in a ME_CONNECT request is an IDp payload
containing the ID of the other peer. All other payloads are
notifications.

The first two notifications are ME_CONNECTID and ME_CONNECTKEY.
ME_CONNECTID contains a randomly chosen value that is used to identify
the current connection setup. This identifier is provided by the
initiator and is sent back by the other peer in the reply in order to
be able to distinguish concurrent ME_CONNECT exchanges initiated by
both sides. Each peer also provides a randomly chosen key contained in
a ME_CONNECTKEY Notify payload that is used to authenticate the
connectivity checks.

If the requested peer is currently not online, that is, not connected
to the mediation server, the mediation server MUST include a
ME_CONNECT_FAILED error notification in its response. To prevent an
initiator from constantly having to poll the other peer's online
status, it MAY include a ME_CALLBACK notification in its request. This
instructs the mediation server to notify the initiator as soon as the
requested peer gets online.

To transmit the previously obtained endpoints, notification payloads of
type ME_ENDPOINT are used. A ME_CONNECT request MUST include at least

one such payload. Mediation servers MUST reply with a ME_CONNECT_FAILED
if a request contains no endpoints.

Figure 3 (ME _CONNECT Exchange: Initiation) shows a schematic overview
of the ME_CONNECT exchange that is used to initiate a connection.
Figure 4 (ME _CONNECT Exchange: Failure) shows the exchange used to
indicate a failure.

Initiator Responder

HDR, SK { IDp, [N(ME_RESPONSE)], N(ME_CONNECTID),
N(ME_CONNECTKEY), [N(ME_CALLBACK)],
N(ME_ENDPOINT)+ } -->

<-- HDR, SK { [N(ME_CONNECT_FAILED)] }

Figure 3: ME_CONNECT Exchange: Initiation

Initiator Responder

HDR, SK { IDp, N(ME_CONNECT_FAILED) } -->

<-- HDR, SK {}

Figure 4: ME_CONNECT Exchange: Failure

On every ME_CONNECT request the mediation server checks whether the
requested peer is connected to it. If this is the case, the mediation
server forwards the data included in the request to the requested peer
by initiating another ME_CONNECT exchange, thereby replacing the IDp
payload with the ID of the initiator. If the requested peer is not
available the mediation server responds immediately with a
ME_CONNECT_FAILED notification. If the initiator included a ME_CALLBACK
notification in its request, the mediation server registers the
requested ID. Once the requested peer connects, the mediation server
notifies all waiting peers by initiating a ME_CONNECT exchange

containing the peer ID of the requested peer and a ME_CALLBACK Notify
payload, as shown in Figure 5 (ME_CONNECT Exchange: Callback).
Afterwards, the mediation server removes the ID from the list of
requested peers.

Initiator Responder

HDR, SK { IDp, N(ME_CALLBACK) } -->

<-- HDR, SK {}

Figure 5: ME_CONNECT Exchange: Callback

3.4.2. Receiving a ME_CONNECT Request TOC

Upon receipt of a ME_CONNECT request from the mediation server, a peer
has to obtain endpoints itself. Actually the peer could have done that
earlier, even before connecting to the mediation server, keeping the
endpoints alive while waiting for incoming requests. The peer then
assembles a ME_CONNECT request which contains its own endpoints, the ID
of the other peer, and a randomly generated value for the ME_CONNECTKEY
payload. It also includes the ME_CONNECTID payload from the request and
a ME_RESPONSE Notify payload to mark this exchange as a response. This
message is then sent to the mediation server which should confirm it
with an empty response. If the response contains a ME_CONNECT_FAILED
notification, the other peer is not connected to the mediation server
anymore. In this case the peer stops handling the request, otherwise,
it proceeds with connectivity checks, as described beginning with
Section 4 (Building Endpoint Pairs).

In case a peer is unable to handle the request for a mediated
connection - this could be due to missing configuration, local policy
or other failures - it immediately responds with a ME_CONNECT_FAILED in
the response to the ME_CONNECT request it received from the mediation
server. If it later faces a condition that prevents it from responding
to the request, it SHOULD initiate a ME_CONNECT exchange containing
only an IDp and a ME_CONNECT_FAILED Notify payload. This notification
is then forwarded to the initiating peer to inform it of this
situation.

3.4.3. Receiving a ME_CONNECT Response TOC

The initiator eventually gets a ME_CONNECT request from the mediation
server containing the response from the other peer. It correlates the
response with the previously sent request using the ID contained in the
ME_CONNECTID payload. It extracts the endpoints and key provided by the
responder and proceeds with connectivity checks, as described beginning
with Section 4 (Building Endpoint Pairs).

