
NETMOD Working Group M. Boucadair
Internet-Draft Orange
Intended status: Standards Track Q. Wu
Expires: May 6, 2020 Z. Wang
 Huawei
 D. King
 Lancaster University
 C. Xie
 China Telecom
 November 3, 2019

Framework for Use of ECA (Event Condition Action) in Network Self
Management

draft-bwd-netmod-eca-framework-00

Abstract

 Event-driven management is meant to provide a useful method to
 monitor state change of managed objects and resources, and facilitate
 automatic triggering of a response to events, based on an established
 set of rules. This would provide rapid autonomic responses to
 specific conditions, enabling self-management behaviors, including:
 self-configuration, self-healing, self-optimization, and self-
 protection.

 This document provides a framework that describes the architecture
 for supporting event-driven management of managed object state across
 devices. It does not describe specific protocols or protocol
 extensions needed to realize the objectives and capabilities
 discussed in the document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2020.

Boucadair, et al. Expires May 6, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft ECA Framework November 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 4

2. Problem Statement . 4
2.1. Defining Network Event and Network Control Logic 4
2.2. Delegating Network Control Logic to Network Device . . . 4
2.3. Executing ECA Script in the Network Device 5
2.4. Event-Driven Notification Handling 6
2.5. Requisite State Information 6

3. Architectural Concepts 7
3.1. What is Defined in ECA Policy? 7
3.2. Where is ECA Script and State Held? 8
3.3. What State is Held? 9

4. Architecture Overview . 9
4.1. Telemetry Automation in the Network Device 10
4.2. Detecting and Resolving Policy Conflict 12
4.3. Chain Reaction of Coordinated Events 12

5. Security Considerations 12
6. Acknowledgements . 13
7. References . 13
7.1. Normative References 13
7.2. Informative References 14

 Authors' Addresses . 15

1. Introduction

 Network management data objects can often take two different values:
 the value configured by the administrator or an application
 (configuration) and the value that the device is actually using
 (operational state). Particularly, these network management data
 objects can be fetched from various different YANG datastore

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Boucadair, et al. Expires May 6, 2020 [Page 2]

Internet-Draft ECA Framework November 2019

 [RFC8342] by subscribing to continuous datastore updates [RFC8641]
 without needing to poll for data periodically.

 YANG-Push mechanisms are used to select which data objects are of
 interest using filters and provide frequent or prompt updates of
 remote object state, thus allowing (client) applications to maintain
 a continuous view of operational data and state and enabling a
 network operator to optimize the system behavior across the whole
 network to meet objectives and provide some performance guarantees
 for network services.

 Network management may rely upon one or multiple policies to
 influence management behavior within the system and make sure
 policies are enforced or executed correctly so that there will no
 conflict in policies and that the observed behavior is the expected
 one. Event-driven policy (i.e., ECA Policy [RFC8328]) enables
 actions being automatically triggered based on when certain events in
 the network occur while certain conditions hold. YANG Push
 subscription provides a source for such events.

 It is often the case that where Event Condition Action (ECA) is
 defined is decoupled from where ECA is executed. ECA Engine in the
 management system or the network device defines one or multiple
 events corresponding to the workflow management, correlate these
 events with action triggers and create ECA policy. ECA policy can be
 enforced either at the management system or pushed to and executed by
 the network device. Alternative, some of these predefined events can
 be translated into filter in the YANG push subscription which is in
 turn used to select data objects that are of interest. When these
 data objects are streamed out to the destination, both the management
 system and network device check for the condition when the event is
 observed. If the condition is satisfied, the ECA script is executed.

 Event-driven management (of states of managed objects) across a wide
 range of devices can be used to monitor state changes of managed
 objects or resource and automatic trigger of rules in response to
 events so as to better service assurance for customers and to provide
 rapid autonomic response that can exhibit self-management properties
 including self-configuration, self-healing, self-optimization, and
 self-protection.

 This document provides a framework that describes the architecture
 for supporting such event-driven management.

