Network Working Group A. Bryan, Ed. ToC

Metalinker

Internet-Draft .
Project

Intended status: Standards
Track

Expires: July 17, 2009

January 13, 2009

The Metalink Download Description Format
draft-bryan-metalink-05

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 17, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document specifies Metalink Documents, an XML-based download
description format.


http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

1. Introduction
1.1. Examples
1.2. Namespace and Version
1.3. Notational Conventions
2. Metalink Documents
3. Common Metalink Constructs
3.1. Text Constructs
3.1.1. Text
3.2. Date Constructs
4. Metalink Element Definitions
4.1. Container Elements
4.1.1. The "metalink:metalink" Element
4.1.2. The "metalink:files" Element
4.1.3. The "metalink:file" Element
4.1.4. The "metalink:resources" Element
4.1.5. The "metalink:verification" Element
4.1.6. The "metalink:pieces" Element
4.2. Metadata Elements
4.2.1. The "metalink:copyright" Element
4.2.2. The "metalink:description" Element
4.2.3. The "metalink:generator" Element
4.2.4. The "metalink:hash" Element
4.2.5. The "metalink:identity" Element
4.2.6. The "metalink:language" Element
4.2.7. The "metalink:license" Element
4.2.8. The "metalink:logo" Element
4.2.9. The "metalink:metadata" Element
4.2.10. The "metalink:origin" Element
4.2.11. The "metalink:os" Element
4.2.12. The "metalink:published" Element
4.2.13. The "metalink:publisher" Element
4.2.14. The "metalink:signature" Element
4.2.15. The "metalink:size" Element
4.2.16. The "metalink:type" Element
4.2.17. The "metalink:updated" Element
4.2.18. The "metalink:url" Element
4.2.19. The "metalink:version" Element
5. Client Implementation Considerations
6. Securing Metalink Documents
7. Extending Metalink

7.1. Extensions from Non-Metalink Vocabularies
7.2. Extensions to the Metalink Vocabulary
7.3. Processing Foreign Markup
7.4. Extension Elements

7.4.1. Simple Extension Elements

7.4.2. Structured Extension Elements
IANA Considerations

[«



8.1. XML Namespace Registration
8.2. application/metalink+xml MIME type
9. Security Considerations
9.1. URIs and IRIs
9.2. Spoofing
9.3. Cryptographic Hashes
9.4. Signing
10. References
10.1. Normative References
10.2. Informative References
Appendix A. Contributors
Appendix B. RELAX NG Compact Schema
8§ Index
8 Author's Address

1. Introduction TOC

Metalink is an XML-based document format that describes a file or lists
of files to be added to a download queue. Lists are composed of a
number of files, each with an extensible set of attached metadata. For
example, each file can have a description, checksum, and list of URIs
that it is available from.

The primary use case that Metalink addresses is the description of
downloadable content in a format so download agents can act
intelligently and recover from common errors with little or no user
interaction necessary. These errors can include multiple servers going
down and data corrupted in transmission.

Discussion of this draft should take place on discuss@apps.ietf.org or
the Metalink discussion mailing list located at metalink-
discussion@googlegroups.com. To join the 1list, visit http://
groups.google.com/group/metalink-discussion

1.1. Examples TOC

A brief, single file Metalink Document:



<?xml version="1.0" encoding="UTF-8"?>
<metalink xmlns="urn:ietf:params:xml:ns:metalink">

<files>
<file name="example.ext">
<resources>

<url>ftp://ftp.example.com/example.ext</url>
<url>http://example.com/example.ext</url>
<metadata type="torrent">
http://example.com/example.ext.torrent
</metadata>
</resources>
</file>
</files>
</metalink>

A more extensive, single file Metalink Document:

<?xml version="1.0" encoding="UTF-8"?>
<metalink xmlns="urn:ietf:params:xml:ns:metalink'">
<published>2008-05-15T12:23:23Z</published>
<files>
<file name="example.ext'">
<identity>Example</identity>
<version>1.0</version>
<description>A description of the example file for
download.</description>
<verification>
<hash type="sha-1">80bc95fd391772fa61c91ed68567f0980bb45fd9
</hash>
</verification>
<resources>
<url>ftp://ftp.example.com/example.ext</url>
<url>http://example.com/example.ext</url>
<metadata type="torrent">
http://example.com/example.ext.torrent
</metadata>
</resources>
</file>
</files>
</metalink>

1.2. Namespace and Version TOC

The XML Namespaces URI [REC-xml-names] (Hollander, D., Bray, T., Tobin,
R., and A. Layman, “Namespaces in XML 1.0 (Second Edition),”




August 2006.) for the XML data format described in this specification
is:

urn:ietf:params:xml:ns:metalink

For convenience, this data format may be referred to as "Metalink",
which this specification uses internally.

1.3. Notational Conventions TOC

This specification describes conformance of Metalink Documents.
Additionally, it places some requirements on Metalink Processors.

This specification uses the namespace prefix "metalink:" for the
Namespace URI identified in Section 1.2 (Namespace and Version), above.
Note that the choice of namespace prefix is arbitrary and not
semantically significant.

Metalink is specified using terms from the XML Infoset
[REC-xml-infoset] (Cowan, J. and R. Tobin, “XML Information Set (Second
Edition),” February 2004.). However, this specification uses a
shorthand for two common terms: the phrase "Information Item" is
omitted when naming Element Information Items and Attribute Information
Items. Therefore, when this specification uses the term "element," it
is referring to an Element Information Item in Infoset terms. Likewise,
when it uses the term "attribute," it is referring to an Attribute
Information Item.

Some sections of this specification are illustrated with fragments of a
non-normative RELAX NG Compact schema [RELAX-NG] (Clark, J., “RELAX NG
Compact Syntax,” December 2001.). However, the text of this
specification provides the definition of conformance. A complete schema
appears in Appendix B (RELAX NG Compact Schema).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, [RFC2119
(Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” March 1997.), as scoped to those conformance targets.

2. Metalink Documents TOC

This specification describes Metalink Documents.

A Metalink Document describes a file or group of files, how to access
them, and metadata that identifies them. Its root is the
metalink:metalink (The "metalink:metalink" Element) element.

namespace metalink = "urn:ietf:params:xml:ns:metalink"
start = metalinkMetalink



Metalink Documents are specified in terms of the XML Information Set,
serialized as XML 1.0 [REC-xml] (Yergeau, F., Paoli, J., Bray, T.,
Sperberg-McQueen, C., and E. Maler, “Extensible Markup Language (XML)
1.0 (Fourth Edition),” August 2006.) and identified with the
"application/metalink+xml" media type.

Metalink Documents MUST be well-formed XML. This specification does not
define a DTD for Metalink Documents, and hence does not require them to
be valid (in the sense used by XML).

Metalink allows the use of IRIs [RFC3987] (Duerst, M. and M. Suignard,
“Internationalized Resource Identifiers (IRIs),” January 2005.). Every
URI [RFC3986] (Berners-lLee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” January 2005.) is also an
IRI, so a URI may be used wherever below an IRI is named. There is one
special consideration: when an IRI that is not also a URI is given for
dereferencing, it MUST be mapped to a URI using the steps in Section
3.1 of [RFC3987] (Duerst, M. and M. Suignard, “Internationalized
Resource Identifiers (IRIs),” January 2005.).

Any element defined by this specification MAY have an xml:base
attribute [REC-xmlbase] (Marsh, J., “XML Base,” June 2001.). When
xml:base is used in an Metalink Document, it serves the function
described in Section 5.1.1 of [RFC3986] (Berners-Lee, T., Fielding, R.,
and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.), establishing the base URI (or IRI) for resolving any
relative references found within the effective scope of the xml:base
attribute.

