
Network Working Group I. Bryskin
Internet-Draft Huawei Technologies
Intended status: Informational X. Liu
Expires: December 30, 2018 Volta Networks
 A. Clemm
 Huawei
 H. Birkholz
 Fraunhofer SIT
 T. Zhou
 Huawei
 June 28, 2018

Generalized Network Control Automation YANG Model
draft-bryskin-netconf-automation-yang-02

Abstract

 This document describes a YANG data model for the Generalized Network
 Control Automation (GNCA), aimed to define an abstract and uniform
 semantics for NETCONF/YANG scripts in the form of Event-Condition-
 Action (ECA) containers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 30, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Bryskin, et al. Expires December 30, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Network Control Automation June 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Purpose . 3
3. GNCA concepts and constructs 4
3.1. Policy Variable (PV) 4
3.2. ECA Event . 6
3.3. ECA Condition . 7
3.4. ECA Action . 9
3.5. ECA . 11

4. Where ECA scripts are executed? 12
5. ECA script example . 13
6. Complete Model Tree Structure 15
7. YANG Module . 21
8. IANA Considerations . 40
9. Security Considerations 40
10. Acknowledgements . 40
11. References . 41
11.1. Normative References 41
11.2. Informative References 41

 Authors' Addresses . 41

1. Introduction

 NETCONF/YANG has proved to be very successful in facilitating
 interactive network control paradigm, in which a network control
 application (controller) requests the network server to perform
 certain (re-)configurations, then, retrieves network states of
 interest, then asks for more (re-)configurations and so forth. This
 said, there are multiple use cases that require stringing network
 configuration requests together with conditioning their order of
 execution based on certain events detected in the network, as well as
 current, historical or predicted network states, and pushing such
 request batches/scripts to the network server in order to control the
 network close loop automation processes. The Generalized Network
 Control Automation (GNCA) YANG model introduced by this document
 defines an abstract and uniform semantics of such NETCONF/YANG
 scripts in the form of Event-Condition-Action (ECA) containers.

Bryskin, et al. Expires December 30, 2018 [Page 2]

Internet-Draft Network Control Automation June 2018

2. Purpose

 The purpose of the Generalized Network Control Automation (GNCA) YANG
 model is to enable an environment allowing for manipulation of close
 loop network automation via configuration of abstract Event-
 Condition-Action (ECA) scripts. The model defines the semantics of
 said scripts; however, how the scripts are actually implemented by
 the server is not governed by the model. The server may, for
 example, based on pushed ECA configuration, generate and execute
 server specific scripts. How this is done is outside of the scope of
 this document.

 Although not all event response behaviors could be delegated to the
 network server, there are many circumstances where it is highly
 desirable. For example:

 a. Reaction to many network events is well understood and does not
 require additional information (such as broader or higher level
 network view or analytics input);

 b. It is often imperative for the network to start acting as quickly
 as the event is detected. In other words, there might simply be
 no time for the network-controller communication;

 c. A paradigm in which a controller micro-manages every network
 behavior does not scale. Simply put, there are always things
 that the network has to do autonomously (i.e. when the controller
 is not looking), which does not mean that the controller should
 have no say as to how said things need to be done;

 d. Numerous important use cases and applications can benefit from
 ability to define in an abstract and uniformly way a programmable
 logic in one place (e.g. on the controller) and execute it
 someplace else (e.g. on the server).

 The main objective of the GNCA is to generalize the ECA network
 control style, so that it could be applied to arbitrary network
 events/conditions and manipulate network auto-control of large
 variety of network resources. Such a generalization would allow, for
 example, conveying to the network a coherent/ordered/prioritized
 behavior for recovering from a network failure or failures affecting
 simultaneously multiple services, instruct the network how to fight
 rapidly developing congestions, what to do when power outage is
 detected and so forth. In fact, it could be argued that without some
 sort of close loop network control automation hierarchical network
 control realistically could not be achieved.

Bryskin, et al. Expires December 30, 2018 [Page 3]

Internet-Draft Network Control Automation June 2018

 The GNCA YANG model could be also thought of as an attempt to
 generalize the smart filter subscription machinery by stating that
 sending a notification is one of possibly multiple actions that
 network could perform reacting to the specified smart trigger.
 According to "Smart filters for Push Updates - Problem Statement"
 [I-D.clemm-netconf-push-smart-filters-ps]:

 "They [smart filters] are also useful for network automation, in
 which automated actions are automatically triggered based on when
 certain events in the network occur while certain conditions hold. A
 YANG-Push subscription with a smart filter can in effect act as a
 source for such events. Combined with an optional check for a
 condition when an event is observed, this can serve as the basis of
 action."

 In a nutshell GNCA facilitates an environment in which the network
 automation logic could be defined in a form of ECA scripts by a
 client, pushed to the network before the events of interest happen,
 and executed by the network after the events are detected.

 Finally, according to the smart filters problem statement, the
 following smart filters will be considered:

 "o Filters that involve freely programmable logic"

 ECA scripts could serve as a vehicle to associate with a smart filter
 a complex freely programmable logic to detect the event of interest
 in the first place.

3. GNCA concepts and constructs

3.1. Policy Variable (PV)

 Policy Variable (PV) is a structure to keep interim results/meta data
 during the execution of an ECA script. For example, a PV could be
 used as an output parameter of an RPC invoked by ECA1 to be used in a
 condition expression for ECA2.

 With respect to ECAs the scope of a PV is either global or (ECA)
 local. Global PVs are permanent. They are kept in the top level PV
 container and are shared between all ECAs of the script. Local PVs
 are kept within the internal PV container of an ECA. Local PVs could
 be either dynamic - appear/disappear with start/stop of the ECA
 execution, or static - exist as long as the ECA is configured.

 Each PV has the following attributes:

 o Globally or ECA scope unique name;

Bryskin, et al. Expires December 30, 2018 [Page 4]

Internet-Draft Network Control Automation June 2018

 o type - either pre-defined (e.g. Boolea, integer, uint64,etc.) or
 specified via XPath pointing to a data store node or a sub-tree of
 the required structure. For example, PV named "Link" could be
 associated with the "/TE_Topologies/TE_Links/TE_Link" XPath in
 accordance with the TE Topology model [I-D.ietf-teas-yang-te-topo]
 and hence be capable of accommodating the entire TE Link
 container;

 o value - data stored in the PV structured according to the PV type.

 The following operations are allowed with/on a PV:

 o initialize (with a constant/enum/identity);

 o assign (with contents of another same type PV);

 o read (retrieve data store contents pointed by the specified same
 type XPath/sub-tree);

 o write (modify same type CONFIG=TRUE data store state with the PV's
 content/value);

 o insert (PV's content into a same type list);

 o iterate (copy into PV one by one same type list elements) (See
 examples of definition of and operations with PVs in Section 5).

 o function calls in a form of F(dst, src), where F is an identity of
 a function from extendable function library, dst and src are
 destination and source PVs respectively, the function's input
 parameters, with the result returned in dst.

 Arbitrary expressions with PVs are for future study.

 PVs could be used as input/output of an ECA invoked RPC. PVs could
 also be a source of information sent to the client in notification
 messages.

