
Network Working Group E. Burger
Internet-Draft Cantata Technology, Inc.
Expires: December 7, 2006 June 5, 2006

Media Server Control Language and Protocol Thoughts
draft-burger-mscl-thoughts-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 7, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 IP mutli-function Media Server control is a problem that has slowly
 bubbled up in importance over the past four years. A driver in the
 IETF is the requirements generated by the XCON framework. Many
 approaches have been proposed. Some of these proposals are device-
 controlled-oriented, such as H.248. Others are server-oriented,
 using SIP and application-oriented markup. Before rushing headlong
 into a framework for a solution, it is time to step back and try to
 understand just what the scope of the problem is. Once consensus is
 reached, we can then move forward with a framework for a solution.

Burger Expires December 7, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft MSCL Thoughts June 2006

 This document describes a number of existing approaches and proposals
 to solve the Application Server - Media Server protocol problem,
 their characteristics and benefits and drawbacks.

Table of Contents

1. Introduction . 3
2. Factors . 4
2.1. Media Resource Model 4
2.2. Number of Protocol Messages for a Given Operation 5
2.3. Network Topology . 5
2.4. Protocol Layer Integrity 6
2.5. Computer Science Issues 7
2.6. Deployment Scale . 9
2.7. Compatibility with SIP Model 10
2.8. Security Issues . 10

3. Transport Protocols . 11
3.1. Pure Device Control 11
3.2. Pure SIP . 11
3.3. SIP With TCP Side Channel 12
3.4. SIP With INFO . 13
3.5. SIP With SUBSCRIBE/NOTIFY 14
3.6. SIP With MEDIA . 14

4. Models . 14
4.1. H.248 . 15
4.2. MSCML . 15
4.3. MOML/MSML . 18

5. Recommendations . 20
6. Security Considerations 21
7. IANA Considerations . 21
8. Informative References . 22
Appendix A. Contributors . 24
Appendix B. Acknowledgements 24

 Author's Address . 25
 Intellectual Property and Copyright Statements 26

Burger Expires December 7, 2006 [Page 2]

Internet-Draft MSCL Thoughts June 2006

1. Introduction

 An IP multi-function Media Server is a network server that provides
 media processing services to the network.

 There are two models for media resource servers. One models the
 media resource server as a box of low-level resources, such as RTP
 mixers, transcoders, audio play and record resources, video play and
 record resources, tone detection and generation resources, and
 resources to connect, or "plumb" the resources together. The other
 model is that of a server that offers announcement services,
 interactive voice response (IVR) services (including speech
 recognition and speech synthesis modalities), interactive video
 response (IVVR) services, basic mixing services, and enhanced mixing
 services.

 In general, when we say "multi-function Media Server", we are
 referring to the server model.

 As the IP Media Server evolved from a box of low-level resources into
 a first-class server in the Internet, the protocol interfaces to
 control the IP Media Server evolved, as well. When people thought of
 the media server as a box of low-level resources, device control
 protocols like H.248 [1] seemed appropriate. At the time, the
 primary model for control of a media server was from a "SoftSwitch",
 or Media Gateway Controller. The principal application was for
 playing announcements and collecting a small number of digits. The
 Media Gateway Controller already implemented a device control state
 machine to control the Media Gateways. Moreover, the Media Gateway
 Controller implemented some form of Gateway Control protocol to
 control the Media Gateways. Thus it was logical to assume that a
 device control protocol, more specifically H.248 from the IETF
 perspective, would be appropriate for media resource control.

 Although the "SoftSwitch" (traditional telephony) model (and market)
 was an early driver for the need for media resources, within two
 years it was clear that the primary consumer of media resources would
 be Internet-oriented applications. Developers create and deploy
 these applications on Internet Application Servers, using Internet
 and Web tools and protocols. These Application Servers have no need
 to control Media Gateways, and thus do not generally have
 implementations of device control protocols such as H.248. Moreover,
 Application Servers were much more likely to have HTTP [2] and SIP
 [3] and use stimulus-markup, client-server application architectures.

RFC3087 [4] introduced the concept of addressing services as if they
 were users in SIP. This meant that it was possible to address
 specific resources from an application simply by sending the session

https://datatracker.ietf.org/doc/html/rfc3087

Burger Expires December 7, 2006 [Page 3]

Internet-Draft MSCL Thoughts June 2006

 to a "user" at a media server. However, RFC3087 did not provide any
 mechanism to achieve Internet-wide interoperability. What was needed
 was some sort of naming convention to address the various services
 available at the media server. The netann [5] specification provides
 such a naming convention.

 Recalling the functions of a multi-function IP Media Server, the
 netann specification is directly sufficient for announcements and
 simple conferencing.

 For Interactive Voice Response (IVR), VoiceXML [6] provides a
 standard method for defining voice (and now video) dialogs. However,
 there is a need to inform the IP multifunction media server that the
 request is for the VoiceXML service and the URI of the initial
 document. The netann specification provides this definition.

 What is missing is a method for enhanced conference control.

 By enhanced conference control, we mean facilities for creating sub-
 mixes, recording the mix or a leg, playing media into a mix or leg,
 altering the gain on a leg or the mix as a whole, defining which
 media is eligible for the mix, and so on.

 To date, there have been several proposals, experimental protocols,
 and de facto standards to address the enhanced conference control
 problem. Factors influencing these protocols include the
 application's media resource model (raw resources versus service
 server), the desire to leverage existing protocol infrastructure
 (such as using SIP Registrars for resource discovery, SIP Proxies for
 resource location, scale, and availability), and the expectations of
 Internet-scale deployment sizing. The following sections examine
 these factors and then look at the various proposals to address them.

