Network Working Group S. Bryant _T0C
Internet-Draft M. Shand

Intended status:

. Cisco Systems
Informational y

October 30,

Expires: May 3, 2009
2008

IPFRR in the Presence of Multiple Failures
draft-bryant-shand-ipfrr-multi-o1

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The 1list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on May 3, 2009.

Abstract

IP Fast Reroute (IPFRR) work in the IETF has focused on the single
failure case, where the failure could be a link, a node or a shared
risk link group. This draft describes possible extensions to not-via
IPFRR that under some circumstances allow the repair of multiple
simultaneous failures.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [1].



http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

1. Introduction
2. The Problem
3. Outline Solution
4. Looping Repairs
4.1. Dropping Looping Packets
4.2. Computing non-looping Repairs of Repairs
4.3. N-level Mutual Loops
5. Mixing LFAs and Not-via
6. Security Considerations
7. TIANA Considerations
8. References
8.1. Normative References
8.2. Informative References
§ Authors' Addresses
§ Intellectual Property and Copyright Statements
1. Introduction TOC

wWork on IP fast reroute (IPFRR) in the IETFFramework (Shand, M. and S.
Bryant, “IP Fast Reroute Framework,” October 2009.) [3], Basic (Atlas,
A. and A. Zinin, “Basic Specification for IP Fast Reroute: Loop-Free
Alternates,” September 2008.) [4] and not-via (Shand, M., Bryant, S.,
and S. Previdi, “IP Fast Reroute Using Not-via Addresses,” March 2010.)
[2] has so far been restricted to the case of repair of a single
failure. The single failure cases considere are a single link, a single
node or a shared risk link group (SRLG). IPFRR repair of multiple
simultaneous failures which are not members of a known SRLG have not
been addressed because of concerns that the use of multiple concurrent
repairs may result in looping repair paths. In order to prevent such
loops, the current definition of IPFRR using not-via requires that
packets addressed to a not-via address are not repaired but instead are
dropped.

It is possible that a network may experience multiple simultaneous
failures. This may be due to simple statistical effects, but the more
likely cause is unanticipated SRLGs. When multiple failures which are
not part of an anticipated group are detected, repairs are abandoned
and the network reverts to normal convergence. Although safe, this
approach is somewhat draconian, since there are many circumstances were
multiple repairs do not induce loops.

This Internet draft explores the properties of multiple unrelated
failures and proposes some methods that may be used to address this
problem using not-via techniques.




2. The Problem TOC

Let us assume that the repair mechanism is based on not-via repairs.
LFA or downstream routes may be incorporated, and will be dealt with
later.

Figure 1: The General Case of Multiple failures

Note that depending on the repair case under consideration there may be
other paths present in Figure 1, for example between A and B, and/or
between X and Y. These paths are omitted for graphical clarity.

Figure 2: Concatenated Repairs
There are three cases to consider:

1) Consider the general case of a pair of protected links A-B and X-
Y as shown in the network fragment shown Figure 1. If the repair
path for A-B does not traverse X-Y and the repair path for X-Y does
not traverse A-B, this case is completely safe and will not cause
looping or packet loss.

A more common variation of this case is shown in Figure 2, which
shows two failures in different parts of the network in which a
packet from A to D traverses two concatenated repairs.

2) In Figure 1, the repair for A-B traverses X-Y, but the repair for
X-Y does not traverse A-B. This case occurs when the not-via path
from A to B traverses link X-Y, but the not-via path from X to Y
traverses some path not shown in Figure 1. In standard not-via the
repaired packet for A-B would be dropped when it reached X-Y, since
the repair of repaired packets is currently forbidden. However, if
this packet were allowed to be repaired, the path to D would be



complete and no harm would be done, although two levels of
encapsulation would be required.

3) The repair for A-B traverses X-Y AND the repair for X-Y traverses
A-B. In this case unrestricted repair would result in looping
packets and increasing levels of encapsulation.

The challenge in applying IPFRR to a network that is undergoing

multiple failures is, therefore, to identify which of these cases exist
in the network and react accordingly.

