
Network Working Group X. Cai
Internet-Draft C. Meirosu
Intended status: Informational G. Mirsky
Expires: April 17, 2016 Ericsson
 October 15, 2015

Recursive Monitoring Language in Network Function Virtualization (NFV)
Infrastructures

draft-cai-nfvrg-recursive-monitor-00

Abstract

 Network Function Virtualization (NFV) poses a number of monitoring
 challenges; one potential solution to these challenges is a recursive
 monitoring language. This document presents a set of requirements
 for such a recursive monitoring language.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 17, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Cai, et al. Expires April 17, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Recursive Monitoring Language in NFV October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Conventions used in this document 3
1.1.1. Terminology . 3
1.1.2. Requirements Language 4

2. Requirements towards NFV Monitoring Language 4
3. Sample Use Cases . 4
4. Overview of the Recursive Language 5
5. Formal Syntax . 7
6. Requirements for Using the Language 8
7. Sample Query Scripts . 8
7.1. Query End to End Delay Between Network Functions 9
7.2. Query the CPU Usage of Network Functions 10

8. IANA Considerations . 10
9. Security Considerations 10
10. Acknowledgements . 10
11. References . 11
11.1. Normative References 11
11.2. Informative References 11

 Authors' Addresses . 11

1. Introduction

 This document discusses the recursive monitoring query language to
 support NFV infrastructures (e.g., defined in ETSI [ETSI-ARC] and
 UNIFY [I-D.unify-nfvrg-recursive-programming]). A network service
 can be constructed of Virtual Network Functions (VNFs) or Physical
 Network Functions (PNFs) interconnected through a Network Function
 Forwarding Graph (NF-FG). A single VNF, in turn, can consist of
 interconnected elements; in other words, NF-FGs can be nested.

 Service operators and developers are interested in monitoring the
 performance of a service contained within an NF-FG (as above) or any
 part of it. For example, an operator may want to measure the CPU or
 memory usage of an entire network service and the network delay cross
 a VNF which consists of multiple VMs, instead of only individual
 virtual or physical entities.

 In existing systems, this is usually done by mapping the performance
 metrics of VNFs to primitive network functions or elements,
 statically and manually when the virtualized service is deployed.
 However, in the architecture defined in ETSI [ETSI-ARC] and UNIFY
 [I-D.unify-nfvrg-recursive-programming] a multi-layer hierarchical
 architecture is adopted, and the VNF and associated resources,

Cai, et al. Expires April 17, 2016 [Page 2]

Internet-Draft Recursive Monitoring Language in NFV October 2015

 expressed NF-FGs, may be composed recursively in different layers of
 the architecture. This will pose greater challenges for performance
 queries for a specific service, as the mapping of performance metrics
 from the service layer (highest layer) to the infrastructure (lowest
 layer) is more complex than an infrastructure with a single layer of
 orchestration. We argue that it is important to have an automatic
 and dynamic way to decompose performance queries in this environment
 in a recursive way, following the different abstraction levels
 expressed in the NF-NFs at hierarchical architecture layers. Hence,
 we propose using a declarative language such as Datalog [Green-2013]
 to perform recursive queries based on input in form of the resource
 graph depicted as NF-FG. By reusing the NF-FG models and monitoring
 database already deployed in NFV infrastructure, the language can
 hide the complexity of the multilayer network architecture with
 limited extra effort and resources. Even for single layer NFV
 architectures, using such language can simplify performance queries
 and enable a more dynamic performance decomposition and aggregation
 for the service layer.

 Recursive query languages can support many DevOps
 [I-D.unify-nfvrg-devops] processes, most notably observability and
 troubleshooting tasks relevant for both operators and developer
 roles, e.g. for high-level troubleshooting where various information
 from different sources need to be retrieved. Additionally, the query
 language might be used by specific modules located in the control and
 orchestration layers, e.g. a module realizing infrastructure
 embedding of NF-FGs might query monitoring data for an up-to-date
 picture of current resource usage. Also scaling modules of specific
 network functions might take advantage of the flexible query engine
 pulling of monitoring information on demand (e.g. resource usage,
 traffic trends, etc.), as complement to relying on devices and/or
 elements to push this information based on pre-defined thresholds.