3.4.4. Timeout for the Overall Transaction TOC

Since the whole transaction is split in four separate exchanges (see
Figure 2 (ME _CONNECT Exchanges)) a timeout for the overall transaction
is required. This timeout allows the initiator to act appropriately in
case any of the three exchanges, in which it is not actively involved,
fails. The nature of appropriate means is not defined by this
specification, a peer might just restart the process, cancel it and log
a message, or might take more sophisticated measures (like contacting
an alternative mediation server). The timer controlling this timeout
SHOULD be started right after the initial ME_CONNECT exchange finished
successfully.

Since [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,”
December 2005.) does not exactly specify how retransmissions for IKEv2
messages have to be effected and does not define the time frame within
which dead peers have to be detected, it becomes impossible to specify
an exact timeout value. Therefore this document only specifies that an
overall timeout value MUST be configurable to allow it to be adapted to
specific conditions. As a recommendation the timeout value SHOULD
approximately amount to at least three times the maximum time it takes
the initiating peer to conclude that the retransmission of an IKEv2
message has finally failed.

4. Building Endpoint Pairs TOC

After receiving endpoints with a ME_CONNECT exchange, a peer builds a
list of endpoint pairs. This is done by pairing each local endpoint
with each remote endpoint (endpoints get only paired if they share the
same IP address family). Then for each pair a priority is computed. The
resulting list is then sorted in decreasing order of priorities. The
formula used to compute this priority is as follows (it is basically
the same formula as defined in [I-D.ietf-mmusic-ice] (Rosenberg, J.,
“Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols,”
October 2007.), Section 5.7.2):

priority = (2**32) * MIN(pI, pR) +
2 * MAX(pI, pR) + (pI > pR ? 1 : 0)

where pI and pR denote the priorities of the initiator and the
responder, respectively. MIN and MAX are functions that result in
either the minimum or the maximum value of their parameters,
respectively. The last term of the formula evaluates to 1 if pI is
greater than pR or to © otherwise.

A peer cannot send messages directly from a reflexive endpoint, but
only from its base. Since a peer generated pairs with both host
endpoints and server reflexive endpoints as local endpoints, it's
likely that there are duplicate entries in the list of pairs.
Therefore, the peer MUST prune the 1list. This is done by removing a
pair if the base of its local endpoint and the remote endpoint are
identical to those of a pair higher up on the list.

After sorting and pruning the list, the pairs are numbered serially.
This number serves as a message ID in connectivity checks. The result
is a sequentially numbered, ordered list of endpoint pairs, called the
checklist.

Each pair in the checklist has a specific state assigned to it that
changes during the connectivity checks. Initially all pairs are in
state Waiting. The possible states are as follows:

Waiting: No check has been performed yet for this pair. As soon as
it becomes the highest priority waiting pair on the checklist, a
check can be performed.

In-Progress: A check has been sent for this pair, but the
transaction is still in progress.

Succeeded: A check for this pair produced a successful result.
Failed: A check for this pair was done and it failed.

An implementation SHOULD limit the number of endpoints it accepts in a
ME_CONNECT exchange as well as the number of pairs in a single
checklist. This specification does not define what the limits are but
the limits MUST be configurable, so that users can adjust the limits if
a specific situation demands it. If more endpoints are received than
the configured upper limit, the implementation SHOULD discard them
according to their priority. The same procedure is RECOMMENDED for
supernumerary pairs.

5. Connectivity Checks TOC

Connectivity checks are done using unprotected INFORMATIONAL exchanges.
The peers process the checklist sequentially and send a request from
the local endpoint to the remote endpoint of each pair. In addition to
the checklist each peer maintains a FIFO queue, called the triggered
check queue, which contains pairs for which checks are to be sent at
the next available opportunity. A periodically firing timer T controls
the generation of the checks. Whenever timer T fires, a peer first
checks whether there are any elements in the triggered check queue. If
so, it removes the first pair from it and initiates a connectivity
check for that pair. Otherwise the peer sends a check for the topmost
pair in the checklist which is in state Waiting. If no such pair exists
the peer does nothing in this time slot. This process is illustrated in
Figure 6 (Sending Connectivity Checks). Once a check has been sent the
state of the pair is set to In-Progress.