 PVs could be used in condition expressions (see Section 5).

 The model structure for the Policy Variable is shown below:

Bryskin, et al. Expires December 30, 2018 [Page 5]

Internet-Draft Network Control Automation June 2018

 +--rw policy-variables
 | +--rw policy-variable* [name]
 | +--rw name string
 | +--rw (type-choice)?
 | | +--:(common)
 | | | +--rw type? identityref
 | | +--:(xpath)
 | | +--rw xpath? string
 | +--rw value? <anydata>

3.2. ECA Event

 ECA Event is any subscribable event notification either explicitly
 defined in a YANG module supported by the server or a smart filter
 conveyed to the server via smart filter subscription. Additionally,
 an event could be associated with a one-time or periodic timer.

 Event notification contents become in the ECA context implicit local
 dynamic PVs with automatically generated names. Let's assume
 Network_Failure_Is_Detected event is defined that carries to a
 subscriber the detected failure type (failureType), ID (failureID)
 and the affected by the failure TE link state (teLInk). In the
 context of the associated with the Networ_Failure_Is_Detected event
 ECA failureType, failureID and teLink are implicit local dynamic PVs
 that could be used in the embodied Condition and Action containers
 along with explicitly defined global and ECA local (static and/or
 dynamic) PVs.

 One way to think of NETWONF/YANG Event Notification is as Remote
 Procedure Call-back, i.e. server->client directed RPC. When a
 subscribable NETWONF/YANG Event and associated with it ECA is pushed
 to the server within an ECA script, the server is expected to
 interpret this as follows: take the contents of the event
 notification and execute the logic defined by the associated
 Condition-Action chain (as I (client) would do on receipt of the
 notification) in order to decide how to react to the event. Recall
 that the whole purpose of ECA scripts is to reduce as much as
 possible the client-server communication.

 A client may define an event of interest by making use of YANG PUSH
 smart filter/subscription. Specifically, the client may configure an
 ECA event according to the GNCA model specifying the event's name, as
 well as the name of corresponding PUSH subscrition. In this case the
 server is expected to:

 o Register the event recording its name and using the referred PUSH
 subsription trigger as definition of the event firing trigger;

Bryskin, et al. Expires December 30, 2018 [Page 6]

Internet-Draft Network Control Automation June 2018

 o Auto-configure the event's ECA input in the form of local PVs
 using the PUSH subscription's filters;

 o At the moment of event firing intercept the notifications that
 would be nornally sent to the PUSH subscription's clint(s); copy
 the data store states pointed by the PUSH subscription's filters
 into the auto-configured ECA's local PVs and execute the ECA's
 condition-action chain.

 All events (specified in at least one ECA pushed to the server) are
 required to be constantly monitored by the server. One way to think
 of this is that the server subscribes to its own publications with
 respect to all events that are associated with at least one ECA.

3.3. ECA Condition

 ECA Condition is evaluated to TRUE or FALSE logical expression.
 There are two ways how an ECA Condition could be specified:

 o in a form of XPath expression;

 o as a hierarchy of comparisons and logical combinations of thereof.

 The former option allows for specifying a condition of arbitrary
 complexity as a single string with an XPath expression, in which
 pertinent PVs and data store states are referred to by their
 respective positions in the YANG tree.

 The latter option allows for configuring logical hierarchies. The
 bottom of said hierarchies are primitive comparisons (micro-
 conditions) specified in a form of:

 <arg1><relation><arg2>

 where arg1 and arg2 represent either constant/enum/identity, PV or
 pointed by XPath data store node or sub-tree,

 relation is one of the comparison operations from the set: ==, !=,
 >, <, >=, <=

 Primitive comparisons could be combined hierarchically into macro-
 conditions via && and || logical operations.

 Regardless of the choice of their specification, ECA Conditions are
 associated with ECA Events and evaluated only within event threads
 triggered by the event detection.

Bryskin, et al. Expires December 30, 2018 [Page 7]

Internet-Draft Network Control Automation June 2018

 When an ECA Condition is evaluated to TRUE, the associated with it
 ECA Action is executed.

 The model structure for the ECA Condition is shown below:

 +--rw conditions
 | +--rw condition* [name]
 | +--rw name string
 | +--rw (expression-choice)?
 | +--:(logical-operation)
 | | +--rw logical-operation-type? identityref
 | | +--rw comparison-operation* [name]
 | | | +--rw name string
 | | | +--rw comparision-type? identityref
 | | | +--rw arg1
 | | | | +--rw policy-argument
 | | | | +--rw type? identityref
 | | | | +--rw (argument-choice)?
 | | | | +--:(policy-constant)
 | | | | | +--rw constant? string
 | | | | +--:(policy-variable)
 | | | | | +--rw policy-variable? leafref
 | | | | +--:(local-policy-variable)
 | | | | | +--rw local-policy-variable? leafref
 | | | | +--:(xpath)
 | | | | +--rw xpath? string
 | | | +--rw arg2
 | | | +--rw policy-argument
 | | | +--rw type? identityref
 | | | +--rw (argument-choice)?
 | | | +--:(policy-constant)
 | | | | +--rw constant? string
 | | | +--:(policy-variable)
 | | | | +--rw policy-variable? leafref
 | | | +--:(local-policy-variable)
 | | | | +--rw local-policy-variable? leafref
 | | | +--:(xpath)
 | | | +--rw xpath? string
 | | +--rw sub-condition* [name]
 | | +--rw name -> /gnca/conditions/condition/name
 | +--:(xpath)
 | +--rw condition-xpath? string

 The policy arguments arg1 and arg2 have the following structure:

Bryskin, et al. Expires December 30, 2018 [Page 8]

Internet-Draft Network Control Automation June 2018

 +--rw policy-argument
 +--rw type? identityref
 +--rw (argument-choice)?
 +--:(policy-constant)
 | +--rw constant? string
 +--:(policy-variable)
 | +--rw policy-variable? leafref
 +--:(local-policy-variable)
 | +--rw local-policy-variable? leafref
 +--:(xpath)
 +--rw xpath? string

3.4. ECA Action

 ECA Action is one of the following operations to be carried out by a
 server:

 o (-re)configuration - modifying a CONFIG=TRUE data store state

 o (re-)configuration scheduling - scheduling one time or periodic
 (re-)configuration in the future

 o sending one time notification;

 o adding/removing event notify subscription (essentially, the same
 action as performed when a client explicitly adds/removes a
 subscription)

 o executing an RPC defined by a YANG module supported by the server
 (the same action as performed when a client interactively calls
 the RPC);

 o performing operations and function calls on PVs (such as assign,
 read, insert, iterate, etc);

 o starting/stopping timers;

 o stopping current ECA;

 o invoking another ECA;

 o NO-ACTION action - meaningful only within ECA's Cleanup Condition-
 Action list to indicate that the ECA's Normal Condition-Action
 thread must be terminated as soon as one of the required Actions
 is rejected by the server (see more Section 3.4).