1.1. Conventions used in this document

1.1.1. Terminology

 ETSI - European Telecommunication Standards Institute

 NF-FG - Network Function Forwarding Graph

 NFV - Network Function Virtualization

 PNF - Physical Network Function

 SG - Service Graph

 VNF - Virtual Network Function

Cai, et al. Expires April 17, 2016 [Page 3]

Internet-Draft Recursive Monitoring Language in NFV October 2015

1.1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. Requirements towards NFV Monitoring Language

 Following are the requirements for a language to express constructs
 and actions of monitoring NFV infrastructures:

 o The network service MAY consist of VNFs which contain inter-
 connected elements and be described by nested NF-FGs. The
 language MUST support recursive query.

 o The language is used by the service operators or developers to
 monitor the high-level performance of the network service.
 Declarative language could provide better description on the
 monitoring task rather the procedure than imperative language.
 The language MUST be declarative.

3. Sample Use Cases

 In Figure 1, the Service Graph (SG) and corresponding NF-FGs of a
 network service is illustrated. The service consists of two Network
 Functions NF1 and NF2, which consists of (VNF1-1, VNF1-2) and
 (VNF2-1, VNF2-2) respectively. In VNF1-1 and VNF2-2 there are
 recursively nested VNFs VNF1-3 and VNF2-3.

https://datatracker.ietf.org/doc/html/rfc2119

Cai, et al. Expires April 17, 2016 [Page 4]

Internet-Draft Recursive Monitoring Language in NFV October 2015

 +---+ +---+
 +-------------- |NF1|--------|NF2| ---------------+
 | +-+-+ +-+-+ |
 | | | |
 | | | |
 +-------+-------+ +-----------+ +--------------+ +-----------------+
VNF1-1		VNF1-2		VNF2-1		VNF2-2																
+------+ +----+ +----+ +----+	+---+ +---+		+---+ +------+																			
	VNF1-3		vm1				vm2		vm3				vm4		vm5				vm6		VNF2-3	
-------+	----		----+	----			---+	---+			---+ +------+											
 +---------------+ +-----------+ +--------------+ +-----------------+
 | | | |
 +--++ +---+ +--++ +-+--+
 |vm7| |vm8| |vm9| |vm10|
 +---+ +---+ +---+ +----+

 Figure 1: The sample NF-FG of network service

 Two use cases of the recursive monitoring query are described below.

 First, consider the use case where an operator of the network service
 wants to query the end to end delay from network function NF1 to
 Network Function NF2 in the service graph. Here the end to end delay
 of two network functions are defined as the delay between ingress
 node of source network function and egress node of destination
 network function. After running a querying script, the delay between
 NF1 and NF2 in service layer should be mapped recursively to the
 delay between two specific virtual machines (vm7 and vm10) in the NFV
 infrastructure.

 Second, consider the use case where an operator wants to measure the
 CPU usage of network function NF1 in order to dynamically scale in/
 out this function. Several types of CPU usage of a network function
 can be defined. For example, average CPU usage is the average value
 of measured CPU usage of all nodes belongs to the network function.
 Maximum CPU usage is the measured usage of the node that has the
 highest CPU load. To get either the average or maximum CPU usage,
 the query language to recursively identify all nodes (i.e., vm1, vm2,
 vm3, vm7 and vm8) of NF1, then retrieve the measured CPU usage of
 these nodes from somewhere and return the mean or maximum value to
 the operator.

4. Overview of the Recursive Language

 In this section we describe the recursive monitoring language. The
 query language proposed here is based on Datalog, which is a
 declarative logic programming language that provides recursive query

Cai, et al. Expires April 17, 2016 [Page 5]

Internet-Draft Recursive Monitoring Language in NFV October 2015

 capability. Datalog has been used in cloud computing in recent
 years, e.g., the OpenStack [OpenStack] policy engine Congress
 [OpenStack-Congress].