 This document does not describe specific protocols or protocol
 extensions needed to realize the objectives and capabilities
 discussed in the document.

https://datatracker.ietf.org/doc/html/rfc8641
https://datatracker.ietf.org/doc/html/rfc8328

Boucadair, et al. Expires May 6, 2020 [Page 3]

Internet-Draft ECA Framework November 2019

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Problem Statement

2.1. Defining Network Event and Network Control Logic

 Datastores are used by network management protocols such as NETCONF
 [RFC6241] and RESTCONF [RFC8040]. Operational state data objects, in
 the operational state datastore, provide network visibility to the
 actual state of the network, and ensure the network is running
 efficiently.

 The network event are used to keep track of state of changes
 associated with one of multiple operational state data objects in the
 network device. Typical examples of network event include a fault,
 an alarm, a change in network state, network security threat,
 hardware malfunction, buffer utilization crossing a threshold,
 network connection setup, and an external input to the system.

 To control which state a network device should be in or is allowed to
 be in at any given time, a set of conditions and actions are defined
 and correlated with network events, which constitute an event-driven
 policy or network control logic.

 YANG Push subscription allows client applications to select which
 datastore nodes are of interest and provides source of network
 events. The NETCONF client can define event-based policy based on
 YANG Push subscription data source or some other data source.

2.2. Delegating Network Control Logic to Network Device

 Usually the NETCONF clients subscribe to continuous datastore updates
 and rely on event notifications sent to the NETCONF client to check
 for the condition so that reaction to many network events may be very
 slow in the face of communication glitches between the client and the
 sever. Such solution doesn't scale well.

 It is more desirable in many circumstances to delegate all event
 response behaviors (e.g., recover from network failure, instruct the
 network to control congestion) to the NETCONF server so that the
 network can react to network change as quickly as the event is
 detected.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040

Boucadair, et al. Expires May 6, 2020 [Page 4]

Internet-Draft ECA Framework November 2019

 The event response behaviors delegation can be done using YANG push
 subscription filter enhancements, e.g., define a new filter to allow
 the NETCONF client send updates only when the value falls within a
 certain range. Another example is to define a filter to allow the
 NETCONF client send updates only when the value exceeds a certain
 threshold for the first time but not again until the threshold is
 cleared. In the latter case, additional state is required.

 In addition, the event response behavior delegation can be done by
 pushing ECA policy to the network device. Similar to YANG Push
 subscription filter, the ECA approach also includes filter and
 defines it as Event and Condition separately in the ECA policy model.
 Different from using YANG Push subscription filter, ECA allow a group
 of events to be observed, allow multiple actions to be triggered,
 e.g., sending log report notification, add or remove multiple YANG
 Push subscriptions.

2.3. Executing ECA Script in the Network Device

 When the YANG Push subscription filter or ECA policy is pushed to the
 server, the server is expected to register the event conveyed in the
 YANG push subscription filter or Event-driven policy, generate server
 specific script. With a server specific script, the server can
 manipulate various network resources autonomously.

 After the event registration, the server subscribes to its own
 publications encapsulated in the event notification with respect to
 all events that are associated with ECA Policy so that the
 publication is intercepted and all events specified in the ECA policy
 model are continuously monitored by the server before the publication
 is encapsluated in the event notification and sent to the YANG Push
 subscription's client. At the moment of event detection, the server
 loads the operational state data object filtered by the YANG Push
 subscription's filters or ECA policy into the auto-configured ECA's
 event and execute the ECA's associated condition-action chain.

 The condition is associated with an ECA event and evaluated only
 within event threads triggered by the event detection, and the action
 corresponds to a set of statements that may trigger state changes in
 the device or publication content changes in the Event subscription
 and could be various different operations to be carried out by the
 server:

 o Configuration data object reconfiguration;

 o ECA Log report Notification;

 o Add or remove one or multiple YANG Push Subscriptions;

Boucadair, et al. Expires May 6, 2020 [Page 5]

Internet-Draft ECA Framework November 2019

 o Invoke another Event in the same network device or different
 network device.

2.4. Event-Driven Notification Handling

 ECA notifications are the only ECA actions that directly interact and
 hence need to be unambiguously understood by the client.