Any element defined by this specification MAY have an xml:lang
attribute, whose content indicates the natural language for the element
and its descendents. The language context is only significant for
elements and attributes declared to be "Language-Sensitive" by this
specification. Requirements regarding the content and interpretation of
xml:lang are specified in XML 1.0 (Yergeau, F., Paoli, J., Bray, T.,
Sperberg-McQueen, C., and E. Maler, “Extensible Markup Language (XML)
1.0 (Fourth Edition),” August 2006.) [REC-xml], Section 2.12.

metalinkCommonAttributes =
attribute xml:base { metalinkUri }?,
attribute xml:lang { metalinkLanguageTag }?,
undefinedAttribute*

Metalink is an extensible format. See Section 7 (Extending Metalink) of
this document for a full description of how Metalink Documents can be
extended.

T0C



3. Common Metalink Constructs

Many of Metalink's elements share a few common structures. This section
defines those structures and their requirements for convenient
reference by the appropriate element definitions.

When an element is identified as being a particular kind of construct,
it inherits the corresponding requirements from that construct's
definition in this section.

Note that there MUST NOT be any white space in a Date construct or in
any IRI. Some XML-emitting implementations erroneously insert white
space around values by default, and such implementations will emit
invalid Metalink Documents.

3.1. Text Constructs TOC

A Text construct contains human-readable text, usually in small
gquantities. The content of Text constructs is Language-Sensitive.

metalinkTextConstruct =
metalinkCommonAttributes,
text

3.1.1. Text TOC

Example metalink:description (The "metalink:description" Element) with
text content:

<description>
A description of the example file for download.
</description>

The content of the Text construct MUST NOT contain child elements. Such
text is intended to be presented to humans in a readable fashion. Thus,
Metalink Processors MAY collapse white space (including line breaks)
and display the text using typographic techniques such as justification
and proportional fonts.

TOC



3.2. Date Constructs

A Date construct is an element whose content MUST conform to the "date-
time" production in [RFC3339] (Klyne, G. and C. Newman, “Date and Time
on the Internet: Timestamps,” July 2002.). In addition, an uppercase
"T" character MUST be used to separate date and time, and an uppercase
"Z" character MUST be present in the absence of a numeric time zone
offset.

metalinkDateConstruct =
metalinkCommonAttributes,
xsd:dateTime

Such date values happen to be compatible with the following
specifications: [IS0.8601.1988] (International Organization for
Standardization, “Data elements and interchange formats - Information
interchange - Representation of dates and times,” June 1988.),
[W3C.NOTE-datetime-19980827] (Wolf, M. and C. Wicksteed, “Date and Time
Formats,” August 1998.), and [W3C.REC-xmlschema-2-20041028] (Malhotra,
A. and P. Biron, “XML Schema Part 2: Datatypes Second Edition,”

October 2004.).

Example Date constructs:

<updated>2008-12-13T18:30:02Z</updated>
<updated>2008-12-13T18:30:02.25Z</updated>
<updated>2008-12-13T18:30:02+01:00</updated>
<updated>2008-12-13T18:30:02.25+01:00</updated>

Date values SHOULD be as accurate as possible. For example, it would be
generally inappropriate for a publishing system to apply the same
timestamp to several entries that were published during the course of a
single day.

4. Metalink Element Definitions TOC

4.1. Container Elements TOC

4.1.1. The "metalink:metalink" Element TOC



The "metalink:metalink" element is the document (i.e., top-level)
element of a Metalink Document, acting as a container for metadata and
data associated with the listed files. It contains one "metalink:files"
element whose element children consist of metadata elements followed by
one or more metalink:file (The "metalink:file" Element) child

elements.

metalinkMetalink =
element metalink:metalink {

metalinkCommonAttributes,
(metalinkPublished?
& metalinkOrigin?
& metalinkGenerator?
& metalinkUpdated?
& extensionElement*),
metalinkFiles

The following child elements are defined by this specification (note
that the presence of some of these elements is required):

*metalink:metalink (The "metalink:metalink" Element) elements MUST
contain exactly one metalink:files (The "metalink:files" Element)
element.

*If metalink:type (The "metalink:type" Element) is "dynamic",
metalink:metalink (The "metalink:metalink" Element) elements MAY
contain exactly one metalink:origin (The "metalink:origin"

Element) element.

*metalink:metalink (The "metalink:metalink" Element) elements MAY
contain exactly one metalink:type (The "metalink:type" Element)
element.

*metalink:metalink (The "metalink:metalink" Element) elements MAY
contain exactly one metalink:generator (The "metalink:generator"

Element) element.

*metalink:metalink (The "metalink:metalink" Element) elements MAY
contain exactly one metalink:published (The "metalink:published"

Element) element.

*If metalink:type (The "metalink:type" Element) is "dynamic",
metalink:metalink (The "metalink:metalink" Element) elements MAY
contain exactly one metalink:updated (The "metalink:updated"

Element) element.




4.1.1.1. Providing Textual Content TOC

Experience teaches that downloads providing textual content are in
general more useful than those that do not. Some applications (one
example is full-text indexers) require a minimum amount of text to
function reliably and predictably. Metalink publishers should be aware
of these issues. It is advisable that each metalink:file (The
"metalink:file" Element) element contain a non-empty
metalink:description (The "metalink:description" Element) element, a
non-empty metalink:identity (The "metalink:identity" Element) element
when that element is present, and a non-empty metalink:version (The
"metalink:version" Element) element, and a non-empty metalink:publisher
(The "metalink:publisher" Element) element. However, the absence of
metalink:description (The "metalink:description" Element) is not an
error, and Metalink Processors MUST NOT fail to function correctly as a
consequence of such an absence.

4.1.2. The "metalink:files" Element TOC

The "metalink:files" element acts as a container for metadata and data
associated with the listed files. It contains one or more metalink:file
(The "metalink:file" Element) child elements. Certain elements can be
listed either under metalink:files (The "metalink:files'" Element) or
metalink:file (The "metalink:file" Element). If under metalink:files
(The "metalink:files" Element), they apply to all files listed in each
metalink:file (The "metalink:file" Element). If under metalink:file
(The "metalink:file" Element), then they apply to just that specific
file. If an element is listed both under metalink:files (The
"metalink:files" Element) and metalink:file (The "metalink:file"
Element), then the element under metalink:file (The "metalink:file"
Element) has precedence and the metalink:files (The "metalink:files"
Element) element does not apply to that particular file.




metalinkFiles =

element metalink:files {
metalinkCommonAttributes,
(metalinkIdentity?
& metalinkVersion?

metalink0S?

R R R R R R R

metalinkDescription?

metalinkLogo?
metalinkLanguage?
metalinkPublisher?
metalinkCopyright?
metalinkLicense?

& extensionElement™)

metalinkFile

*metalink:files (The

The following child elements are defined by this specification (note
that the presence of some

of these elements is required):

"metalink:files" Element) element MUST

contain one or more
elements.

*metalink:files (The

metalink:file (The "metalink:file" Element)

"metalink:files" Element) elements SHOULD

contain exactly one

Element) element.

*metalink:files (The

metalink:identity (The "metalink:identity"

"metalink:files" Element) elements SHOULD

contain exactly one

Element) element.

*metalink:files (The

metalink:version (The "metalink:version"

"metalink:files" Element) elements MAY

contain exactly one

metalink:description (The

"metalink:description" Element) element.

*metalink:files (The

"metalink:files" Element) elements MAY

contain exactly one
element.

*metalink:files (The

metalink:os (The "metalink:os" Element)

"metalink:files" Element) elements MAY

contain exactly one
element.