 As like other Datalog based language, the recursive monitoring query
 program consists of a set of declarative Datalog rules and a query.
 A rule has the form:

 h <= p1, p2, ..., pn

 which can be defined as "p1 and p2 and ... and pn implies h". "h" is
 the head of the rule, and "p1, p2, ..., pn" is a list of literals
 that constitutes the body of the rule. Literals "p(x1, ..., xi, ...,
 xn)" are either predicates applied to arguments "xi" (variables and
 constants), or function symbols applied to arguments. The program is
 said to be recursive if a cycle exists through the predicates, i.e.,
 predicate appearing both in the head and body of the same rule. The
 order in which the rules are presented in a program is semantically
 irrelevant. The commas separating the predicates in a rule are
 logical conjuncts (AND); the order in which predicates appear in a
 rule body has no semantic significance, i.e. no matter in what order
 rules been processed, the result is atomic, i.e. the same. The names
 of predicates, function symbols and constants begin with a lower-case
 letter, while variable names begin with an upper-case letter. A
 variable appearing in the head is called distinguished variable while
 a variable appearing in the body is called non-distinguished
 variable. The head is true of the distinguished variables if there
 exist values of the non-distinguished variables that make all sub
 goals of the body true. In every rule, each variable stands for the
 same value. Thus, variables can be considered as placeholders for
 values. Possible values are those that occur as constants in some
 rule/fact of the program itself. In the program, a query is of the
 form "query(m, y1, ..., yn)", in which "query" is a predicate
 contains arguments "m" and "yi". "m" represents the monitoring
 function to be queried, e.g., end to end delay, average CPU usage,
 and etc. "yi" is the arguments for the query function. The meaning
 of a query given a set of Datalog rules and facts is the set of all
 facts of query() that are given or can be inferred using the rules in
 the program. The predicates can be divided into two categories:
 extensional database predicates (EDB predicates), which contains
 ground facts, meaning it only has constant arguments; and intentional
 database predicates (IDB predicates), which correspond to derived
 facts computed by Datalog rules.

 In order to perform a recursive monitoring query, the resource graph
 described in NF-FG needs be transformed so it is represented as a set
 of Datalog ground facts which are used by the rules in the program.

Cai, et al. Expires April 17, 2016 [Page 6]

Internet-Draft Recursive Monitoring Language in NFV October 2015

 The following keywords can be defined to represent the NF-FG graph
 into Datalog facts, which are then used in the query scripts:

 sub(x, y) which represents 'y' is an element of the directly
 descend sub-layer of 'x';

 link(x, y) which represents that there is a direct link between
 elements 'x' and 'y';

 node(z) which represents an node in NF-FG.

 It should be noted that more keywords can be defined in order to
 describe other properties of NF-FG.

 In addition, a set of functions call can be defined in order to
 support the monitoring query. The function call will start with
 "fn_" in the syntax and may include 'boolean' predicates, arithmetic
 computations and some other simple operation. The function calls can
 be provided by the query engine or developers.

 If the sub NF-FGs of a network service are provided by different NFV
 infrastructure provider and not available to the provider who like to
 measure some aspect of the NF-FG due to some reason, e.g., security,
 additional extensions to the language and query engine would be
 required (this is called a distributed query). This scenario is not
 considered in this draft; left for further study.

5. Formal Syntax

 The following syntax specification describes the Datalog based
 reursive monitoring language and uses the augmented Backus-Naur Form
 (BNF) as described in [RFC2234].

https://datatracker.ietf.org/doc/html/rfc2234

Cai, et al. Expires April 17, 2016 [Page 7]

Internet-Draft Recursive Monitoring Language in NFV October 2015

 <program> ::= <statement>*
 <statement> ::= <rule> | < fact>
 <rule> ::= [<rule-identifier>] <head> <= <body>
 <fact> ::= [<fact-identifier>]<clause> |
 <fact_predicate>(<terms>)
 <head> ::= <clause>
 <body> ::= <clause>
 <clause> ::= <atom> | <atom>, <clause>
 <atom> ::= <predicate> (<terms>)
 <predicate> ::= <lowercase-letter><string>
 <fact_predicate> ::= ("sub"; | "node" |
 "link")(<terms>)
 <terms> ::= <term> | <term>, <terms>
 <term> ::= <VARIABLE> | <constant>
 <constant> ::= <lowercase-letter><string>
 <VARIABLE> ::= <Uppercase-letter><string>
 <fact-identifier> ::= "F"<integer>
 <rule-identifier> ::= "R"<integer>

6. Requirements for Using the Language

 To utilize the recursive monitoring language a query engine has to be
 deployed into NFV infrastructure. Some basic functions are required
 for the query engine.