e + /2 \
[----- > idle |<----- | send check |
R + A T /
| timer fires A
\Y

| triggered check queue:| ok

| get first item [-------------- +

e + |

| none |

v I

o e e + |

none |checklist: get first | ok |

\------ |pair in state waiting|-------------- /
o e e e o oooo- +

Figure 6: Sending Connectivity Checks

There is no RECOMMENDED setting for timer T specified in this document.
But timer T MUST be configurable so that a user may change the setting
to adjust to specific environments. There is a second timer called
retransmission timer R which is started for each connectivity check
request after it has been initially sent. Whenever timer R fires the
request is retransmitted. This not done indefinitely, though. After a
set number of retransmissions the connectivity check times out and the
state of the pair is set to Failed. As with timer T, this specification

does not restrict implementors on how to design these retransmissions.
However, it is RECOMMENDED that a user may be able to configure how
often and how long retransmissions are sent in order to improve the
connectivity in specific situations.

5.1. Forming Connectivity Checks TOC

Specially crafted unprotected INFORMATIONAL exchanges act as
connectivity checks. The INFORMATIONAL request is formed as follows.
The SPI fields in the IKE header are set to zero. The message ID is set
to the ID of the corresponding entry in the checklist. Three payloads
follow the header. The first one is a ME_CONNECTID notification
containing the value provided by the initiator that allows the
recipient to locate the correct checklist. The next payload is a
ME_ENDPOINT Notify payload that has all fields but the priority and the
type set to zero. The priority field is set equal to the priority that
would be assigned based on the formula in Section 3.3.5.1 (Recommended
Formula) to a peer reflexive endpoint. Hence, the type field is set to
PEER_REFLEXIVE. To authenticate the message a ME_CONNECTAUTH
notification is built and added, containing an SHA-1 hash of several
parts of the message and the value of the appropriate ME_CONNECTKEY
(see Section 5.1.1 (ME_CONNECTAUTH) for details). Request and response
of a connectivity check are always authenticated with the same key,
that of the responder. Thus a connectivity check from peer L to peer R
(and its response) is authenticated with the key provided by R.
Likewise, a connectivity check from R to L (and its response) is
authenticated with the key provided by L.

To simplify things, the IKE messages used to do connectivity checks are
always sent with a non-ESP marker in front of the IKE header, as
defined in [RFC3948] (Huttunen, A., Swander, B., Volpe, V., DiBurro,
L., and M. Stenberg, “UDP Encapsulation of IPsec ESP Packets,”

January 2005.), even if the port numbers used are not 4500.

Figure 7 (Connectivity Checks) provides a schematic diagram of a
connectivity check.

Initiator Responder

HDR, N(ME_CONNECTID), N(ME_ENDPOINT),
N(ME_CONNECTAUTH) -->

<-- HDR, N(ME_CONNECTID), N(ME_ENDPOINT)
N(ME_CONNECTAUTH)

Figure 7: Connectivity Checks

5.1.1. ME_CONNECTAUTH TOC

The formula used to compute the value of the ME_CONNECTAUTH Notify
payload is:

auth = Hash(MID | ME_CONNECTID | ME_ENDPOINT | ME_CONNECTKEY)

where MID denotes the message ID in the IKE Header in network byte
order and | indicates concatenation. Of each included Notify payload
only the notification data is considered. The hash function used is
SHA-1.

5.2. Responding to Connectivity Checks TOC

After receiving a connectivity check request, a peer uses the value of
the ME_CONNECTID payload to locate the correct checklist and the
appropriate key. It verifies that the message is genuine, by computing
the hash as the sender did and comparing the result with the content of
the ME_CONNECTAUTH Notify payload. If either the checklist is not found
or the verification fails, the peer MUST ignore the connectivity check
request. Otherwise, it proceeds as follows. Refer to Figure 8
(Responding to Connectivity Checks) for an illustration of this
process.

1. It checks whether the source address and port of the message
are already included in the list of remote endpoints. If this

2.

4,

is not the case, this represents a new peer reflexive endpoint.
The priority of this endpoint is set to the priority noted in
the ME_ENDPOINT payload of the request and it is then added to
the list of remote endpoints.

A new pair is constructed setting the local endpoint to the one
on which the request was received, and the remote endpoint to
the one where the request came from (this may be the peer
reflexive endpoint just learned). The priority of this pair is
computed as usual.

If this pair is already in the checklist, further processing
depends on the state of that pair.

*If the pair is in waiting state, a check for it is enqueued
into the triggered check queue.