*metalink:files (The

metalink:logo (The "metalink:logo" Element)

"metalink:files" Element) elements MAY

contain exactly one

Element) element.

metalink:language (The "metalink:language"




*metalink:files (The

"metalink:files" Element) elements MAY

contain exactly one

Element) element.

*metalink:files (The

metalink:publisher (The "metalink:publisher"

"metalink:files" Element) elements MAY

contain exactly one

Element) element.

*metalink:files (The

metalink:copyright (The "metalink:copyright"

"metalink:files" Element) elements MAY

contain exactly one

Element) element.

metalink:license (The "metalink:license"

4.1.3. The "metalink:file" Element TOC

The "metalink:file (The "metalink:file" Element)" element represents an

individual file, acting as a container for metadata and data associated

with the file.

metalinkFile =

element metalink:file {
metalinkCommonAttributes,

attribute name

{ metalinkTextConstruct },

(metalinkVerification?
& metalinkIdentity?

metalink0S?

R R RO RO R K X R R

metalinkVersion?
metalinkDescription?
metalinkSize?

metalinkLogo?
metalinkLanguage?
metalinkPublisher?
metalinkCopyright?
metalinkLicense?

& extensionElement™)
metalinkResources

This specification assigns no significance to the order of
metalink:file (The "metalink:file" Element) elements.

The following child elements are defined by this specification (note
that it requires the presence of some of these elements):

*metalink:file (The "metalink:file" Element) elements MUST contain

exactly one metalink:resources (The "metalink:resources" Element)

element.



*metalink:file (The "metalink:file" Element) elements SHOULD
contain exactly one metalink:verification (The
"metalink:verification" Element) element.

*metalink:file (The "metalink:file" Element) elements SHOULD
contain exactly one metalink:identity (The "metalink:identity"

Element) element.

*metalink:file (The "metalink:file" Element) elements SHOULD
contain exactly one metalink:version (The "metalink:version"

Element) element.

*metalink:file (The "metalink:file" Element) elements MAY contain
exactly one metalink:description (The "metalink:description"

Element) element.

*metalink:file (The "metalink:file" Element) elements SHOULD
contain exactly one metalink:size (The "metalink:size" Element)
element.

*metalink:file (The "metalink:file" Element) elements MAY contain
exactly one metalink:os (The "metalink:os" Element) element.

*metalink:file (The "metalink:file" Element) elements MAY contain
exactly one metalink:logo (The "metalink:logo" Element) element.

*metalink:file (The "metalink:file" Element) elements MAY contain
exactly one metalink:language (The "metalink:language" Element)
element.

*metalink:file (The "metalink:file" Element) elements MAY contain
exactly one metalink:publisher (The "metalink:publisher" Element)

element.

*metalink:file (The "metalink:file" Element) elements MAY contain
exactly one metalink:copyright (The "metalink:copyright" Element)

element.

*metalink:file (The "metalink:file" Element) elements MAY contain
exactly one metalink:license (The "metalink:license" Element)
element.

4.1.3.1. The "name" Attribute TOC

metalink:file (The "metalink:file" Element) elements MUST have a "name"
attribute, which contains the filename of the file downloaded.




Directory information can also be contained in a "path/file" format
only, as in:

<file name="debian-amd64/sarge/Contents-amd64.gz">

In this example, a subdirectory debian-amd64/sarge/ will be created and
a file named Contents-amd64.gz will be created inside it. The path MUST
be relative. The path MUST NOT begin with a "/", "./" or "../", contain
"/../", or end with "/..". Metalink Processors MUST NOT allow directory
traversal.

A Metalink Processor MAY alter the name of the subdirectory or file if
they contain characters which are invalid in the destination
filesystem.

4.1.4. The "metalink:resources" Element TOC

The "metalink:resources" element acts as a container for metadata and
data associated with the listed files. It contains one or more
metalink:url (The "metalink:url" Element) child elements. It can also
contain one or more metalink:metadata (The "metalink:metadata" Element)
child elements.

metalinkResources =
element metalink:resources {
metalinkCommonAttributes,
extensionElement*
metalinkURL*
metalinkMetadata*

This specification assigns no significance to the order of metalink:url
(The "metalink:url" Element) elements. Significance is determined by
the value of the "preference" attribute of the metalink:url (The
"metalink:url" Element) elements.

The following child elements are defined by this specification (note
that the presence of some of these elements is required):

*metalink:resources (The "metalink:resources" Element) element
MUST contain at least one metalink:metadata (The
"metalink:metadata" Element) element or at least one metalink:url
(The "metalink:url" Element) element. Typically,
metalink:resources (The "metalink:resources" Element) element
contains more than one metalink:url (The "metalink:url" Element)
element to provide multiple download sources.




4.1.5. The "metalink:verification" Element TOC

The "metalink:verification" element acts as a container for metadata
and data associated with verifying the listed files. This information
is in the form of checksums and digital signatures. Checksums are used
to verify the integrity of a complete file or portion of a file to
determine if the files have been transferred without any errors.
Digital signatures verify that a file is from the entity that has
signed it.

metalinkVerification =
element metalink:verification {
metalinkCommonAttributes,
(metalinkHash*
& metalinkPieces*
& metalinkSignature?
& extensionElement™)

The following child elements are defined by this specification:
*metalink:verification (The "metalink:verification" Element)

element MAY contain one or more metalink:hash (The
"metalink:hash" Element) elements.

*metalink:verification (The "metalink:verification" Element)
element MAY contain one or more metalink:pieces (The
"metalink:pieces" Element) elements.

*metalink:verification (The "metalink:verification" Element)
element MAY contain one or more metalink:signature (The
"metalink:signature" Element) elements.

4.1.6. The "metalink:pieces" Element TOC

The "metalink:pieces (The "metalink:pieces" Element)" element acts as a
container for metadata and data associated with verifying the listed
files. This information is in the form of checksums for a portion of a
file.




metalinkPieces =
element metalink:pieces {
attribute length { metalinkTextConstruct 3},
attribute type { metalinkTextConstruct },
hash+

3t

4.1.6.1. The "type" Attribute TOC

metalink:pieces (The "metalink:pieces" Element) elements MUST have a
"type" attribute.

The IANA registry named "Hash Function Textual Names" defines values
for hash types. Metalink Generators and Processors supporting
verification SHOULD at least implement "sha-1" which is SHA1, as
specified in [RFC3174] (Eastlake, D. and P. Jones, “US Secure Hash
Algorithm 1 (SHA1),” September 2001.).

4.1.6.2. The "length" Attribute TOC

metalink:pieces (The "metalink:pieces" Element) elements MUST have a
"length" attribute, which is an integer that describes the length of
the piece of the file in octets.

4.2. Metadata Elements TOC

4.2.1. The "metalink:copyright" Element TOC

The "metalink:copyright (The "metalink:copyright" Element)" element is
a Text construct that conveys a human-readable copyright for a file.

metalinkCopyright =
element metalink:copyright {
metalinkTextConstruct

}



4.2.2. The "metalink:description" Element TOC

The "metalink:description (The "metalink:description" Element)" element
is a Text construct that conveys a human-readable description for a
file.

metalinkDescription =
element metalink:description {
metalinkTextConstruct

3

4.2.3. The "metalink:generator" Element TOC

The "metalink:generator (The "metalink:generator" Element)" element's
content identifies the agent used to generate a Metalink Document, for
debugging and other purposes.

metalinkGenerator = element metalink:generator {
metalinkCommonAttributes,
attribute uri { metalinkUri }?,
attribute version { text }?,
text

The content of this element, when present, MUST be a string that is a
human-readable name for the generating agent. Entities such as "&amp;"
and "&lt;" represent their corresponding characters ("&" and "<"
respectively), not markup.