 As a side note, two XML-based, SIP-transported media server control
 markup languages command approximately 100% of the market: MSCML [16]
 and MOML [17].

2. Factors

2.1. Media Resource Model

 As the Introduction indicated, many new applications use the Internet
 model for media resources. That is, applications request media
 services from an Internet-oriented, IP multi-function Media Server.
 However, some legacy applications, as well as application developers
 more comfortable with a telco-oriented approach, would like to model
 the media processing function as a set of low-level resources.

https://datatracker.ietf.org/doc/html/rfc3087

Burger Expires December 7, 2006 [Page 4]

Internet-Draft MSCL Thoughts June 2006

 There is no question that with a low-level model, one has the full
 flexibility to address any possible requirement. For example,
 creating a sidebar conference is simply the manipulation of some
 mixer resources and plumbing the selected RTP streams (possibly
 through transcoders) to the mixer resources. Likewise, one can
 accomplish playing a prompt to a leg by disconnecting the leg from
 the mixer, allocating a media player, plumbing the media player to
 the RTP port that represents the leg, directing the media player to
 play the prompt, then deallocate the media player, and finally re-
 plumbing the RTP stream to the mixer.

 Conversely, with an Internet server model, applications request media
 manipulation using protocols appropriate for applications. For
 example, media streams are addressed using application constructs,
 such as SIP dialog identifiers. Rather than specifying a sidebar by
 manipulating RTP streams directly, the application specifies which
 legs the Media Server is to place into a sidebar. In fact, as we
 will show below, one can specify complex topologies, such as Agent/
 Supervisor/Mark, with fewer messages than using a device control
 protocol.

2.2. Number of Protocol Messages for a Given Operation

 The number of protocol messages required for a given set of
 operations is a factor that can potentially affect the scale of the
 deployment.

 Too many messages can result in bandwidth problems at the media
 server control interface, packet handling problems at either the
 media server or application server, and stack processing problems at
 either the media server or application server.

 Conversely, optimizing on number of messages can result in complex
 protocols with a very large number of verbs. This is often in
 conflict with engineering principles such as offering a simple
 protocol with a small number of verbs.

2.3. Network Topology

 In determining the control mechanism, we need to examine the control
 topology. Namely, will there be a one-to-one mapping of Application
 Servers to Media Servers? Will there be a one-to-many mapping of
 Applications Servers to Media Servers? Will there be a many-to-one
 mapping of Applications Servers to Media Servers? Or, can there be a
 many-to-many mapping of Application Servers to Media Servers.
 Answers to this question helps determine the question as to whether
 there should be a single control channel per Media Server, single
 control channel per Application Server, single control channel per

Burger Expires December 7, 2006 [Page 5]

Internet-Draft MSCL Thoughts June 2006

 session, or single control channel per leg.

 Since control channels consume operating system resources, fewer
 control channels use fewer operating system resources. Of course,
 overall system resource utilization is more complex than simply how
 many channels there are at a given node. For example, on most
 operating systems, message routing is done in kernel space with
 pointer manipulation. However, once in application space, message
 routing is often done with buffer copying.

 Another aspect influencing the cardinality of control channels is
 protocol layer integrity. We will examine this point in the next
 section.

2.4. Protocol Layer Integrity

 There are many fundamental principles driving the IETF model of
 layered protocols. For example, a single TCP socket uses less system
 resources that ten thousand TCP sockets. Given that, why do we have
 FTP, TELNET, SMTP, NNTP, MGCP, etc.? It would appear to be much more
 efficient to establish a single TCP socket between the hosts and
 multiplex the different protocols over that socket. One of the
 reasons we do not do this is that while we would save on memory and
 kernel processing on the TCP socket, we end up spending memory and
 kernel processing resources on demultiplexing the TCP stream to
 direct the stream to the appropriate application process in user
 space.

 Likewise, one could multiplex a given protocol over a single channel.
 In this case, the decision comes down to programming model. For
 example, in the FTP case, it is easier to manage the media and
 control separately over separate channels. Many implementations of
 FTP has the server FTP daemon spawning separate FTP server processes
 to handle requests. In this way the FTP server process can be quite
 simple and straightforward.

 Another approach has multiple requests physically multiplexed to a
 single port, but establish separate logical sessions. One protocol
 that uses this model is SIP. All requests go to a single port
 (usually 5060), yet in the protocol data unit (PDU), we have a dialog
 identifier that identifies which dialog the message belongs to.

 The control channel per session model maintains protocol layer
 integrity by allowing the kernel to do appropriate routing of
 requests to the application.

 Multiplexing the control channel requires special considerations.

Burger Expires December 7, 2006 [Page 6]

Internet-Draft MSCL Thoughts June 2006

 If there is a limit of a single control channel at the Media Server,
 then, by definition, there can be only a single Application Server
 controlling it. This works in a device control model, such as H.248
 [1], where a Media Gateway Controller controls an entire Media
 Gateway. In order to allow multiple clients to control the server,
 one must "virtualize" the server. That is, the server presents what
 looks to the client as an entire, self-contained server, while in
 fact those self-contained servers are actually logical partitions of
 the physical server.

 Depending on the server function, such partitioning may be easy or
 extremely complex. Let us consider the case of a SIP Application
 Server. A SIP Application Server, or Back-to-Back User Agent
 (B2BUA), looks to the world like a whole bunch of SIP User Agent
 Servers. This is not too difficult to manage, as the SIP User Agent
 Servers all generally look alike. On the other hand, consider a SIP
 Media Server. The SIP Media Server often has a fixed number of
 different types of resources, such as announcement players,
 conference bridges, recorders, and so on. Partitioning these
 resources can be exceedingly complex.