3. Outline Solution TOC

When A is computing the not-via repair path for A-B (i.e. the path for
packets addressed to Ba, read as "B not-via A") it is aware of the list
of nodes which this path traverses. This can be recorded by a simple
addition to the SPF process, and the not-via addresses associated with
each forward link can be determined. If the path were A, F, X, Y, G, B,
(Figure 1) the list of not-via addresses would be: Fa, Xf, Yx, Gy, Bg.
Under standard not-via operation, A would populate its FIB such that
all normal addresses normally reachable via A-B would be encapsulated
to Ba when A-B fails, but traffic addressed to any not-via address
arriving at A would be dropped. The new procedure modifies this such
that any traffic for a not-via address normally reachable over A-B is
also encapsulated to Ba unless the not-via address is one of those
previously identified as being on the path to Ba, for example Yx, in
which case the packet is dropped.

The above procedure allows cases 1 and 2 above to be repaired, while
preventing the loop which would result from case 3.

Note that this is accomplished by pre-computing the required FIB
entries, and does not require any detailed packet inspection. The same
result could be achieved by checking for multiple levels of
encapsulation and dropping any attempt to triple encapsulate. However,
this would require more detailed inspection of the packet, and causes
difficulties when more than 2 “simultaneous” failures are contemplated.
So far we have permitted benign repairs to coexist, albeit sometimes
requiring multiple encapsulation. Note that in many cases there will be
no performance impact since unless both failures are on the same node,
the two encapsulations or two decapsulations will be performed at
different nodes. There is however the issue of the MTU impact of
multiple encapsulations.

In the following section we consider the various strategies that may be
applied to case 3 - mutual repairs that would loop.

TOC



4. Looping Repairs

In case 3, the simplest approach is to simply not install repairs for
repair paths that might loop. In this case, although the potentially
looping traffic is dropped, the traffic is not repaired. If we assume
that a hold-down is applied before reconvergence in case the link
failure was just a short glitch, and if a loop free convergence
mechanism further delays convergence, then the traffic will be dropped
for an extended period. In these circumstances it would be better to
“abandon all hope” (AAH) [<draft-bryant-francois-shand-ipfrr-
aah-00.txt>] and immediately invoke normal re-convergence.

Note that it is not sufficient to expedite the issuance of an LSP
reporting the failure, since this may be treated as a permitted
simultaneous failure by the oFIB algorithm. It is therefore necessary
to explicitly trigger an oFIB AAH.

4.1. Dropping Looping Packets TOC

One approach to case 3 is to allow the repair, and to experimentally
discover the incompatibility of the repairs if and when they occur.
wWith this method we permit the repair in case 3 and trigger AAH when a
packet drop count on the not-via address has been incremented.
Alternatively, it is possible to wait until the LSP describing the
change is issued normally (i.e. when X announces the failure of X-Y).
When the repairing node A, which has precomputed that X-Y failures are
mutually incompatible with its own repairs receives this LSP it can
then issue the AAH. This has the disadvantage that it doesn’t overcome
the hold-down delay, but it requires no “data-driven” operation, and it
still has the required effect of abandoning the oFIB which is probably
the longer of the delays (although with signalled oFIB this should be
sub-second).

Whilst both of the experimental approaches described above are
feasible, they tend to induce AAH in the presence of otherwise feasible
repairs, and they are contrary to the philosophy of repair pre-
determination that has been applied to existing IPFRR solutions.

4.2. Computing non-looping Repairs of Repairs TOC

An alternative approach to simply dropping the looping packets, or to
detecting the loop after it has occurred, is to use secondary SRLGs.
with a link state routing protocol it is possible to precompute the
incompatibility of the repairs in advance and to compute an alternative
SRLG repair path. Although this does considerably increase the



computational complexity it may be possible to compute repair paths
that avoid the need to simply drop the offending packets.

This approach requires us to identify the mutually incompatible
failures, and advertise them as “secondary SRLGs”. When computing the
repair paths for the affected not-via addresses these links are
simultaneously failed. Note that the assumed simultaneous failure and
resulting repair path only applies to the repair path computed for the
conflicting not-via addresses, and is not used for normal addresses.
Note that this implies that although there will be a longer repair path
when there is more than one failure, if there is a single failure the
repair path length will be "normal".

Ideally we would wish to only invoke secondary SRLG computation when we
are sure that the repair paths are mutually incompatible. Consider the
case of node A in figure 1. A first identifies that the repair path for
A-B is via F-X-Y-G-B. It then explores this path determining the repair
path for each 1link in the path. Thus, for example, it performs a check
at X by running an SPF rooted at X with the X-Y link removed to
determine whether A-B is indeed on X's repair path for packets
addressed to Yx.