 The query engine MUST provide the capability to parse and
 interpret the query scripts which are written with the language.

 The query engine MUST be able to retrieve the NF-FG created by NFV
 infrastructure and translate them into Datalog based ground facts.

 The query engine MUST be able to query the database in which the
 monitoring results of primitive metric are stored.

 An interface between query engine and the users of the language
 (e.g., developer or network service operator) MUST be defined to
 exchange the query scripts and query results.

7. Sample Query Scripts

 According to the defined language, the sample query scripts for the
 above mentioned use cases are illustrated in this section. Some
 example query scripts are illustrated in this section.

Cai, et al. Expires April 17, 2016 [Page 8]

Internet-Draft Recursive Monitoring Language in NFV October 2015

7.1. Query End to End Delay Between Network Functions

 Two kinds of delay between network functions are discussed here: end-
 to-end delay and hop-by-hop delay. Here end to end delay is defined
 as the delay between the ingress node in the lowest layer of the
 source network function and the egress node in the lowest layer of
 the destination network function. And the hop by hop delay is
 defined as the aggregation of the delay of each segment which
 consists of the path from the source to the destination network
 function.

 The scripts to query the end to end delay from NF1 to NF2 as
 illustrated in Figure 1 contains both the ground facts and IDB
 predicates:

 F1: sub(NF1, VNF1-3, vm1, vm2, vm3), sub(NF2, vm4, vm5, vm6, VNF1-3),
 sub(VNF1-3, vm7, vm8), sub(VNF1-3, vm9, vm10)
 F2: node(NF1, NF2, VNF1-3, vm1, vm2, vm3, vm4, vm5, vm6, VNF1-3,
 vm7, vm8, vm9, vm10)
 F3: link(NF1, NF2), link (VNF1-3, vm1), link(vm2, vm3), link(vm3, vm4),
 link(vm4,vm5), link(vm5,vm6), link(vm6, VNF1-3), link(vm7, vm8),
 link(vm9, vm10)
 R1: child(X,Y) <= sub(X,Z), child(Z,Y)
 R2: child(X,Y) <= sub(X,Y)
 R3: leaf(X,Y) <= child(X,Y), ~sub(Y,Z)
 R4: in_leaf(X, Y) <= leaf(X, Y) & ~link(M, Y)
 R5: out_leaf(X, Y) <= leaf(X, Y) & ~link(Y, M)
 R6: e2e_delay(S,D,P) <= link(S,D), P == f_e2e_delay(in_leaf(S,Y),
 out_leaf(D,Z))
 query(e2e_delay, NF1, NF2)

 F1-F3 are used to translate the NF-FG in Figure x into ground facts.
 R1-R5 are used to traversal the NF-FG recursively to get the ingress
 node of VNF1 and egress node of VNF2. R1-R2 can recursively
 traversal the graphs and figure out all child nodes (i.e., VNF1-1,
 VNF1-3, VNF1-2, vm1, vm2, vm3, vm7, vm8, VNF2-1, VNF2-2, VNF2-3, vm4,
 vm5, vm6, vm9, vm10 in Figure 1). R3 is used to figure out all leaf
 nodes (i.e., virtual machines). In the example, they include all
 virtual machines. R4 and R5 are used to get the ingress and egress
 nodes of NF1 and NF2 respectively, i.e., vm7 and vm10. In R6 the
 delay for given source and destination network functions is measured
 by function f_e2e_delay. R1-R6 can be stored into a library of the
 query engine as a template e2e_delay, so that the receivers only need
 send a simple query request, e.g. e2e_delay NF1 NF2, to the query
 engine to measure the end to end delay between NF1 and NF2.

