
Internet Draft C. Burri
 Synecta Informatik
 Expires Jan 2002

Handling IRC continuation message lines
draft-burri-irc-continuation-message-lines-00.txt

Status of this Memo

 This document is an Internet-Draft and is subject to
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 Due to the way the IRC protocol is implemented, it may occur that a
 server sends incomplete messages to a client, so called continuation
 message lines.

 There seems to exist confusion about how to handle continuation
 message lines; many implementations are broken and do not respect
 them at all. Others rely on timers to complete continuation lines,
 which is not recommended due to the asyncronous nature of IRC
 communications.

 This Memo proposes an algorithm to handle continuation lines received
 from an IRC connection in such way that no timers are needed, and is
 intended as a supplement to the existing RFC 1459 which describes the
 Internet Relay Chat protocol.

Copyright Notice

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1459

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Burri [page 1]

Internet Draft Handling IRC continuation message lines Jul 2001

Table of Contents

1. Introduction..2
2. Handling continuation message lines...............................3

2.1. IRC Message format...3
2.2. Discovery..4
2.3. Reassembly...4

3. Credits and authors' adress.......................................5

1. Introduction

 Current IRC implementations utilize input and output buffers for async
 network IO, whereas the input buffers are always processed first. All
 output gets stacked in the send queue, and is not sent to the client
 until processing of the input buffer has completed. This process helps
 TCP build larger packets, as possibily multiple messages are bundled
 into one network transmission (TCP segment). For more information
 consult RFC 1459, Sections 8.2, 8.3

 The same process can however lead to incomplete messages, which are
 cropped due to TCP limitations, namely the TCP window size. Such
 lines appear incomplete to the client, which does not normally cause
 any problems by itself. However, the line that follows the truncated
 line will be incomplete too, only containing data that did not fit
 within the last TCP segment. This line is special in such way that,
 if it is treatened like a normal line, then this might lead to
 arbitrary data being parsed as a complete message from the server.

 This circumstance has been observed to cause problems in various IRC
 clients. Most of them seem to completely ignore the existence of the
 problem, which may possibly result in severe brain damage, or even
 loss of chanop status incase the broken implementation is being used
 in a bot that maintains an IRC channel, since it is not clearly
 defined what happens when a continuation message line is received.
 This undefined behaviour could possibly be exploited, by trying to
 make the implementation believe that it received a message from
 somewhere, where infact the true origin is spoofed.

 The algorithm proposed in this Memo has been designed to reassemble
 continuation message lines before processing them in the message
 parser. It does this without the use of any timers or delays, which
 could lead to loss of data, incase the reassembly timeout has been
 set to a low value; or to undesirable high delays in reading from
 the network, incase the reassembly timeout has been choosen too high.

https://datatracker.ietf.org/doc/html/rfc1459

Burri [page 2]

Internet Draft Handling IRC continuation message lines Jul 2001

 The proposed algorithm relies on the facts that:

 - for any incomplete message line, there will be a
 resulting completion message line received in the next
 TCP segment that is read from the network.

 - the transmission of the completion message line following
 the incomplete line will always occur before any other
 network transmission occurs, or in other words, the
 completion message line will always be the first line of
 the next delivered TCP segment.

 The proposed algorithm does not depend on any particular programming
 language. Instead, it is designed to work with every programming
 language that has provides buffers (variables) and comparision tests.

 It can be implemented as a preprocessor that is located infront of the
 IRC message parser, in the data stream.

 It seems further notable to the author that the proposed algorithm is
 Public Domain property and may be freely used and implemented without
 paying any fee for whatsoever to anyone.

2. Handling continuation message lines

 In order to reassemble continuation message lines, they must be
 detected in a reliable way. After detecting, they need to be marked as
 incomplete, and stored in a temporary buffer, for later reassembly.