 Two points are worth noting:

Bryskin, et al. Expires December 30, 2018 [Page 9]

Internet-Draft Network Control Automation June 2018

 1. When a NETWONF/YANG RPC appears in an ECA Action body, the server
 is expected to interpret this as follows: execute the same logic,
 as when the client explicitly calls said RPC via NETCONF. For
 example, when TE_Tunnel_Path_Computation RPC is found in the
 currently executed Action, the server is expected to call its TE
 path computation engine and pass to it the specified parameters
 in the Action input.

 2. When a "Send notification" action is configured as an ECA Action,
 the notification message to be sent to the client may contain not
 only elements of the data store (as, for example, YANG PUSH or
 smart filter notifications do), but also the contents of global
 and local PVs, which store results of arbitrary operations
 performed on the data store contents (possibly over arbitrary
 period of time) to determine, for example, history/evolution of
 data store changes, median values, ranges and rates of the
 changes, results of configured function calls and expressions,
 etc. - in short, any data the client may find interesting about
 the associated event with all the logic to compute said data
 delegated to the server. Importantly, ECA notifications are the
 only ECA actions that directly interact with and hence need to be
 unambiguously understood by the client. Furthermore, the same
 ECA may originate numerous single or repetitive semantically
 different notifications within the same or separate event
 firings. In order to facilitate for the client the correlation
 of events and ECA notifications received from the server, the
 GNCA model requires each notification to carry mandatory
 information, such as event and (event scope unique) notification
 names.

 Multiple ECA Condition/Action pairs could be combined into a macro-
 action.

 Multiple ECA (macro-)Actions could be triggered by a single ECA
 event.

 Any given ECA Condition or Action may appear in more than one ECAs.

 The model structure for the ECA Action is shown below:

Bryskin, et al. Expires December 30, 2018 [Page 10]

Internet-Draft Network Control Automation June 2018

 +--rw actions
 | +--rw action* [name]
 | +--rw name string
 | +--rw action-element* [name]
 | | +--rw name string
 | | +--rw action-type? identityref
 | | +--rw (action-operation)?
 | | +--:(action)
 | | | +--rw action-name?
 | | | -> /gnca/actions/action/name
 | | +--:(content-moving)
 | | | +--rw content-moving
 | | | +--rw content-moving-type? identityref
 | | | +--rw src
 | | | | +--rw policy-argument
 | | | +--rw dst
 | | | +--rw policy-argument
 | | +--:(function-call)
 | | | +--rw function-call
 | | | +--rw function-type? identityref
 | | | +--rw src
 | | | | +--rw policy-argument
 | | | +--rw dst
 | | | +--rw policy-argument
 | | +--:(rpc-operation)
 | | | +--rw rpc-operation
 | | | +--rw name? string
 | | | +--rw nc-action-xpath? string
 | | | +--rw policy-variable* [name]
 | | | +--rw name string
 | | | +--rw policy-argument
 | | +--:(notify-operation)
 | | +--rw notify-operation
 | | +--rw name? string
 | | +--rw policy-variable* [name]
 | | +--rw name string
 | | +--rw policy-argument
 | +--rw time-schedule
 | +--rw start? yang:date-and-time
 | +--rw repeat-interval? string

3.5. ECA

 An ECA container includes:

 o Event name

Bryskin, et al. Expires December 30, 2018 [Page 11]

Internet-Draft Network Control Automation June 2018

 o List of local PVs. As mentioned, local PVs could be configured as
 dynamic (their instances appear/disappear with start/stop of the
 ECA execution) or static (their instances exisr as long as the ECA
 is configured). The ECA input (the contents of the associated
 notification message, such as YANG PUSH or smart filter
 notification message) are the ECA's implict local dynamic PVs with
 automatically generated names

 o Normal CONDITION-ACTION list: configured conditions each with
 associated actions to be executed if the condition is evaluated to
 TRUE

 o Cleanup CONDITION-ACTION list: configured conditions/actions to be
 evaluated/executed in case any Action from the Normal CONDITION-
 ACTION list was attempted and rejected by the server. In other
 words, this list specifies the ECA cleanup/unroll logic after
 rejection of an Action from the Normal CONDITION-ACTION list. An
 empty Cleanup CONDITION-ACTION list signifies that the ECA's
 normal Actions should be executed regardless of whether the
 previously attempted ECA Actions were rejected or not by the
 server. Cleanup CONDITION-ACTION list containing a single NO-
 ACTION Action signifies that the ECA thread is to be immediately
 terminated on rejection of any attempted Action (without executing
 any cleanup logic)

4. Where ECA scripts are executed?

 It could be said that the main idea of the GNCA is decoupling the
 place where the network control logic is defined from the place where
 it is executed. In previous sections of this document it is assumed
 that the network control logic is defined by a client and pushed to
 and executed by the network (server). This is accomplished via ECA
 scripts, which are essentially bunches of regular NETCONF style
 operations (such as get, set, call rpc) and event notifications glued
 together via Policy Variables, PVs. It is worth noting that said ECA
 scripts could be easily moved around and executed by any entity
 supporting the GNCA YANG model (i.e. capable of interpreting the ECA
 scripts). One interesting implication of this is that the ECA
 scripts could be executed by neither client nor server, but a 3d
 party entity, for instance, with a special focus on the control of a
 particular network domain or/and special availability of/proximity to
 information/ resources that could contribute to the network control
 decision process. For example, the ECA scripts could be pushed to a
 Path Computation Element (PCE) adopted to support the GNCA YANG
 model. Specialized ECA scripts could be fanned out to multiple
 specialized controllers to take care of different aspects of a
 network domain control.

Bryskin, et al. Expires December 30, 2018 [Page 12]

Internet-Draft Network Control Automation June 2018

 Another interesting idea is to combine the GNCA with hierarchical
 T-SDN architecture. In particular, the ECA scripts conveyed by a
 client to a network orchestrator could be pushed (modified or
 unmodified) hierarchically down to lower level controllers. After
 all, the goal of the hierarchical T-SDN is to create a paradigm in
 which the higher level of a controller in the hierarchy, the broader
 (topologically and/or functionally) its control on the network and
 the lesser its involvement in the network's micro-management in real
 time. On the other hand, it is desirable for a higher level
 controller to have a say as to how the subordinate controllers and,
 by extension, the network under control should deal with events and
 situations that are handled autonomously (i.e. without bothering the
 higher level controller in real time). The ECA scripts pushed down
 the T-SDN hierarchy may help to achieve this objective.

5. ECA script example

 Consider a situation on a TE network when a network failure
 simultaneously affecting multiple TE tunnels. Normally, the TE
 network relies in this case on TE tunnels pre-configured protection/
 restoration capabilities and lets the TE tunnels to auto-recover
 themselves independently from each other. However, this default
 behavior may not be desired in some configurations/use cases because:

 a. Recovery procedures of a "greedy" TE tunnel may block the
 recovery of other TE tunnels;

 b. Shared mesh protection/restoration schemes are in place

 In such cases the network has to perform the recovery of failure
 affected TE tunnels as a coordinated process. Furthermore, it is
 quite common that network resources available for the dynamic
 recovery procedures are limited, in which case it is desirable to
 convey to the network the policy/order in which the TE tunnels should
 be recovered. Different policies may be considered, to name a few:

 1. Recover as many TE tunnels as possible;

 2. Recover TE tunnels in accordance with their importance/priority;

 3. Recover all unprotected TE tunnels before recovering broken
 connections/LSPs of protected TE tunnels (because the latter can
 tolerate the failure hopefully until it is repaired).