*If the state is In-Progress, retransmissions for the pending
request will be cancelled, but the peer will wait the
duration of the retransmission timeout for a response. If
there is no answer the peer MUST schedule a new connectivity
check for that pair, by enqueuing a check in the triggered
check queue. The state of the pair is then changed to
Waiting.

*If the state of the pair is Failed, it is changed to Waiting
and the peer MUST enqueue a new connectivity check for that
pair in the triggered check queue.

*If the state is already Succeeded, nothing is done.

If the pair had not yet been included in the checklist, it is
now inserted based on its priority. The ID is set to the number
of pairs in the checklist plus one. The state is set to Waiting
and a connectivity check is enqueued in the triggered check
queue.

A response is then sent back. It includes the same ME_CONNECTID
as the request, the ME_ENDPOINT is filled with the source
endpoint from which the request was received - for relayed
endpoints that are obtained using STUN, the source address is
included in the REMOTE-ADDRESS attribute, if it was
encapsulated in a Data Indication message, or it is the current
active destination for the STUN relay session, otherwise - and
the ME_CONNECTAUTH is built as in the request, using the
appropriate key.

| request received |
| and verified |

em e e e e aaan +
I
\Y
S + R +
| add to | no | source in 1list of |
|remote endoints|<----| remote endpoints? |
Fom e e e oo oo + B SRRy +
I | yes
| \%
| T +
A >| create pair and |
| compute priority |
O U U U +
I
\%
S + g +
| add pair to | no | pair is already |
| checklist |<----- | in checklist? |
Fom e e e o oo oo + Fom e oo oo +
I | yes
| \%
| Waiting /------------------ \ Succeeded
R | pair state [------mmmem o=
| A /
| / \
| Failed | | In-Progress
| \% \Y%
| Fommmm e e aaas + Fommmm e e aaas +
| |change state| failed | wait for | ok
+----- | to Waiting |<--------- | response |-----
| R + R +
\Y%
S +
|queue triggered|
| check |
Fom e e e o oo oo +
| O +
A >| send response [<-mmmmi -
e e e e e e +

Figure 8: Responding to Connectivity Checks

5.3. Processing Connectivity Checks TOC

This section describes how responses to connectivity checks are
processed. On receipt of a connectivity check response a peer
correlates it to the corresponding pair using, first, the ME_CONNECTID
to find the correct checklist and then the message ID to identify the
pair. It MUST verify the authenticity of the check using the key
provided by the other peer.

5.3.1. Failure Cases TOC

If the peer either cannot find the checklist or cannot find the
corresponding pair or if the verification of the check fails, it MUST
ignore the check response.

Implementations MAY support receipt of ICMP errors for connectivity
checks. If a connectivity check generates an ICMP error, a peer sets
the state of the corresponding pair to Failed.

If a connectivity check times out, the peer also sets the state of the
corresponding pair to Failed.

The peer MUST check that the source address and port of the response
equals the remote endpoint of the pair, and the destination address and
port of the response equals the base of the local endpoint of the pair.
If either of these comparisons fails the state of the pair is set to
Failed.

5.3.2. Success Cases TOC

A connectivity check is considered a success, if the following are
true:

*The source address and port of the response equal the remote
endpoint of the pair.

*The destination address and port of the response match the base
of the local endpoint of the pair.

After verifying that the check is successful, the peer checks the
mapped endpoint that is returned in the ME_ENDPOINT Notify payload. If
the endpoint does not match any of the local endpoints that the peer
knows about, the mapped endpoint represents a new peer reflexive
endpoint. The base of this endpoint is set equal to the base of the

local endpoint of the pair the check was sent for. The priority is set
equal to the value noted in the payload. This endpoint is then added to
the list of local endpoints and a new pair is built as follows.

A new pair is constructed whose local endpoint equals the endpoint from
the ME_ENDPOINT Notify payload as described in the preceding paragraph,
and whose remote endpoint equals the destination address to which the
request was sent. This pair is inserted into a second list called valid
list, since it has been validated by a connectivity check. The valid
pair may equal the pair that generated the check, may equal a different
pair in the checklist, or may be a pair not currently in the checklist.
If the pair is not on the checklist, the priority is computed as usual.
If the local endpoint is peer reflexive, its priority is equal to the
priority field of the ME_ENDPOINT payload. The priority of the remote
endpoint is looked up in the list of remote endpoints.

The state of the pair that generated the check is then set to
Succeeded.

5.3.3. Stopping the Checks and Selecting the Endpoints TOC

Once one or more connectivity checks have completed successfully, valid
pairs are generated and added to the valid list. The initiating peer
lets the checks continue until some stopping criteria is met and then
selects one pair from the valid 1list based on an evaluation criteria.
The criteria for stopping the checks and for evaluating the valid pairs
is entirely a matter of local optimization.