2.1. IRC Message Format

 IRC RFC 1459 defines the message format as follows:

 <message> ::= [':' <prefix> <SPACE>] <command> <params> <crlf>
 <prefix> ::= <servername> | <nick> ['!' <user>] ['@' <host>]
 <command> ::= <letter> { <letter> } | <number> <number> <number>
 <SPACE> ::= ' ' { ' ' }
 <params> ::= <SPACE> [':' <trailing> | <middle> <params>]
 <middle> ::= <Any *non-empty* sequence of octets not including
 SPACE or NUL or CR or LF, the first of which may
 not be ':'>
 <trailing> ::= <Any, possibly *empty*, sequence of octets not
 including NUL or CR or LF>

 <crlf> ::= CR LF

 As we can see from the above representation, every complete IRC

https://datatracker.ietf.org/doc/html/rfc1459

 message must end in the sequence <crlf>. Section 8 of RFC 1459 also
 reports the usage of either CR *or* LF as message delimiter.

Burri [page 3]

https://datatracker.ietf.org/doc/html/rfc1459#section-8

Internet Draft Handling IRC continuation message lines Jul 2001

 It might be a good idea for any implementation to accept all three
 variants; for the sake of simplicity we will however refer to CRLF
 as the message delimiter in this document.

2.2. Discovery

 Once we know how IRC messages are delimited, we can check any IRC
 message line for completeness. Any complete line must end in the line
 delimiter sequence. If a given IRC message line does not end in that
 sequence, then it must have been truncated.

 To speed up performance, the proposed discovery algorithm performs
 the end delimiter test on each received TCP segment, instead of each
 received line, since each received TCP segment must also end in a
 CRLF sequence if the last contained line has not been truncated by the
 sending TCP.

 Notice that we are not looking for continuation lines, since the
 algorithm cannot recognize a continuation line by itself. That is
 impossible to do because of the arbitrary structure of that line. The
 line might infact be composed of data that has been sent to either a
 channel or to the client via PRIVMSG or other means.

 The solution to this problem is to recognize the lines that have
 been truncated, and store them for reassembly, instead of parsing
 them. The discovery of a truncated line is also to be used to
 recognize the following line as the continuation message line.

 Thus, the discovery algorithm sets a flag, whenever a TCP segment,
 that containis a truncated line, is received.

2.3. Reassembly

 After recieving a TCP segment and discovering incomplete lines, the
 preprocessor checks a buffer (which holds data if the previous segment
 did contain a truncated line; described below) for the presence of any
 data. If there is data in the buffer, then the preprocessor does
 append the received data to the data in the buffer (this will
 effectively reassemble the truncated- and the continuation line),
 cycles the buffer (so it is empty after reassembly took place) and
 passes the resulting data to the next step.

 The next step parses the received data segment into IRC messages by
 splitting the data on each occurence of the delimiter sequence CRLF.

 If the recieved, tested, possibly reassembled and then splitted
 message did not contain an incomplete last line (the discovery flag

 was not set), then the preprocessor calls the message parser normally
 for each received line.

Burri [page 4]

Internet Draft Handling IRC continuation message lines Jul 2001

 If the received and splitted message has been marked as incomplete
 (discovery flag set), then the preprocessor calls the IRC message
 parser for each received message (line), but not for the last message
 (which will lack the message delimiter, because it is incomplete).
 The preprocessor does not call the message parser with the incomplete
 line, instead it resets the incomplete flag from the end-delimiter
 test and temporarily stores the incomplete line until arrival of the
 next TCP segment.

3. Expiration Notice

 This document expires in Jan 2002.

4. Credits and Authors' Address

 Christian Burri
 jun. System & Network Engineer
 Synecta Informatik AG
 Zwinglistrasse 3
 9000 St. Gallen
 SWITZERLAND

 Email: christian.burri@synecta.ch

 Special credits to Jarkko Oikarinen and all other contributors for
 creating such a cool thing as IRC :)

Burri [page 5]

