
P2PSIP D. Bryan
Internet-Draft SIPeerior Technologies, Inc.
Intended status: Standards Track B. Lowekamp
Expires: August 29, 2007 SIPeerior; William & Mary
 C. Jennings
 Cisco Systems
 February 25, 2007

dSIP: A P2P Approach to SIP Registration and Resource Location
draft-bryan-p2psip-dsip-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 29, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document outlines the motivation, requirements, and
 architectural design for a distributed Session Initiation Protocol
 (dSIP). dSIP is a Peer-to-Peer (P2P) based approach for SIP
 registration and resource discovery using distributed hash tables
 maintained with SIP messages. This design removes the need for

Bryan, et al. Expires August 29, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft dSIP February 2007

 central servers from SIP, while offering full backward compatibility
 with SIP, allowing reuse of existing clients, and allowing P2P
 enabled peers to communicate with conventional SIP entities. A basic
 introduction to the concepts of P2P is presented, backward
 compatibility issues addressed, and security considerations are
 discussed.

 dSIP is one possible implementation of the protocols being discussed
 for creation in the P2PSIP WG. In the context of the work being
 proposed, this draft represents a concrete proposal for the P2PSIP
 Peer Protocol, using SIP with extensions as the underlying protocol.
 In this architecture, no P2PSIP Client Protocol is needed, rather
 unmodified SIP is used for access by non-peers.

Table of Contents

1. Introduction . 4
2. Terminology . 4
2.1. Definitions . 5

3. Background . 6
3.1. Peer-to-Peer Fundamentals 6
3.2. DHTs and Overlay Structure 7
3.3. P2PSIP . 8

4. The Architecture of dSIP 8
4.1. Peer Functions and Behavior in dSIP 9
4.2. P2P Overlay Structure 10
4.3. Use of SIP Messages in dSIP 11
4.4. Routing in dSIP . 12
4.4.1. dSIP Operations 13

4.5. Bootstrapping . 15
5. Message Syntax . 15
5.1. Option Tags . 16
5.2. Hash Algorithms and Identifiers 16
5.2.1. Peer-IDs . 16
5.2.2. Resource-IDs and the Replication 17

5.3. P2PSIP URIs . 17
5.3.1. Peer URIs . 17
5.3.2. Resource URIs and the resource-ID URI Parameter . . . 18

5.4. The DHT-PeerID Header and Overlay Parameters 19
5.4.1. Hash Algorithms and the algorithm Parameter 19
5.4.2. Overlay Names and the overlay Parameter 20
5.4.3. DHT Algorithms and the dht Parameter 21
5.4.4. PeerID Expires header parameter 21

5.5. The DHT-Link Header 21
5.5.1. Expires Processing 22

6. Message Routing . 22
6.1. Peer Registration . 23

Bryan, et al. Expires August 29, 2007 [Page 2]

Internet-Draft dSIP February 2007

6.2. Resource Registration 23
6.3. Session Establishment 24
6.4. DHT Maintenance . 24

7. Peer/DHT Operations . 25
7.1. Peer Registration . 25
7.1.1. Constructing a Peer Registration 25
7.1.2. Processing the Peer Registration 27

7.2. Peer Query . 29
7.2.1. Constructing a Peer Query Message 29
7.2.2. Processing Peer Query Message 30

7.3. Populating the Joining Peer's Routing Table 31
7.4. Transfering User Registrations 31
7.5. Peers Leaving the Overlay Gracefully 31
7.6. NAT and Firewall Traversal 32
7.7. Handling Failed Requests 32

8. Resource Operations . 32
8.1. Resource Registrations 32
8.2. Refreshing Resource Registrations 33
8.3. Removing Resource Registrations 34
8.4. Querying Resource Registrations 34
8.5. Session Establishment 34
8.6. Presence . 35
8.7. Offline Storage . 35

9. Pluggable DHT Algorithm Requirements 35
10. Security Considerations 36
10.1. Threat Model . 36
10.2. Protecting the ID Namespace 37
10.2.1. Protection Using ID Hashing 37
10.2.2. Cryptographic Protection 38

10.3. Protecting the resource namespace 38
10.4. Protecting the Routing 39
10.5. Protecting the Signaling 39
10.6. Protecting the Media 39
10.7. Replay Attacks . 39

11. Open Issues . 39
12. Acknowledgments . 39
13. IANA Considerations . 40
14. Changes to this Version 40
15. References . 41
15.1. Normative References 41
15.2. Informative References 42

 Authors' Addresses . 43
 Intellectual Property and Copyright Statements 44

Bryan, et al. Expires August 29, 2007 [Page 3]

Internet-Draft dSIP February 2007

1. Introduction

 As SIP [1] and SIMPLE based Voice over IP (VoIP) and Instant
 Messaging (IM) systems have increased in popularity, situations have
 emerged where centralized servers are either inconvenient or
 undesirable. For example, a group of users wishing to communicate
 between each other, but using machines that are not consistently
 connected to the network, are often forced to use a central server
 that is outside the control of the group. Similarly, groups wishing
 to establish ephemeral networks for use in meetings, conferences, or
 classes often do not wish to configure a centralized server.
 Organizations may also want to allow their members to communicate
 with each other without traffic flowing to third parties, but may not
 have the staff or equipment to maintain a server.

 Peer-to-Peer (P2P) computing has emerged as a mechanism for
 completely decentralized, server-free implementations of various
 applications. In particular, many recent efforts have focused on
 applying P2P to SIP within the IETF, starting with the forerunners of
 this document submitted by the authors. Since then a substantial
 usecases document [15] has emerged and, most recently, a concepts and
 terminology [2] document has helped define a common set of terms.
 This iteration of this document incorporates the terminology from
 that draft.

 This draft presents dSIP, a SIP based system that uses P2P mechanisms
 to remove the need for central servers in SIP and SIMPLE based
 communications systems. While this draft evolved from early work
 done on the SoSIMPLE [16] P2PSIP project, it has changed extensively.
 This works reflects experience gained in actually building
 commercially available P2PSIP products based on this draft, as well
 as from extensive work/insight gleaned from the P2PSIP mailing list.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

 Terminology defined in RFC 3261 [1] is used without definition.

 We use the terminology and definitions from the Concepts and
 Terminology for Peer to Peer SIP [2] draft extensively in this
 document without further definition. Other terms used in this
 document are defined inline when used and are also defined below for
 reference.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 4]

Internet-Draft dSIP February 2007

 In this illustrative purposes in this document we sometimes use 10
 hexadecimal digit values for SHA-1 hashes. In reality, SHA-1
 produces 40 digit values. They are shortened in this document for
 clarity and typographical considerations only.

2.1. Definitions
 Peer-to-Peer (P2P) Architecture: An architecture in which peer nodes
 cooperate together to perform tasks. Each peer has essentially
 equal importance and performs the same tasks within the network.
 Additionally, peers communicate directly with one another to
 perform tasks. Contrast this to a Client-Server architecture.
 Client-Server Architecture: An architecture in which some small
 number of nodes (servers) provide services to a larger number of
 nodes (clients). Client nodes initiate connections to servers,
 but typically do not communicate among themselves.
 Conventional SIP: The architecture used by SIP as defined by

RFC3261, RFC3263, and many others. Conventional SIP centralizes
 certain roles, such as registrar, but allows for direct end-to-end
 establishment of dialogs and media connections.
 Distributed Hash Table (DHT): A mechanism in which resources are
 given a unique key produced by hashing some attribute of the
 resource, locating them in a hash space (see below). Peers
 located in this hash space also have a unique ID within the hash
 space. Peers store information about resources with keys that are
 numerically similar to the peer's ID in the hash space.
 Namespace or hash space: The range of values that valid results from
 the hash algorithm fall into. For example, using the SHA-1
 algorithm, the namespace is all 40 digit hexadecimal identifiers.
 This namespace forms the set of valid values for Peer-IDs and
 Resource-IDs (see below).
 Routing Table: The list of peers that a peer uses to send messages
 to when routing. The structure and makeup of this table varies
 depending on the particular DHT selected.
 Connection Table: A list of peers that the peer currently is
 maintaining open connections to. In general, this is a superset
 of the Routing Table. The extra entries may be cached entries for
 efficiency or additional entries needed for NAT traversal
 purposes.
 Neighbors: A collection of peers that a particular peer can reach in
 one hop. In general, note that a peer's set of neighbors is
 equivalent to the entries in that peer's Routing Table. However,
 neighbors may include one or more peers that immediately precede
 the peer (predecessors) and one or more peers that immediately
 follow the peer in the namespace (successor peers). Note that
 neighbor relations do NOT have to be symmetric.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3263

Bryan, et al. Expires August 29, 2007 [Page 5]

Internet-Draft dSIP February 2007

 Adapter Peer: An adapter peer is a peer in the overlay that acts as
 an adapter for other non-P2P enabled SIP entities, allowing them
 to access the resources of the overlay. The adapter peer
 participates actively in the overlay network, while the non-P2P
 enabled SIP entities it provides service to DO NOT participate
 directly in the overlay. Compare these to the term "super peer"
 in the P2P community, although adapter peers may be thin software
 shims intended for only one client.
 Peer Admission: The act of a peer joining the overlay. Registration
 allows a peer to communicate with other peers, and requires
 (allows?) it to take on some server-like responsibilities such as
 maintaining resource location information. It DOES NOT register
 the user so that they can receive phone calls, which is the
 conventional SIP use of the word registration. We refer to
 conventional SIP registration as "user registration".
 User Registration: The act of a user registering themselves with a
 SIP network. User registration creates a mapping between a SIP
 URI and a contact for a user. This is the conventional meaning of
 registration in SIP. For a dSIP peer, this action MUST occur
 after peer registration. User or resource registration are terms
 used in this draft to refer to P2PSIP Resource Record Insertion,
 with the additional requirement that the resource's (user's) peer
 must first be admitted.
 Joining Peer: During the peer admission process, this is the peer
 that is attempting to register -- that is, the peer that is
 attempting to join the overlay network.
 Bootstrap Peer: During the process of peer registration, the
 bootstrap peer is the peer that the joining peer contacts. This
 peer may be a well-known peer, a peer located using a broadcast
 method, a peer that the joining peer previously knew about, or a
 peer that another bootstrap peer referred the joining peer to.
 The bootstrap peer MAY validate the joining peer's credentials and
 help the joining peer in opening connections to the admitting
 peer, but its primary purpose is to direct the joining peer to the
 admitting peer.
 Admitting Peer: During the process of peer registration, this is the
 peer that is currently responsible for the portion of the
 namespace the new peer will eventually reside in. This peer is
 responsible for generating many of the messages exchanged during
 peer registration.

3. Background

3.1. Peer-to-Peer Fundamentals

 The fundamental principle behind Peer-to-Peer (P2P) Architectures is
 that applications are provided by number of entities, called peers or

Bryan, et al. Expires August 29, 2007 [Page 6]

Internet-Draft dSIP February 2007

 nodes working together with each other to accomplish tasks. Each and
 every peer is responsible for contributing to serving some of the
 transactions that take place on the network. Contrast this with the
 more traditional Client-Server Architecture in which a large number
 of clients communicate only with a small number of central servers
 responsible for performing tasks.