The responding peer does not stop the checks for a checklist until it
receives an IKE_SA_INIT request that includes a ME_CONNECTID Notify
payload containing the respective connect ID.

6. Mediated Connection TOC

6.1. Initiating the Mediated Connection TOC

After the initiating peer has selected a valid pair, it uses these
endpoints to initiate an IKE_SA_INIT exchange with the other peer. Like
the connectivity checks, the IKE traffic on mediated connections is
sent with the non-ESP Marker prepended to the IKE header, as defined in
[RFC3948] (Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
Stenberg, “UDP Encapsulation of IPsec ESP Packets,” January 2005.).
Whether UDP encapsulation of ESP traffic is enabled on the mediated

connection, is decided as usual, using NAT detection as defined in
[RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,”
December 2005.), Section 2.23.

In addition to all the default payloads in the IKE_SA_INIT exchange the
initiating peer also includes a ME_CONNECTID Notify payload containing
the appropriate connect ID.

7. Payload Formats TOC

7.1. Identification Payload - Peer Identity TOC

This payload, denoted IDp in this document, is used to exchange the
identities of mediated peers. It is identical to the Identification
Payloads defined in [RFC4306] (Kaufman, C., “Internet Key Exchange
(IKEv2) Protocol,” December 2005.), Section 3.5.

The payload type for this Identification Payload (IDp) is TBD_BY_IANA.

7.2. Notify Messages - Error Types _TOC _

7.2.1. ME_CONNECT_FAILED Notify Payload T0C

This notification is used to signal that the attempt to mediate a
connection with a peer has failed. It is used in the ME_CONNECT
exchange request or response.

The Notify Message Type for ME_CONNECT_FAILED is TBD-BY-IANA. The
Protocol ID and SPI Size fields are set to zero. There is no data
associated with this Notify type.

7.3. Notify Messages - Status Types TOC

T0C

7.3.1. ME_MEDIATION Notify Payload

This notification is included in the IKE_SA_INIT exchange of a
mediation connection to indicate that both parties support this
specification and want to establish a mediation connection.

The Notify Message Type for ME_MEDIATION is TBD-BY-IANA. The Protocol
ID and SPI Size fields are set to zero. The notification data field
MUST be left empty (zero-length) when sending, and its contents (if
any) MUST be ignored when this notification is received. This allows
the field to be used by future versions of this protocol.

7.3.2. ME_ENDPOINT Notify Payloads TOC

This notification is used to exchange endpoints.

The Notify Message Type for ME_ENDPOINT is TBD-BY-IANA. The Protocol ID
and SPI Size fields are set to zero. The data associated with these
Notify types starts with a four-octet long number denoting the
endpoint's priority, followed by the eight bit long address family, and
an eight bit long number indicating the type of the endpoint. The data
further consists of a two-octet port number, which is finally followed
by either a four-octet IPv4 address or a 16-octet IPv6 address.

The following figure illustrates the format of the notification data of
the ME_ENDPOINT payload:

1 2 3
©12345678901234567890123456789¢01
Fot-t-tototototototototot-t-t-tototoFoFototot-t-t-t-F-F-F-F-F+-+-+
! priority !
+ot-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
! family ! type ! port !
Dk ke st o R e e e e i ks S S S S P e e ek

! IP address (variable)
+ot-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

The address family can take on the following values:

Name Value
RESERVED (0]
IPv4 1
IPV6 2

The following endpoint types are defined:

RESERVED (0]
HOST 1
PEER_REFLEXIVE 2
SERVER_REFLEXIVE 3
RELAYED 4

This payload is also used to request endpoints from a mediation server
and in connectivity checks. Refer to Section 3.3 (Obtaining Endpoints)
and Section 5 (Connectivity Checks) for details.

7.3.3. ME_CALLBACK Notify Payload T0C

This notification allows a peer to instruct the mediation server to
send out a notification once a specific peer connects to it, if it was
not available when the peer initially sent the ME_CONNECT. The
mediation server also includes a Notify payload of this type in the
requested callback.

The Notify Message Type for ME_CONNECTID is TBD-BY-IANA. The Protocol
ID and SPI Size fields are set to zero. There is no data associated
with this Notify type.