 Some applications benefit from a single control channel model. For
 example, the classic SoftSwitch model and the current IMS model
 assume that all media processing requests go through a single network
 element that, in the words of TRON, is a "Master Control Program."
 While many from the telco world are comfortable with having a large,
 centralized system, many in the IETF have found time and time again
 that a single central server rarely meets the requirements for
 Internet scale. Other methods, such as server farms and alternate
 return contact addresses, enable theoretically infinite scale.

2.5. Computer Science Issues

 Two issues to consider when using a device control protocol are how
 long it takes to create an application and the quality of the work
 product. Two factors influencing these issues are the program length
 and cyclomatic complexity.

 There is an interesting result through 30 years of programmer
 productivity studies. It turns out that with the exception of the
 introduction of compilers, visual editors, and visual debuggers,
 programmer productivity has been relatively constant, at 10 to 50
 lines of code delivered per day. Thus, reducing the number of lines
 of code required for a given function is an important tactic to
 achieve the goal of improving either the time-to-market or robustness
 of an application. This is one of the reasons why we code in Java,
 C++, VB, etc., instead of assembly language.

Burger Expires December 7, 2006 [Page 7]

Internet-Draft MSCL Thoughts June 2006

 Cyclomatic complexity measures the number of branches and function
 calls in a given application. Again, 15 years of research have shown
 a strong correlation between cyclomaitc complexity and the difficulty
 of test and liklihood of bugs in fielded code. This is an intuitive
 result: more branches means more test cases, or the collary, that
 more branches means more code that testing will miss. However, the
 emperical results are more impressive: the higher the cyclomatic
 complexity, the more errors found in the field.

 Here is a concrete example of how this plays out in practice. iSCSI
 [7] defines how one can, over IP, read and write blocks on a disk.
 One could then ask, "Why do we access data bases using data base-
 oriented protocols, like TDS [8]?" After all, one can do all the
 manipulation one needs for a data base application at the disk block
 level. Moreover, one can virtualize the target disk, so the
 application does not have to have direct control over physical disk
 blocks.

 We would offer the answer is obvious. Data base application
 developers think and operate at the table access level. They don't
 care about disk blocks, B-Trees, indices, and so on.

 One could argue that supplying a client library that hides the data
 base-centric operations from an application would hide the low-level
 nature of a disk access protocol from the application. That is, it
 would present an application-layer interface to the application. We
 offer here that protocol layer integrity comes to play here, as well.
 In particular, embedding data base code in the client means that one
 cannot have any data base innovation at the server. Everything
 occurs at, and is bound to, the client.

 Clearly there is a need for a low-level disk access protocol. That
 is what drove the iSCSI effort. However, application developers need
 a file access protocol like NFS [10]; data base application
 developers need a high-level data base access protocol; mail
 application developers need a mail transfer protocol like SMTP [11];
 and so on.

 A similar situation exists in the media processing milieu. The IETF,
 with the ITU-T has created a media gateway control protocol, H.248
 [1]. Although designed for the media gateway control problem, H.248
 has capabilities for controlling arbitrary media functions, albeit at
 a very low level. H.248, and, THE MODEL IT REPRESENTS, assumes a
 master/slave, low-level device control programming model. This is
 analogous to direct disk block manipulation for data access, as
 represented by iSCSI. Features accessible via H.248 or protocols in
 the style of H.248 include audio players, audio recorders, RTP
 termination and origination, mixers, tone detectors and generators,

Burger Expires December 7, 2006 [Page 8]

Internet-Draft MSCL Thoughts June 2006

 and plumbing primitives.

 High-level media processing protocols have been proposed, modeling a
 media resource server as just that, a server that offers multimedia
 processing functions. Services offered by media servers include IVR,
 conference mixing, announcements, interactive video, and so on.

 Consider the choice of terms: a H.248 device offers "features" while
 a media server offers "services". Section 3 examines the different
 protocol proposals in detail.

2.6. Deployment Scale

 Just how many sessions do we need at any given Media Server? First,
 let us consider a Media Server that would handle ALL calls on the
 globe.

 Take a population of seven billion people. Let us assume that every
 person calls one other person, on average, once every week. That
 means we are looking at 1 billion calls per day. Calculating the
 maximum number of simultaneous calls, let us assume that in any given
 populated time zone, up to 1/12th of the population of the world is
 actively making calls. The assumption here is that the time zones
 dividing the Pacific and Atlantic Oceans are essentially unpopulated
 (sorry Greenland and Alaska), while the time zones covering Europe
 have a relatively high teledensity. We make this assumption as we
 assume that busy hour will rotate around the Earth for a given
 application.

 With these assumptions, there are about 83 million calls per day in a
 given time zone. Since, for most applications, 15% of calls occur
 during the busy hour, we are looking at 12.5 million simultaneous
 calls.

 Now it is time for a reality check. Just how many simultaneous
 sessions will any given Application Server or Media Server really
 need to handle? In the above example, we found an upper limit of
 12.5 million simultaneous sessions ASSUMING ALL CALLS IN THE WORLD GO
 THROUGH THE APPLICATION. That is a pretty hefty assumption.

 What if we worked it backward? Let us assume that a single
 Application Server and Media Server provided voice messaging to the
 entire world. Again, let us start with a population of seven billion
 people. With a ratio of 200 subscribers per session, we get 35
 million sessions. Taking time zones into account, we would be
 looking at about 2 million simultaneous sessions.