The metalink:generator (The "metalink:generator" Element) element MAY
have a "uri" attribute whose value MUST be an IRI reference [RFC3987
(Duerst, M. and M. Suignard, “Internationalized Resource Identifiers
(IRIs),” January 2005.). When dereferenced, the resulting URI (mapped
from an IRI, if necessary) SHOULD produce a representation that is
relevant to that agent.

The metalink:generator (The "metalink:generator" Element) element MAY
have a "version" attribute that indicates the version of the generating
agent.

4.2.4. The "metalink:hash" Element TOC



The "metalink:hash (The "metalink:hash" Element)" element is a Text
construct that conveys a hash for a file. All hashes are encoded in
lowercase hexadecimal format.

metalinkHash =
element metalink:hash {
attribute piece { xsd:integer }?,
attribute type { metalinkTextConstruct },
text

}

Metalinks can contain multiples hashes for a complete file, for example
both SHA-1 and SHA-256.

<verification>
<hash type="sha-1">a97fcf6ba9358f8a6f62beee4421863d3e52b080</hash>
<hash type="sha-256">fc87941af7fd7f03e53b34af393f4c14923d74
825511161 f591336af4880227</hash>

</verification>

Metalinks can also contain hashes for individual pieces of a file.

<verification>
<hash type="sha-1">a97fcf6ba9358f8a6f62beee4421863d3e52b080</hash>
<hash type="sha-256">fc87941af7fd7f03e53b34af393f4c14923d74
825f51116ff591336af4880227</hash>
<pieces length="1048576" type="sha-1">
<hash piece="0">d96b9%9a4bh92a899c2099b7b31bddb5ca423bb9b30</hash>
<hash piece="1">10d68f4b1119014c123da2ada6baf5c8a6d5bale</hash>
<hash piece="2">3e84219096435c34e€092h17b70a011771c52d87a</hash>
<hash piece="3">67183e4c3ab892d3ebe8326hb7d79eb62d077f487</hash>
</pieces>
</verification>

metalink:hash (The "metalink:hash" Element) elements MUST have a "type"
attribute or a "piece" attribute. metalink:hash (The "metalink:hash"
Element) elements with a "type" attribute contain a hash of the whole
file. metalink:hash (The "metalink:hash" Element) elements with a
"piece" attribute contain a hash for that specific piece or chunk of
the file.

T0C



4.2.4.1. The "type" Attribute

The IANA registry named "Hash Function Textual Names" defines values
for hash types. Metalink Generators and Processors supporting
verification SHOULD at least implement "sha-1" which is SHA1, as
specified in [RFC3174] (Eastlake, D. and P. Jones, “US Secure Hash
Algorithm 1 (SHA1),” September 2001.).

4.2.4.2. The "piece" Attribute TOC

metalink:hash (The "metalink:hash" Element) elements MAY have a "piece"
attribute, only when they are a sub element of metalink:pieces (The
"metalink:pieces" Element). The value of "piece" starts at "0" and
increases, depending on the "length" attribute of metalink:pieces (The
"metalink:pieces" Element) and the size of the file. Depending on the
size of a file, the last piece may not be the same size as the others.

4.2.5. The "metalink:identity" Element TOC

The "metalink:identity (The "metalink:identity" Element)" element is a
Text construct that conveys a human-readable identity for a file. The
identity of OpenOffice.org 3.0 would be "OpenOffice.org".

metalinkIdentity =
element metalink:identity {
metalinkTextConstruct

}

4.2.6. The "metalink:language" Element TOC

The "metalink:language (The "metalink:language" Element)" element is a
Text construct that conveys a code for the language of a file, per
[IS0639-2] (International Organization for Standardization, “ISO
639-2:1998 - Codes for the representation of names of languages -- Part

2: Alpha-3 code - edition 1, 1998-11-01, 66 pages, prepared by a Joint
Working Group of ISO TC46/SC4 and ISO TC37/SC2.,"” 1998.).




metalinkLanguage =
element metalink:language {
metalinkTextConstruct

}

4.2.7. The "metalink:license" Element TOC

The "metalink:license (The "metalink:license" Element)" element is a
Text construct that conveys a human-readable license name for a file.

metalinkLicense =
element metalink:license {
metalinkCommonAttributes,
attribute uri { metalinkUri }?,
attribute name { metalinkTextConstruct }7?,

}

The metalink:license (The "metalink:license" Element) element MAY have
a "uri" attribute whose value MUST be an IRI reference [RFC3987
(Duerst, M. and M. Suignard, “Internationalized Resource Identifiers
(IRIs),” January 2005.). When dereferenced, the resulting URI (mapped
from an IRI, if necessary) SHOULD produce a representation that is
relevant to that agent.

The metalink:license (The "metalink:license" Element) element MAY have
a "name" attribute that indicates the name of the license.

4.2.8. The "metalink:logo" Element TOC

The "metalink:logo (The "metalink:logo" Element)" element's content is
an IRI reference [RFC3987] (Duerst, M. and M. Suignard,
“Internationalized Resource Identifiers (IRIs),” January 2005.) that
identifies an image that provides visual identification for a file.

metalinkLogo = element metalink:logo {
metalinkCommonAttributes,
(metalinkUri)

The image SHOULD have an aspect ratio of one (horizontal) to one
(vertical) and SHOULD be suitable for presentation at a small size.



4.2.9. The "metalink:metadata" Element TOC

The "metalink:metadata (The "metalink:metadata" Element)" element
contains the IRI of metadata about a resource to download. For example,
this could be the IRI of a BitTorrent .torrent file or a Metalink
Document.

metalinkMetadata =
element metalink:metadata {
metalinkCommonAttributes,
attribute preference { xsd:integer }?,
attribute type { metalinkTextConstruct },
metalinkUri

3+

4.2.9.1. The "preference" Attribute TOC

metalink:metadata (The "metalink:metadata" Element) elements MAY have a
preference attribute, whose value MUST be a number from 1 to 100 for
priority, with 100 used first and 1 used last. See the "preference"
attribute of the metalink:url (The "metalink:url" Element) element for
more information.

4.2.9.2. The "type" Attribute TOC

metalink:metadata (The "metalink:metadata" Element) elements MUST have
a "type" attribute that indicates the MIME type of the metadata
available at the IRI. In the case of BitTorrent as specified in
[BITTORRENT] (Cohen, B., “The BitTorrent Protocol Specification,”
February 2008.), the value "torrent" is required. Types without "/" are
reserved. Currently, "torrent" is the only reserved value.

Metalink Processors that do not support a specified type of metadata
about a resource to download MUST ignore that metadata.

4.2.10. The "metalink:origin" Element TOC

The "metalink:origin (The "metalink:origin" Element)" element is an IRI
where the Metalink Document was originally published. If metalink:type
(The "metalink:type" Element) is "dynamic", then updated versions of
the Metalink can be found at this IRI.




metalinkOrigin = element metalink:origin {
metalinkCommonAttributes,
(metalinkUri)

4.2.11. The "metalink:os" Element TOC

The "metalink:os (The "metalink:os" Element)" element is a Text
construct that conveys a human-readable Operating System for a file.
The IANA registry named "Operating System Names" defines values for 0S
types.

metalink0S =
element metalink:os {
metalinkTextConstruct

}

4.2.12. The "metalink:published" Element TOC

The "metalink:published (The "metalink:published" Element)" element is
a Date construct indicating an instant in time associated with an event
early in the life cycle of the entry.

metalinkPublished =
element metalink:published {
metalinkDateConstruct

}

Typically, metalink:published (The "metalink:published" Element) will
be associated with the initial creation or first availability of the
resource.