 Each peer provides server-like functionality and services as well as
 being a client within the system. In this way, the services or
 resources that would be provided by a centralized entity are instead
 available in a distributed fashion from the peers of the system.
 Note that a particular peer may or may not provide a particular
 service, but some peer does, ensuring that collectively the peers can
 provide that particular service. The peers form a logical cluster of
 peers called an overlay or overlay network. The services provided
 are often said to be provided by the overlay, since collectively the
 members provide the services. The overlay is so named because they
 form a new, small sub-network at a higher logical level than lower
 level network connections.

 In many P2P systems peers are assumed to be ephemeral in nature. A
 peer may join or leave the overlay at any time. The design of
 algorithms for P2P architectures take this into account. Information
 is replicated, and the topology of the overlay can be quickly adapted
 as peers enter and leave.

3.2. DHTs and Overlay Structure

 While very early P2P systems used flood based techniques, most newer
 P2P systems locate resources using a Distributed Hash Table, or DHT
 to improve efficiency. Peers are organized using a Distributed Hash
 Table (DHT) structure. In such a system, every resource has a
 Resource-ID, which is obtained by hashing some keyword or value that
 uniquely identifies the resource. Resources can be thought of as
 being stored in a hash table at the entry corresponding to their
 Resource-ID. The peers that make up the overlay network are also
 assigned an ID, called a Peer-ID, in the same hash space as the
 Resource-IDs. A peer is responsible for storing all resources that
 have Resource-IDs near the peer's Peer-ID. The hash space is divided
 up so that all of the hash space is always the responsibility of some
 particular peer, although as peers enter and leave the system a
 particular peer's area may change. Messages are exchanged between
 the peers in the DHT as the peers enter and leave to preserve the
 structure of the DHT and exchange stored entries. Various DHT
 implementations may visualize the hash space as a grid, circle, or
 line.

 Peers keep information about the location of other peers in the hash

Bryan, et al. Expires August 29, 2007 [Page 7]

Internet-Draft dSIP February 2007

 space and typically know about many peers nearby in the hash space,
 and progressively fewer more distant peers. We refer to this table
 of other peers as a Routing Table. When a user wishes to search,
 they consult the list of peers they are aware of and contact the peer
 with the Peer-ID nearest the desired Resource-ID. If that peer does
 not know how to find the resource, it either returns information
 about a closer peer it knows about, or forwards the request to a
 closer peer. In this fashion, the request eventually reaches the
 peer responsible for the resource, which then replies to the
 requester.

3.3. P2PSIP

 Unlike a conventional SIP architecture, P2PSIP systems require no
 central servers. In a conventional SIP architecture many UAs connect
 to one or more central servers which play a number of roles,
 including proxy server, registrar, presence server, and redirect
 server. In a P2PSIP architecture, the peers participating in the
 overlay not only act as conventional SIP UAs, allowing their users to
 place and receive calls, but, when viewed collectively with the other
 peers, perform the roles normally provided by a central server. Each
 participating peer will maintain some fraction of the information
 that would normally be maintained by the central servers in a
 conventional SIP network.

 P2PSIP peers provide many functions, more than any single entity in a
 conventional SIP architecture. Minimally, a participating peer must
 be an active member of the overlay, participating in storage of
 resources, routing and providing some SIP "server-like" behaviors as
 well. In the terminology used in the concepts draft, these peers
 speak the P2PSIP Peer Protocol to organize among themselves.

 The general concepts are more fully explained in the Concepts and
 Terminology for Peer to Peer SIP [2] draft.

4. The Architecture of dSIP

 In this section we provide an overview of the architecture of dSIP
 and explain how it works in an informative way. Protocol details and
 syntax are provided in a normative form in the remainder of the
 document.

 dSIP is a specific proposal for the P2PSIP Peer Protocol proposed in
 the Concepts and Terminology for Peer to Peer SIP [2] draft, using
 SIP messages as the syntax for encoding the protocol. The function
 of the P2PSIP Peer Protocol is to provide for mechanisms to maintain
 the overlay, as well as to store and retrieve information, and to

Bryan, et al. Expires August 29, 2007 [Page 8]

Internet-Draft dSIP February 2007

 route messages when needed. dSIP's syntax is SIP with a number of
 newly defined headers, however no new methods are added to SIP in
 dSIP.

 Because dSIP uses conventional SIP messages, the mechanisms used for
 NAT traversal in SIP, including STUN [4], TURN [17], and ICE [5] are
 reused, as explained in NAT Traversal for dSIP [6]. As a
 consequence, many peers are able to participate in the overlay even
 when behind NATs. For those that cannot for some reason,
 conventional SIP can be used, and these peers can connect using
 adapter peers, as described below. Since conventional SIP is used
 for this, there is no need for a P2PSIP Client Protocol, and
 therefore dSIP defines no such protocol.

 dSIP is modular, allowing for the use of multiple DHTs, including
 those defined later. DHTs can be negotiated among the peers in much
 the same way as codecs or features are negotiated in conventional
 SIP. For compatibility, support for one basic DHT algorithm, Chord,
 is required. Additional DHTs can be added and supported. We detail
 the Chord algorithm for dSIP [7] and provide an alternate DHT
 algorithm for dSIP, based on Bamboo [8]. Note that this document
 does not specify the details of the DHTs, including Chord. These are
 defined in their own documents, which describe how the basic dSIP
 operations and syntax are used to implement that specific DHT
 algorithms. Our intention and hope is that others will design other
 overlay algorithms that rely on the same basic operations so that
 compatibility can be maintained.

4.1. Peer Functions and Behavior in dSIP

 dSIP peers provide many functions, more than any single entity in a
 conventional SIP architecture. Minimally, a participating peer must
 be an active member of the overlay and must provide some SIP "server-
 like" behaviors as well. The code that implements the additional
 server-like and DHT behavior can be located in several places in the
 network. The simplest is to have peers that are endpoints directly
 joining the overlay as peers. In this case, these peers provide the
 basic functionality of any SIP endpoint, but additionally implement
 the operations described in this document to enable self-organization
 and provide SIP server-like functionality.

 The behavior can also be located in an adapter peer, which allows one
 or more non-P2P aware SIP UAs (UAs that do not speak dSIP) to
 interact with the P2P overlay network. These adapters perform the
 additional self-organizing and SIP server-like behavior on behalf of
 the UA or UAs they support. In this case, only the adapter peer is a
 peer in the overlay, the UAs are not peers themselves. In this
 approach, the adaptors speak the P2PSIP Peer Protocol (dSIP in this

Bryan, et al. Expires August 29, 2007 [Page 9]

Internet-Draft dSIP February 2007

 case), where the UAs speak conventional SIP. All interaction with
 the P2P overlay is carried out by the adapter peer. The adapter
 essentially acts as a proxy server for the unmodified SIP UAs. The
 adapter can take the form of a small software shim or may be code
 within a conventional RFC 3261 server.

 In most places in this document, which type of peer we are discussing
 won't affect the discussion. In those cases where it will, we have
 noted the differences.

4.2. P2P Overlay Structure

 The P2P overlay in dSIP consists of peers, which collectively serve
 as a directory service for locating resources (users, voicemail
 messages, etc.). Peers are organized using a supported Distributed
 Hash Table (DHT) P2P structure. dSIP allows for pluggable DHT
 algorithms the exact form of which is defined in the DHT algorithm
 definition.

 Each peer is assigned a Peer-ID, and each resource that is stored in
 the overlay is assigned a Resource-ID. These values must map to the
 same name space. dSIP provides for various algorithms to be used to
 produce these values, although all members of the overlay must use
 the same algorithm. For example, in the Chord DHT implementation,
 SHA-1 is used to produce 160 bit values for both the Peer-ID and
 Resource-ID.

 The Peer-ID assigned to each peer determines the peer's location in
 the DHT and the range of Resource-IDs for which it will be
 responsible. The exact mapping between these is determined by the
 DHT algorithm used by the overlay. The mechanism for selecting these
 Peer-IDs depends on the security mechanism being used by the overlay.
 For example, a simple SHA-1 hash of the IP address and the port of
 the peer could be used to generate the Peer-IDs or alternatively, a
 certificate based system in which CAs assign Peer-IDs could be used
 to obtain the Peer-IDs [9].

 Every resource has a Resource-ID, obtained by hashing some keyword
 that identifies the resource. The Resource-IDs map to the same space
 as the Peer-IDs. In the case of users, the unique keyword is the
 userid and the resource is the registration -- a mapping between the
 user name and a contact. Resources can be thought of as being stored
 in the distributed hash table at a location corresponding to their
 Resource-ID. Because entities searching for resources must be able
 to locate them given the unique keyword, Resource-IDs are produced by
 hashing, and are never assigned, regardless of the DHT and security
 algorithms being used.

https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 10]

Internet-Draft dSIP February 2007

 A resource with Resource-ID k will be stored by the peer with Peer-ID
 closest to the Resource-ID, as defined by the particular pluggable
 DHT algorithm being used. As peers enter and leave, resources may be
 stored on different peers, so the information related to them is
 exchanged as peers enter and leave. Redundancy is used to protect
 against loss of information in the event of a peer failure and to
 protect against compromised or subversive peers.

 Since each DHT is defined and functions differently, we generically
 refer to the table of other peers that the DHT maintains and uses to
 route requests (neighbors) as a Routing Table. dSIP defines the
 syntax for the headers used to exchange these entries, but leaves the
 exact form of the data each DHT stores in the table as a decision for
 the DHT implementation. Peers may additionally maintain a list of
 peers to which they maintain connections for purposes other than
 routing, for example NAT traversal or caching. This larger table
 (usually a superset of the routing table) is referred to as the
 connection table in dSIP. In this draft, we refer to routing
 decisions being made from the entries in the routing table, although
 a peer might choose an entry from the connection table if it is a
 better match.

 When locating a resource with a particular Resource-ID, the peer will
 send the request to the routing table entry with the Peer-ID closest
 to the desired Resource-ID, as defined by the particular DHT in use.
 Since DHTs must converge on the resource, the peer receiving the
 request is assumed to know of a peer with a Peer-ID closer to the
 Resource-ID, and responds by suggesting or forwarding the message to
 this peer, depending on the routing mechanism being used.

4.3. Use of SIP Messages in dSIP

 dSIP uses SIP messages to implement the P2PSIP Peer Protocol. This
 was done for a number of reasons. In order to properly implement a
 P2PSIP protocol, it is necessary to have mechanisms to store,
 retrieve and query the locations of resources, as well as to route
 information. NAT traversal and security considerations require
 several techniques for routing information, as discussed below.
 Pluggable hashing techniques and DHT algorithms require capabilities
 to negotiate the use of these pluggable modules. We have found SIP
 offers mechanisms that meet all of these requirements today, has well
 defined security mechanisms, and additionally works well with the
 IETF suite of NAT traversal techniques: STUN, TURN and ICE. Because
 all this work would need to be redefined in a new P2PSIP protocol,
 and because all P2PSIP devices must, by definition, implement SIP
 anyway, we feel the only reasonable syntax choice for the P2PSIP Peer
 Protocol is SIP.