 What is the point of these calculations? It is that the argument

Burger Expires December 7, 2006 [Page 9]

Internet-Draft MSCL Thoughts June 2006

 that one must have a single control channel to effectively scale
 services is a bit disingenuous. Namely, if an Application Server
 will be handling, say, 100 million users, only a small percentage
 will be using the service at any given time. Moreover, if one
 architected the Application Server to be a single node, it will have
 to handle hundreds of thousands of inbound connections anyway. If
 you can handle a few hundreds of thousands of simultaneous
 connections, you can probably handle a few two- or three- hundreds of
 thousands of connections. To put this into perspective, 100,000
 inbound connections represents well over 2 entire IP port address
 spaces.

2.7. Compatibility with SIP Model

 Various proposals offer to use SIP in some way. The question is,
 will one use SIP within the acceptable use of SIP, or will one use it
 "because it is there."

 For example, does a given protocol proposal leverage the SIP routing
 infrastructure, or is it intended for a point-to-point deployment?
 Does the server offer SIP-level services, or is it simply using SIP
 to transport, or tunnel, device control commands? Does the protocol
 preserve layer integrity, by using references in the SIP domain, or
 does it require references to the SDP [9] or IP domain?

 One measure of compatibility with the SIP model a given proposal
 offers is to see what its compatibility with SIP Proxies, as defined
 by RFC3261 [3], is. For example, does the proposal require SDP
 manipulation? If so, how deep does the manipulation need to be?
 Clearly, any SDP manipulation makes the protocol incompatible with
 SIP Proxies - SDP modification requires the use of a back-to-back
 User Agent (B2BUA). Is the B2BUA simply inserting an m-line in the
 SDP to plumb a control channel? Is the B2BUA parsing the SDP to
 determine RTP addresses and media types?

 The best would be pure proxies, as this will have the highest chance
 of avoiding compatibility issues in the future.

2.8. Security Issues

 One issue is who is allowed to manipulate what at the Media Server.
 For services like announcements, IVR, and IVVR, a straightforward
 security model is to have commands come on the same SIP dialog as
 what established the media connection. Clearly, if you can create
 the connection, you have some kind of relationship with the end
 point, if you are not the requesting end point itself.

 Other relationships get more complicated. For example, if we have a

https://datatracker.ietf.org/doc/html/rfc3261

Burger Expires December 7, 2006 [Page 10]

Internet-Draft MSCL Thoughts June 2006

 single control pipe from the Application Server, everything is OK if
 there is only one Application Server. This is the model for H.248.
 However, if we have more than one Application Server, then we have to
 ensure a separation of the resources from one Application Server from
 another.

 One solution for this problem is to partition the Media Server into
 multiple virtual Media Servers, each one dedicated to a given
 Application Server. This is a suggested model in H.248. However, as
 mentioned above in Section 2.4, this may be difficult for server-
 centric Media Servers.

3. Transport Protocols

3.1. Pure Device Control

 H.248 [1] is the IETF/ITU-T media gateway control protocol. H.248
 provides generic session establishment machinery and gateway internal
 resource interconnection. H.248 packages define various resources,
 including tone detectors, tone generators, audio recorders, and
 fixed-function audio prompt resources.

 H.248 uses SDP for session negotiation, but it is considerably
 different than SIP's SDP offer/answer [12] protocol.

 H.248 assumes a single media gateway controller per media gateway.
 H.248 uses a single TCP, UDP, or SCTP pipe between the controller and
 gateway.

 Most H.248 implementations use text encoding over the wire. For
 those that are enamored with XML PDU's, H.248 does have an ASN.1 [13]
 encoding. This means one can use XER [14] to have an XML wire
 protocol.

3.2. Pure SIP

 Using the netann [5] convention, one can perform basic media
 services, such as announcements and basic mixing. However, SIP does
 not provide the necessary controls for enhanced conferencing, such as
 gain control, identification of preferred speakers (if they speak,
 they have priority in the mix, even if they are not the loudest),
 creating sidebar and other topologies (such as Coach/Agent/Mark), and
 so on.

 Note that Pure SIP uses a single TCP or SCTP socket. However, there
 is a separate SIP session per leg.

Burger Expires December 7, 2006 [Page 11]

Internet-Draft MSCL Thoughts June 2006

3.3. SIP With TCP Side Channel

 MRCPv2 [15] is an example of a media processing protocol that uses a
 TCP side channel. In MRCPv2, the client uses SIP to route to a
 speech server, uses SIP's SDP offer/answer [12] protocol to negotiate
 the media codecs, and specifies the protocol machinery for
 establishing a side channel transfer protocol, such as TCP or TLS,
 for the actual MRCPv2 PDU's.

 The MRCPv2 server hands back a unique session identifier to the
 client. All subsequent messages relating to a given MRCPv2 session
 include the session identifier. This means one can share the side
 channel between multiple client instances on the requesting node.
 MRCPv2 allows the client to request channel reuse or to request a new
 channel at session establishment time. Correspondingly, the MRCPv2
 server can insist on a side channel per session, rather than sharing
 the side channel amongst sessions.

 The MRCPv2 model has the benefit of using the SIP protocol machinery
 for session establishment. This includes using the SIP security
 mechanisms to authorize the association of the side channel with the
 media channel.

 MRCPv2 itself has the drawbacks of having a totally different state
 machine. The MRCPv2 state machine is optimized for speech services
 like speech recognition and speech synthesis. Moreover, the methods
 are incompatible with the needs for conference control.