4.2.13. The "metalink:publisher" Element TOC

The "metalink:publisher (The "metalink:publisher" Element)" element
indicates a group or other entity which has published the file.




metalinkPublisher =
element metalink:publisher {
metalinkCommonAttributes,
attribute uri { metalinkUri }?,
attribute name { metalinkTextConstruct }?,

The metalink:publisher (The "metalink:publisher" Element) element MAY
have a "uri" attribute whose value MUST be an IRI reference [RFC3987
(Duerst, M. and M. Suignard, “Internationalized Resource Identifiers
(IRIs),” January 2005.). When dereferenced, the resulting URI (mapped
from an IRI, if necessary) SHOULD produce a representation that is
relevant to that agent.

The metalink:publisher (The "metalink:publisher" Element) element MAY
have a "name" attribute that indicates the name of the publisher.

4.2.14. The "metalink:signature" Element TOC

The "metalink:signature (The "metalink:signature" Element)" element is
a Text construct that conveys a digital signature for a file described
in a Metalink Document.

metalinkSignature =
element metalink:signature {
attribute type { "pgp" I,
metalinkTextConstruct

}

4.2.14.1. The "type" Attribute TOC

metalink:signature (The "metalink:signature" Element) elements MUST
have a "type" attribute. The inital value of "type" is the string that
is non-empty and matches "pgp". It may be useful to extend Metalink
documents with new types of digital signatures, so unknown types are
allowed.

4.2.15. The "metalink:size" Element TOC

The "metalink:size (The "metalink:size" Element)" element indicates the
length of the linked content in octets; it is a hint about the content




length of the representation returned when the IRI is mapped to a URI
and dereferenced. Note that the "metalink:size (The "metalink:size"
Element)" element MUST override the actual content length of the
representation as reported by the underlying protocol, i.e. files with
different sizes should be discarded.

metalinkSize =
element metalink:size {
metalinkTextConstruct

}

4.2.16. The "metalink:type" Element TOC

The "metalink:type (The "metalink:type" Element)" element is a Text
construct that describes whether the IRI from "metalink:origin (The
"metalink:origin" Element)" a Metalink will contain dynamic updated
Metalinks or static content that is not updated.

metalinkType =
element metalink:type {
"static" | "dynamic"
}
4.2.17. The "metalink:updated" Element TOC

The "metalink:updated (The "metalink:updated" Element)" element is a
Date construct indicating the most recent instant in time when a
Metalink was modified in a way the publisher considers significant.
Therefore, not all modifications necessarily result in a changed
metalink:updated (The "metalink:updated" Element) value.

metalinkUpdated =
element metalink:updated {
metalinkDateConstruct

}

Publishers MAY change the value of this element over time.

4.2.18. The "metalink:url" Element TOC



The "metalink:url (The "metalink:url" Element)" element contains the
IRI of a file. All IRIs MUST lead to identical files.

metalinkURL =
element metalink:url {
metalinkCommonAttributes,
attribute location { xsd:string {
minLength = "2" maxLength="2"}

3?7,
attribute preference { xsd:integer }?,
metalinkUri
3+
4.2.18.1. The "preference" Attribute TOC

metalink:url (The "metalink:url" Element) elements MAY have a
preference attribute, whose value MUST be a number from 1 to 100 for
priority, with 100 used first and 1 used last. Multiple metalink:url
(The "metalink:url" Element) elements can have the same preference,
i.e. ten mirrors could have preference="100". A Metalink Processor MAY
download different segments of a file from more than one IRI
simultaneously, and when doing so SHOULD first use the highest priority
IRIs and then use lower ones.

When one or more metalink:url (The "metalink:url" Element) elements
have a preference attribute value of "100", other metalink:url (The
"metalink:url" Element) elements SHOULD NOT be used, unless the
elements with a preference of 100 cannot be processed (e.g. if they are
of a metalink:metadata (The "metalink:metadata" Element) element type
which is not supported by the Metalink Processor, such as BitTorrent,
or if the servers are unavailable).

Any metalink:url (The "metalink:url" Element) elements with a
preference attribute value of "1" SHOULD NOT be used unless all other
metalink:url (The "metalink:url" Element) elements cannot be processed
(e.g. if they are of a metalink:metadata (The "metalink:metadata"
Element) element type which is not supported by the Metalink Processor,
such as BitTorrent, or if the servers are unavailable).

4.2.18.2. The "location" Attribute TOC

metalink:url (The "metalink:url" Element) elements MAY have a
"location" attribute, which is a [IS03166] (International Organization
for Standardization, “ISO 3166:1988 (E/F) - Codes for the
representation of names of countries - The International Organization




for Standardization, 3rd edition, 1988-08-15.,"” 1988.) alpha-2 two
letter country code for the geographical location of the physical
server an IRI is used to access.

4.2.19. The "metalink:version" Element TOC

The "metalink:version (The "metalink:version" Element)" element is a
Text construct that conveys a human-readable version for a file. The
version of OpenOffice.org 3.0 would be "3.0".

metalinkVersion =
element metalink:version {
metalinkTextConstruct

}

5. Client Implementation Considerations TOC

Metalink Processors that support HTTP MUST support transparent content
negotiation with HTTP [RFC2295] (Holtman, K. and A. Mutz, “Transparent
Content Negotiation in HTTP,” March 1998.). Transparent content
negotiation is accomplished by adding the Metalink media type to the
Accept request header. Metalink Processors MUST check the returned
content type, and if the Metalink media type is used, it MUST process
the Metalink. If the content type does not match the Metalink media
type, then Metalink Processors SHOULD handle the response as a normal
response. Metalink Processors MUST NOT add the Metalink media type to
Accept when requesting a URI from a metalink:url (The "metalink:url"
Element) element, thus avoiding loops. Metalink Processors SHOULD
handle external redirects that might lead to a Metalink.

When multiple hash types methods are provided, a Metalink Processor MAY
verify using more than one of these hash types. Metalink Processors are
encouraged to check all hash types given which they are able to verify.

6. Securing Metalink Documents TOC

Because Metalink is an XML-based format, existing XML security
mechanisms can be used to secure its content.

Producers of Metalinks may have sound reasons for signing otherwise-
unprotected content. For example, a merchant might digitally sign a
Metalink that lists a file download to verify its origin. Other



merchants may wish to sign and encypt Metalinks that list digital songs
that have been purchased. Of course, many other examples exist as well.
The algorithm requirements in this section pertain to the Metalink
Processor. They require that a recipient, at a minimum, be able to
handle messages that use the specified cryptographic algorithms. These
requirements do not limit the algorithms that the sender can choose.
Metalink Processors that verify signed Metalink Documents MUST at least
support XML-Signature and Syntax Processing (Solo, D., Reagle, J., and
D. Eastlake, “XML-Signature Syntax and Processing,” February 2002.)
[REC-xmldsig-core].

7. Extending Metalink TOC

7.1. Extensions from Non-Metalink Vocabularies TOC

This specification describes Metalink's XML markup vocabulary. Markup
from other vocabularies ("foreign markup") can be used in an Metalink
Document .

7.2. Extensions to the Metalink Vocabulary TOC

The Metalink namespace is reserved for future forward-compatible
revisions of Metalink. Future versions of this specification could add
new elements and attributes to the Metalink markup vocabulary. Software
written to conform to this version of the specification will not be
able to process such markup correctly and, in fact, will not be able to
distinguish it from markup error. For the purposes of this discussion,
unrecognized markup from the Metalink vocabulary will be considered
"foreign markup".