Bryan, et al. Expires August 29, 2007 [Page 11]

Internet-Draft dSIP February 2007

 Our motivation throughout has been to preserve the semantics of
 conventional SIP messages to the extent possible. All of the
 messages that are needed to maintain the DHT, as well as those needed
 to query for information, are implemented using SIP messages.
 Fundamentally, messages are being exchanged for two purposes. The
 purpose of the first class of messages is to maintain the DHT, such
 as the messages needed to join or leave the overlay, and to transfer
 information between peers. The second type of message is the type
 most SIP users will be familiar with -- registering users, inviting
 other users to a session, etc. -- basic session establishment. As
 the DHT is used as a distributed registrar, the registration and
 other searches are performed within the DHT. Once the target
 resource has been located, further communication proceeds directly
 between the UAs (or designated adapter peers) as with conventional
 SIP communications.

 The messages used to manipulate the DHT are SIP REGISTER messages.
RFC 3261, Section 10.2, specifies that REGISTER messages are used to

 "add, remove, and query bindings." Accordingly, we have selected
 REGISTER methods to use to add, remove, and query bindings. We use
 REGISTER both for the bindings of hosts as neighbors (entries in the
 routing table) in DHT maintenance operations as well as the bindings
 of resource names to locations that are commonly maintained by SIP
 registrars. The only fundamental difference is that these operations
 occur within the overlay, rather than on the conventional server.

4.4. Routing in dSIP

 When a peer sends a message within the DHT, it begins by calculating
 the target ID it is attempting to locate, using the particular
 algorithm used by the overlay. The target could be another user, a
 particular resource, or a peer (including itself) for DHT maintenance
 purposes. It then consults its routing table, and its other neighbor
 peers, for the closest peer it is aware of to the target ID, as
 defined by the closeness metric of the DHT in use.

 In discussions of P2PSIP, several mechanisms have been discussed for
 routing. In each case, the initial message is sent from the
 requester to the peer in the routing table most likely to route
 correctly, as defined by the DHT algorithm in use. Subsequently,
 that peer may provide further routing using one of three mechanisms.
 These three types of routing are:
 o Iterative: If the contacted peer is not responsible for the target
 ID, then the contacted peer issues a 302 redirect response
 pointing the search peer toward the best match the contacted peer
 has for the target ID. The searching peer then contact the peer
 to which it has been redirected and the process iterates until the
 responsible peer is located.

https://datatracker.ietf.org/doc/html/rfc3261#section-10.2

Bryan, et al. Expires August 29, 2007 [Page 12]

Internet-Draft dSIP February 2007

 o Recursive: If the contacted peer is not responsible for the target
 ID, it will forward the query to the nearest peer to the target
 that it knows, and the process repeats until the target is
 reached. The response unwinds and follows the same path on the
 message return. Because dSIP uses SIP messages for transport,
 SIP's proxy behavior is used to enable recursive routing.
 o Semi-Recursive: Semi-Recursive is the same as Recursive routing on
 the outbound leg, but the reply "shortcuts" and is directly sent
 back to the requester. When discussing these techniques, we often
 just refer to Iterative and Recursive, because of the similarity
 between recursive and semi-recursive routing.

 Various mechanisms may be used within the same overlay and even
 within the same search. For example, a search may start as
 iterative, but if a particular peer receiving the request knows that
 the requester cannot reach the next hop directly (perhaps due to NAT
 issues), the search may have recursive and iterative portions.

 In general, the messages can be routed using any of these mechanisms,
 and this draft does not specify which mechanism will be used. The
 decision as to which mechanism is appropriate may be a factor of
 security, NAT traversal, or even the properties of the particular DHT
 being used. We generally refer to the message as being routed
 through the overlay.

4.4.1. dSIP Operations

 dSIP provides mechanisms that are used for a number of operations.

4.4.1.1. Peer Registration

 When a peer (called the joining peer) wishes to join the overlay, it
 determines its Peer-ID and sends a REGISTER message to a bootstrap
 peer already in the overlay, requesting to join. Any peer in the DHT
 may serve as a bootstrap peer. The mechanism for selecting bootstrap
 peers is application dependent, and discussed in Bootstrapping
 (Section 4.5).

 Following the iterative routing scheme, the bootstrap peer looks up
 the peer it knows nearest to the Peer-ID of the joining peer and
 responds with 302 redirect to this closer peer. The joining peer
 will repeat this process until it reaches the peer currently
 responsible for the space it will occupy.

 If recursive routing is being used, the bootstrap peer looks up the
 peer it knows nearest to the Peer-ID of the joining peer and forwards
 the REGISTER message to that peer. This process of forwarding the
 message repeats until the peer currently responsible for the space

Bryan, et al. Expires August 29, 2007 [Page 13]

Internet-Draft dSIP February 2007

 the joining peer will occupy is found.

 Once the peer responsible for the joining peer's portion of the
 namespace is located, the joining peer then exchanges DHT state
 information with this peer, called the admitting peer, to allow the
 joining peer to learn about other peers in the overlay (neighbors)
 and to obtain information about resources the joining peer will be
 responsible for maintaining. Other DHT maintenance messages will be
 exchanged later to maintain the overlay as other peers enter and
 leave, as well as to periodically verify the information about the
 overlay, but once the initial messages are exchanged, a peer has
 joined the overlay.

4.4.1.2. Resource Registration

 The peer registration does not register the peer's user(s) or other
 resources with the P2PSIP network -- it has only allowed the peer to
 join the overlay. Once a peer has joined the overlay, the user that
 peer hosts must be registered with the system. This process is
 referred to as resource registration. This registration is analogous
 to the conventional SIP registration, in which a message is sent to
 the registrar creating a mapping between a SIP URI and a user's
 contact. The only difference is that since there is no central
 registrar, some peer in the overlay will maintain the registration on
 the users behalf.

 Resource registrations are routed similarly to peer registrations.
 The resource's peer calculates the resource-ID and contacts the peer
 it is aware of nearest to the resource-ID. This search process
 continues in either an iterative or recursive manner until the
 responsible peer is located. This peer then stores the registration
 for that user and returns a 200 response.

 For redundancy, resources should also be registered at additional
 peers within the overlay. These replicas are located by adding a
 replica number to the resource name and hashing to identify a new
 resource-ID for each replica. In this way, replicas are located at
 unrelated points around the DHT, minimizing the risk of an attacker
 compromising more than one registration for a single resource.

4.4.1.3. Session Establishment

 Sessions are established by contacting the UA identified by the
 registration in the DHT. The first step in establishing a session is
 locating this peer, which is done by searching for a resource in the
 DHT. The name of the target resource is used to calculate a
 resource-ID and a REGISTER message with no Contact information (a
 conventional SIP search) is sent to the closest known peer to that

Bryan, et al. Expires August 29, 2007 [Page 14]

Internet-Draft dSIP February 2007

 resource-ID. The search iterates until the responsible peer is
 located. The responsible peer then returns either a 200 OK with the
 Contact information for the resource or a 404 Not Found. The session
 is then initiated directly with the resource's UA.

4.4.1.4. DHT Maintenance

 In order to keep the overlay stable, peers must periodically perform
 book keeping operation to take into account peer failures. These DHT
 maintenance messages are sent using REGISTER messages and the overlay
 algorithm being used will dictate how often and where these messages
 are sent.

 DHT maintenance messages are routed similarly to peer registrations
 and resource registrations. The peer calculates the Peer-ID of the
 peer it wants to exchange DHT information with and contacts the peer
 it is aware of closest to that Peer-ID. This search process
 continues in either an iterative or recursive manner until the peer
 is located at which point the peers exchange DHT maintenance
 information.

4.5. Bootstrapping

 When a peer wishes to join an existing overlay, it must first locate
 some peer that is already participating in the overlay, referred to
 as the bootstrap peer. Peers may use any method they choose to
 locate the initial bootstrap peer --- the decision is outside the
 scope of this specification. The following are a few of the many
 methods that may be used:
 Static Locations: Some number of peers in the overlay may be
 persistent and have well know addresses. These addresses could be
 configured into the peer application or obtained using an out-of-
 band mechanism such as a web page.
 Cached Peers: While this mechanism cannot be used the first time
 that a peer runs, on subsequent attempts to join the overlay a
 peer might attempt to use a previously contacted peer as a
 bootstrap peer.
 Broadcast mechanisms: Peers can use a broadcast mechanism to locate
 the initial peer, for example by sending the first REGISTER
 message to the SIP multicast address.

5. Message Syntax

 This section provides normative text explaining the syntax of the
 extensions we use for SIP messages.

Bryan, et al. Expires August 29, 2007 [Page 15]

Internet-Draft dSIP February 2007

5.1. Option Tags

 We create a new option tag "dht" as described in RFC 3261. This
 option tag indicates support for DHT based P2PSIP. Peers MUST
 include a Require and Supported header with the option tag dht for
 all messages that are intended to be processed using dSIP or include
 P2P extensions. Clients supporting P2P and contacting another SIP
 entity using a non-P2P mechanism for a transaction that may or may
 later be P2P SHOULD include a Supported header with dht. For a
 typical session establishment the search within the DHT MUST specify
 Require dht, whereas the actual contact with the resource's UA SHOULD
 include a Supported header with dht but SHOULD NOT include a Require
 header with dht.

5.2. Hash Algorithms and Identifiers

 All IDs used for an overlay must be calculated using the same
 algorithm. Implementations MUST support the SHA-1 algorithm, which
 produces a 160 bit hash value. The hash algorithm used is specified
 in the DHT-PeerID header, described below. An implementation MAY
 rely on a secret initialization vector, key, or other shared secret
 to use the identifier as an HMAC, from RFC 2104 [10] such that no
 peer may join the overlay without knowledge of the shared secret,
 however this technique by itself does not protect the overlay against
 replay attacks. See Security Extensions to the Distributed Session
 Initiation Protocol (dSIP) [9]for information on how to protect
 against replay attacks.

 Both Peer-IDs and Resource-IDs MUST have the same range of values
 (map to the same space). Formally:

 P2PID = token

 When using SHA-1:

 P2PID = 40LHEX

5.2.1. Peer-IDs

 The particular DHT algorithm being used MAY specify an alternate
 mechanism for determining Peer-ID. Similarly, some security models
 may assign Peer-IDs from a central authority. In the event that
 neither of these mechanisms are being used, the Peer-ID MUST be
 formed by taking the IP address of the peer, without the colon or
 port, and with no leading zeros, and hashing this string with the
 hash algorithm. Then the least significant sixteen bits of the hash
 are replaced by the port used by the peer. For peers behind a NAT
 participating in an overlay on the public Internet, they must

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2104

Bryan, et al. Expires August 29, 2007 [Page 16]

Internet-Draft dSIP February 2007

 identify their address on the public Internet through a protocol such
 as STUN [4] and use this address for their Peer-ID.