 In addition, the MRCPv2 approach rules out the use of the protocol by
 SIP Proxies, as the B2BUA must modify the SDP to insert the SDP
 m-line for the control channel.

 One might ask, "If all we are doing is establishing a TCP connection
 to control the media server, what do we need SIP for?" This is a
 reasonable question. The key is to be using SIP for media session
 establishment. If we are using SIP for media session establishment,
 then we need to ensure the URI used for session establishment
 resolves to the same node as the node for session control. Using the
 SIP routing mechanism, and having the server initiate the TCP
 connection back, ensures this works. For example, the URI sip:
 myserver.example.com may resolve to sip:
 server21.farm12.northeast.example.net, whereas the URI
 http://myserver.example.com may resolve to

http://server41.httpfarm.central.example.net. That is, the host part
 is NOT NECESSARILY unambiguous.

http://server41.httpfarm.central.example.net

Burger Expires December 7, 2006 [Page 12]

Internet-Draft MSCL Thoughts June 2006

3.4. SIP With INFO

 Two proposals have been put forward that use the SIP dialog for the
 side channel. Both use the INFO method. They are MSCML [16] and
 MSML [18].

 MSCML uses the SIP Requires and Content-Type headers to ensure
 interoperability and preservation of SIP semantics. MSCML correlates
 the commands received on the dialog with the dialog's media streams.
 In the case of enhanced conferences, where there are global commands
 such as conference size, playing to the entire conference, or
 recording the entire conference, MSCML has the concept of a
 Conference Control Leg. The Conference Control Leg is not associated
 with any media dialog. However, it is a SIP dialog in the normal
 sense.

 MSML relies on a private (non-Internet) agreement between the
 Application Server and Media Server to know the context of the INFO
 messages. MSML tunnels SDP-layer information over the established
 dialog; in the case of media processing, it uses a secondary markup,
 MOML [18]. MOML is a device control protocol, with primitives
 similar to H.248.

 Deployed versions of MOML/MSML do not use SIP, such as for
 referencing entities with SIP dialog properties, using SIP semantics
 for control, or transparently correlating SIP dialogs with RTP
 streams. However, the current version of the MSML specification does
 suggest using the SIP Dialog identifier to identify media sessions.

 We will touch upon the content of what goes over the side channel in
Section 4.

 Using the SIP dialog for the side channel has the benefit of using
 the SIP routing network for getting the messages to locate and follow
 (in the mobility case) the UAS and UAC. In particular, proxies that
 are important for routing can Record-Route, while proxies that are
 not needed other than for session establishment can chose to not
 Record-Route. Thus the transport of side channel commands places
 only a small burden on the SIP routing network.

 Note that there are a few problems resulting from the use of INFO.
 First, there are no throttling mechanisms, other than that provided
 by the underlying transport mechanism (TCP or Connection-Mode SCTP).
 If you are using UDP, you are out of luck. Second, even in the case
 of MSCML, which is well behaved in that it is guaranteed by the SIP
 protocol machinery that both the UAS and UAC will interoperate and
 understand the semantics of the MSCML INFO messages, the stacks can
 still get other, ill-behaved INFO messages that it may not

Burger Expires December 7, 2006 [Page 13]

Internet-Draft MSCL Thoughts June 2006

 understand. Third, even though this has never happened in the real
 world, there is a theoretical problem that INFO message handling may
 overwhelm a proxy. In practice, one sizes ones proxies to the total
 traffic they need to handle. Moreover, only active element proxies,
 such as Edge Proxies, need Record-Route. That said, this might be a
 problem in the future.

 The following sections explore alternatives that use the SIP Dialog.

3.5. SIP With SUBSCRIBE/NOTIFY

 As outlined in the expired draft, INFO Considered Harmful [19], the
 events framework (SUBSCRIBE/NOTIFY) addresses all of the problems
 with INFO. Namely, event packages must offer throttling mechanisms,
 all event packages identify themselves and thus globally
 interoperate, and even stupid proxies that Record-Route everything
 often decide not to Record-Route SUBSCRIBE and NOTIFY messages.

 Of course, SUBSCRIBE/NOTIFY really, really, really should not
 (actually, most of us, including me, say "MUST NOT") reuse the SIP
 dialog directly associated with the media session. This means we
 lose the auto-correlation feature that we have by using the INFO
 method.

 There is a subtler, yet arguably more important problem with using
 SUBSCRIBE/NOTIFY. Namely, the semantics of SUBSCIBE are, "tell me
 (monitor) what is going on at the device." Typical uses for
 SUBSCRIBE are for presence [20] (what is the state of the user?), MWI
 [21] (what is the state of the message store?), and KPML [22] (what
 is the state of the key press buffer?). No package changes the state
 of the UAS. Using SUBSCRIBE, for example, to play a prompt or to
 change the configuration of a mixer, most definitely changes the
 state of the UAS.

3.6. SIP With MEDIA

 Another approach outlined in INFO Considered Harmful [19] is to
 introduce a new method. This was the route taken by PUBLISH [23], as
 it was not quite NOTIFY.

 Properly defined, a new method can safely share the SIP dialog.
 Moreover, it would satisfy the auto-correlation properties used by,
 for example, MSCML. Lastly, the semantics would be well defined,
 addressing the issues raised by INFO Considered Harmful.

4. Models

Burger Expires December 7, 2006 [Page 14]

Internet-Draft MSCL Thoughts June 2006

4.1. H.248

 H.248 [1] provides:
 1. A single control channel between Application Server and Media
 Server.
 2. The possibility for an XML transport encoding.
 3. Total control of media resources, at the assembly language level.
 The first item is of use to those whom would want a single control
 channel and socket per Application Server. The second item is of use
 to those whom love XML. The third item ensures a measure of
 capabilities possibility. That is, since the Application explicitly
 defines the application-level semantics of media processing at the
 media layer, future Applications can define future, unanticipated
 topologies.