7.3. Processing Foreign Markup TOC

Metalink Processors that encounter foreign markup in a location that is
legal according to this specification MUST NOT stop processing or
signal an error. It might be the case that the Metalink Processor is
able to process the foreign markup correctly and does so. Otherwise,
such markup is termed "unknown foreign markup".



When unknown foreign markup is encountered as a child of metalink:file
(The "metalink:file" Element), metalink:metalink (The
"metalink:metalink" Element), Metalink Processors MAY bypass the markup
and any textual content and MUST NOT change their behavior as a result
of the markup's presence.

When unknown foreign markup is encountered in a Text Construct,
software SHOULD ignore the markup and process any text content of
foreign elements as though the surrounding markup were not present.

7.4. Extension Elements TOC

Metalink allows foreign markup anywhere in an Metalink document, except
where it is explicitly forbidden. Child elements of metalink:file (The
"metalink:file" Element) and metalink:metalink (The "metalink:metalink"
Element) are considered Metadata elements and are described below.
Child elements of Person constructs are considered to apply to the
construct. The role of other foreign markup is undefined by this
specification.

7.4.1. Simple Extension Elements TOC

A Simple Extension element MUST NOT have any attributes or child
elements. The element MAY contain character data or be empty. Simple
Extension elements are not Language-Sensitive.

simpleExtensionElement =
element * - metalink:* {
text

The element can be interpreted as a simple property (or name/value
pair) of the parent element that encloses it. The pair consisting of
the namespace-URI of the element and the local name of the element can
be interpreted as the name of the property. The character data content
of the element can be interpreted as the value of the property. If the
element is empty, then the property value can be interpreted as an
empty string.

T0C



7.4.2. Structured Extension Elements

The root element of a Structured Extension element MUST have at least
one attribute or child element. It MAY have attributes, it MAY contain
well-formed XML content (including character data), or it MAY be empty.
Structured Extension elements are Language-Sensitive.

structuredeExtensionElement =
element * - metalink:* {
(attribute * { text }+,
(text|anyElement)*)
| (attribute * { text }*,
(text?, anyElement+, (text|anyElement)*))

The structure of a Structured Extension element, including the order of
its child elements, could be significant.

This specification does not provide an interpretation of a Structured
Extension element. The syntax of the XML contained in the element (and
an interpretation of how the element relates to its containing element)
is defined by the specification of the Metalink extension.

8. IANA Considerations TOC

8.1. XML Namespace Registration TOC

This document makes use of the XML registry specified in [RFC3688
(Mealling, M., “The IETF XML Registry,” January 2004.). Accordingly,
IANA has made the following registration:

Registration request for the Metalink namespace:

URI: urn:ietf:params:xml:ns:metalink

Registrant Contact: See the "Author's Address" section of this
document.

XML: None. Namespace URIs do not represent an XML specification.

8.2. application/metalink+xml MIME type TOC

A Metalink Document, when serialized as XML 1.0, can be identified with
the following media type:

MIME media type name: application



MIME subtype name:
metalink+xml

Mandatory parameters: None.
Optional parameters:
"charset": This parameter has semantics identical to the

charset parameter of the "application/xml" media type as
specified in [RFC3023] (Murata, M., St. Laurent, S., and D.

Kohn, “XML Media Types,” January 2001.).

Encoding considerations: Identical to those of "application/xml" as
described in [RFC3023] (Murata, M., St. Laurent, S., and D. Kohn,
“XML Media Types,” January 2001.), Section 3.2.

Security considerations: As defined in this specification.

In addition, as this media type uses the "+xml" convention, it
shares the same security considerations as described in [RFC3023
(Murata, M., St. lLaurent, S., and D. Kohn, “XML Media Types,”
January 2001.), Section 10.

Interoperability considerations: There are no known
interoperability issues.

Published specification: This specification.

Applications that use this media type: No known applications
currently use this media type.

Additional information:

Magic number(s): As specified for "application/xml" in [RFC3023
(Murata, M., St. Laurent, S., and D. Kohn, “XML Media Types,”
January 2001.), Section 3.2.

File extension: .metalink

Fragment identifiers: As specified for "application/xml" in
[REC3023] (Murata, M., St. Laurent, S., and D. Kohn, “XML Media
Types,” January 2001.), Section 5.

Base URI: As specified in [RFC3023] (Murata, M., St. lLaurent, S.,
and D. Kohn, “XML Media Types,” January 2001.), Section 6.

Macintosh File Type code: TEXT

Person and email address to contact for further information:
Anthony Bryan <anthonybryan@gmail.com>



Intended usage:
COMMON

Author/Change controller: IESG

9. Security Considerations TOC

Publishers are encouraged to offer Metalink documents via authenticated
HTTP under TLS as specified in [RFC2818] (Rescorla, E., “HTTP Over
TLS,” May 2000.). Publishers are also encouraged to include digital
signatures of the files within the Metalink Documents if they are
available.

9.1. URIs and IRIs TOC

Metalink Processors handle URIs and IRIs. See Section 7 of [RFC3986]
(Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” January 2005.) and Section 8 of
[RFC3987] (Duerst, M. and M. Suignard, “Internationalized Resource
Identifiers (IRIs),” January 2005.) for security considerations related
to their handling and use.

9.2. Spoofing TOC

Metalink Processors should be aware of the potential for spoofing
attacks where the attacker publishes Metalinks with false information.
Malicious publishers might create Metalink Documents containing
inaccurate information anywhere in the document. At best, this could
deceive unaware downloaders that they are downloading a malicious or
worthless file. At worst, malicious publishers could attempt a
distributed denial of service attack by inserting unrelated IRIs into
Metalink Documents.

9.3. Cryptographic Hashes TOC

Currently, some of the hash types defined in the IANA registry named
"Hash Function Textual Names" are considered insecure. These include
the whole Message Digest family of algorithms which are not suitable



for cryptographically strong verification. Malicious people could
provide files that appear to be identical to another file because of a
collision, i.e. the weak cryptographic hashes match.

Metalink Generators and Processors supporting verification SHOULD at
least implement "sha-1" which is SHA1, as specified in [RFC3174
(Eastlake, D. and P. Jones, “US Secure Hash Algorithm 1 (SHA1),”
September 2001.).

9.4. Signing TOC

Metalink Documents SHOULD be signed using [REC-xmldsig-core] (Solo, D.,

Reagle, J., and D. Eastlake, “XML-Signature Syntax and Processing,”
February 2002.) and are subject to the security considerations implied
by its use. This addresses the issue of spoofing.

Digital signatures provide authentication, message integrity, and non-
repudiation with proof of origin.

10. References TOC



[BITTORRENT]

[1S03166]

[IS0639-2]

[REC-xml1]

[REC-xml-
infoset]

[REC-xml-
names ]

[REC-
xmlbase]
[REC-
xmldsig-
core]
[RFC2119]
[RFC2295]

[RFC2818]
[RFC3023]

[RFC3174]

[RFC3339]

[RFC3688]

[RFC3986]

10.1. Normative References TOC

Cohen, B., “The BitTorrent Protocol Specification,”
BITTORRENT 11031, February 2008.

International Organization for Standardization, “ISO
3166:1988 (E/F) - Codes for the representation of
names of countries - The International Organization
for Standardization, 3rd edition, 1988-08-15.,"

ISO Standard 3166, 1988.

International Organization for Standardization, “ISO
639-2:1998 - Codes for the representation of names of
languages -- Part 2: Alpha-3 code - edition 1,
1998-11-01, 66 pages, prepared by a Joint Working
Group of ISO TC46/SC4 and ISO TC37/SC2.,” ISO Standard
639-2, 1998.