 ECA notification can be sent when the client may find any interesting
 about the associated event with all the logic to compute said data
 (e.g., datastore content changes history, median values), and
 delegate computation task to the server via an ECA script.

 When a "Send ECA notification" action is configured as an ECA Action,
 the client may receive different ECA notification associated with the
 same event or different events, YANG Push Publication will also be
 sent through Event notification. Therefore it is important for
 client to correlate of events and ECA notifications received from the
 server.

 When ECA notification and YANG Push Publication are both pushed to
 the client, the client can execute client specific script generated
 in the same way as the server does and manipulate various network
 resources autonomously remotely. However the network resource can
 not be manipulated twice in both client and the server. Therefore
 policy conflict should be avoided or resolved.

2.5. Requisite State Information

 A ECA policy rule is read as: When event occurs in a situation where
 condition is true, then action is executed. The ECA associated state
 is used to indicate when Events are triggered and what actions must
 be performed on the occurrence of an event.

 A simple information model for one piece of the ECA associated state
 is as follows:

 {
 event name;
 start time;
 end time;
 threshold value;
 event occurrence times
 }

 The event that is observed could be a fault, an alarm, a change in
 network state, network security threats, hardware malfunctions,

Boucadair, et al. Expires May 6, 2020 [Page 6]

Internet-Draft ECA Framework November 2019

 buffer utilization exceeding a threshold. For any of the
 aforementioned events, multiple actions may be triggered.

3. Architectural Concepts

3.1. What is Defined in ECA Policy?

 ECA Event is a change of datastore operational state. Each policy
 rule consists of a set of conditions and a set of actions. Policy
 rules may be aggregated into policy groups. These groups may be
 nested, to represent a hierarchy of policies.

 ECA Condition is evaluated to TRUE or FALSE logical expression. ECA
 condition is specified as a hierarchy of comparisons and logical
 combinations of thereof, which allows for configuring logical
 hierarchies. One of ECA condition example is logical hierarchies
 specified in a form of:

 <target><relation><arg>
 where target represent managed data object while arg represent either
 constant/enum/identity, Policy variable or pointed by XPath data store
 node or sub-tree,

 relation is one of the comparison operations from the set: ==, !=,
 >, <, >=, <=

 Logical calculation between multiple trigger conditions:

 The YANG language cannot clearly describe complex logical operations
 between different condition lists under the same event, for example,
 (condition A & condition B) or condition C.

 By default, the ECA model performs logic "AND" operation between
 different conditions in the same Event. That is, event is triggered
 when different conditions are met at the same time. For example,

 Event A consists of two conditions:
 o Condition A;
 o Condition B;
 If Condition A AND Condition B is met;
 Event A is triggered;
 Action A is executed.

 For the logic "OR" operation between different conditions, the
 conditions can be defined in different events. If the corresponding
 event is triggered, the same action is executed. For example,

Boucadair, et al. Expires May 6, 2020 [Page 7]

Internet-Draft ECA Framework November 2019

 Event A is triggered on Condition A.
 Event B is triggered on Condition B.
 If Condition A is met;
 Event A is triggered;
 Action A is executed.
 If Condition B is met;
 Event B is triggered;
 Action A is executed.

 ECA Action is one of the following operations to be carried out by a
 server:

 o Configuration data object reconfiguration

 o ECA Log report Notification

 o Add or remove one or multiple YANG Push Subscriptions

 o Invoke another Event in the same network device or different
 network device

 In case of one event triggering another event, a set of events can be
 grouped together and executed, in a coordinated manner. The action
 associated with the event can be executed in the same network device
 or in different network devices. In the latter case, events executed
 by different network devices need to coordinate as a group to fulfil
 a task, previously set.

3.2. Where is ECA Script and State Held?

 The ECA state information described in Section 2.5 and associated ECA
 script has to be held somewhere. There are two locations where this
 applies:

 o in a central controller where decisions about resource adjustment
 are made;

 o in the network nodes where the resources exist.