 The drawbacks of H.248 are:
 1. Layer violation et al.
 2. Market adoption
 The first item touches upon virtually every issue raised in

Section 2. By definition, H.248 is a low-level device control
 protocol. That means more lines of code for a given function, higher
 complexity for a given function, no compatibility with the SIP model
 (everything becomes a MGC), and the Application Server must dive deep
 into SDP and they media layer to do basic operations.

 The second item, while not in itself a determining factor in the
 IETF, is important to note as a leading indicator. For many of the
 reasons noted above, neither Application Server developers nor Media
 Server developers desire H.248 as an Application Server - Media
 Server protocol. Moreover, none of the major media server
 manufacturers have or plan to offer H.248-based media servers. In a
 sense, the market has spoken about this option, even in light of the
 1999 declaration (well before there were any enhanced media services)
 by 3GPP that H.248 would be the media server (MRFP) interface.

4.2. MSCML

 MSCML [16] provides:
 1. Automatic correlation, including security associations, between
 the control channel and the media session.
 2. Preservation of SIP semantics, including being SIP Proxy
 friendly.
 3. Operations and all semantics are at the SIP dialog layer.
 4. Application Servers can be relatively simple, as addressing of
 media processing commands is straightforward: send the command
 down the associated SIP media dialog.

Burger Expires December 7, 2006 [Page 15]

Internet-Draft MSCL Thoughts June 2006

 5. Establishing a media session is straightforward: INVITE the Media
 Server to a session.
 6. Strict adherence to the philosophy espoused by, among other
 places, the Application Interaction Framework [24].

 The drawbacks of MSCML include:
 1. Even though MSCML properly uses INFO, using INFO in itself has
 theoretical problems with non-interoperating devices.
 2. By relying on SIP dialogs, the Application Server uses multiple
 SIP dialogs to control, for example, an enhanced conference on
 the Media Server.
 3. By taking the application layer approach, MSMCL requires one to
 two more protocol messages than a device control approach.
 The first issue is a result of using INFO.

 The second issue is more interesting. For example, the enhanced
 conference case, that is, where one needs to play or record into the
 entire conference, one has to setup an additional SIP dialog, the
 Conference Control Dialog, per conference. In the extreme case of
 two-party conferences, this increases the number of SIP dialogs by
 50%. Of course, few two-party scenarios require the enhanced
 conferencing features, and thus would not increase the number of
 dialogs. However, if one did need those features, then the dialog
 expansion would occur.

 The third issue refers to the situation where the Application Server
 wants to place the caller into a conference, but the application
 needs to interact with the caller before the application knows which
 conference to place them into. In the MSCML model, the application
 has to INVITE the caller into a dialog (VoiceXML) or IVR session with
 the caller, determine the address of the conference, and then re-
 INVITE or REFER the caller into the conference.

 Of course, if one uses a low-level device control markup rather than
 an application-level markup like VoiceXML, then the number of
 protocol messages to implement a voice dialog will swamp the extra
 redirect message.

 Interestingly, MSML and MSCML exchange the same number of messages to
 do the same task.

 The re-INVITE model offers total flexibility, in that the application
 never has to change if the modality of the IVR step changes. For
 example, the IVR step could be to a low-cost audio media resource,
 which then places the caller into a high-cost, 30fps, continuous
 presence video bridge.

Burger Expires December 7, 2006 [Page 16]

Internet-Draft MSCL Thoughts June 2006

 Application Server Media Server
 | |
 |INVITE sip:dialog@ms.example.net |
 |;voicexml=http://as.example.net/get-id |
 |--->|
 | |
 |200 OK |
 |<---|
 | |
 |ACK |
 |--->|
 | |
 |GET http://as.example.net/cgi-bin/get-id |
 |<---|
 | |
 |(VoiceXML script) |
 |..|
 | |
 |POST (result) |
 |<---|
 | |
 |REFER sip:conf=12345@ms.example.net |
 |--->|
 | |
 |202 ACCEPTED |
 |<---|
 | |
 |NOTIFY |
 |<---|
 | |
 |200 OK (NOTIFY) |
 |--->|
 | |
 | |

 The downside of the re-INVITE model is that it involves the endpoint
 in the SDP renegotiation. This puts an additional burden on the
 Application Server and caller device to relay and act upon the
 messages.

 The REFER model does not involve the calling endpoint. However, it
 does have one additional protocol message.

Burger Expires December 7, 2006 [Page 17]

Internet-Draft MSCL Thoughts June 2006

 Application Server Media Server
 | |
 |INVITE sip:dialog@ms.example.net |
 |;voicexml=http://as.example.net/get-id |
 |--->|
 | |
 |200 OK |
 |<---|
 | |
 |ACK |
 |--->|
 | |
 |GET http://as.example.net/cgi-bin/get-id |
 |<---|
 | |
 |(VoiceXML script) |
 |..|
 | |
 |POST (result) |
 |<---|
 | |
 |REFER sip:conf=12345@ms.example.net |
 |--->|
 | |
 |202 ACCEPTED |
 |<---|
 | |
 |NOTIFY |
 |<---|
 | |
 |200 OK (NOTIFY) |
 |--->|
 | |
 | |

4.3. MOML/MSML

 MSML [18] provides:
 1. As of the -04 draft, a SIP Dialog addressing scheme.
 2. Arbitrarily complex mixing topologies, on a par with H.248.
 3. With MOML [17], the audio prompt, record, DTMF detection, and
 other functions of H.248, with the addition of access to speech
 resources.
 4. Switching between IVR and conferencing can be done without a re-
 INVITE or REFER.