Yergeau, F., Paoli, J., Bray, T., Sperberg-McQueen,
C., and E. Maler, “Extensible Markup Language (XML)
1.0 (Fourth Edition),” World Wide Web Consortium
Recommendation REC-xml-20060816, August 2006.

Cowan, J. and R. Tobin, “XML Information Set (Second
Edition),” World wWide Web Consortium

Recommendation REC-xml-infoset-20040204,

February 2004.

Hollander, D., Bray, T., Tobin, R., and A. Layman,
“Namespaces in XML 1.0 (Second Edition),” World Wide
Web Consortium Recommendation REC-xml-names-20060816,
August 2006.

Marsh, J., “XML Base,” W3C REC W3C.REC-
xmlbase-20010627, June 2001.

Solo, D., Reagle, J., and D. Eastlake, “XML-Signature
Syntax and Processing,” World Wide Web Consortium
Recommendation REC-xmldsig-core-20020212,

February 2002.

Bradner, S., “Key words for use in RFCs to Indicate
Reguirement Levels,” BCP 14, RFC 2119, March 1997.
Holtman, K. and A. Mutz, “Transparent Content
Negotiation in HTTP,” RFC 2295, March 1998.

Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000.
Murata, M., St. Laurent, S., and D. Kohn, “XML Media
Types,” RFC 3023, January 2001.

Eastlake, D. and P. Jones, “US Secure Hash Algorithm 1
(SHA1),"” RFC 3174, September 2001.

Klyne, G. and C. Newman, “Date and Time on the
Internet: Timestamps,” RFC 3339, July 2002.

Mealling, M., “The IETF XML Registry,” BCP 81,

RFC 3688, January 2004.



http://www.bittorrent.org/beps/bep_0003.html
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2001/REC-xmlbase-20010627
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2295
http://tools.ietf.org/html/rfc2295
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc3023
http://tools.ietf.org/html/rfc3023
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3688

Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005.

[RFC3987] Duerst, M. and M. Suignard, “Internationalized
Resource Identifiers (IRIs),” RFC 3987, January 2005.

10.2. Informative References
TOC
[IS0.8601.1988] International Organization for
Standardization, “Data elements and
interchange formats - Information
interchange - Representation of dates and
times,” ISO Standard 8601, June 1988.

[RELAX-NG] Clark, J., “RELAX NG Compact Syntax,”
December 2001.
[RFC4287] Nottingham, M. and R. Sayre, “The Atom

Syndication Format,” RFC 4287,
December 2005.

[W3C.NOTE- Wolf, M. and C. Wicksteed, “Date and Time

datetime-19980827] Formats,” W3C NOTE NOTE-datetime-19980827,
August 1998.

[W3C.REC- Malhotra, A. and P. Biron, “XML Schema Part

xmlschema-2-20041028] 2: Datatypes Second Edition,” W3C REC REC-
xmlschema-2-20041028, October 2004.

Appendix A. Contributors TOC

The layout and content of this document relies heavily on work
pioneered in the Atom Syndication Format as specified in [RFC4287
(Nottingham, M. and R. Sayre, “The Atom Syndication Format,”

December 2005.).

The following people contributed to preliminary versions of this
document: Paul Burkhead, Kristian Weston, Darius Liktorius, Michael
Burford, Giorgio Maone, Manuel Subredu, Tatsuhiro Tsujikawa, A. Bram
Neijt, Max Velasques, Manolo Valdes, Urs Wolfer, Frederick Cheung, Nils
Maier, Hampus Wessman, Neil McNab, Hayden Legendre, Danny Ayers, Nick
Dominguez, Rene Leonhardt, Per Oyvind Karlsen, Gary Zellerbach, James
Clark, Daniel Stenberg, Peter Poeml, Matt Domsch, Chris Newman, Lisa
Dusseault, Ian Macfarlane, Dave Cridland, Julian Reschke, Barry Leiba,
Uri Blumenthal, and Paul Hoffman. The content and concepts within are a
product of the Metalink community.

The Metalink community has dozens of contributors who proposed ideas
and wording for this document, or contributed to the evolution of
Metalink, including:



http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287
http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

Nicolas Alvarez, Patrick Ruckstuhl, Mike Wells, Sebastien Willemijns,
Micah Cowan, Dan Fandrich, Francis Giannaros, Yazsoft, Lukas Appelhans,
KGet developers, FDM Team, Orbit Team, Arne Babenhauserheide, Mathias
Berchtold, Xienzhenyu and TheWorld Browser Team, Xi Software, Bridget
and Ethan Fletcher, Ruben Kerkhof, Agostino Russo, Gervase Markham,
Salvatore and Robin Musumeci, Steve and Rachel Eshelman, Lucas Hewett,
Ryan and Darren Cronin, Dave Winquist, Bob Denison, Wes Shelton, Kees
Cook, Josh Colbert, Steve Kleisath, Chad Neptune, Nick Carrabba, Chris
Carrabba, Erin Solari, Derick Cordoba, Ryan Alexander, John Sowder,
Sandra Amisano, Tom Mainville, Janie Wargo, Jason Hansen, Tim Bray, Dan
Brickley, Markus Hofmann, Dan Connolly, Tim Berners-Lee, Harry Chen,
Adrien Macneil, Louis Suarez-Potts, Ross Smith, Rahul Sundaram, Jesse
Keating, Michal Bentkowski, Andrew Pantyukhin, Judd Vinet, Charles
Landemaine, Pascal Bleser, Jeff@BLAG, Yuichiro Nakada, Jereme Hancock,
Marcel Hauser, Jeff Covey, Doug Lang, Seth Brown, Alexander Lazic,
Mayank Sharma, Robin Heggelund Hansen, Steve Langasek, Federico Parodi,
Stefano Verna, Jason Green, James Linden, Matt Nederlanden, Aren Olsen,
Dag Odenhall, Troy Sobotka, Corey Farwell, Ed Lee, Shawn Wilsher, Mike
Connor, Anand Muttagi, Dedric Carter, Debi Goulding, the Anthony
Family, the Bryan Family, Juanita Anthony and Zimmy Bryan.

Appendix B. RELAX NG Compact Schema TOC

This appendix is informative.

The Relax NG schema explicitly excludes elements in the Metalink
namespace that are not defined in this revision of the specification.
Requirements for Metalink Processors encountering such markup are given
in Sections 7.2 (Extensions to the Metalink Vocabulary) and 7.3
(Processing Foreign Markup).




# -*- rnc -*-
# RELAX NG Compact Syntax Grammar for the
# Metalink Format Specification Version 2

namespace metalink = "urn:ietf:params:xml:ns:metalink"
namespace xsd = "http://www.w3.0rg/2001/XMLSchema"

# Common attributes

metalinkCommonAttributes =
attribute xml:base { metalinkUri }?,
attribute xml:lang { metalinkLanguageTag }?,
undefinedAttribute*

# Text Constructs

metalinkTextConstruct =
metalinkCommonAttributes,
text

# Date Construct

metalinkDateConstruct =
metalinkCommonAttributes,
xsd:dateTime

start =
element metalink:metalink {
element metalink:generator {
attribute uri { metalinkUri }7?,
attribute version { text }?,
metalinkTextConstruct

}
element metalink:origin { metalinkUri }?,
element metalink:type { "static" | "dynamic" }?,

element metalink:published { metalinkDateConstruct }?,
element metalink:updated { metalinkDateConstruct }?,
element metalink:files {
element metalink:file {
attribute name { metalinkTextConstruct },
element metalink:identity { metalinkTextConstruct }?,
element metalink:version { metalinkTextConstruct }?,
element metalink:size { xsd:integer }?,
element metalink:description { metalinkTextConstruct }?,
element metalink:license {
attribute uri { metalinkuUri }?,
attribute name { metalinkTextConstruct }?,