Cai, et al. Expires April 17, 2016 [Page 9]

Internet-Draft Recursive Monitoring Language in NFV October 2015

7.2. Query the CPU Usage of Network Functions

 Below are scripts to query the CPU usage (maximum and average usage)
 of a given network function:

 F1: sub(NF1, VNF1-3, vm1, vm2, vm3), sub(NF2, vm4, vm5, vm6, VNF1-3),
 sub(VNF1-3, vm7, vm8), sub(VNF1-3, vm9, vm10)
 F2: node(NF1, NF2, VNF1-3, vm1, vm2, vm3, vm4, vm5, vm6, VNF1-3, vm7,
 vm8, vm9, vm10)
 R1: child(X,Y) <= sub(X,Z), child(Z,Y)
 R2: child(X,Y) <= sub(X,Y)
 R3: leaf(X,Y) <= child(X,Y), ~sub(Y,Z)
 R4: max_cpu(X,C) <= leaf(X,Y), C == f_max_cpu(leaf(X,Y))
 R5: mean_cpu (X,C) <= leaf(X, Y), C == f_mean_cpu(leaf(X,Y))
 Query(max_cpu, NF1)

 F1-F2 are used to translate the NF-FG in Figure x into ground facts.
 R1-R3 are used to traversal the NF-FG recursively to get all child
 nodes of NF1 in Figure x. R1-R2 recursively traversal the graphs and
 figure out all child nodes of NF1(i.e., VNF1-1, VNF1-3, VNF1-2, vm1,
 vm2, vm3, vm7, vm8). R3 is used to figure out all leaf nodes of
 NF1(i.e., vm1, vm2, vm3, vm7, vm8). In R4, the maximum CPU usage is
 calculated by function f_max_cpu. In R5, the average CPU usage is
 calculated by function f_mean_cpu.

 Here only the query scripts for network delay and CPU usage are
 illustrated. But the language can also be applied to other
 performance metrics like throughput and etc.

8. IANA Considerations

 TBD

9. Security Considerations

 TBD

10. Acknowledgements

 Authors deeply appreciate thorough review and insightful comments by
 Russ White.

Cai, et al. Expires April 17, 2016 [Page 10]

Internet-Draft Recursive Monitoring Language in NFV October 2015

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

11.2. Informative References

 [ETSI-ARC]
 "Architectural Framework v1.1.1", ETSI , October 2013.

 [Green-2013]
 "Green, T. J., S. Huang, B.T. Loo, and W. Zhou, Datalog
 and Recursive Query Processing", Foundations and Trends in
 Databases Vol. 5, No. 2, November 2013.

 [I-D.unify-nfvrg-devops]
 Meirosu, C., Manzalini, A., Kim, J., Steinert, R., Sharma,
 S., Marchetto, G., Papafili, I., Pentikousis, K., and S.
 Wright, "DevOps for Software-Defined Telecom
 Infrastructures", draft-unify-nfvrg-devops-02 (work in
 progress), July 2015.

 [I-D.unify-nfvrg-recursive-programming]
 Szabo, R., Qiang, Z., and M. Kind, "Towards recursive
 virtualization and programming for network and cloud
 resources", draft-unify-nfvrg-recursive-programming-01
 (work in progress), July 2015.

 [OpenStack]
 "OpenStack (online)", http://www.openstack.org/ .

 [OpenStack-Congress]
 "OpenStack Congress (online)",

https://wiki.openstack.org/wiki/Congress .

 [RFC2234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, DOI 10.17487/RFC2234,
 November 1997, <http://www.rfc-editor.org/info/rfc2234>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-unify-nfvrg-devops-02
https://datatracker.ietf.org/doc/html/draft-unify-nfvrg-recursive-programming-01
http://www.openstack.org/
https://wiki.openstack.org/wiki/Congress
https://datatracker.ietf.org/doc/html/rfc2234
http://www.rfc-editor.org/info/rfc2234

Cai, et al. Expires April 17, 2016 [Page 11]

Internet-Draft Recursive Monitoring Language in NFV October 2015

 Xuejun Cai
 Ericsson

 Email: xuejun.cai@ericsson.com

 Catalin Meirosu
 Ericsson

 Email: catalin.meirosu@ericsson.com

 Greg Mirsky
 Ericsson

 Email: gregory.mirsky@ericsson.com

Cai, et al. Expires April 17, 2016 [Page 12]