 The drawbacks of MSML include:

Burger Expires December 7, 2006 [Page 18]

Internet-Draft MSCL Thoughts June 2006

 1. The application has to be aware of and manipulate the media
 resource plumbing.
 2. With most operations on a par with H.248, why not use H.248?
 3. The MSML model assumes everything resides in a single server,
 especially with respect to the audio/video example given above.

 Application Server Media Server
 | |
 | |
 |INVITE sip:dialog@ms.example.net |
 |;moml=cid:foobratz12@ms.example.net * |
 |--->|
 | |
 |200 OK |
 |<---|
 | |
 |ACK |
 |--->|
 | |
 |GET http://as.example.net/cgi-bin/get-id |
 |<---|
 | |
 |(VoiceXML script) |
 |..|
 | |
 |POST (result) |
 |<---|
 | |
 |INFO (MSML <result>) |
 |<---|
 | |
 |200 OK |
 |--->|
 | |
 |INFO (MSML <join>) |
 |--->|
 | |
 |200 OK |
 |<---|
 | |
 | |

 * The MSML specification does not state how to start a session. We
 assume that one starts a MOML session and then send a <msml>
 document. The URI of the VoiceXML script, and the programming logic
 necessary to start that script, is embedded in the MSML document sent
 to the Media Server.

Burger Expires December 7, 2006 [Page 19]

Internet-Draft MSCL Thoughts June 2006

5. Recommendations

 This section is in the spirit of getting a conversation started.
 Everything here is opinion. Feel free to argue.

 First of all, it is clear there is interest in a standard for the
 Application Server - Media Server protocol in the Internet community.
 The adoption of MOML/MSML in the developer community and MSCML in the
 developer and vendor community is an existence proof of the utility
 of, and need for, such a protocol.

 The official impetus for this work is the XCON Media Server
 Requirements [26]. However, in spite of the fact we have VoiceXML
 for application level IVR specification and H.248 for low-level IVR
 specification, people keep asking for IVR with conferencing, as
 evidenced by the XCON requirements. The problem is this IVR
 functionality bleeds out, and thus we need to ensure it is well
 thought out before just tossing something in there.

 There is a desire to leverage the SIP protocol machinery for media
 session establishment, namely the SIP Offer/Answer protocol.

 Application developers want to see the Media Server as a server that
 offers application-level media processing. That is, modeling the
 Media Server as a server that offers IVR, conference mixing, and
 other, application-level media processing services.

 If application developers want low-level, DSP-level media
 manipulation, they already have an IETF protocol, H.248.

 If application developers want a single control channel (total,
 including session establishment) from the Application Server to the
 Media Server, they already have an IETF protocol, H.248.

 If application developers want an XML transport encoding for a low-
 level protocol or a single control channel, they already have an IETF
 protocol, H.248.

 Assuming developers do not want H.248, what are the options?

 INFO probably isn't it.

 That leaves to directions to go. The first is to stick with the SIP
 Dialog model of MSCML and the other is to stick with the side channel
 model of MRCPv2.

 The former would indicate a new method, such as MEDIA. The latter
 would indicate a new establishment procedure, such as described in

Burger Expires December 7, 2006 [Page 20]

Internet-Draft MSCL Thoughts June 2006

 the other MSRP [25].

 What does all this mean?

 WHAT GOES DOWN THE PIPE IS AS IMPORTANT AS THE PIPE ITSELF.

 It is easy to identify protocol abuse in the determination of the
 control channel. However, even if we have a decent control channel
 establishment mechanism, sending the wrong kind of messages down that
 channel can render the protocol less than useful.

 For example, it is great to use SIP to route messages to a media
 server. However, if those messages emulate H.248, but encoded in
 XML, it would be much more efficient, cleaner, and avoid the layer
 violation by simply using H.248. You can even get H.248 in XML!
 Just please, please, please, don't transport it in SIP or a SIP side
 channel.

 NOTE: This is one of the reasons I pulled out of [25] at the last
 minute. What goes in to the pipe is as important as the pipe
 itself.

6. Security Considerations

 One issue is who is allowed to manipulate what at the Media Server.
 For services like announcements, IVR, and IVVR, a straightforward
 security model is to have commands come on the same SIP dialog as
 what established the media connection. Clearly, if you can create
 the connection, you have some kind of relationship with the end
 point, if you are not the requesting end point itself.

 Other relationships get more complicated. For example, if we have a
 single control pipe from the Application Server, everything is OK if
 there is only one Application Server. This is the model for H.248.
 However, if we have more than one Application Server, then we have to
 ensure a separation of the resources from one Application Server from
 another.

 One solution for this problem is to partition the Media Server into
 multiple virtual Media Servers, each one dedicated to a given
 Application Server. This is a suggested model in H.248. However, as
 mentioned above in Section 2.4, this may be difficult for server-
 centric Media Servers.

7. IANA Considerations

Burger Expires December 7, 2006 [Page 21]

Internet-Draft MSCL Thoughts June 2006

 As this is an Informative exploration, there are no IANA
 Considerations.

8. Informative References

 [1] Groves, C., Pantaleo, M., Anderson, T., and T. Taylor, "Gateway
 Control Protocol Version 1", RFC 3525, June 2003.

 [2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [3] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [4] Campbell, B. and R. Sparks, "Control of Service Context using
 SIP Request-URI", RFC 3087, April 2001.