 The first of these locations have a good visibility of the whole
 network or information of the flow packets are going to take through
 the entire network, but requires a centralized, searchable repository
 of all network information that can be used for diagnostics, service
 assurance, maintenance or audit purposes. The response to network
 event can be slow since all monitored data objects from large amount
 of network devices need to be sent and correlated at the point where
 decisions about resource adjustment are made, less alone multiple
 network event triggering a single action.

Boucadair, et al. Expires May 6, 2020 [Page 8]

Internet-Draft ECA Framework November 2019

 Conversely, if the ECA state and associated ECA script is held in the
 network nodes, it makes policing of resource adjustment easier. It
 means many points in the network can have immediate response to
 network event. The limitation is the configurations and state of a
 particular device does not have the visibility of the whole network
 or information of the flow packets are going to take through the
 entire network, so they provide little insight into network level
 policy-related behavior.

3.3. What State is Held?

 As already described, the network control logic associated with ECA
 script needs access to ECA state table. It stores network events
 pushed from YANG push subscription or ECA policy model, threshold
 value it set for observed network management data object.

 In addition, when the event needs to be continuously monitored, the
 Event scheduling information such as start time, end time can be
 included.

 In case of sending updates only when the value exceeds a certain
 threshold for the first time but not again until the threshold is
 cleared, a threshold clear flag is also needed.

 In case of monitoring the data change or data change rate, for
 example, YANG Push On-Change mode [RFC8641] or ECA Threshold Test
 [I.D-wwx-netmod-event-yang], the ECA state table need to store
 history state to check the condition to be satisfied and determine
 the current state.

4. Architecture Overview

 The architectural considerations and conclusions described in the
 previous section lead to the architecture described in this section
 and illustrated in Figure 1. The interfaces and interactions shown
 in the figure and labeled (a) through (f) are described in

Section 4.1.

https://datatracker.ietf.org/doc/html/rfc8641

Boucadair, et al. Expires May 6, 2020 [Page 9]

Internet-Draft ECA Framework November 2019

 +--+
 |Management System +----------+ |
 | +--------+ECA Script| |
 |+----------+ +-------+--+ +----+-----+ |
 ||ECA Design| | Notif <----------+-----------+ | | |
 |+-+---+----+ |Monitoring<----+ | | |
 | | | +^------^--+ | | | |
 +--+---+--------+------+-------+-----+---------- +---+
 (a) | |(b) |(c) |(d) (e) | (f) |(e)
 ECA | |YANG | | |Event| Config |Event
 Model| |Push |Event |ECA |Notif| Model |Notif
 | |Sub |Notif |Notif | | |
 | |Filter | | | | |
 ------+---+--------+------+-------+-----+---------- +-------------
 | | | | | | | Network
 +--+---+--------+------+-------+-----V-+ +-----+-----+
 |+-V---V----+ | | | | |
 ||ECA Script+---+ | | | |
 || |----------+ | | |
 |+----+-----+ | | Network |
 |+----V----+ | | Device B |
 ||ECA State| | | |
 |+---------+ Network Device A | | |
 +--------------------------------------+ +-----------+

 Figure 1.Reference Architecture for Use of ECA and Network Self
 Management

4.1. Telemetry Automation in the Network Device

 As shown in Figure 1, some component in the management system defines
 and designs ECA Policy rule. This may be invoked by a Service
 assurance application or device fault self-management application.
 We show this component on the figure as the "ECA Design", and it
 extracts Event and Condition in the ECA model and fill into YANG Push
 Subscription as filter. When YANG Push subscription filter is pushed
 down to the network device, ECA script can be generated automatically
 from it (ECA script can also be generated in the management system
 and downloaded to the network device). The YANG Push subscription
 request, indicated on Figure 1 by the arrow (b), includes all of the
 parameters of network management data objects that the requester
 wishes to be supplied, such as filter node, threshold value, start
 time, and end time. Note that the requester in this case may be the
 management system shown in the figure or a distinct system such as
 data collector.

 The network device registers network event that is corresponding to
 the filter carried in the YANG Push Subscription and enters the

Boucadair, et al. Expires May 6, 2020 [Page 10]

Internet-Draft ECA Framework November 2019

 network event in its ECA state and then the server subscribes to its
 own continuous datastore updates in the operational state datastore
 that is encapsulated in the event notification as publication to the
 YANG Push subscriber.