Some optimizations are possible in this calculation, which appears at
first sight to be order hk (where h is the average hop length of repair
paths and k is the average number of neighbours of a router). When A is
computing its set of repair paths, it does so for all its k neighbours.
In each case it identifies a list of node pairs traversed by each
repair. These lists may often have one or more node pairs in common, so
the actual number of link failures which require investigation is the
union of these sets. It is then necessary to run an SPF rooted at the
first node of each pair (the first node because the pairings are
ordered representing the direction of the path), with the link to the
second node removed. This SPF, while not an incremental, can be
terminated as soon as the not-via address is reached. For example, when
running the SPF rooted at X, with the link X-Y removed, the SPF can be
terminated when Yx is reached. Once the path has been found, the path
is checked to determine if it traverses any of A’s links in the
direction away from A. Note that, because the node pair XY may exist in
the list for more than one of A’s links (i.e. it lies on more than one
repair path), it is necessary to identify the correct list, and hence
link which has a mutually looping repair path. That link of A is then
advertised by A as a secondary SRLG paired with the link X-Y. Also note
that X will be running this algorithm as well, and will identify that
XY is paired with A-B and so advertise it. This could perhaps be used
as a further check.

The ordering of the pairs in the lists is important. i.e. X-Y and Y-X
are dealt with separately. If and only if the repairs are mutually
incompatible, we need to advertise the pair of links as a secondary
SRLG, and then ALL nodes compute repair paths around both failures
using an additional not-via address with the semantics not-via A-B AND
not-via X-Y.



A further possibility is that because we are going to the trouble of
advertising these SRLG sets, we could also advertise the new repair
path and only get the nodes on that path to perform the necessary
computation. Note also that once we have reached Q space with respect
to the two failures we need no longer continue the computation, so we
only need to notify the nodes on the path that are not in Q-space.
One cause of mutually looping repair paths is the existence of nodes
with only two links, or sections of the network which are only bi-
connected. In these cases, repair is clearly impossible - the failure
of both links partitions the network. It would be advantageous to be
able to identify these cases, and inhibit the fruitless advertisement
of the secondary SRLG information. This could be achieved by the node
detecting the requirement for a secondary SRLG, first running the not-
via computation with both links removed. If this does not result in a
path, it is clear that the network would be partitioned by such a
failure, and so no advertisement is required.

4.3. N-level Mutual Loops TOC

It is tempting to conclude that the mechanism described above can be
applied to the general case of N failures. If we use the approach of
assuming that repairs are not mutual, and catching the loops and
executing AAH when they occur, then we can attempt repairs in the case
of N failures.

If we use the approach of avoiding potentially mutual repairs and
creating secondary SRLG, then we have to explore N levels of repair,
where N is the number of simultaneous failures we wish to repair.

5. Mixing LFAs and Not-via TOC

So far in this draft we have assumed that all repairs use not-via
tunnels. However, in practise we may wish to use loop free alternates
(LFAs) or downstream routes where available. This complicates the
issue, because their use results in packets which are being repaired,
but NOT addressed to not-via addresses. If BOTH links are using
downstream routes there is no possibility of looping, since it is
impossible to have a pair of nodes which are both downstream of each
other Basic (Atlas, A. and A. Zinin, “Basic Specification for IP Fast
Reroute: Loop-Free Alternates,” September 2008.) [4].

Loops can however occur when LFAs are used. An obvious example is the
well known node repair problem with LFAs Basic (Atlas, A. and A. Zinin,
“Basic Specification for IP Fast Reroute: Loop-Free Alternates,”
September 2008.) [4]. If one link is using a downstream route, while
the other is using a not-via tunnel, the potential mechanism described




above would work provided it were possible to determine the nodes on
the path of the downstream route. Some methods of computing downstream
routes do not provide this path information. If the path information is
however available, the link using a downstream route will have a
discard FIB entry for the not-via address of the other link. The
consequence is that potentially looping packets will be discarded when
they attempt to cross this link.

In the case where the mutual repairs are both using not-via repairs,
the loop will be broken when the packet arrives at the second failure.
However packets are unconditionally repaired at downstream routes, and
thus when the mutual pair consists of a downstream route and a not-via
repair, the looping packet will only be dropped when it gets back to
the first failure. i.e. it will execute a single turn of the loop
before being dropped.