 Let's describe an ECA script that could be pushed by the controller
 application instructing the network to perform multiple TE tunnel
 failure recovery according to policy (3) above.

Bryskin, et al. Expires December 30, 2018 [Page 13]

Internet-Draft Network Control Automation June 2018

 Assumptions: it is assumed that in one or several YANG modules
 supported by the server the following is defined:

 o Subscribable "Network_Failure_Is_Detected" event carrying in the
 notification message the detected failure type (failureType), ID
 (failureID) and the affected by the failure TE link ID (linkID);

 o RPC "PathDependsOnLink" taking as an input a TE_Path and
 TE_Link_ID and returning in its output Boolean indicating whether
 or not the specified path goes through the link with the specified
 ID;

 o RPC "ReplaceTunnelsAwayFromLink" taking as an input a list of TE
 tunnel key leafrefs and ID of to be avoided link, performing the
 tunnel replacement away from the link and returning no output.

 Explicit (global) PVs:

 o name: Yes type: Boolean

 o name: lsp xpath: /TE_Tunnels/lsps/lsp

 o name tunnel xpath: /TE_Tunnels/tunnels/te_tunnel

 o name: unprotected_tunnels xpath: /TE_Tunnels/tunnels/te_tunnel/
 dependent_tunnels

 o name protected_tunnels xpath: /TE_Tunnels/tunnels/te_tunnel/
 dependent_tunnels

 Actions:

 name: PopulateTunnelLists

 body:

Bryskin, et al. Expires December 30, 2018 [Page 14]

Internet-Draft Network Control Automation June 2018

 lsp iterate xpath:/TE_Tunnels/lsps
 {
 rpc: PathDependsOnLink(<lsp>/rro, Yes);
 if(Yes == TRUE)
 {
 tunnel = <lsp>/parrent_tunnel;
 if(<tunnel>/protectionType == UNPROTECTED)
 <tunne>/tunnelName insert unprotected_tunnels
 if(<tunnel>/protectionType != UNPROTECTED)
 <tunne>/tunnelName insert protected_tunnels
 }
 }

 name: RepairTunnels

 Body:

 rpc: ReplaceTunnelsAwayFromLink(unprotected_tunnels, linkID);
 rpc: ReplaceTunnelsAwayFromLink(protected_tunnels, linkID);

 ECA:

 eventName: Network_Failure_Is_Detected;

 eventParams: failureType, failureID, linkID

 Condition: TRUE (always, every time)

 Actions:

 unprotected_tunnels = 0; protected_tunnels =0;

 namedAction:PopulateTunnelLists;

 namedAction:RepairTunnels

 Note: RPC "PathDependsOnLink" is used in the example for simplicity.
 The RPC could be easily replaced by a scripted named action similar
 to PopulateTunnelListes .

6. Complete Model Tree Structure

 The complete tree structure of the YANG model defined in this
 document is as follows:

Bryskin, et al. Expires December 30, 2018 [Page 15]

Internet-Draft Network Control Automation June 2018

 module: ietf-gnca
 +--rw gnca
 +--rw policy-variables
 | +--rw policy-variable* [name]
 | +--rw name string
 | +--rw (type-choice)?
 | | +--:(common)
 | | | +--rw type? identityref
 | | +--:(xpath)
 | | +--rw xpath? string
 | +--rw value? <anydata>
 +--rw events
 | +--rw event* [name]
 | +--rw name string
 | +--rw policy-variable?
 | | -> /gnca/policy-variables/policy-variable/name
 | +--rw local-policy-variable?
 | | -> /gnca/ecas/eca/policy-variable/name
 | +--rw (type-choice)?
 | +--:(stream)
 | | +--rw stream
 | | +--rw name? string
 | | +--rw filter* string
 | | +--rw remote-publisher!
 | | +--rw address? inet:ip-address-no-zone
 | | +--rw port? inet:port-number
 | | +--rw transport? sn:transport
 | +--:(timer)
 | +--rw time-schedule!
 | +--rw start? yang:date-and-time
 | +--rw repeat-interval? string
 +--rw conditions
 | +--rw condition* [name]
 | +--rw name string
 | +--rw (expression-choice)?
 | +--:(logical-operation)
 | | +--rw logical-operation-type? identityref
 | | +--rw comparison-operation* [name]
 | | | +--rw name string
 | | | +--rw comparision-type? identityref
 | | | +--rw arg1
 | | | | +--rw policy-argument
 | | | | +--rw type?
 | | | | | identityref
 | | | | +--rw (argument-choice)?
 | | | | +--:(policy-constant)
 | | | | | +--rw constant? string
 | | | | +--:(policy-variable)

Bryskin, et al. Expires December 30, 2018 [Page 16]

Internet-Draft Network Control Automation June 2018

 | | | | | +--rw policy-variable?
 leafref
 | | | | +--:(local-policy-variable)
 | | | | | +--rw local-policy-variable?
 leafref
 | | | | +--:(xpath)
 | | | | +--rw xpath? string
 | | | +--rw arg2
 | | | +--rw policy-argument
 | | | +--rw type?
 | | | | identityref
 | | | +--rw (argument-choice)?
 | | | +--:(policy-constant)
 | | | | +--rw constant? string
 | | | +--:(policy-variable)
 | | | | +--rw policy-variable?
 leafref
 | | | +--:(local-policy-variable)
 | | | | +--rw local-policy-variable?
 leafref
 | | | +--:(xpath)
 | | | +--rw xpath? string
 | | +--rw sub-condition* [name]
 | | +--rw name -> /gnca/conditions/condition/name
 | +--:(xpath)
 | +--rw condition-xpath? string
 +--rw actions
 | +--rw action* [name]
 | +--rw name string
 | +--rw action-element* [name]
 | | +--rw name string
 | | +--rw action-type? identityref
 | | +--rw (action-operation)?
 | | +--:(action)
 | | | +--rw action-name?
 | | | -> /gnca/actions/action/name
 | | +--:(content-moving)
 | | | +--rw content-moving
 | | | +--rw content-moving-type? identityref
 | | | +--rw src
 | | | | +--rw policy-argument
 | | | | +--rw type?
 | | | | | identityref
 | | | | +--rw (argument-choice)?
 | | | | +--:(policy-constant)
 | | | | | +--rw constant?
 | | | | | string
 | | | | +--:(policy-variable)

Bryskin, et al. Expires December 30, 2018 [Page 17]

Internet-Draft Network Control Automation June 2018

 | | | | | +--rw policy-variable?
 leafref
 | | | | +--:(local-policy-variable)
 | | | | | +--rw local-policy-variable?
 leafref
 | | | | +--:(xpath)
 | | | | +--rw xpath?
 | | | | string
 | | | +--rw dst
 | | | +--rw policy-argument
 | | | +--rw type?
 | | | | identityref
 | | | +--rw (argument-choice)?
 | | | +--:(policy-constant)
 | | | | +--rw constant?
 | | | | string
 | | | +--:(policy-variable)
 | | | | +--rw policy-variable?
 leafref
 | | | +--:(local-policy-variable)
 | | | | +--rw local-policy-variable?
 leafref
 | | | +--:(xpath)
 | | | +--rw xpath?
 | | | string
 | | +--:(function-call)
 | | | +--rw function-call
 | | | +--rw function-type? identityref
 | | | +--rw src
 | | | | +--rw policy-argument
 | | | | +--rw type?
 | | | | | identityref
 | | | | +--rw (argument-choice)?
 | | | | +--:(policy-constant)
 | | | | | +--rw constant?
 | | | | | string
 | | | | +--:(policy-variable)
 | | | | | +--rw policy-variable?
 leafref
 | | | | +--:(local-policy-variable)
 | | | | | +--rw local-policy-variable?
 leafref
 | | | | +--:(xpath)
 | | | | +--rw xpath?
 | | | | string
 | | | +--rw dst
 | | | +--rw policy-argument
 | | | +--rw type?