 Upon the network event is detected, the server intercepts the
 publication of subscribed data and loads the operational state data
 object in the operational state datastore into the auto-configured
 ECA's event and execute the ECA's associated condition. When ECA
 Condition is evaluated to TRUE, the operational state data objects
 will be filtered and the remaining data objects will be entered back
 into the publication of subscribed data and encapsulated in the event
 notification (c) and sent to notification monitoring component in the
 management system.

 The notification monitoring component may further derive some new ECA
 policy rule and fed into ECA Design component. The remaining
 procedure is same as the procedure starting from (b).

 Alternatively, the ECA design component can push ECA model directly
 with additional actions included (a) to the network device, ECA
 script is generated automatically from ECA model. The ECA model
 request, indicated on Figure 1 by the arrow (a), includes additional
 action parameters besides one included in the YANG Push subscription
 request.

 The network device register network event that is corresponding to
 the ECA carried in the ECA request and enter them in its ECA state
 and then the server subscribes to its own continuous datastore
 updates in the operational state datastore that is encapsulated in
 the event notification as publication to the YANG Push subscriber.

 Upon the network event is detected, the server loads the operational
 state data object in the operational state datastore into the auto-
 configured ECA's event and execute the ECA's associated condition.
 Different from YANG Push subscription filter, the server will not
 intercept the publication of subscribed data. Instead, it allows the
 server to trigger a set of actions associated with the network event,
 e.g., send ECA log report notification, add/remove YANG push
 subscription, reconfigure the network management data object within
 the control of the server. After all actions are executed, one or
 multiple separate ECA notifications (d) can be sent to the
 notification monitoring component in the management system, the
 remaining procedure is same as YANG Push subscription case.

 Conversely,when, network level policy-related behavior became
 necessary, once a subscription has been set up, event notification
 message associated with the subscription from different network

Boucadair, et al. Expires May 6, 2020 [Page 11]

Internet-Draft ECA Framework November 2019

 device will be sent to the notification monitoring component in the
 management system(e), which in turn trigger network behavior change
 on the network device via configuration model (f).

4.2. Detecting and Resolving Policy Conflict

 There are two possible places where policy conflict can take places:

 1. An event triggers multiple actions in the network device that
 cannot occur together as specified by the system administrator.

 2. Multiple ECA notifications or multiple combination of ECA
 notification and Event notification lead to generate ECA policy
 that cannot occur together.

 In both case, policy conflict can be addressed by policy conflict
 detection mechanism and Policy validation mechanism.

4.3. Chain Reaction of Coordinated Events

 In some cases events executed by the same or different network
 devices can be executed in a coordinated manner. To make sure these
 network devices coordinate on some task or a group of events
 coordinate in the same network device, these events on the same or
 different network devices need to be pre-configured to work together.
 During capability negotiation phase, the management system should
 know what each network device supports, which event may take action,
 and what condition on which event. So ECA model with multiple events
 can be configured on the network device to allow one event be
 triggered by another event configured on the same network device.

5. Security Considerations

 The framework described in this document for supporting autonomic
 event-driven self-management will require consideration of potential
 security and operational requirements, and ensure best security
 practices and methods are applied.

 Key security considerations that will be discussed in future versions
 of this document, include:

 o Authentication of ECA programming requests;

 o Application of suitable authorization methods when enabling ECA
 functions;

 o Securing ECA communication channels;

Boucadair, et al. Expires May 6, 2020 [Page 12]

Internet-Draft ECA Framework November 2019

 o Locking ECA device config and state databases;

 o Mitigation, and negation, of ECA functional component attacks;

 o Logging and auditing of ECA transactions;

 o Maintaining ECA device confidentially.

6. Acknowledgements

 This work has benefited from the discussions of ECA Policy over the
 years. In particular, the SUPA project [

https://datatracker.ietf.org/wg/supa/about/] provided approaches to
 express high-level, possibly network-wide policies to a network
 management function (within a controller, an orchestrator, or a
 network element).

