
Network Working Group                                          K. Cairns
Internet-Draft                               Washington State University
Intended status: Standards Track                             J. Mattsson
Expires: April 21, 2016                                          R. Skog
                                                              D. Migault
                                                                Ericsson
                                                        October 19, 2015

Session Key Interface (SKI) for TLS and DTLS
draft-cairns-tls-session-key-interface-01

Abstract

   This document describes a session key interface that can be used for
   TLS and DTLS.  The Heartbleed attack has clearly illustrated the
   security problems with storing private keys in the memory of the TLS
   server.  Hardware Security Modules (HSM) offer better protection but
   are inflexible, especially as more (D)TLS servers are running on
   virtualized servers in data centers.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 21, 2016.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Cairns, et al.           Expires April 21, 2016                 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Internet-Draft                   TLS SKI                    October 2015

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
3.  Problem Statement . . . . . . . . . . . . . . . . . . . . . .   4
4.  TLS Session Key Interface Architecture  . . . . . . . . . . .   5
4.1.  Architecture Overview . . . . . . . . . . . . . . . . . .   6
4.2.  Security Analysis . . . . . . . . . . . . . . . . . . . .   6
4.2.1.  Edge Server . . . . . . . . . . . . . . . . . . . . .   6
4.2.2.  Key Server  . . . . . . . . . . . . . . . . . . . . .   8
4.2.3.  Communication and SKI . . . . . . . . . . . . . . . .   9

4.3.  Security Requirements . . . . . . . . . . . . . . . . . .   9
5.  Session Key Interface (SKI) . . . . . . . . . . . . . . . . .  10
5.1.  SKI Protocol Overview . . . . . . . . . . . . . . . . . .  12
5.1.1.  RSA . . . . . . . . . . . . . . . . . . . . . . . . .  12
5.1.2.  Ephemeral Diffie Hellman  . . . . . . . . . . . . . .  14

5.2.  SKI Specification . . . . . . . . . . . . . . . . . . . .  14
5.2.1.  Key Server Processing . . . . . . . . . . . . . . . .  16

6.  Interaction with TLS Extensions . . . . . . . . . . . . . . .  16
7.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  17
7.1.  ECDHE_ECDSA Key Exchange  . . . . . . . . . . . . . . . .  17
7.1.1.  SKI Request and Response with JSON/HTTP . . . . . . .  17
7.1.2.  SKI Request and Response with CBOR/CoAP . . . . . . .  19

7.2.  Static RSA Key Exchange . . . . . . . . . . . . . . . . .  19
7.2.1.  SKI Request and Response with JSON/HTTP . . . . . . .  20
7.2.2.  SKI Request and Response with CBOR/CoAP . . . . . . .  20

8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
9.  Security Considerations . . . . . . . . . . . . . . . . . . .  21
10. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  21
11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  21

   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  24

1.  Introduction

   Transport Layer Security (TLS) is specified in [RFC5246] and the
   Datagram Transport Layer Security (DTLS), which is based on TLS, is
   specified in [RFC6347].  During the TLS handshake, the TLS client and
   the TLS server exchange a symmetric session key called the premaster
   secret.  From the premaster secret, the client random, and the server
   random, the endpoints derive a master secret, which in turn is used
   to derive the traffic encryption keys and IVs.  The TLS server is
   authenticated during this process by presenting a certificate and

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347


Cairns, et al.           Expires April 21, 2016                 [Page 2]



Internet-Draft                   TLS SKI                    October 2015

   then proving possession of the private key corresponding to the
   public key in the certificate.

   An important principle in designing security architectures is to
   limit access to keying material, especially long-lived secrets such
   as private keys.  The Heartbleed attack [HEART] has illustrated the
   dangers of storing private keys in the memory of the TLS server.

   The TLS Session Key Interface (SKI) defined in this document makes it
   possible to store private keys in a highly trusted key server,
   physically separated from client facing servers.  With TLS SKI (see
   Figure 1), the TLS Server is split into two distinct entities called
   Edge Server and Key Server that communicate over an encrypted and
   mutually authenticated channel using e.g.  TLS.  The Edge Server can
   be placed close to the clients, reducing latency, while the Key
   Server is placed in a safe location.  One important use case is an
   origin that operates a number of distributed HTTPS servers.  The
   public certificates (not private keys) are pre-provisioned in the
   Edge Server.  The Key Server handles all the private key operations.
   It retains control of the private keys and can at any time reject a
   request from the Edge Server, e.g. if there is reason to suspect that
   the Edge Server has been compromised.

   The interface SKI uses modern web technologies like JSON, CBOR, HTTP,
   CoAP, TLS, and REST.  SKI supports the most commonly used key
   exchange methods DHE_RSA, ECDHE_ECDSA, ECDHE_RSA, and RSA, together
   with X.509 [RFC5280] or raw public key [RFC7250] authentication.  It
   does not work with PSK or SRP authentication.  Even though the
   industry is quickly moving towards the more secure ECDHE key exchange
   methods, which provides perfect forward secrecy, static RSA still
   needs be supported in many deployments.