Bryskin, et al. Expires December 30, 2018 [Page 18]

Internet-Draft Network Control Automation June 2018

 | | | | identityref
 | | | +--rw (argument-choice)?
 | | | +--:(policy-constant)
 | | | | +--rw constant?
 | | | | string
 | | | +--:(policy-variable)
 | | | | +--rw policy-variable?
 leafref
 | | | +--:(local-policy-variable)
 | | | | +--rw local-policy-variable?
 leafref
 | | | +--:(xpath)
 | | | +--rw xpath?
 | | | string
 | | +--:(rpc-operation)
 | | | +--rw rpc-operation
 | | | +--rw name? string
 | | | +--rw nc-action-xpath? string
 | | | +--rw policy-variable* [name]
 | | | +--rw name string
 | | | +--rw policy-argument
 | | | +--rw type?
 | | | | identityref
 | | | +--rw (argument-choice)?
 | | | +--:(policy-constant)
 | | | | +--rw constant?
 | | | | string
 | | | +--:(policy-variable)
 | | | | +--rw policy-variable?
 leafref
 | | | +--:(local-policy-variable)
 | | | | +--rw local-policy-variable?
 leafref
 | | | +--:(xpath)
 | | | +--rw xpath?
 | | | string
 | | +--:(notify-operation)
 | | +--rw notify-operation
 | | +--rw name? string
 | | +--rw policy-variable* [name]
 | | +--rw name string
 | | +--rw policy-argument
 | | +--rw type?
 | | | identityref
 | | +--rw (argument-choice)?
 | | +--:(policy-constant)
 | | | +--rw constant?
 | | | string

Bryskin, et al. Expires December 30, 2018 [Page 19]

Internet-Draft Network Control Automation June 2018

 | | +--:(policy-variable)
 | | | +--rw policy-variable?
 leafref
 | | +--:(local-policy-variable)
 | | | +--rw local-policy-variable?
 leafref
 | | +--:(xpath)
 | | +--rw xpath?
 | | string
 | +--rw time-schedule!
 | +--rw start? yang:date-and-time
 | +--rw repeat-interval? string
 +--rw ecas
 | +--rw eca* [name]
 | +--rw name string
 | +--rw event-name string
 | +--rw policy-variable* [name]
 | | +--rw name string
 | | +--rw (type-choice)?
 | | | +--:(common)
 | | | | +--rw type? identityref
 | | | +--:(xpath)
 | | | +--rw xpath? string
 | | +--rw value? <anydata>
 | | +--rw is-static? boolean
 | +--rw condition-action* [name]
 | | +--rw name string
 | | +--rw condition? -> /gnca/conditions/condition/name
 | | +--rw action? -> /gnca/actions/action/name
 | +--rw cleanup-condition-action* [name]
 | | +--rw name string
 | | +--rw condition? -> /gnca/conditions/condition/name
 | | +--rw action? -> /gnca/actions/action/name
 | +---x start
 | +---x stop
 | +---x pause
 | +---x resume
 | +---x next-action
 | +--ro execution* [id]
 | +--ro id uint32
 | +--ro oper-status? oper-status
 | +--ro start-time?
 | | yang:date-and-time
 | +--ro stop-time?
 | | yang:date-and-time
 | +--ro next-scheduled-time?
 | | yang:date-and-time
 | +--ro last-condition-action?

Bryskin, et al. Expires December 30, 2018 [Page 20]

Internet-Draft Network Control Automation June 2018

 | | -> ../../condition-action/name
 | +--ro last-condition?
 | | -> ../../condition-action/condition
 | +--ro last-action?
 | | -> ../../condition-action/action
 | +--ro last-cleanup-condition-action?
 | -> ../../cleanup-condition-action/name
 +--rw eca-scripts
 | +--rw eca-script* [script-name]
 | +--rw script-name string
 | +--rw eca* [eca-name]
 | +--rw eca-name -> /gnca/ecas/eca/name
 +--rw running-script?
 -> /gnca/eca-scripts/eca-script/script-name

 notifications:
 +---n eca-execution
 +--ro oper-status oper-status
 +--ro name string
 +--ro policy-variable* [name]
 +--ro name string
 +--ro policy-argument
 | +--ro type? identityref
 | +--ro (argument-choice)?
 | +--:(policy-constant)
 | | +--ro constant? string
 | +--:(policy-variable)
 | | +--ro policy-variable? leafref
 | +--:(local-policy-variable)
 | | +--ro local-policy-variable?
 | | -> /gnca/ecas/eca/policy-variable/name
 | +--:(xpath)
 | +--ro xpath? string
 +--ro value? <anydata>

7. YANG Module

 <CODE BEGINS> file "ietf-gnca@2018-06-22.yang"
 module ietf-gnca {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-gnca";

 prefix "gnca";

 import ietf-yang-types {

Bryskin, et al. Expires December 30, 2018 [Page 21]

Internet-Draft Network Control Automation June 2018

 prefix "yang";
 }

 import ietf-inet-types {
 prefix "inet";
 }

 import ietf-subscribed-notifications {
 prefix "sn";
 }

 organization
 "IETF Network Configuration (NETCONF) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Igor Bryskin
 <mailto:Igor.Bryskin@huawei.com>

 Editor: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>";

 description
 "Event Condition Action (ECA) model.";

 revision 2018-06-22 {
 description "Initial revision";
 reference "RFC XXXX";
 }

 /*
 * Typedefs
 */
 identity argument-type {
 description
 "Possible values are:
 constant, variable, or datastore state.";
 }

 identity comparison-type {
 description
 "Possible values are:
 equal, not-equal, greater, greater-equal, less, less-equal.";

http://tools.ietf.org/wg/netconf/

Bryskin, et al. Expires December 30, 2018 [Page 22]

Internet-Draft Network Control Automation June 2018

 }

 identity logical-operation-type {
 description
 "Possible values are:
 not, or, and.";
 }

 identity function-type {
 description
 "Possible values are:
 plus, minus, mult, divide, remain.";
 }

 identity content-moving-operation-type {
 description
 "Possible values are:
 copy, iterate, insert.";
 }

 identity action-type {
 description
 "Possible values are:
 action, content-move, function-call, rpc, notify.";
 }

 identity policy-variable-type {
 description
 "Possible values are:
 boolean, int32, int64, uint32, uint64, string, etc.";
 }