 The string hashed to obtain the PeerID is formally defined below as
 ipaddress.

 ipaddress = IPV4address / IPv6reference

 PeerID is formally defined as:

 PeerID = P2PID

5.2.2. Resource-IDs and the Replication

 Resource-IDs MUST be formed by hashing the resource URI after
 converting it to canonical form. To do that, all URI parameters MUST
 be removed (including the user-param) except for the replica URI
 parameter, Any escaped characters MUST be converted to their
 unescaped form. Formally:

 ResourceID = P2PID

5.3. P2PSIP URIs

 Because hashing URIs to produce identifiers is a non-trivial cost,
 dSIP messages are constructed including these values already
 calculated. This is strictly as a courtesy to peers processing
 messages for this peer, as it prevents them from having to hash the
 URI again before routing. Identifiers provided in a message are a
 courtesy only and MUST NOT be used when making any changes to the
 data stored in an overlay, as they may be spoofed or incorrect. If
 the hash parameter is used incorrectly for routing, this only affects
 the transmitting peer's user. If it is used to insert or modify
 stored information, it can affect the system's integrity. Peers MUST
 verify the hash of all URIs before making changes that affect the
 overlay.

5.3.1. Peer URIs

 A P2PSIP peer is represented by constructing a SIP-URI (or SIPS-URI)
 with the keyword "peer" or a short form of "P" for the userinfo
 portion. The URI parameter "peer-ID", or the short form "pID" MUST
 be used.

 PeerURI = ("peer@" / "P@") hostport ";" PeerID-Param ";"
 uri-parameters

 Formally, the peerID uri-parameter is defined as type other-param

Bryan, et al. Expires August 29, 2007 [Page 17]

Internet-Draft dSIP February 2007

 from RFC 3261 with a pname of "peerID" or "pID" for short form, and a
 pvalue which is of type PeerID. A peer receiving a PeerURI MUST
 verify the hash value of the PeerID-Param before using it to update
 its routing table.

 PeerID-Param = ("peer-ID" / "pID") EQUAL PeerID

 For search operations, where an identifier is being searched for, but
 the host responsible for that identifier is unknown, hostport MUST be
 set to "0.0.0.0". All non-search operations MUST specify a valid
 hostport.

 P2P Peer URIs MUST NOT include the resource-ID URI parameter (below),
 as it is intended to define information about resources that are
 stored in the overlay, not information about the peers making up the
 overlay. P2P Peer URIs used in name-addr SHOULD NOT include any
 display-name information, and peers receiving name-addrs for peers
 with display-name information MUST ignore the information.

 Examples, using a shortened hash for clarity:
 The URI for a peer using the SHA-1 hash algorithm, with
 hashed ID ed57487add matching an IP address 10.6.5.5 used
 in a To header. Uses the short forms:

 To: <sip:P@10.6.5.5;pID=ed57487add>

 The URI for a peer using the SHA-1 hash algorithm, with
 hashed ID ed57487add matching an IP address 10.6.5.5 used
 in a To header. Uses the long forms:

 To: <sip:peer@10.6.5.5;peer-ID=ed57487add>

5.3.2. Resource URIs and the resource-ID URI Parameter

 Resource URIs are no different for P2PSIP resources than for non-P2P
 SIP applications. However, because calculating the ResourceID is a
 significant expense, the optional URI parameter resource-
 ID=<Resource-ID> or the short form rID=<Resource-ID> SHOULD be
 provided. This parameter is a courtesy only and MUST NOT be used
 when making any changes to the data stored in an overlay without
 being recalculated, as it may be spoofed or incorrect. The
 resource-ID URI parameter is of type other-param as defined in RFC

3261.

 resourceID-param = ("resource-ID" \ "rID") EQUAL ResourceID

 P2P Resource URIs MUST NOT include the PeerID-Param URI parameter,
 because this indicates that the target of the URI is a peer. P2P

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 18]

Internet-Draft dSIP February 2007

 Resource URIs MAY include other user-parameters such as user=phone.

 Examples (again using shortened hashes for clarity):
 The URI for a user resource with username bob@p2psip.org using
 the SHA-1 hash algorithm, with hashed Resource-ID 723fedaab1.
 The optional resource-ID URI parameter is included, using the
 long form:

 sip:bob@p2psip.org;resource-ID=723fedaab1

 The URI for a user resource with username bob@p2psip.org using
 the SHA-1 hash algorithm, with hashed Resource-ID 723fedaab1.
 The optional resource-ID URI parameter is included, using the
 short form:

 sip:bob@p2psip.org;rID=723fedaab1

 The URI, used in a To header for user Alice White, with username
 alice@p2psip.org. This example omits the optional resource-ID URI
 parameter:

 To: "Alice White" <sip:alice@p2psip.org>

5.4. The DHT-PeerID Header and Overlay Parameters

 We introduce a new SIP header called the DHT-PeerID header. This
 header is used to express the Peer-ID of the sending peer as well as
 to identify the name and parameters of the overlay. The format of
 the DHT-PeerID header is as follows:

 DHT-PeerID = "DHT-PeerID" HCOLON PeerURI SEMI algorithm SEMI
 dht-param SEMI overlay-param *(SEMI generic-param)

 Examples:
 A peer with an SHA-1 hashed Peer-ID of a04d371e on IP 192.168.1.1.
 We include the PeerURI, algorithm, dht-param, and overlay as well as
 the optional expires header parameter. In this example, the overlay
 name is chat and the DHT algorithm being used is dhtalg1.0

 DHT-PeerID: <sip:peer@192.168.1.1;peer-ID=a04d371e>;algorithm=sha1;
 dht=dhtalg1.0;overlay=chat;expires=600

5.4.1. Hash Algorithms and the algorithm Parameter

 The hash algorithm used for the overlay is specified as a parameter
 of the DHT-PeerID header. This parameter MUST appear in the DHT-
 PeerID header. It MUST be the algorithm used to calculate all PeerID

Bryan, et al. Expires August 29, 2007 [Page 19]

Internet-Draft dSIP February 2007

 and ResourceID values used in the message. It SHOULD NOT appear in
 other headers in the message, but if it does it MUST match the value
 in the DHT-PeerID header.

 The hash algorithm is specified using the algorithm parameter from
RFC3261. The tokens used to identify the algorithm MUST be the same

 as those used in other SIP documents such as RFC4474. [11] Currently,
 those consist of 'sha1', indicating SHA-1 as defined in RFC 3174 [12]
 and 'hmac-sha1', indicating HMAC-SHA1 as defined in RFC2104 [10].
 Implementations MUST support the SHA-1 algorithm.

 A peer MUST reject a message with 488 Not Acceptable here if it
 specifies a different hash algorithm than that used by the peer's
 overlay. An initial contact to a bootstrap peer may specify the hash
 algorithm as the wildcard "*", in which case the joining peer
 indicates its willingness to use whatever hash algorithm the
 bootstrap peer identifies in its response. A peer responding to such
 a request MUST route the message according to the rules described in
 the Message Routing Section (Section 6) if all other elements of the
 message are correct and the routing algorithm indicates such a
 response is appropriate. If the normal response would be to allow
 the join with a 200 OK, the receiving peer MAY respond with a 302
 redirect to itself and specifying the algorithm used in this overlay,
 in which case the joining peer should reissue the message with the
 proper hash algorithm specification.

5.4.2. Overlay Names and the overlay Parameter

 Each overlay is named using a string, which SHOULD be unique to a
 particular deployment environment. Peers will use this value to
 identify messages in cases where they may belong to multiple overlays
 simultaneously. These are defined formally simply as a token:

 overlay-name = "*" / token

 The overlay-param parameter MUST appear in the DHT-PeerID header. It
 SHOULD NOT appear in other headers in the message, but if it does it
 MUST match the value in the DHT-PeerID header. This parameter is
 defined formally as:

 overlay-param = "overlay" EQUAL overlay-name

 A peer MUST reject a message with 488 Not Acceptable here if it
 specifies an overlay in which the peer is not participating. An
 initial contact to a bootstrap peer MAY specify overlay-name as the
 wildcard "*", in which case the joining peer indicates its
 willingness to join whatever overlay the bootstrap peer identifies in
 its response. A peer responding to such a request MUST route the

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4474
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc2104

Bryan, et al. Expires August 29, 2007 [Page 20]

Internet-Draft dSIP February 2007

 message according to the rules described in the Message Routing
 Section (Section 6) if all other elements of the message are correct
 and the routing algorithm indicates such a response is appropriate.
 If the normal response would be to allow the join with a 200 OK, the
 receiving peer MAY respond with a 302 redirect to itself, in which
 case the joining peer should reissue the message with the proper
 overlay specification.

5.4.3. DHT Algorithms and the dht Parameter

 The routing algorithm used to implement the overlay is specified
 using a dht-param in the DHT-PeerID header. It SHOULD NOT appear in
 other headers in the message, but if it does it MUST match the value
 in the DHT-PeerID header. This parameter is defined formally as:

 dht-name = token
 dht-param = "dht" EQUAL dht-name

 The behavior of a peer receiving a message with a dht-param
 specifying a routing algorithm other than that which it is following
 is dependent on the routing algorithm. An initial contact of a
 bootstrap peer MAY specify dht-param as the wildcard "*", in which
 case the joining peer indicates its willingness to use whatever DHT
 algorithm the bootstrap peer identifies in its response. A peer
 responding to such a request MUST route the message according to the
 rules described in the Message Routing Section (Section 6) if all
 other elements of the message are correct and the routing algorithm
 indicates such a response is appropriate. New routing algorithms
 SHOULD be designed to maintain backward compatibility with previous
 algorithms where possible. If the routing algorithm specified is
 incompatible, a 488 Not Acceptable Here response MUST be returned.

5.4.4. PeerID Expires header parameter

 The DHT-PeerID header MAY include an Expires parameter indicating how
 long a recipient may keep knowledge of this peer. If not present, a
 default of 3600 is assumed. Mobile peers may wish to specify a
 shorter interval.

5.5. The DHT-Link Header

 We introduce a new SIP header called the DHT-Link header. The DHT-
 Link header is used to transfer information about where in the DHT
 other peers are located. In particular, it is used by peers to pass
 information about its neighbor peers and routing table information
 stored by a peer.

Bryan, et al. Expires August 29, 2007 [Page 21]

Internet-Draft dSIP February 2007

 DHT-Link = "DHT-Link" HCOLON PeerURI SEMI link-param SEMI
 expires-param *(SEMI generic-param)
 link-param = "link" EQUAL link-value
 expires-param = "expires" EQUAL delta-seconds

 The value of linkvalue -- that is, how you represent what type of
 link this is, is defined by the DHT algorithm specification. The
 generic-param leaves flexibility for an algorithm to add additional
 parameters if needed.

 As an example, the header might look like (using a shortened 10 digit
 Peer-ID for clarity). The value *** here is intended to represent a
 value determined by the particular DHT:

DHT-Link: <sip:peer@192.168.0.1;Peer-ID=671a65bf22>;link=***;expires=600

5.5.1. Expires Processing

 Each DHT-Link header MUST contain an expires parameter. Each peer
 maintains an expiration time for each of its neighbor and routing
 table entries. These expiration times are updated whenever the peer
 receives a response with a longer expiration time than it currently
 maintains, most commonly in the PeerID header of a response to a join
 or search. A peer MUST NOT report an expired entry in a DHT-Link
 header. A peer MUST update the expires parameter with the current
 value, adjusted for passed time, each time it generates a DHT-Link
 header.