7.3.4. ME_CONNECTID Notify Payload TOC

This notification is used to exchange an identification number that
uniquely identifies a direct connection attempt. The initiator provides
this identifier in the ME_CONNECT exchange. It is then later used in
the connectivity checks as well as in the IKE_SA_INIT request of the
mediated connection. The randomly generated identifier MUST have a
length of 4 to 16 octets.

The Notify Message Type for ME_CONNECTID is TBD-BY-IANA. The Protocol
ID and SPI Size fields are set to zero. The data associated with this
Notify type consists of random data of variable length.

T0C

7.3.5. ME_CONNECTKEY Notify Payload

This notification contains a symmetric key used in the MAC that
authenticates the connectivity checks. The randomly generated key MUST
be at least 16 octets long, but MAY have a length of up to 32 octets.
The Notify Message Type for ME_CONNECTKEY is TBD-BY-IANA. The Protocol
ID and SPI Size fields are set to zero. The data associated with this
Notify type consists of random data of variable length.

7.3.6. ME_CONNECTAUTH Notify Payload TOC

This notification contains the message authentication code (MAC) in a
connectivity check.

The Notify Message Type for ME_CONNECTAUTH is TBD-BY-IANA. The Protocol
ID and SPI Size fields are set to zero. The data associated with this
Notify type consists of a 20-octet SHA-1 digest.

7.3.7. ME_RESPONSE Notify Payload TOC

This notification is used in ME_CONNECT exchanges to mark an exchange
as a response. Since ME_CONNECT exchanges usually contain the same
payloads, this Notify payload is required to distinguish between
exchanges that serve as requests and exchanges that serve as responses.
This is particularly important in the case of two peers trying to
initiate a connection to each other at the same time.

The Notify Message Type for ME_RESPONSE is TBD-BY-IANA. The Protocol ID
and SPI Size fields are set to zero. There is no data associated with
this Notify type.

8. Security Considerations TOC

8.1. Trusting the Mediation Servers TOC

The peers must at least partially trust the mediation servers they use.
Because the information that is passed to other peers is not encrypted
in an end-to-end fashion the mediation server can observe all the
exchanged endpoints. This could lead to the unwanted disclosure of
private IP addresses and address ranges. Of course each peer can decide

which endpoints it wants to share with other peers and hence with the
mediation server.

9. IANA Considerations TOC

This document does not create any new namespaces to be maintained by
IANA, but it requires new values in namespaces that have been defined
in the IKEv2 base specification [RFC4306] (Kaufman, C., “Internet Key
Exchange (IKEv2) Protocol,” December 2005.).

This document defines a new IKEv2 exchange whose value is to be
allocated from the "IKEv2 Exchange Types" namespace:

Exchange Type Value

ME_CONNECT TBD-BY-IANA (38..239)

These exchange is described in Section 3.4.1 (ME _CONNECT Exchange).
This document defines one new IKEv2 payload whose value is to be
allocated from the "IKEv2 Payload Types" namespace:

Payload Type Notation Value

Identification - Peer IDp TBD-BY-IANA (49..127)

This payload is described in Section 7 (Payload Formats).
This document defines several new IKEv2 notifications whose values are
to be allocated from the "IKEv2 Notify Message Types'" namespace:

Notify Messages - Error Types Value

ME_CONNECT_FAILED TBD-BY-IANA (42..8191)

Notify Messages - Status Types Value

ME_MEDIATION TBD-BY-IANA (16406..40959)
ME_ENDPOINT TBD-BY-IANA (16406..40959)
ME_CALLBACK TBD-BY-IANA (16406..40959)
ME_CONNECTID TBD-BY-IANA (16406..40959)
ME_CONNECTKEY TBD-BY-IANA (16406..40959)
ME_CONNECTAUTH TBD-BY-IANA (16406..40959)
ME_RESPONSE TBD-BY-IANA (16406..40959)

These notification payloads are described in Section 7 (Payload

Formats).

10. IAB Considerations TOC
TODO?
11. Acknowledgements TOC

The author would like to thank Martin wWilli for his work on the
introductory sections, and both him and Andreas Steffen for their
comments and suggestions. A special thanks goes to Daniel
Roethlisberger who worked with the author on an early revision of this
specification.

12. References TOC

12.1. Normative References
TOC
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

[RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
Stenberg, “UDP Encapsulation of IPsec ESP Packets,”
RFC 3948, January 2005 (TXT).

[RFC4306] Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,”
RFC 4306, December 2005 (TXT).