 /*
 * Typedefs
 */
 typedef oper-status {
 type enumeration {
 enum completed {
 description "Completed with no error.";
 }
 enum running {
 description "Currently with no error.";
 }
 enum sleeping {
 description "Sleeping because of time schedule.";
 }
 enum paused {
 description "Paused by the operator.";

Bryskin, et al. Expires December 30, 2018 [Page 23]

Internet-Draft Network Control Automation June 2018

 }
 enum stoped {
 description "Stopped by the operator.";
 }
 enum failed {
 description "Failed with errors.";
 }
 enum error-handling {
 description
 "Asking the operator to handle an error.";
 }
 }
 description
 "The operational status of an ECA execution.";
 }

 /*
 * Groupings
 */
 grouping policy-variable-attributes {
 description
 "Defining the policy variable attributes, including name, type
 and value. These attributes are used as part of the Policy
 Variable (PV) definition.";
 leaf name {
 type string;
 description
 "A string to uniquely identify a Policy Variable (PV), either
 globally for a global PV, or within the soope of ECA for a
 local PV.";
 }
 choice type-choice {
 description
 "The type of a policy variable may be either a common
 primative type like boolean or a type from existing
 schema node referenced by an XPath string.";
 case common {
 leaf type {
 type identityref {
 base policy-variable-type;
 }
 description
 "A common policy variable type, defined as an
 identity.";
 }
 }
 case xpath {
 leaf xpath {

Bryskin, et al. Expires December 30, 2018 [Page 24]

Internet-Draft Network Control Automation June 2018

 type string;
 description
 "A XPath string, referencing a schema node, whose
 type is used as the type of the policy variable.";
 }
 }
 }
 anydata value {
 description
 "The value of the policy variable, in a format that is
 determined by the policy type.";
 }
 } // policy-variable-attributes

 grouping policy-argument {
 description
 "Defining a policy argument, which can be used in a comparison
 or an action.";
 container policy-argument {
 description
 "Containing the attributes of a policy argument.";
 leaf type {
 type identityref {
 base argument-type;
 }
 description
 "Identifies the argument type.";
 }
 choice argument-choice {
 description
 "Argument formation options, depending on the policy
 type.";
 case policy-constant {
 leaf constant {
 type string;
 description
 "The constant value of the policy argument.";
 }
 }
 case policy-variable {
 leaf policy-variable {
 type leafref {
 path "/gnca/policy-variables/"
 + "policy-variable/name";
 }
 description
 "A reference to a global policy variable, which
 is shared by all ECA scripts.";

Bryskin, et al. Expires December 30, 2018 [Page 25]

Internet-Draft Network Control Automation June 2018

 }
 }
 case local-policy-variable {
 leaf local-policy-variable {
 type leafref {
 path "/gnca/ecas/eca/policy-variable/name";
 }
 description
 "A reference to a local policy variable, which
 is kept within an ECA instance, and appears/
 disappears with start/stop of the ECA execution.";
 }
 }
 case xpath {
 leaf xpath {
 type string;
 description
 "An XPath string, referencing the data in the
 datastore.";
 }
 }
 }
 }
 } // policy-argument

 grouping action-element-attributes {
 description
 "Grouping of action element attributes.";
 leaf action-type {
 type identityref {
 base action-type;
 }
 description
 "Identifies the action type.";
 }
 choice action-operation {
 description
 "The operation choices that an ECA Action can take.";
 case action {
 leaf action-name {
 type leafref {
 path "/gnca/actions/action/name";
 }
 description
 "The operation is to execute a configured ECA Action.";
 }
 } // action
 case content-moving {

Bryskin, et al. Expires December 30, 2018 [Page 26]

Internet-Draft Network Control Automation June 2018

 container content-moving {
 description
 "The operation is to move contents between two policy
 arguments.";
 leaf content-moving-type {
 type identityref {
 base content-moving-operation-type;
 }
 description
 "The type of moving operation, which can be copy,
 iterate (copy a list of elements one by one), or
 insert.";
 }
 container src {
 description
 "The source policy argment.";
 uses policy-argument;
 }
 container dst {
 description
 "The destination policy argument.";
 uses policy-argument;
 }
 }
 } // content-moving
 case function-call {
 container function-call {
 description
 "The operation is to call a function, which is of one of
 a few basic predefined types, such as plus, minus,
 multiply, devide, or remainder.";
 leaf function-type {
 type identityref {
 base function-type;
 }
 description
 "One of the predefined basic function types, such as
 plus, minus, multiply, devide, or remainder.";
 }
 container src {
 description
 "The source policy argument.";
 uses policy-argument;
 }
 container dst {
 description
 "The distination policy argument.";
 uses policy-argument;

Bryskin, et al. Expires December 30, 2018 [Page 27]

Internet-Draft Network Control Automation June 2018

 }
 }
 } // function-call
 case rpc-operation {
 container rpc-operation {
 description
 "The operation is to call an RPC, which is defined by
 a YANG module supported by the server.";
 leaf name {
 type string;
 description
 "The name of the YANG RPC or YANG action to be
 called.";
 }
 leaf nc-action-xpath {
 type string;
 description
 "The location where the YANG action is defined.
 This is used if and only if a YANG action is called.
 This leaf is not set when a YANG RPC is called.";
 }
 list policy-variable {
 key name;
 description
 "A list of policy arguments used as the input or output
 parameters passed to the RPC.";
 leaf name {
 type string;
 description
 "A string name used as the list key to form a list
 of policy arguments.";
 }
 uses policy-argument;
 }
 }
 } // rpc-operation
 case notify-operation {
 container notify-operation {
 description
 "The operation is to send a YANG notification.";
 leaf name {
 type string;
 description
 "Name of the subscribed YANG notification.";
 }
 list policy-variable {
 key name;
 description

Bryskin, et al. Expires December 30, 2018 [Page 28]

Internet-Draft Network Control Automation June 2018

 "A list of policy arguments carried in the notification
 message.";
 leaf name {
 type string;
 description
 "A string name used as the list key to form a list
 of policy arguments.";
 }
 uses policy-argument;
 }
 }
 } // notify-operation
 }
 } // action-element-attributes

 grouping time-schedule-container {
 description
 "Grouping to define a container of a time schedule.";
 container time-schedule {
 presence
 "Presence indicates that the timer is enabled.";
 description
 "Specifying the time schedule to execute an ECA Action, or
 trigger an event.";
 leaf start {
 type yang:date-and-time;
 description
 "The start time of the ECA Action, or the specified event.
 If not specified, the ECA Action is executed
 immediately when it is called, or the event is triggered
 immediately.";
 }
 leaf repeat-interval {
 type string {
 pattern
 '(R\d*/)?P(\d+Y)?(\d+M)?(\d+W)?(\d+D)?T(\d+H)?'
 + '(\d+M)?(\d+S)?';
 }
 description
 "The repeat interval to execute this ECA Action, or to
 trigger the event.
 The repeat interval is a string in ISO 8601 format,
 representing a delay duration or a repeated delay
 duration.
 If not specified, the ECA Action or the evetn trigger
 is executed without delay and without repetition.";
 }
 } // time-schedule