6. Message Routing

 When a peer sends a message within the DHT, it begins by calculating
 the target ID it is attempting to locate, which might be its own
 location in the DHT, or a user's registration, for which it hashes
 the user's URI to obtain the appropriate Resource-ID. It then
 consults its routing table, and its other neighbor peers, for the
 closest peer it is aware of to the target ID.

 The messages in the overlay MAY be routed either iteratively or
 recursively. The Request-Disposition header as described in [13]
 SHOULD be used to indicate if the next node should process the
 message using a recursive or iterative mechanism. If the header is
 omitted, the receiving node may process the message either
 recursively or iteratively.

 If the Request-Disposition header is iterative, the contacted peer
 MUST determine if it is responsible for that target ID. If it is
 not, then the contacted peer MUST issue a 302 redirect pointing the

Bryan, et al. Expires August 29, 2007 [Page 22]

Internet-Draft dSIP February 2007

 search peer toward the best match the contacted peer has for the
 target ID. The searching peer then contact the peer to which it has
 been redirected and the process iterates until the responsible peer
 is located.

 In recursive routing, the peer sends a message to the peer it knows
 that is nearest to the target. If the contacted peer is not
 responsible for the target ID, it MUST forward the query to the
 nearest peer to the target that it knows, and the process repeats
 until the target is reached. This process follows standard proxy
 behavior in RFC 3261.

6.1. Peer Registration

 When a peer (the joining peer) wishes to join the overlay, it creates
 its Peer-ID and sends a REGISTER message to a bootstrap peer already
 in the overlay, requesting to join. Any peer in the DHT may serve as
 a bootstrap peer, although we expect that most UAs will be configured
 with a small number of well-known peers.

 Following the iterative routing scheme, the bootstrap peer looks up
 the peer it knows nearest to the Peer-ID of the joining peer and
 responds with 302 redirect to this nearer peer. The joining peer
 will repeat this process until it reaches the peer currently
 responsible for the space it will occupy.

 If recursive routing is being used, the bootstrap peer looks up the
 peer it knows nearest to the Peer-ID of the joining peer and forwards
 the REGISTER message to that peer. This process of forwarding the
 message repeats until the peer currently responsible for the space
 the joining peer will occupy is found.

 Once the peer responsible for the joining peer's portion of the
 namespace is located, the joining peer then exchanges DHT state
 information with this peer, called the admitting peer, to allow the
 joining peer to learn about other peers in the overlay (neighbors)
 and to obtain information about resources the joining peer will be
 responsible for maintaining. Other DHT maintenance messages will be
 exchanged later to maintain the overlay as other peers enter and
 leave, as well as to periodically verify the information about the
 overlay, but once the initial messages are exchanged, a peer has
 joined the overlay.

6.2. Resource Registration

 The peer registration does not register the peer's user(s) or other
 resources with the P2PSIP network -- it has only allowed the peer to
 join the overlay. Once a peer has joined the overlay, the user that

https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 23]

Internet-Draft dSIP February 2007

 peer hosts must be registered with the system. This process is
 referred to as resource registration. This registration is analogous
 to the conventional SIP registration, in which a message is sent to
 the registrar creating a mapping between a SIP URI and a user's
 contact. The only difference is that since there is no central
 registrar, some peer in the overlay will maintain the registration on
 the users behalf.

 Resource registrations are routed similarly to peer registrations.
 The resource's peer calculates the resource-ID and contacts the peer
 it is aware of closest to the resource-ID. This search process
 continues in either an iterative or recursive manner until the
 responsible peer is located. This peer then stores the registration
 for that user and returns a 200 response.

 For redundancy, resources should also be registered at additional
 peers within the overlay. These replicas are located by adding a
 replica number to the resource name and hashing to identify a new
 resource-ID for each replica. In this way, replicas are located at
 unrelated points around the DHT, minimizing the risk of an attacker
 compromising more than one registration for a single resource.

6.3. Session Establishment

 Sessions are established by contacting the UA identified by the
 registration in the DHT. The first step in establishing a session is
 locating this peer, which is done by searching for a resource in the
 DHT. The name of the target resource is used to calculate a
 resource-ID and a REGISTER message with no Contact information (a
 conventional SIP search) is sent to the closest known peer to that
 resource-ID. The search iterates until the responsible peer is
 located. The responsible peer then returns either a 200 OK with the
 Contact information for the resource or a 404 Not Found. The session
 is then initiated directly with the resource's UA.

 If the peer needs to have the session establishment routed through
 the overlay, it MAY use the Request-Disposition header with a value
 of proxy to request that intermediate nodes proxy the invite over the
 overlay on their behalf. This is particular critical for NAT
 traversal [6].

6.4. DHT Maintenance

 In order to keep the overlay stable, peers must periodically perform
 book keeping operations to take into account peer failures. These
 DHT maintenance messages are sent using REGISTER messages and the
 overlay algorithm being used will dictate how often and where these
 messages are sent.

Bryan, et al. Expires August 29, 2007 [Page 24]

Internet-Draft dSIP February 2007

 DHT maintenance messages are routed similarly to peer registrations
 and resource registrations. The peer calculates the Peer-ID of the
 peer it wants to exchange DHT information with and contacts the peer
 it is aware of closest to that Peer-ID. This search process
 continues until the current closest peer to the target Peer-ID is
 located at which point the peers exchange DHT maintenance
 information.

7. Peer/DHT Operations

 The SIP REGISTER message is used extensively in this system.
 REGISTER is used to register users, as in conventional SIP systems,
 and we discuss this further in the Resource Registration
 (Section 8.1) section of this document. Additionally, SIP REGISTER
 messages are used to register a new peer with the DHT and to transmit
 the information needed to maintain the DHT.

7.1. Peer Registration

 After a peer has located an initial bootstrap peer, the process of
 joining the overlay is started by constructing a REGISTER message and
 sending it to the bootstrap peer. Third party registration MAY NOT
 be used for registering peers into the overlay, and attempts to do so
 MUST be rejected by the peer receiving such a request (although third
 party registrations are used for other purposes, as described below).
 The peer MUST construct a SIP REGISTER message following the
 instructions in RFC3261, Section 10, with the exceptions/rules
 outlined below.

7.1.1. Constructing a Peer Registration

 The Request-URI MUST include only the IP address of the peer that is
 being contacted (initially the bootstrap peer). This URI MUST NOT
 include any of the P2P defined parameters. For example, a request
 intended for peer 10.3.44.2 should look like: "REGISTER sip:10.3.44.2
 SIP/2.0".

 The To and From fields of the REGISTER message MUST contain the URI
 of the registering peer constructed according to the rules in the
 subsection Peer URIs (Section 5.3.1) in the Message Syntax section.

 While allowing the IP address of the sender for To and From is
 different than conventional SIP registers, there are two reasons for
 this. First, in a P2P network, which peer the request is sent to,
 and thus the domain for which the registration is intended, is not
 important. Any peer can process the information, and the user name
 is not associated with a particular IP address or DNS domain, but

https://datatracker.ietf.org/doc/html/rfc3261#section-10

Bryan, et al. Expires August 29, 2007 [Page 25]

Internet-Draft dSIP February 2007

 rather with the overlay name, which is encoded elsewhere. In that
 sense, the IP address used is irrelevant. Choosing the domain of the
 sender ensures that if a request is sent to a non-P2P aware RFC 3261
 compliant registrar, it will be rejected. RFC 3261 (section 10.3)
 states that a registrar should examine the To header to determine if
 it presents a valid address-of-record for the domain it serves.
 Since the IP address of the sending peer is unlikely to be a valid
 address for a non-P2P aware registrar, the message will be rejected,
 eliminating possibly erroneous handling by the registrar.

 The registering peer MUST also list its PeerURI in the contact field
 when registering so that this may be identified as a registration/
 update, rather than a query. The peer MUST provide an expires
 parameter or expires header with a non-zero value. As in standard
 SIP registrations, Expire headers with a value of zero will be used
 to remove registrations.

 The registering peer MUST provide a DHT-PeerID header field. It MAY
 leave the overlay parameter set to "*" for its initial registration
 message, but MUST set this parameter to the name of the overlay it is
 joining as soon as it receives a response from the bootstrap peer.

 The registering peer MUST include Require and Supported headers with
 the option tag "dht".

 Assume that a peer running on IP address 10.4.1.2 on port 5060
 attempts to join the network by contacting a bootstrap peer at
 address 10.7.8.129. Further assume that 10.4.1.2 hashes to
 463ac4b449 under SHA-1 (using a 10 digit hash for example
 simplicity), and the least significant bits are replaced with the
 port number, yielding 463ac413c4 and that the overlay name is chat
 and the dht-param is dhtalg1.0. An example message would look like
 this (neglecting tags):

 REGISTER sip:10.7.8.129 SIP/2.0
 To: <sip:peer@10.4.1.2;peer-ID=463ac413c4>
 From: <sip:peer@10.4.1.2;peer-ID=463ac413c4>
 Contact: <sip:peer@10.4.1.2;peer-ID=463ac413c4>
 Expires: 600
 DHT-PeerID: <sip:peer@10.4.1.2;peer-ID=463ac413c4>;algorithm=sha1;
 dht=dhtalg1.0;overlay=chat;expires=600
 Require: dht
 Supported: dht

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 26]

Internet-Draft dSIP February 2007

7.1.2. Processing the Peer Registration

 The receiving peer determines that this is a P2PSIP message based on
 the presence of the dht Require and Supported fields. In the event
 that the peer does not support P2P extensions, it MUST reply with a
 420 Bad Extension response. If the peer examines the overlay
 parameters and determines that this is not an overlay the peer
 participates in, the peer MUST reject the message with a 488 Not
 Acceptable Here response. Likewise if the peer examines the dht-
 param and determines that the algorithm specified is not compatible
 with its algorithm, the peer MUST reject the message with a 488 Not
 Acceptable Here response. If a P2P peer receives a non-P2P request
 it MAY reject it with a message such as 421 Extension Required or it
 MAY process it as a conventional SIP message.

 An implementation may support both P2P and conventional SIP messages.
 In that case, it MAY include the dht Supported field with all
 messages but MUST NOT include it with messages intended for
 conventional nodes.

7.1.2.1. Routing the Peer Registration

 The presence of peer-ID URI parameter in the To and Contact headers
 and a valid expiration time indicate that this message is a peer
 registration and the receiving peer MUST process this as a DHT level
 request. The bootstrap peer SHOULD verify that the Peer-ID
 corresponds to peer listed in the URI by validating the hash or the
 peers credentials. If these do not match, the message SHOULD be
 rejected with a response of 493 Undecipherable. The bootstrap peer
 examines the Peer-ID to determine if it corresponds to the portion of
 the overlay the bootstrap peer is responsible for. If it does, the
 peer will handle the REGISTER request itself. If not, the bootstrap
 peer will either provide the joining peer with information about a
 peer closer to the area of the overlay where the joining peers
 Peer-ID is stored (iterative routing) or forward the request along
 the closest peer it knows about (recursive routing). If a Request-
 Disposition header is present and set to proxy, the peer MUST use a
 recursive routing mechanism, and if it is present and set to
 redirect, the peer MUST use an iterative routing mechanism. In the
 event that the Request-Disposition header is not present, the peer
 may choose either mechanism.