There is a further complication with downstream routes, since although
the path may be computed to the far side of the failure, the packet may
“peel off” to its destination before reaching the far side of the
failure. In this case it may traverse some other link which has failed
and was not accounted for on the computed path. If the A-B repair
(Figure 1) is a downstream route and the X-Y repair is a not-via
repair, we can have the situation where the X-Y repair packets
encapsulated to Yx follow a path which attempts to traverse A-B. If the
A-B repair path for “normal” addresses is a downstream route, it cannot
be assumed that the repair path for packets addressed to Yx can be sent
to the same neighbour. This is because the validity of a downstream
route must be ascertained in the topology represented by Yx, i.e. that
with the link X-Y failed. This is not the same topology that was used
for the normal downstream calculation, and use of the normal downstream
route for the encapsulated packets may result in an undetected loop. If
it is computationally feasible to check the downstream route in this
topology (i.e. for any not-via address Qp which traverses A-B we must
perform the downstream calculation for that not-via address in the
topology with link Q-P failed.), then the downstream repair for Yx can
safely be used. These packets cannot re-visit X-Y, since by definition
they will avoid that link. Alternatively, the packet could be always
repaired in a not-via tunnel. i.e. even though the normal repair for
traffic traversing A-B would be to use a downstream route, we could
insist that such traffic addressed to a not-via address MUST use a
tunnel to Ba. Such a tunnel would only be installed for an address Qp
if it were established that it did not traverse Q-P (using the rules
described above).

6. Security Considerations TOC

Security considerations described in Framework (Shand, M. and S.
Bryant, “IP Fast Reroute Framework,” October 2009.) [3], Basic (Atlas,




A. and A. Zinin, “Basic Specification for IP Fast Reroute: Loop-Free
Alternates,” September 2008.) [4] and not-via (Shand, M., Bryant, S.,
and S. Previdi, “IP Fast Reroute Using Not-via Addresses,” March 2010.)
[2] apply to this work. Any additional security considerations will be
provided in a future revision of this draft

7. IANA Considerations TOC

There are no IANA actions required by this draft.

8. References TOC

8.1. Normative References
TOC
[1] Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).
[2] Shand, M., Bryant, S., and S. Previdi, “IP Fast Reroute Using
Not-via Addresses,” draft-ietf-rtgwg-ipfrr-notvia-addresses-05
(work in progress), March 2010 (TXT).

8.2. Informative References
TOC
[3] Shand, M. and S. Bryant, “IP Fast Reroute Framework,” draft-
ietf-rtgwg-ipfrr-framework-13 (work in progress), October 2009
(TXT).
[4] Atlas, A. and A. Zinin, “Basic Specification for IP Fast
Reroute: Loop-Free Alternates,” RFC 5286, September 2008 (TXT).

Authors' Addresses
TOC
Stewart Bryant
Cisco Systems
250, Longwater Ave, Green Park,
Reading RG2 6GB
UK
Email: stbryant@cisco.com



mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://www.ietf.org/internet-drafts/draft-ietf-rtgwg-ipfrr-notvia-addresses-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtgwg-ipfrr-notvia-addresses-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtgwg-ipfrr-notvia-addresses-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtgwg-ipfrr-framework-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtgwg-ipfrr-framework-13.txt
http://tools.ietf.org/html/rfc5286
http://tools.ietf.org/html/rfc5286
http://www.rfc-editor.org/rfc/rfc5286.txt
mailto:stbryant@cisco.com

Mike Shand
Cisco Systems
250, Longwater Ave, Green Park,
Reading RG2 6GB
UK
Email: mshand@cisco.com

Full Copyright Statement
TOC
Copyright © The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.



mailto:mshand@cisco.com
http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	IPFRR in the Presence of Multiple Failuresdraft-bryant-shand-ipfrr-multi-01
	Status of this Memo
	Abstract
	Requirements Language
	Table of Contents
	1.  Introduction
	2.  The Problem
	3.  Outline Solution
	4.  Looping Repairs
	4.1.  Dropping Looping Packets
	4.2.  Computing non-looping Repairs of Repairs
	4.3.  N-level Mutual Loops
	5.  Mixing LFAs and Not-via
	6.  Security Considerations
	7.  IANA Considerations
	8.  References
	8.1. Normative References
	8.2. Informative References
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property