12.2. Informative References

[I-D.ietf-
behave-
rfc3489his]

[I-D.ietf-
behave-turn]

[I-D.ietf-
mmusic-ice]

[RFC3484]

[RFC4555]

Editorial Comments

_T0C
Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
“Session Traversal Utilities for (NAT) (STUN),”
draft-ietf-behave-rfc3489bis-15 (work in progress),
February 2008 (TXT).
Rosenberg, J., Mahy, R., and P. Matthews, “Traversal
Using Relays around NAT (TURN): Relay Extensions to
Session Traversal Utilities for NAT (STUN),” draft-
ietf-behave-turn-07 (work in progress),
February 2008 (TXT).
Rosenberg, J., “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal for Offer/Answer
Protocols,” draft-ietf-mmusic-ice-19 (work in
progress), October 2007 (TXT).
Draves, R., “Default Address Selection for Internet
Protocol version 6 (IPv6),” RFC 3484, February 2003
(IXT).
Eronen, P., “IKEv2 Mobility and Multihoming Protocol
(MOBIKE),” RFC 4555, June 2006 (TXT).

TOC
anchorll: this allows later revisions of this specification to
define a relay usage
Appendix A. Open Issues TOC
A.1. Is the second ME_CONNECTKEY required? TOC

The key provided by the responding peer is not really required. It's
just that the MACs of the connectivity check requests from both peers

http://tools.ietf.org/html/rfc3948
http://www.rfc-editor.org/rfc/rfc3948.txt
http://tools.ietf.org/html/rfc4306
http://www.rfc-editor.org/rfc/rfc4306.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-rfc3489bis-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://tools.ietf.org/html/rfc3484
http://tools.ietf.org/html/rfc3484
http://www.rfc-editor.org/rfc/rfc3484.txt
http://tools.ietf.org/html/rfc4555
http://tools.ietf.org/html/rfc4555
http://www.rfc-editor.org/rfc/rfc4555.txt

would look the same, if only one key was used. On the other hand using
just one key, would allow us to drop the ME_RESPONSE Notify payload
from the ME_CONNECT response. Because the response from the other peer
would not contain a ME_CONNECTKEY Notify it were clearly
distinguishable from a ME_CONNECT request (see Appendix B.2 (Why the
ME_RESPONSE Notify payload is needed)).

A.2. Different NAT, Same Subnet TOC

One problem arises when two hosts behind different NATs are attached to
the same subnet. Is this just a configuration problem that we need or
need not to document, or is it a main issue that we should provide a
solution for (Virtual IP?).

A.3. Relaying Provided by the Mediation Server TOC

As we provide the possibility to request a server reflexive endpoint
from the mediation server, should we also provide relayed endpoints?

A.4. Compatibility/Synergy with MOBIKE TOC

What happens in the following situations: Moving behind a NAT. Moving
out of a NAT. External IP changes (NAT/no NAT). Multihomed host (active
link goes down). If both peers still are connected to the mediation
server, is there a possibility to update the endpoints? If a peer
notices an address change with MOBIKE, should it update the endpoints?
Should it send updated endpoints to the other peer? If the mediation
server notices that our endpoint changed, does it send us a notice
(other than through MOBIKE)?

Appendix B. Design Decisions TOC

T0C

B.1. Two exchanges between mediation server and second peer

This document proposes the initiation of a connection to be composed of
four exchanges: from one peer to the mediation server, from the
mediation server to the other peer, and vice-versa. The two exchanges
between the other peer and the mediation server could theoretically be
combined in one exchange. This would be problematic in situations where
the second peer first has to obtain endpoints before being able to
answer the request. As this will take some time, the mediation server
would most likely have retransmitted the request due to a timeout. And,
if the peer wants to acquire a server reflexive endpoint from the
mediation server a window size higher than one is required.

B.2. Why the ME_RESPONSE Notify payload is needed TOC

It might seem that the ME_RESPONSE is rather superfluous. The
ME_CONNECTID alone seems to be enough to distinguish requests from
responses. A peer just has to maintain a list of issued ids and then
simply compares the ME_CONNECTID of received ME_CONNECT messages with
the items in this list. If an item matches, the received message is a
response, otherwise, it is a request. Since the ME_CONNECTID is
randomly chosen by the initiator, the ids contained in requests from
two different peers should never match. So, this should even work if
two peers concurrently initiate a mediation with each other.

But there is a problem: What happens if a peer looses its state (e.g.
due to a crash/restart) right after initiating a mediation, but
immediately reconnects to the mediation server? Now, the ME_CONNECTID
included in the answer from the other peer to the previously sent
request is not included in the list of issued ids anymore. The answer
thus looks exactly like a request for a new mediation. To avoid such a
misunderstanding, peers have to be able to clearly distinguish requests
from responses. Therefore, a ME_RESPONSE Notify payload is included in
mediation responses.