 In the case of iterative routing, if the receiving peer is not
 responsible for the area of the hash table where Peer-ID should be
 stored, the peer SHOULD generate a 302 message. The 302 is
 constructed according the rules of RFC 3261 with the following rules.
 The receiving peer MUST look in its list of neighbors or in the
 routing table to find the peer with Peer-ID nearest the to joining

https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 27]

Internet-Draft dSIP February 2007

 peer's Peer-ID, and use it to create a contact field in the form of a
 peer URI, as specified in the P2P Peer URIs (Section 5.3.1) section
 of this document, including appropriate URI parameters. The response
 MUST contain a valid DHT-PeerID header. This response is sent to the
 joining peer.

 In the case of recursive routing, if the receiving peer is not
 responsible for the area of the hash table where the Peer-ID should
 be stored, the receiving peer should forward the request to the peer
 it knows about that is closest to the Peer-ID.

 A peer MUST NOT add a new peer to its routing table or redirect
 requests to that new peer until it has successfully contacted that
 peer itself. By redirecting a message to another peer, the contacted
 peer indicates that it believes that peer to be alive and that it is
 willing to route messages to it for NAT and Firewall traversal
 purposes.

 Using our example register from the previous section, assume that
 iterative routing is being used and that the bootstrap peer
 10.7.8.129 receives the message, determines it is not responsible for
 that area of the overlay, and redirects the joining peer to a peer
 with Peer-ID 47e46fa2cd at IP address 10.3.1.7. The 302 response,
 again neglecting tags, is shown below. Note that the peer creating
 the response uses its information to construct the DHT-PeerID header.

 SIP/2.0 302 Moved Temporarily
 To: <sip:peer@10.4.1.2;peerId=463ac413c4>
 From: <sip:peer@10.4.1.2;peerId=463ac413c4>
 Contact: <sip:peer@10.3.1.7;peerId=47e46fa2cd>
 Expires: 600
 DHT-PeerID: <sip:@10.7.8.129;peerId=084d299ff2>;algorithm=sha1;
 dht-param=dhtalg1.0;overlay=chat;expires=600
 Require: dht
 Supported: dht

 Upon receiving the 302, the joining peer uses the contact address as
 the new bootstrap peer. The process is repeated until the peer
 contacted is currently responsible for the area of the DHT in which
 the new peer will reside. The receiving peer that is responsible for
 that portion of the overlay is referred to as the admitting peer.

 TODO: we should have example of how to forward request in a recursive
 routing case

Bryan, et al. Expires August 29, 2007 [Page 28]

Internet-Draft dSIP February 2007

7.1.2.2. Admitting the Joining Peer

 The admitting peer MUST verify that the Peer-ID is valid, as
 described above. If these do not match, the message MUST be rejected
 with a response of 493 Undecipherable. The admitting peer recognizes
 that it is presently responsible for this region of the hash space --
 that is, it is currently the peer storing the information that this
 Peer-Id will eventually be responsible for. The admitting peer knows
 this because the joining peer's Peer-ID is closest to its own
 Peer-ID. The admitting peer is responsible for helping the joining
 peer become a member of the overlay. In addition to verifying that
 the Peer-ID was properly calculated, the admitting peer MAY perform
 additional security checks [9]. Once any challenge has been met, the
 admitting will reply with a 200 OK message to the joining peer. As
 in a conventional registration, the Contact in the 200 OK will be the
 same as in the request, and the expiry time MUST be provided.

 The admitting peer MUST reply with a 200 response if the admitting
 peer's Peer-ID is the closest to the joining peer's Peer-ID. Each
 DHT algorithm MAY choose to define closest however they want, but the
 DHT algorithm MUST be able to deterministically find the closest
 Peer-ID. The admitting peer must populate the DHT-Link headers with
 all values required by the DHT routing protocol so that the joining
 peer can initialize its neighbors and routing table entries.
 Additionally, the admitting peer MUST include its DHT-PeerID header
 containing the admitting peer's Peer-ID and IP.

7.2. Peer Query

 As with conventional SIP, REGISTER messages that are sent without a
 Contact: header are assumed to be queries, as described in Section 10
 of RFC3261.

7.2.1. Constructing a Peer Query Message

 The peer looks for the routing table entry or neighbor peer that is
 closest to the ID they are searching for. If the routing table has
 not yet been filled, then the peer may send the request to any peer
 it has available, including their other neighbor peers or even some
 bootstrap peer. While these initial searches may be less efficient,
 they will succeed. The Request-URI MUST include only the IP address
 of the peer that the search is intended for. This URI MUST NOT
 include any of the P2P defined parameters. For example, a request
 intended for peer 10.3.44.2 should look like: "REGISTER sip:10.3.44.2
 SIP/2.0".

 Because this is a query, the sending peer MUST NOT include a contact
 header. The sender MUST NOT include an expires header.

https://datatracker.ietf.org/doc/html/rfc3261#section-10
https://datatracker.ietf.org/doc/html/rfc3261#section-10

Bryan, et al. Expires August 29, 2007 [Page 29]

Internet-Draft dSIP February 2007

 The peer MUST provide a DHT-PeerID header.

 The peer MUST include Require and Supported headers with the option
 tag "dht".

 Assume that a peer running on IP address 10.4.1.2 on port 5060 wants
 to determine who is responsible for Peer-ID 4823affe45, and asks the
 peer with IP address 10.5.6.211 Further assume that the peer uses
 SHA-1 (using a 10 digit hash for example simplicity), and that the
 overlay name is chat. An example message would look like this
 (neglecting tags):

 REGISTER sip:10.5.6.211 SIP/2.0
 To: <sip:peer@0.0.0.0;peerId=4823affe45>
 From: <sip:peer@10.4.1.2;peerId=463ac413c4>
 DHT-PeerID: <sip:peer@10.4.1.2;peerId=463av413c4>;algorithm=sha1;
 dht-param=dhtalg1.0;overlay=chat;expires=600
 Require: dht
 Supported: dht

 The To field of the REGISTER message MUST contain the PeerURI of the
 identifier being search for, constructed according to the rules in
 the subsection P2P peer URIs (Section 5.3.1) in the Message Syntax
 section. If a specific peer is being sought, the PeerURI must
 specify that hostport. If only the identifier is being searched for,
 then hostport MUST be set to "0.0.0.0". The From URI MUST use the
 searching peer's PeerURI.

7.2.2. Processing Peer Query Message

 The receiving peer determines that this is a P2PSIP message based on
 the presence of the dht Require and Supported fields. In the event
 that the peer does not support P2P extensions, it MUST reply with a
 5xx class response such as 501 Not Implemented. If the peer examines
 the overlay parameters and determines that this is not an overlay the
 peer participates in, the peer MUST reject the message with a 488 Not
 Acceptable Here response. In the event a P2P peer receives a non-P2P
 request, it SHOULD reject it with a message such as 421 Extension
 Required.

7.2.2.1. Routing the Peer Query Message

 The presence of a PeerURI and lack of an expiration time indicate
 that this message is a peer query and the receiving peer MUST process
 this as a DHT level request. The receiving peer SHOULD NOT alter any
 of its internal values such as successor or predecessor in response
 to this message, since it is a query. Otherwise, the message is
 processed and routed as a peer registration (Section 7.1.2.1) until

Bryan, et al. Expires August 29, 2007 [Page 30]

Internet-Draft dSIP February 2007

 the responsible peer is reached.

7.2.2.2. Responding to the Peer Query Message

 If the receiving peer is responsible for the region that the search
 key lies within, it MUST respond to the query. If the receiving
 peer's Peer-ID exactly matches the search key, it MUST respond with a
 200 OK message. If it is responsible for that region, but its
 Peer-ID is not the search key, it MUST respond with a 404 Not Found
 message. The peer MAY verify the Peer-ID and IP address presented by
 the querying peer in the message. If these do not match, the message
 should be rejected with a response of 493 Undecipherable.

7.3. Populating the Joining Peer's Routing Table

 Once admitted, the joining peer SHOULD populate its routing table and
 locate neighbors by issuing queries for peers with the appropriate
 identifiers. If the admitting peer provided neighbor or routing
 table information in its response, the joining peer MAY use this
 information to construct a temporary routing table and neighbor
 information and use this temporary table in the queries to populate
 the table.

7.4. Transfering User Registrations

 When a new peer joins, it splits the area in the hash space the
 admitting peer is responsible for. Some portion of the user
 registrations the admitting peer was responsible for may now be the
 responsibility of the joining peer, and these user registrations are
 handed to the joining peer by means of third party user
 registrations. Third party registrations are allowed for user
 registrations and arbitrary searches, but are not allowed for peer
 registrations. These registrations are exactly the same as those
 discussed in Registering and Removing User Registrations
 (Section 8.1), except that as they are third party registration from
 a peer, that is, the From header contains the PeerURI of the
 admitting peer.

7.5. Peers Leaving the Overlay Gracefully

 Peers MUST send their registrations to the closest peer before
 leaving the overlay, as described in the section above.
 Additionally, peers MUST unregister themselves with their symmetric
 neighbors (if the DHT routing algorithm uses symmetric neighbors in
 any form). These graceful exit REGISTER messages are constructed
 exactly the same as one used to join, with the following exceptions.
 The expires parameter or header MUST be provided, and MUST be set to
 0. DHT-Link headers must be provided, as specified in DHT routing

Bryan, et al. Expires August 29, 2007 [Page 31]

Internet-Draft dSIP February 2007

 algorithm

7.6. NAT and Firewall Traversal

 The filtering properties of NATs and firewalls can lead to non-
 transitive connectivity. Typically this will manifest itself in a
 peer receiving a 302 redirecting it to another peer that it cannot
 contact, most likely because address dependent filtering is
 occurring. We discuss mechanisms to address these problems in [6].

7.7. Handling Failed Requests

 When a request sent to another peer fails, the peer MUST perform
 searches to update its pointers. If the failed request was sent to a
 peer in the routing table or a neighbor peer, then the searches
 discussed in Populating the Joining Peer's Routing Table
 (Section 7.3) should be performed.

8. Resource Operations

 The most important element of resource operations within the P2PSIP
 DHT is that they are performed exactly as if using a conventional SIP
 registrar, except that the registrar responsibilities are distributed
 among the DHT members.

8.1. Resource Registrations

 When a peer is in the overlay, it must register the contacts for
 users and other resources for which it is responsible into the
 overlay. This differs from the registrations described above in that
 these registrations are responsible for entering a URI name to URI
 location mapping into the overlay as data, rather than joining a peer
 into the overlay. These registrations are very similar to those
 outlined in section 10 of RFC3261.

 The Request-URI that is constructed for the REGISTER MUST be
 addressed to the peer the request is sent to. The To and From fields
 of the REGISTER message MUST contain the Resource URI of the resource
 being registered, as described in Resource URIs (Section 5.3.2). The
 request MUST include the value dht in Require and Supported headers.
 The request MUST include a DHT-PeerID header and MAY include one or
 more DHT-Link headers.