 [5] Burger, E., Van Dyke, J., and A. Spitzer, "Basic Network Media
 Services with SIP", RFC 4240, December 2005.

 [6] Burnett, D., Hunt, A., McGlashan, S., Porter, B., Lucas, B.,
 Ferrans, J., Rehor, K., Carter, J., Danielsen, P., and S.
 Tryphonas, "Voice Extensible Markup Language (VoiceXML) Version
 2.0", W3C REC REC-voicexml20-20040316, March 2004.

 [7] Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E.
 Zeidner, "Internet Small Computer Systems Interface (iSCSI)",

RFC 3720, April 2004.

 [8] Sybase, Inc., "TDS 5.0 Functional Specification Version 3.4",
 URL http://www.sybase.com/content/1013412/tds34.pdf,
 August 1999.

 [9] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [10] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame,
 C., Eisler, M., and D. Noveck, "Network File System (NFS)
 version 4 Protocol", RFC 3530, April 2003.

 [11] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821,
 April 2001.

 [12] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

https://datatracker.ietf.org/doc/html/rfc3525
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3087
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc3720
http://www.sybase.com/content/1013412/tds34.pdf
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc3264

Burger Expires December 7, 2006 [Page 22]

Internet-Draft MSCL Thoughts June 2006

 [13] Telecommunication Standardization Sector of International
 Telecommunication Union, "Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", ITU-T Recommendation X.680,
 July 2002.

 [14] Telecommunication Standardization Sector of International
 Telecommunication Union, "ASN.1 encoding rules: XML Encoding
 Rules (XER)", ITU-T Recommendation X.693, December 2001.

 [15] Burnett, D. and S. Shanmugham, "Media Resource Control Protocol
 Version 2 (MRCPv2)", draft-ietf-speechsc-mrcpv2-09 (work in
 progress), December 2005.

 [16] Dyke, J., "Media Server Control Markup Language (MSCML) and
 Protocol", draft-vandyke-mscml-08 (work in progress), May 2006.

 [17] Saleem, A. and G. Sharratt, "Media Objects Markup Language
 (MOML)", draft-melanchuk-sipping-moml-06 (work in progress),
 October 2005.

 [18] Melanchuk, T. and G. Sharratt, "Media Sessions Markup Language
 (MSML)", draft-melanchuk-sipping-msml-05 (work in progress),
 March 2006.

 [19] Rosenberg, J., "The Session Initiation Protocol (SIP) INFO
 Method Considered Harmful", draft-rosenberg-sip-info-harmful-00
 (work in progress), January 2003.

 [20] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [21] Mahy, R., "A Message Summary and Message Waiting Indication
 Event Package for the Session Initiation Protocol (SIP)",

RFC 3842, August 2004.

 [22] Burger, E., "A Session Initiation Protocol (SIP) Event Package
 for Key Press Stimulus (KPML)", draft-ietf-sipping-kpml-07
 (work in progress), December 2004.

 [23] Niemi, A., "Session Initiation Protocol (SIP) Extension for
 Event State Publication", RFC 3903, October 2004.

 [24] Rosenberg, J., "A Framework for Application Interaction in the
 Session Initiation Protocol (SIP)",

draft-ietf-sipping-app-interaction-framework-05 (work in
 progress), July 2005.

 [25] Boulton, C. and T. Melanchuk, "Media Server Request Protocol",

https://datatracker.ietf.org/doc/html/draft-ietf-speechsc-mrcpv2-09
https://datatracker.ietf.org/doc/html/draft-vandyke-mscml-08
https://datatracker.ietf.org/doc/html/draft-melanchuk-sipping-moml-06
https://datatracker.ietf.org/doc/html/draft-melanchuk-sipping-msml-05
https://datatracker.ietf.org/doc/html/draft-rosenberg-sip-info-harmful-00
https://datatracker.ietf.org/doc/html/rfc3856
https://datatracker.ietf.org/doc/html/rfc3842
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-kpml-07
https://datatracker.ietf.org/doc/html/rfc3903
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-app-interaction-framework-05

Burger Expires December 7, 2006 [Page 23]

Internet-Draft MSCL Thoughts June 2006

draft-boulton-media-server-control-00 (work in progress),
 June 2005.

 [26] Even, R., "Requirements for a media server control protocol",
draft-even-media-server-req-00 (work in progress),

 January 2005.

Appendix A. Contributors

 I cannot share blame with anyone on this one.

Appendix B. Acknowledgements

 Brooks Gelfand in 1985 made the quote, "If you cannot do it in
 assembly language, you cannot do it at all," during an argument I was
 having with another engineer about the relative merrits of C versus
 Lisp.

 The catalyst for this document was the very hard and dedicated work
 of Chris Boulton, Tim Melanchuk, and I to bang out the and argue over
 the other MSRP draft, starting in April of 2005 and lasting through
 the very end of June.

https://datatracker.ietf.org/doc/html/draft-boulton-media-server-control-00
https://datatracker.ietf.org/doc/html/draft-even-media-server-req-00

Burger Expires December 7, 2006 [Page 24]

Internet-Draft MSCL Thoughts June 2006

Author's Address

 Eric Burger
 Cantata Technology, Inc.
 18 Keewaydin Dr.
 Salem, NH 03079-2839
 USA

 Phone: +1 603 890 7587
 Fax: +1 603 457 5944
 Email: eburger@cantata.com

Burger Expires December 7, 2006 [Page 25]

Internet-Draft MSCL Thoughts June 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Burger Expires December 7, 2006 [Page 26]