Bryskin, et al. Expires December 30, 2018 [Page 29]

Internet-Draft Network Control Automation June 2018

 }

 /*
 * Data nodes
 */
 container gnca {
 description
 "Top level container for Generalized Network Control Automation
 (GNCA).";

 // policy-variables
 container policy-variables {
 description
 "Container of global Policy Variables (PVs).";
 list policy-variable {
 key name;
 description
 "A list of global Policy Variables (PVs), with a string
 name as the entry key.";
 uses policy-variable-attributes;
 }
 } // policy-variables

 container events {
 description
 "Container of ECA events.";
 list event {
 key name;
 description
 "A list of events used as the triggers of ECAs.";
 leaf name {
 type string;
 description
 "The name of the event.";
 }
 leaf policy-variable {
 type leafref {
 path "/gnca/policy-variables/"
 + "policy-variable/name";
 }
 description
 "Optional association to a global policy variable, which
 is shared by all ECA scripts.";
 }
 leaf local-policy-variable {
 type leafref {
 path "/gnca/ecas/eca/policy-variable/name";
 }

Bryskin, et al. Expires December 30, 2018 [Page 30]

Internet-Draft Network Control Automation June 2018

 description
 "Optional associateion to a local policy variable, which
 is kept within an ECA instance, and appears/
 disappears with start/stop of the ECA execution.";
 }
 choice type-choice {
 description
 "The type of an event, including subscribed stream.";
 case stream {
 container stream {
 description
 "The information of the subscribed stream.";
 leaf name {
 type string;
 description
 "The name of a stream subscribed and reported in
 the model
 ietf-subscribed-notifications.";
 }
 leaf-list filter {
 type string;
 description
 "A list of filters to be applied to the subscribed
 stream.";
 }
 container remote-publisher {
 presence
 "The presence indicates the publisher is remote.
 Otherwise, the publisher is the local system.";
 description
 "If the subscribed stream is from a remote server,
 this container specifies the information of the
 remote server.";
 leaf address {
 type inet:ip-address-no-zone;
 description
 "IP address of the remote publisher.";
 }
 leaf port {
 type inet:port-number;
 description
 "The port number on the publisher for a
 subscription request RPC.";
 }
 leaf transport {
 type sn:transport;
 description
 "The transport used between this system and

Bryskin, et al. Expires December 30, 2018 [Page 31]

Internet-Draft Network Control Automation June 2018

 remote publisher.";
 }
 }
 }
 }
 case timer {
 uses time-schedule-container {
 description
 "Specifying the time schedule to trigger the event.
 If not specified, the event is not triggered.";
 }
 }
 }
 }
 }

 container conditions {
 description
 "Container of ECA Conditions.";
 list condition {
 key name;
 description
 "A list of ECA Conditions.";
 leaf name {
 type string;
 description
 "A string name to uniquely identify an ECA Condition
 globally.";
 }
 choice expression-choice {
 description
 "The choices of expression format to specify a condition,
 which can be either a XPath string or a YANG logical
 operation structure.";
 case logical-operation {
 leaf logical-operation-type {
 type identityref {
 base logical-operation-type;
 }
 description
 "The logical operation type used to combine the
 results from the list comparison-operation and the
 list sub-condition, defined below.";
 }
 list comparison-operation {
 key name;
 description
 "A list of comparison oprations, each of them defines

Bryskin, et al. Expires December 30, 2018 [Page 32]

Internet-Draft Network Control Automation June 2018

 a comparison in the form of <arg1><relation><arg2>,
 where <arg1> and <arg2> are policy arguments, while
 <relation> is the comparison-type, which can be
 ==, !=, >, <, >=, <=";
 leaf name {
 type string;
 description
 "A string name to uniquely identify a comparison
 operation.";
 }
 leaf comparision-type {
 type identityref {
 base comparison-type;
 }
 description
 "The comparison operation applied to the two
 arguments arg1 and arg2 defined blow.";
 }
 container arg1 {
 description
 "The policy argument used as the first parameter of
 the comparison opration.
 A policy argument represents either a constant, PV
 or data store value pointed by XPath.";
 uses policy-argument;
 }
 container arg2 {
 description
 "The policy argument used as the secone parameter
 of the comparison opration.
 A policy argument represents either a constant, PV
 or data store value pointed by XPath.";
 uses policy-argument;
 }
 }
 list sub-condition {
 key name;
 description
 "A list of sub conditions applied by the
 logical-operation-type. This list of sub conditions
 provides the capability of hierarchically combining
 conditions.";
 leaf name {
 type leafref {
 path "/gnca/conditions/condition/name";
 }
 description
 "A reference to a defined condition, which is used

Bryskin, et al. Expires December 30, 2018 [Page 33]

Internet-Draft Network Control Automation June 2018

 as a sub-condition for the logical operation at
 this hierarchy level.";
 }
 } // sub-condition
 } // logical-operation
 case xpath {
 leaf condition-xpath {
 type string;
 description
 "A XPath string, representing a logical expression,
 which can contain comparisons of datastore values
 and logical operations in the XPath format.";
 }
 } // xpath
 } // expression-choice
 } // condition
 } // conditions

 container actions {
 description
 "Container of ECA Actions.";
 list action {
 key name;
 description
 "A list of ECA Actions.";
 leaf name {
 type string;
 description
 "A string name to uniquely identify an ECA Action
 globally.";
 }

 list action-element {
 key name;
 description
 "A list of elements contained in an ECA Action. ";
 leaf name {
 type string;
 description
 "A string name to uniquely identify the action element
 within the scope of an ECA action.";
 }
 uses action-element-attributes;
 }

 uses time-schedule-container {
 description
 "Specifying the time schedule to execute this ECA

Bryskin, et al. Expires December 30, 2018 [Page 34]

Internet-Draft Network Control Automation June 2018

 Action.
 If not specified, the ECA Action is executed immediately
 when it is called.";
 }
 }
 } // actions

 container ecas {
 description
 "Container of ECAs.";
 list eca {
 key name;
 description
 "A lis of ECAs";
 leaf name {
 type string;
 description
 "A string name to uniquely identify an ECA globally.";
 }
 leaf event-name {
 type string;
 mandatory true;
 description
 "The name of an event that triggers the execution of
 this ECA.";
 }

 list policy-variable {
 key name;
 description
 "A list of ECA local Policy Variables (PVs), with a
 string name as the entry key.";
 uses policy-variable-attributes;
 leaf is-static {
 type boolean;
 description
 "'true' if the PV is static; 'false' if the PV is
 dynamic.
 A dynamic PV appears/disappears with the start/stop
 of the ECA execution; a static PV exists as long as
 the ECA is configured.";
 }
 }

 list condition-action {
 key name;
 description
 "A list of Condition-Actions, which are configured

Bryskin, et al. Expires December 30, 2018 [Page 35]