 The resource registration MUST include at least one Contact header
 containing a location of the resource and allowing this to be
 identified as a registration/update, rather than a query. The peer
 MUST provide an expires parameter or an Expire header with a non-zero

https://datatracker.ietf.org/doc/html/rfc3261#section-10

Bryan, et al. Expires August 29, 2007 [Page 32]

Internet-Draft dSIP February 2007

 value. As in standard SIP registrations, Expires parameters with a
 value of zero will be used to remove registrations. Any valid
 Contact for RFC 3261 is valid Contact for P2PSIP. Most users will
 register a Contact with the address of the user's UA (which may or
 may not be the IP address of the peer, since the peer could be an
 adaptor peer). The Contact URI does not need to include the
 ResourceID or other P2PSIP parameters as it is stored in the DHT but
 not processed or routed by it in any way.

 The message is routed in a fashion exactly analogous to that
 described in the section on peer registration (Section 7.1). In
 iterative routing algorithms, 302 messages are sent to indicate that
 the message is to be redirected to another Peer URI. In recursive
 routing algorithms, the receiving peer SHOULD forward the request to
 the peer in its connection table that is closest to the ResourceID.
 Once the message arrives at a destination that is responsible for
 that portion of the hash namespace, the peer recognizes it as a
 resource registration, rather than a peer wishing to join the system,
 based upon the fact that the To and From fields do not contain a Peer
 URI. The peer responds with a 200 indicating a successful
 registration. The response is constructed as dictated by RFC3261.

 The registering peer SHOULD construct and register replica
 registrations using the same Contact headers, but with the replica
 URI parameter used in the To and From headers.

8.2. Refreshing Resource Registrations

 Resource registrations are refreshed exactly as described in RFC
3261, Section 10. Responsible peers should send a new registration

 with a valid expiration time prior to the time that the registration
 is set to expire.

 Agents MAY cache the address where they previously registered and
 attempt to send refreshes to this peer, but they are not guaranteed
 success, as a new peer may have registered and may now be responsible
 for this area of the space. In such a case if iterative routing is
 being used, the peer will receive a 302 from the peer with which they
 previously registered, and should follow the same procedure for
 locating the peer they used in the initial registration.

 As with initial registrations, the sending peer should use the
 neighbor peer or routing table information provided in the 200 to
 send these updates to the redundant peers as well.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 33]

Internet-Draft dSIP February 2007

8.3. Removing Resource Registrations

 Resource registrations are removed exactly as described in RFC 3261,
 Section 10. Responsible peers MUST send a registration with
 expiration time of zero.

 As with initial registrations, the sending peer MUST construct
 replica unregister messages and use these to unregister the replicas.

8.4. Querying Resource Registrations

 Resource queries are constructed as described in RFC 3261, Section
10. Querying peers should send a REGISTER message with no contact

 header. As described in Peer Search (Section 7.2.1), this mechanism
 can also be used to locate the peer responsible for a particular
 Resource-ID.

 A P2P environment can do little to protect against an individual peer
 compromising the registrations it is responsible for. Accordingly, a
 UA cannot trust a response from a single peer, whether it indicates a
 successful search or an error. In the absence of other methods of
 verifying the response (such as having a certificate of the user
 being searched for and a signed registration that can be verified
 with the certificate) a UA should search for the primary registration
 and at least one replica. Because the locations the replicas are
 stored are unrelated to the location of the primary registration, a
 single attacker is unlikely to be able to compromise both entries.
 As the overlay gains more peers and more replicas are searched for,
 the odds of a compromise are reduced. Better protection for
 registrations is discussed in [9].

8.5. Session Establishment

 When a caller wishes to send a SIP message (such as an INVITE,
 MESSAGE or SUBSCRIBE), the caller must first locate the peer where
 this callee's information resides using the resource search procedure
 described in the section titled Resource Location. (Section 8.4)

 Establishing a session is done entirely in the normal SIP fashion
 after the user is located using the P2P resource query. Once the
 peer responsible for the Resource-ID is located, it will provide
 either a 200, providing a contact for the users UA, or will provide a
 404 if the user is not registered. If a 200 with a valid contact is
 received, the call will then be initiated directly with the UAS of
 the called using the standard RFC 3261 fashion for methods such as
 INVITE or MESSAGE, or the INVITE can be processed by routing it
 through the overlay if necessary for NAT traversal [6].

https://datatracker.ietf.org/doc/html/rfc3261#section-10
https://datatracker.ietf.org/doc/html/rfc3261#section-10
https://datatracker.ietf.org/doc/html/rfc3261#section-10
https://datatracker.ietf.org/doc/html/rfc3261

Bryan, et al. Expires August 29, 2007 [Page 34]

Internet-Draft dSIP February 2007

8.6. Presence

 We use SUBSCRIBE/NOTIFY for this. We subscribe to every user on our
 friend list when we come online. If the friends are online, that
 means that we know exactly where they are. Peers MAY use the PeerIDs
 of their friends' peers as additional routing table entries or
 neighbor peers (essentially, cached values), consulting these first,
 as connections are likely to be made to people on the user's friend
 list. These should also be periodically checked, as described in the
 DHT Maintenance (Section 6.4).

 If friends are offline, one should periodically try to make the
 connection. However, if a UA receives a SUBSCRIBE from a friend that
 it believes to be offline, it SHOULD attempt to subscribe to that
 friend. This will allow people that are reciprocally on each other's
 friend lists to rapidly be notified when one or the other comes
 online, therefore the retry interval for subscribing to offline
 friends can be fairly long because it is only necessary in the case
 of race conditions or other temporary failures in resource location.

8.7. Offline Storage

 Delivery of messages to offline users, or voicemail for voice
 applications, requires storing that information for later retrieval.
 Storing user configuration information in a format accessible from
 the network also will allow a user to retrieve their profile from any
 computer. Cao et al. [18] describe an approach that separates the
 storage of resource location information from the actual storage of
 the offline research. We believe that this approach is in agreement
 with the approach taken by the rest of this document, which relies on
 the DHT overlay to store the registrar's location information, but
 relies on external, conventional methods for the actual connection.
 For offline storage, it also allows the use of other standard
 protocols to store and retrieve the offline information, keeping the
 P2PSIP scope restricted to storing resource mappings.

9. Pluggable DHT Algorithm Requirements

 All dSIP peers MUST support the Chord pluggable DHT algorithm for
 compatibility. They MAY support additional pluggable algorithms.
 The requirements for new pluggable algorithms are defined in this
 section.

 Pluggable algorithm MUST use Peer-IDs and Resource-IDs as defined in
 Hash Algorithms and Identifiers (Section 5.2) Pluggable algorithms
 are free to define what hash algorithms they support, but they MUST
 clearly specify what they are.

Bryan, et al. Expires August 29, 2007 [Page 35]

Internet-Draft dSIP February 2007

 A resource with Resource-ID k will be stored by the peer with Peer-ID
 closest to the Resource-ID. The definition of closeness may vary in
 different DHT algorithms, but each DHT algorithm MUST guarantee
 Resource-ID searches converge to exactly one peer responsible for
 that portion of the namespace. As peers enter and leave, resources
 may be stored on different peers, so the information related to them
 is exchanged as peers enter and leave. Redundancy is used to protect
 against loss of information in the event of a peer failure.

 Each new DHT algorithm MUST define a value for the dht-name parameter
 to be used in the dht-param parameter of the DHT-PeerID header, as
 defined in DHT Algorithms and the dht parameter (Section 5.4.3).

 Each new DHT algorithm MUST define the valid BNF for the link-value
 used in the DHT-Link header, as defined in The DHT-Link header
 (Section 5.5).

10. Security Considerations

 The goal of P2PSIP is to scale gracefully from ad hoc groups of a few
 people to an overlay of millions of peers across the globe. As such,
 there is no one security model that fits the needs of all envisioned
 environments; for the small network establishing a certificate chain
 is ludicrously difficult, while for a global network the unrestricted
 ability to insert resources and devise useful Peer IDs is a clear
 invitation to insecurity. Any P2PSIP protocol must offer a range of
 security models that can be selected according to the needs of the
 overlay.

10.1. Threat Model

 Without other security, the attacker is able to generate an ID and
 become a valid peer in the system. They can see other peers and
 process certain queries. Attackers may wish to receive
 communications intended for other participants, prevent other users
 from receiving their messages, prevent large portions of the users
 from receiving messages, or send messages that appear to be from
 others. Users would like to be sure they are communicating with the
 same person they have previously talked to, to be able to verify
 identity via some out of band mechanism. Attackers may try to squat
 on all the good names. Users would like names that are meaningful to
 them. Attackers may have computers that are many times faster than
 the average user's. Attackers may be able to DOS other particular
 peers and make them fail. To make a robust DHT, many peers need to
 store information on behalf of the community. Peers may lie about
 this and not store the information. Attackers may wish to see who is
 communicating with whom and how much data is getting communicated.

Bryan, et al. Expires August 29, 2007 [Page 36]

Internet-Draft dSIP February 2007

 Many of the threats to P2P SIP are also threats to conventional SIP.
 As such, P2P SIP imports much of its security from conventional SIP.
 However, because conventional SIP generally relies on secure servers
 to maintain the integrity of the system, modifications to those
 techniques are required to maintain the same level of security.

10.2. Protecting the ID Namespace

 The fundamental protection that P2PSIP relies on is protecting the ID
 namespace. In particular, many of the attacks on P2PSIP require
 identifying a particular portion of the ID space and acquiring
 control of that space. This is a common vector both for attacks on a
 particular user, by obtaining control of the location in the overlay
 where the user is registered, and on the overlay itself, by means of
 a Sybil [19] attack when one is able to insert multiple identities at
 different locations on the ring.

 The P2PSIP ID Namespace is considered protected when an attacker is
 not able to select an arbitrary Peer-ID and insert a peer at the
 location by convincing other peers to route traffic to them. This
 protects against hijacking and DoS attacks. The ID Namespace may
 also be protected by restricting admission to the overlay to some
 authorized (and trusted) set of individuals.

10.2.1. Protection Using ID Hashing

 The default base security for P2PSIP determines Peer-IDs by hashing
 the peer's IP address and appending the port number. The security of
 this scheme depends on the ease with which an attacker can choose
 their own Peer-ID. Because the port number is only appended to the
 Peer-ID, an attacker gains nothing by selecting different ports on
 the same node. Assuming that the SHA1 hash used to calculate the
 Peer-ID is reliably random, the attacker's ability to succeed depends
 on the number of separate IP addresses that they are able to obtain
 from which to launch their attacks.

 In the current predominantly IPV4 Internet, few attackers have access
 to more than a handful of IP addresses, perhaps a few hundred at
 worst. For a large-scale P2P system, this is unlikely to provide the
 ability to hijack a particular user ID or control a sufficient
 portion of the network to affect other peers, in particular when
 registrations are replicated at independent peers. Ultimately,
 however, a sufficiently skilled and provisioned attacker can
 compromise this scheme.