1?,
element
element

metalink:logo { metalinkuri }?,
metalink:publisher {

attribute uri { metalinkuUri }?,
attribute name { metalinkTextConstruct }?,

12,
element
element
element
element
element
hash+,

metalink:language { metalinkTextConstruct }?,
metalink:copyright { metalinkTextConstruct }?,
metalink:license { metalinkTextConstruct }?,
metalink:os { metalinkTextConstruct }?,
metalink:verification {

element metalink:pieces {
attribute length { metalinkTextConstruct },
attribute type { metalinkTextConstruct },
hash+

Iay

element metalink:signature {
attribute type { "pgp" },

text
3+
1?7,

element

metalink:resources {

element metalink:metadata {
attribute preference { xsd:integer }?,
attribute type { metalinkTextConstruct },
metalinkUri

element metalink:url {
attribute location { xsd:string {
minLength = "2" maxLength="2"}

37,
attribute preference { xsd:integer }?,
metalinkUri
3+
}
3+
}
}
hash =

element metalink:hash {
attribute piece { metalinkTextConstruct }?,
attribute type { metalinkTextConstruct },

text

# As defined in

RFC 3066

metalinkLanguageTag = xsd:string {
pattern = "[A-Za-z]{1,8}(-[A-Za-z0-9]{1,83})*"



# Unconstrained; it's not entirely clear how IRI fit into
# xsd:anyURI so let's not try to constrain it here
metalinkUri = text

# Simple Extension

simpleExtensionElement =
element * - metalink:* {
text

# Structured Extension

structuredExtensionElement =
element * - metalink:* {
(attribute * { text }+,
(text|anyElement)*)
| (attribute * { text }*,
(text?, anyElement+, (text|anyElement)*))

# Other Extensibility

extensionElement =
simpleExtensionElement | structuredExtensionElement

undefinedAttribute =
attribute * - (xml:base | xml:lang | local:*) { text }

undefinedContent = (text]|anyForeignElement)*

anyElement =
element * {
(attribute * { text }
| text
| anyElement)*

anyForeignElement =
element * - metalink:* {
(attribute * { text }
| text
| anyElement)*

# EOF



Index

application/metalink+xml Media Type

copyright XML element

description XML element

file XML element

files XML element

generator XML element

Grammar
metalinkCommonAttributes
metalinkCopyright
metalinkDateConstruct
metalinkDescription
metalinkFile

metalinkFiles
metalinkGenerator

metalinkHash

metalinkIdentity
metalinkLanguage
metalinkLicense
metalinkLogo
metalinkMetalink
metalinkOrigin
metalink0S
metalinkPieces
metalinkPublished
metalinkPublisher
metalinkResources
metalinkSignature
metalinkSize
metalinkTextConstruct
metalinkType
metalinkUpdated
metalinkURL 1, 2
metalinkVerification

metalinkVersion
simpleExtensionElement
structuredExtensionElement

hash XML element

T0C



identity XML element

language XML element
license XML element
logo XML element

Media Type

application/metalink+xml
metadata XML element
metalink XML element
metalinkCommonAttributes grammar production
metalinkCopyright grammar production
metalinkDateConstruct grammar production
metalinkDescription grammar production
metalinkFile grammar production
metalinkFiles grammar production
metalinkGenerator grammar production
metalinkHash grammar production
metalinkIdentity grammar production
metalinkLanguage grammar production
metalinkLicense grammar production
metalinkLogo grammar production
metalinkMetalink grammar production
metalinkOrigin grammar production
metalinkOS grammar production
metalinkPieces grammar production
metalinkPublished grammar production
metalinkPublisher grammar production
metalinkResources grammar production
metalinkSignature grammar production
metalinkSize grammar production
metalinkTextConstruct grammar production

metalinkType grammar production

metalinkUpdated grammar production
metalinkURL grammar production 1, 2

metalinkVerification grammar production
metalinkVersion grammar production

origin XML element
0s XML element

pieces XML element
published XML element
publisher XML element

resources XML element




signature XML element

simpleExtensionElement grammar production
size XML element

structuredExtensionElement grammar production

type XML element

updated XML element
url XML element

verification XML element
version XML element

XML Elements

copyright
description
entry
files
generator
hash
identity
language
license
logo
metadata
metalink
origin
os

pieces
published
publisher
resources

signature
size

:

updated
url

verification
version

Author's Address

Anthony Bryan (editor)
Metalinker Project




Email: anthonybryan@gmail.com
URI: http://www.metalinker.org



mailto:anthonybryan@gmail.com
http://www.metalinker.org

	The Metalink Download Description Formatdraft-bryan-metalink-05
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1.  Introduction
	1.1.  Examples
	1.2.  Namespace and Version
	1.3.  Notational Conventions
	2.  Metalink Documents
	3.  Common Metalink Constructs
	3.1.  Text Constructs
	3.1.1.  Text
	3.2.  Date Constructs
	4.  Metalink Element Definitions
	4.1.  Container Elements
	4.1.1.  The "metalink:metalink" Element
	4.1.1.1.  Providing Textual Content
	4.1.2.  The "metalink:files" Element
	4.1.3.  The "metalink:file" Element
	4.1.3.1.  The "name" Attribute
	4.1.4.  The "metalink:resources" Element
	4.1.5.  The "metalink:verification" Element
	4.1.6.  The "metalink:pieces" Element
	4.1.6.1.  The "type" Attribute
	4.1.6.2.  The "length" Attribute
	4.2.  Metadata Elements
	4.2.1.  The "metalink:copyright" Element
	4.2.2.  The "metalink:description" Element
	4.2.3.  The "metalink:generator" Element
	4.2.4.  The "metalink:hash" Element
	4.2.4.1.  The "type" Attribute
	4.2.4.2.  The "piece" Attribute
	4.2.5.  The "metalink:identity" Element
	4.2.6.  The "metalink:language" Element
	4.2.7.  The "metalink:license" Element
	4.2.8.  The "metalink:logo" Element
	4.2.9.  The "metalink:metadata" Element
	4.2.9.1.  The "preference" Attribute
	4.2.9.2.  The "type" Attribute
	4.2.10.  The "metalink:origin" Element
	4.2.11.  The "metalink:os" Element
	4.2.12.  The "metalink:published" Element
	4.2.13.  The "metalink:publisher" Element
	4.2.14.  The "metalink:signature" Element
	4.2.14.1.  The "type" Attribute
	4.2.15.  The "metalink:size" Element
	4.2.16.  The "metalink:type" Element
	4.2.17.  The "metalink:updated" Element
	4.2.18.  The "metalink:url" Element
	4.2.18.1.  The "preference" Attribute
	4.2.18.2.  The "location" Attribute
	4.2.19.  The "metalink:version" Element
	5.  Client Implementation Considerations
	6.  Securing Metalink Documents
	7.  Extending Metalink
	7.1.  Extensions from Non-Metalink Vocabularies
	7.2.  Extensions to the Metalink Vocabulary
	7.3.  Processing Foreign Markup
	7.4.  Extension Elements
	7.4.1.  Simple Extension Elements
	7.4.2.  Structured Extension Elements
	8.  IANA Considerations
	8.1.  XML Namespace Registration
	8.2.  application/metalink+xml MIME type
	9.  Security Considerations
	9.1.  URIs and IRIs
	9.2.  Spoofing
	9.3.  Cryptographic Hashes
	9.4.  Signing
	10.  References
	10.1. Normative References
	10.2. Informative References
	Appendix A.  Contributors
	Appendix B.  RELAX NG Compact Schema
	Index
	Author's Address