Internet-Draft Network Control Automation June 2018

 conditions each with associated actions to be executed
 if the condition is evaluated to TRUE";
 leaf name {
 type string;
 description
 "A string name uniquely identify a Condition-Action
 within this ECA.";
 }
 leaf condition {
 type leafref {
 path "/gnca/conditions/condition/name";
 }
 description
 "The reference to a configured condition.";
 }
 leaf action {
 type leafref {
 path "/gnca/actions/action/name";
 }
 description
 "The reference to a configured action.";
 }
 } // condition-action

 list cleanup-condition-action {
 key name;
 description
 "A list of Condition-Actions, which are configured
 conditions each with associated actions to be executed
 if the condition is evaluated to TRUE.
 This is the exception handler of this ECA, and is
 evaluated and executed in case any Action from the
 normal Condition-Action list was attempted and rejected
 by the server.";
 leaf name {
 type string;
 description
 "A string name uniquely identify a Condition-Action
 within this ECA.";
 }
 leaf condition {
 type leafref {
 path "/gnca/conditions/condition/name";
 }
 description
 "The reference to a configured condition.";
 }
 leaf action {

Bryskin, et al. Expires December 30, 2018 [Page 36]

Internet-Draft Network Control Automation June 2018

 type leafref {
 path "/gnca/actions/action/name";
 }
 description
 "The reference to a configured action.";
 }
 } // cleanup-condition-action

 action start {
 description
 "Start to execute this ECA.";
 }
 action stop {
 description
 "Stop the execution of this ECA.";
 }
 action pause {
 description
 "Pause the execution of this ECA.";
 }
 action resume {
 description
 "Resume the execution of this ECA.";
 }
 action next-action {
 description
 "Resume the execution of this ECA to complete the next
 action.";
 }
 list execution {
 key id;
 config false;
 description
 "A list of executions that this ECA has completed,
 are currently running, and will start in the scheduled
 future.";
 leaf id {
 type uint32;
 description
 "The ID to uniquely identify an execution of the ECA.";
 }
 leaf oper-status {
 type oper-status;
 description
 "The running status of the execution.";
 }
 leaf start-time {
 type yang:date-and-time;

Bryskin, et al. Expires December 30, 2018 [Page 37]

Internet-Draft Network Control Automation June 2018

 description
 "The time when the ECA started.";
 }
 leaf stop-time {
 type yang:date-and-time;
 description
 "The time when the ECA completed or stopped.";
 }
 leaf next-scheduled-time {
 type yang:date-and-time;
 description
 "The next time when the ECA is scheduled to resume.";
 }
 leaf last-condition-action {
 type leafref {
 path "../../condition-action/name";
 }
 description
 "The reference to a condition-action last executed
 or being executed.";
 }
 leaf last-condition {
 type leafref {
 path "../../condition-action/condition";
 }
 description
 "The reference to a condition last executed or being
 executed.";
 }
 leaf last-action {
 type leafref {
 path "../../condition-action/action";
 }
 description
 "The reference to aa action last executed or being
 executed.";
 }
 leaf last-cleanup-condition-action {
 type leafref {
 path "../../cleanup-condition-action/name";
 }
 description
 "The reference to a cleanup-condition-action last
 executed or being executed.";
 }
 }
 }
 } // ecas

Bryskin, et al. Expires December 30, 2018 [Page 38]

Internet-Draft Network Control Automation June 2018

 container eca-scripts {
 description
 "Container of ECA Scripts.";
 list eca-script {
 key script-name;
 description
 "A list of ECA Script.";
 leaf script-name {
 type string;
 description
 "A string name to uniquely identify an ECA Script.";
 }
 list eca {
 key eca-name;
 description
 "A list of ECAs contained in this ECA Script.";
 leaf eca-name {
 type leafref {
 path "/gnca/ecas/eca/name";
 }
 description
 "The reference to a configured ECA.";
 }
 }
 }
 } // eca-scripts

 leaf running-script {
 type leafref {
 path "/gnca/eca-scripts/eca-script/script-name";
 }
 description
 "The reference to the ECA script that is currently running.";
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification eca-execution {
 description
 "This notification is to send the result of an ECA execution
 that is specified to use notify-operation.";
 leaf oper-status {
 type oper-status;
 mandatory true;

Bryskin, et al. Expires December 30, 2018 [Page 39]

Internet-Draft Network Control Automation June 2018

 description
 "The running status of the execution.";
 }
 leaf name {
 type string;
 mandatory true;
 description
 "Name of the subscribed YANG notification.";
 }
 list policy-variable {
 key name;
 description
 "A list of policy arguments carried in the notification
 message.";
 leaf name {
 type string;
 description
 "A string name used as the list key to form a list
 of policy arguments.";
 }
 uses policy-argument;
 anydata value {
 description
 "The value of the policy variable, in a format that is
 determined by the policy type.";
 }
 }
 }
 }
 <CODE ENDS>

8. IANA Considerations

 TBD.

9. Security Considerations

 TBD.

10. Acknowledgements

 The authors would like to thank Joel Halpern and Robert Wilton for
 their helpful comments and valuable contributions.

Bryskin, et al. Expires December 30, 2018 [Page 40]

Internet-Draft Network Control Automation June 2018

11. References

11.1. Normative References

 [I-D.clemm-netconf-push-smart-filters-ps]
 Clemm, A., Voit, E., Liu, X., Bryskin, I., Zhou, T.,
 Zheng, G., and H. Birkholz, "Smart filters for Push
 Updates - Problem Statement", draft-clemm-netconf-push-

smart-filters-ps-00 (work in progress), October 2017.

 [I-D.ietf-teas-yang-te-topo]
 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
 O. Dios, "YANG Data Model for Traffic Engineering (TE)
 Topologies", draft-ietf-teas-yang-te-topo-16 (work in
 progress), June 2018.

11.2. Informative References

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [I-D.ietf-netconf-subscribed-notifications]
 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Customized Subscriptions to a Publisher's
 Event Streams", draft-ietf-netconf-subscribed-

notifications-12 (work in progress), April 2018.

 [I-D.ietf-netconf-yang-push]
 Clemm, A., Voit, E., Prieto, A., Tripathy, A., Nilsen-
 Nygaard, E., Bierman, A., and B. Lengyel, "YANG Datastore
 Subscription", draft-ietf-netconf-yang-push-16 (work in
 progress), May 2018.

Authors' Addresses

 Igor Bryskin
 Huawei Technologies

 EMail: Igor.Bryskin@huawei.com

 Xufeng Liu
 Volta Networks

 EMail: xufeng.liu.ietf@gmail.com

https://datatracker.ietf.org/doc/html/draft-clemm-netconf-push-smart-filters-ps-00
https://datatracker.ietf.org/doc/html/draft-clemm-netconf-push-smart-filters-ps-00
https://datatracker.ietf.org/doc/html/draft-ietf-teas-yang-te-topo-16
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-subscribed-notifications-12
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-subscribed-notifications-12
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-push-16

Bryskin, et al. Expires December 30, 2018 [Page 41]

Internet-Draft Network Control Automation June 2018

 Alexander Clemm
 Huawei

 EMail: ludwig@clemm.org

 Henk Birkholz
 Fraunhofer SIT

 EMail: henk.birkholz@sit.fraunhofer.de

 Tianran Zhou
 Huawei

 EMail: zhoutianran@huawei.com

Bryskin, et al. Expires December 30, 2018 [Page 42]