Appendix C. Changelog TOC

C.1. Changes from -.3 to -00 TOC

*Lots of clarifications and refinements. Major work on the
introductory sections.

C.2. Changes from -.2 to -.3

*Refined some details after implementing the protocol.

C.3. Changes from -.1 to -.2

*Complete redesign to an ICE-like solution.

C.4. Changes from -.0 to -.1
*P2P_CONNECT for both sides

*"Endpoint..." terms expanded.

Author's Address

Tobias Brunner
University of Applied Sciences, Rapperswil
Oberseestrasse 10
Rapperswil, SG 8640
Switzerland
EMail: tobias.brunner@hsr.ch
URI: http://ita.hsr.ch

Full Copyright Statement

Copyright © The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78 and at http://www.rfc-editor.org/copyright.html,

TOC

T0C

T0C

T0C

T0C

and except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR

mailto:tobias.brunner@hsr.ch
http://ita.hsr.ch
http://www.rfc-editor.org/copyright.html

IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	IKEv2 Mediation Extensiondraft-brunner-ikev2-mediation-00
	Status of This Memo
	Abstract
	Table of Contents
	1. Introduction
	1.1. Terminology and Notation
	2. Protocol Overview
	2.1. Basic Operation
	2.2. Example Protocol Exchanges
	3. Mediation Connection
	3.1. Initial IKE Exchanges
	3.2. CREATE_CHILD_SA Exchange
	3.3. Obtaining Endpoints
	3.3.1. Host Endpoints
	3.3.2. Server Reflexive and Relayed Endpoints
	3.3.2.1. Considerations Concerning TURN
	3.3.2.2. Obtaining Server Reflexive Endpoints from Mediation Servers
	3.3.3. Peer Reflexive Endpoints
	3.3.4. The Base of Local Endpoints
	3.3.5. Prioritizing Endpoints
	3.3.5.1. Recommended Formula
	3.3.6. Guidelines for Choosing Type and IP Address Preferences
	3.3.7. Eliminating Redundant Endpoints
	3.4. Initiating a Connection
	3.4.1. ME_CONNECT Exchange
	3.4.2. Receiving a ME_CONNECT Request
	3.4.3. Receiving a ME_CONNECT Response
	3.4.4. Timeout for the Overall Transaction
	4. Building Endpoint Pairs
	5. Connectivity Checks
	5.1. Forming Connectivity Checks
	5.1.1. ME_CONNECTAUTH
	5.2. Responding to Connectivity Checks
	5.3. Processing Connectivity Checks
	5.3.1. Failure Cases
	5.3.2. Success Cases
	5.3.3. Stopping the Checks and Selecting the Endpoints
	6. Mediated Connection
	6.1. Initiating the Mediated Connection
	7. Payload Formats
	7.1. Identification Payload - Peer Identity
	7.2. Notify Messages - Error Types
	7.2.1. ME_CONNECT_FAILED Notify Payload
	7.3. Notify Messages - Status Types
	7.3.1. ME_MEDIATION Notify Payload
	7.3.2. ME_ENDPOINT Notify Payloads
	7.3.3. ME_CALLBACK Notify Payload
	7.3.4. ME_CONNECTID Notify Payload
	7.3.5. ME_CONNECTKEY Notify Payload
	7.3.6. ME_CONNECTAUTH Notify Payload
	7.3.7. ME_RESPONSE Notify Payload
	8. Security Considerations
	8.1. Trusting the Mediation Servers
	9. IANA Considerations
	10. IAB Considerations
	11. Acknowledgements
	12. References
	12.1. Normative References
	12.2. Informative References
	Editorial Comments
	Appendix A. Open Issues
	A.1. Is the second ME_CONNECTKEY required?
	A.2. Different NAT, Same Subnet
	A.3. Relaying Provided by the Mediation Server
	A.4. Compatibility/Synergy with MOBIKE
	Appendix B. Design Decisions
	B.1. Two exchanges between mediation server and second peer
	B.2. Why the ME_RESPONSE Notify payload is needed
	Appendix C. Changelog
	C.1. Changes from -.3 to -00
	C.2. Changes from -.2 to -.3
	C.3. Changes from -.1 to -.2
	C.4. Changes from -.0 to -.1
	Author's Address
	Full Copyright Statement
	Intellectual Property