 As the Internet migrates to IPV6, however, it is unclear that the
 assumption that few attackers have access to a significant range of
 IP addresses will remain true. Therefore, hashing IP addresses to

Bryan, et al. Expires August 29, 2007 [Page 37]

Internet-Draft dSIP February 2007

 Peer-IDs is assumed to provide a diminishing amount of security in
 the future.

10.2.2. Cryptographic Protection

 Stronger protection guarantees are possible by relying on
 cryptographic techniques to restrict the generation of peer IDs,
 either through requiring knowledge of a shared secret to calculate a
 valid hash or by issuing certificates through a central authority.
 These techniques are further described in Security for dSIP [9].

10.3. Protecting the resource namespace

 The two primary vectors of attacks on resources in a P2PSIP overlay
 are inserting illegitimate resources into the overlay and corrupting
 the registrations for which a compromised peer is responsible.

 For overlays that do not rely on certificates, once a peer has joined
 the overlay there are no restrictions on its ability to register
 resources. In an unsecured network, multiple peers can register the
 same resource (username) in the overlay. However, self-signed
 certificates [14] can be used to authenticate a user as the same user
 previously contacted with that certificate. Unless a conventional
 SIP authentication server is available, however, establishing
 identity upon initial contact is still a problem. One potential
 solution is for an overlay that is expected to persist over long
 time-frames to store the credentials of previous users for
 verification of a new registration. These techniques are beyond the
 scope of this document.

 The second form of resource attack, which is really an ID attack,
 concerns the attacks that are possible when a peer has legitimately
 inserted itself into the overlay and is now responsible for storing
 resource registrations. Such an attack could occur through a
 corrupted peer or by an attacker who convinces the CA to issue them a
 certificate for a Peer-ID. In this case, the peer can corrupt any
 resource that is assigned to it. In the absence of certificates, the
 primary means of defense of such attacks is relying on the
 replication described in Section Section 5.2.2. By storing replicas
 of each registration on multiple peers and performing parallel
 searches for resource lookup, the searching peer protects itself from
 a single peer trying to corrupt the namespace.

 Further protection from each attack vector is achieved by relying on
 certificates for resource authentication [9].

Bryan, et al. Expires August 29, 2007 [Page 38]

Internet-Draft dSIP February 2007

10.4. Protecting the Routing

 The DHT forms a complex routing table. When a peer joins, it may
 contact a subversive peer that lies about the finger table
 information it provides. The subversive peer could do this to try to
 trick the joining peer to route all the traffic to a subversive group
 of peers. Prevention of this attack relies on protecting the
 namespace and (for hashed namespaces) identifying trusted bootstrap
 peers to use when joining.

 Resource searches are protected from a single subversive peer through
 the use of parallel searches on replicated registrations. Similar
 protection could be achieved through performing parallel searches
 using multiple bootstrap peers for initial join, but such
 specification is beyond the scope of this draft. When possible,
 securing the namespace is a better solution.

10.5. Protecting the Signaling

 The goal here is to stop an attacker from knowing who is signaling
 what to whom. An attacker being able to observe the activities of a
 specific individual is unlikely given the randomization of IDs and
 routing based on the present peers discussed above.

10.6. Protecting the Media

 As with conventional SIP, all the media SHOULD be encrypted.
 Negotiating encryption for an end-to-end media session should be
 performed in the same manner for P2PSIP communications.

10.7. Replay Attacks

 Defense against replay attacks is discussed in [9].

11. Open Issues

 There are certainly many open issues. Here are a few.

 Still to be worked out are details of how P2PSIP names are
 disambiguated from conventional names that use DNS based routing.

12. Acknowledgments

 A team of people have worked on the various drafts related to the
 dSIP protocol and extensions thereof. The team consists of: David
 Bryan, Eric Cooper, James Deverick, Cullen Jennings, Bruce Lowekamp,

Bryan, et al. Expires August 29, 2007 [Page 39]

Internet-Draft dSIP February 2007

 Philip Matthews, and Marcia Zangrilli.

 Thanks to all who have been actively participating in the P2PSIP
 efforts. Special thanks to Spencer Dawkins, Enrico Marocco, and
 Jean-Francois Wauthy for providing editorial feedback, and Henry
 Sinnreich, Eric Rescorla, and Alan Johnston for various discussions
 related to this work.

13. IANA Considerations

 This document would require registering the following:
 o Option tag "DHT"
 o "DHT-Link" as a Header Field
 o "DHT-PeerID" as a Header Field
 o "peer" as a valid value for parameter user (?)
 o "Resource-ID" as a valid URI parameter (?)
 o "hmac-sha1" as an Identity-Info 'alg' parameter

 [ToDo: This section needs to be revamped to include all the new BNF
 introduced]

14. Changes to this Version

 While this is a -00 document, it has grown from the earlier drafts
draft-bryan-sipping-p2p-xx. As such, we discuss the changes from the

 most recent version of that draft, -03.
 1. The earlier draft has been split into a number of drafts:
 1. This draft, providing the background and overall concept,
 basic terminology for encoding P2P messages in SIP,
 2. We have removed "-" from a number of headers and parameter names
 to shorten the overall length of the messages. Additionally, we
 have provided short versions for some strings in the syntax to
 help reduce message size.
 3. We have attempted to use the new terminology defined in [2]
 wherever possible, and have attempted not to replicate
 definitions here. In particular, we have substituted the use of
 the term "peer" for "node"
 4. As a consequence of the above, NodeID has been replaced with
 PeerID, both in text and in the actual defined messages sent
 over the wire.
 5. We have made many changes to include details essential to using
 this in real deployed systems or clarifying difficult concepts;
 lessons learned from building a commercial application based on
 this draft.

https://datatracker.ietf.org/doc/html/draft-bryan-sipping-p2p-xx

Bryan, et al. Expires August 29, 2007 [Page 40]

Internet-Draft dSIP February 2007

 6. Large parts of the description of how an initial overlay is
 formed were quite confusing as our description did not
 explicitly embrace the NULL predecessor concept of Chord. We
 have corrected this in the sections describing the algorithms.
 7. A full and detailed example showing the startup of a 3 node
 system has been inserted into the examples section.
 8. A new section has been added detailing early work on
 incorporating SIP identity into a P2P environment. This work is
 then used in the security section.
 9. The security section has been thoroughly rewritten to reflect
 changes both in our thoughts and the thoughts of the P2PSIP
 working group as a whole.
 10. We corrected a number of outright errors and typos pointed by a
 number of individuals, as mentioned in the acknowledgments.

15. References

15.1. Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Willis, D., "Concepts and Terminology for Peer to Peer SIP",
draft-willis-p2psip-concepts-03 (work in progress),

 October 2006.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Rosenberg, J., "Simple Traversal Underneath Network Address
 Translators (NAT) (STUN)", draft-ietf-behave-rfc3489bis-05
 (work in progress), October 2006.

 [5] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Methodology for Network Address Translator (NAT) Traversal for
 Offer/Answer Protocols", draft-ietf-mmusic-ice-13 (work in
 progress), January 2007.

 [6] Cooper, E., Matthews, P., Bryan, D., and B. Lowekamp, "NAT
 Traversal for dSIP", Internet
 Draft draft-matthews-p2psip-dsip-nat-traversal-00,
 February 2007.

 [7] Zangrilli, M. and D. Bryan, "A Chord-based DHT for Resource
 Lookup in P2PSIP", Internet
 Draft draft-zangrilli-p2psip-dsip-dhtchord-00, February 2007.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/draft-willis-p2psip-concepts-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-05
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-13
https://datatracker.ietf.org/doc/html/draft-matthews-p2psip-dsip-nat-traversal-00
https://datatracker.ietf.org/doc/html/draft-zangrilli-p2psip-dsip-dhtchord-00

Bryan, et al. Expires August 29, 2007 [Page 41]

Internet-Draft dSIP February 2007

 [8] Zangrilli, M. and D. Bryan, "A Bamboo-based DHT for Resource
 Lookup in P2PSIP", Internet
 Draft draft-zangrilli-p2psip-dsip-dhtbamboo-00, February 2007.

 [9] Lowekamp, B. and J. Deverick, "Authenticated Identity
 Extensions to dSIP", Internet
 Draft draft-lowekamp-p2psip-dsip-security-00, February 2007.

 [10] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

 [11] Peterson, J. and C. Jennings, "Enhancements for Authenticated
 Identity Management in the Session Initiation Protocol (SIP)",

RFC 4474, August 2006.

 [12] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1 (SHA1)",
RFC 3174, September 2001.

 [13] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

RFC 3841, August 2004.

 [14] Jennings, C., "Certificate Management Service for The Session
 Initiation Protocol (SIP)", draft-ietf-sip-certs-02 (work in
 progress), October 2006.

15.2. Informative References

 [15] Bryan, D., Shim, E., and B. Lowekamp, "Use Cases for Peer-to-
 Peer Session Initiation Protocol (P2PSIP)", Internet
 Draft draft-bryan-sipping-p2p-usecases-00, November 2005.

 [16] Bryan, D., Jennings, C., and B. Lowekamp, "SOSIMPLE: A
 Serverless, Standards-based, P2P SIP Communication System",
 Proceedings of the 2005 International Workshop on Advanced
 Architectures and Algorithms for Internet Delivery and
 Applications (AAA-IDEA) '05, June 2005.

 [17] Rosenberg, J., "Obtaining Relay Addresses from Simple Traversal
 Underneath NAT (STUN)", draft-ietf-behave-turn-02 (work in
 progress), October 2006.

 [18] Cao, F., Bryan, D., and B. Lowekamp, "Providing Secure Services
 in Peer-to-Peer Communications Networks with Central Security
 Server", Internation Conference on Internet and Web
 Applications and Services (ICIW) '06, February 2006.

 [19] Douceur, J., "The Sybil Attack", IPTPS '02, March 2002.

https://datatracker.ietf.org/doc/html/draft-zangrilli-p2psip-dsip-dhtbamboo-00
https://datatracker.ietf.org/doc/html/draft-lowekamp-p2psip-dsip-security-00
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4474
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/draft-ietf-sip-certs-02
https://datatracker.ietf.org/doc/html/draft-bryan-sipping-p2p-usecases-00
https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-02

Bryan, et al. Expires August 29, 2007 [Page 42]

Internet-Draft dSIP February 2007

Authors' Addresses

 David A. Bryan
 SIPeerior Technologies, Inc.
 3000 Easter Circle
 Williamsburg, VA 23188
 USA

 Phone: +1 757 565 0101
 Email: dbryan@sipeerior.com

 Bruce B. Lowekamp
 SIPeerior; William & Mary
 3000 Easter Circle
 Williamsburg, VA 23188
 USA

 Phone: +1 757 565 0101
 Email: lowekamp@sipeerior.com

 Cullen Jennings
 Cisco Systems
 170 West Tasman Drive
 MS: SJC-21/3
 San Jose, CA 95134
 USA

 Phone: +1 408 421 9990
 Email: fluffy@cisco.com

Bryan, et al. Expires August 29, 2007 [Page 43]

Internet-Draft dSIP February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Bryan, et al. Expires August 29, 2007 [Page 44]