 Igor Bryskin, Xufeng Liu, Alexander Clemm, Henk Birkholz, Tianran
 Zhou contributed to an earlier version of [GNCA]. We would like to
 thank the authors of that document on event response behaviors
 delegation for material that assisted in thinking that helped develop
 this document.

 Finally, the authors would like to thank David Hutchison and Mehdi
 Bezahaf at Lancaster University, Phil Eardley and Andy Reid at
 British Telecom, for their input and applicability of ECA device self
 management to the Next Generation Converged Digital Infrastructure
 (NG-CDI) project.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/wg/supa/about/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Boucadair, et al. Expires May 6, 2020 [Page 13]

Internet-Draft ECA Framework November 2019

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

7.2. Informative References

 [I-D.bryskin-netconf-automation-yang]
 Bryskin, I., Liu, X., Clemm, A., Birkholz, H., and T.
 Zhou, "Generalized Network Control Automation YANG Model",

draft-bryskin-netconf-automation-yang-03 (work in
 progress), July 2019.

 [I-D.clemm-netmod-push-smart-filters]
 Clemm, A., Voit, E., Liu, X., Bryskin, I., Zhou, T.,
 Zheng, G., and H. Birkholz, "Smart Filters for Push
 Updates", draft-clemm-netmod-push-smart-filters-01 (work
 in progress), October 2018.

 [I-D.clemm-nmrg-dist-intent]
 Clemm, A., Ciavaglia, L., Granville, L., and J. Tantsura,
 "Intent-Based Networking - Concepts and Overview", draft-

clemm-nmrg-dist-intent-02 (work in progress), July 2019.

 [I-D.wwx-netmod-event-yang]
 Wang, Z., WU, Q., Xie, C., Bryskin, I., Liu, X., Clemm,
 A., Birkholz, H., and T. Zhou, "A YANG Data model for ECA
 Policy Management", draft-wwx-netmod-event-yang-04 (work
 in progress), November 2019.

 [RFC8328] Liu, W., Xie, C., Strassner, J., Karagiannis, G., Klyus,
 M., Bi, J., Cheng, Y., and D. Zhang, "Policy-Based
 Management Framework for the Simplified Use of Policy
 Abstractions (SUPA)", RFC 8328, DOI 10.17487/RFC8328,
 March 2018, <https://www.rfc-editor.org/info/rfc8328>.

 [RFC8572] Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero
 Touch Provisioning (SZTP)", RFC 8572,
 DOI 10.17487/RFC8572, April 2019,
 <https://www.rfc-editor.org/info/rfc8572>.

https://datatracker.ietf.org/doc/html/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://datatracker.ietf.org/doc/html/rfc8342
https://www.rfc-editor.org/info/rfc8342
https://datatracker.ietf.org/doc/html/draft-bryskin-netconf-automation-yang-03
https://datatracker.ietf.org/doc/html/draft-clemm-netmod-push-smart-filters-01
https://datatracker.ietf.org/doc/html/draft-clemm-nmrg-dist-intent-02
https://datatracker.ietf.org/doc/html/draft-clemm-nmrg-dist-intent-02
https://datatracker.ietf.org/doc/html/draft-wwx-netmod-event-yang-04
https://datatracker.ietf.org/doc/html/rfc8328
https://www.rfc-editor.org/info/rfc8328
https://datatracker.ietf.org/doc/html/rfc8572
https://www.rfc-editor.org/info/rfc8572

Boucadair, et al. Expires May 6, 2020 [Page 14]

Internet-Draft ECA Framework November 2019

Authors' Addresses

 Mohamed Boucadair
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: bill.wu@huawei.com

 Michael Wang
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: wangzitao@huawei.com

 Daniel King
 Lancaster University
 Bailrigg, Lancaster LA1 4YW
 UK

 Email: d.king@lancaster.ac.uk

 Chongfeng Xie
 China Telecom
 Beijing
 China

 Email: xiechf.bri@chinatelecom.cn

Boucadair, et al. Expires May 6, 2020 [Page 15]