   The remaining of the document is as follows.  Section 2 defines the
   terms used in this document.  Section 3 describes the problem
   statement and the need to centralize the private key operations to a
   centralized Key Server as well as a standard interface to
   interoperate with the Key Server.  The resulting architecture is
   detailed in Section 4 followed by a security analysis and security
   requirements the different components as well as the SKI interface
   MUST meet.  Section 5 describes the SKI and defines a specific SKI
   implementation based on HTTP and JSON.  Section 6 position the SKI
   toward the different TLS extensions, and Section 7 illustrates the
   described SKI with examples.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7250


Cairns, et al.           Expires April 21, 2016                 [Page 3]



Internet-Draft                   TLS SKI                    October 2015

2.  Terminology

   TLS Client

   TLS Server

   Edge Server

   Key Server

   SKI

3.  Problem Statement

   With TLS, a TLS Client can set up an authenticated and encrypted
   channel with a TLS Server.  Authentication of the TLS Server as well
   as the negotiation of the TLS Session Keys are performed during the
   TLS hand shake.  The TLS hand shake as described in [RFC5246] details
   two methods: RSA and ephemeral Diffie Hellman.  In both case, the TLS
   Server is expected to perform some cryptographic operations based on
   a private key and thus requires to have access to the private key.
   When a single server is involved, the key is expected to be hosted by
   the server.  However, numerous web applications cannot be hosted by a
   single TLS Server.  Most of the time multiple TLS Servers are needed.
   In addition, multiple cloud provider or hosting providers provides
   resource elasticity by instantiating TLS Servers and placing these
   servers at the edge of the network in order to address the demand and
   reduce latency.  The various instances of TLS Server may be inside a
   singe domain or across multiple domains like a private cloud combined
   with other third party cloud providers.

   As each instance of the TLS Server needs to be able to perform some
   cryptographic operation with the private key, a number of ways may be
   envisioned:

   - 1)  The cryptographic material, e.g. the private key is shared
         between all TLS Server instances

         - a)  Cryptographic material is copied into the various
               instances of the TLS Server

         - b)  Cryptographic material is outsourced and accessed by all
               instances of TLS Servers

   - 2)  The cryptographic material is not shared and each instance has
         its own cryptographic material

https://datatracker.ietf.org/doc/html/rfc5246


Cairns, et al.           Expires April 21, 2016                 [Page 4]



Internet-Draft                   TLS SKI                    October 2015

   At first, hosting private key in memory of the TLS Server exposes the
   cryptographic material to leakage as illustrated by the Heartbleed
   attack [HEART].  One common practice used to protect keys is to
   delegate the private key operations to a separate entity such as a
   Hardware Security Module (HSM), something that is supported in many
   TLS libraries.  HSMs provide good security but are inflexible and may
   be difficult to deploy when the TLS server runs on a virtualized
   machine in the cloud, especially if the application server that uses
   TLS moves between different data centers.  Furthermore, while HSMs
   protect against extraction of the private key, they do not protect
   against misuse in case an adversary gains possession of the HSM
   itself.  In fact, an attacker taking control of the HSM can use the
   HSM to encrypt (resp. decrypt) any clear text (resp. encrypted text).
   Similarly, the use of a network-attached HSM does not prevent a
   corrupted client to have provide the full access to encryption /
   decryption unless some control access is performed to the data
   provided.  In general, access control policies on the data encrypted
   / decrypted by the HSM are not provided.  In addition, communication
   protocols of HSM are specific HSM vendor.  There are several other
   proprietary session key interfaces deployed but no standardized
   solution.

   Then, copying private keys in multiple instances increases the
   surface of attack is even increases the surface of attack with the
   number of instances of TLS Server.  One way to limit the surface of
   attack is to use a public / private key generated for each instance
   of TLS Server.  More specifically, when a TLS Server instance is
   corrupted, the and the attacker get access to the private key, this
   key cannot be used for another instance.  However, splitting keys per
   instance comes also with some additional drawbacks.  For example,
   session resumption does not work between multiple instances of TLS
   Servers.  In addition, all newly generated public keys of each TLS
   Servers needs to be signed by the Certificate Authority, which comes
   with an additional management overhead.

   The proposed TLS Session Key Interface Architecture proposes to have
   a common cryptographic material hold by the Key Server shared by all
   instances of the TLS Servers.  In addition, the interface between the
   TLS Severs and the Key Server is limited enforced to strong access
   control policies so to limit the scope of use of the encryption /
   decryption capabilities of the Server Key.

4.  TLS Session Key Interface Architecture



Cairns, et al.           Expires April 21, 2016                 [Page 5]



Internet-Draft                   TLS SKI                    October 2015

4.1.  Architecture Overview

   The TLS Session Key Interface Architecture is composed of three main
   components as described in Figure 1:

   TLS Client  are typically all web browsers or any TLS Client
         initiating an handshake with the TLS Server.

   Edge Server  are the TLS Server part seen by the TLS Client.  It is
         designated as an Edge Server as it does not host the private
         key of the TLS Server.  Instead, when the private key is
         involved, the cryptographic operation is performed by the Key
         Server.  Edge Servers are expected to be placed close to the
         TLS Client in order to reduce the latency.

   Key Server  hosts the private key and performs the cryptographic
         operations on behalf of the Edge Server.  Note that the Key
         Server may be connected to a HSM for example.  In addition,
         they may be a single Key Server or multiple Key Servers.

   In order to implement the SKI, the servers implementations and TLS
   libraries should make private key operation non blocking.

    +------------+  Handshake  +-------------+    SKI    +------------+
    | TLS Client | <---------> | Edge Server | <-------> | Key Server |
    +------------+             +-------------+           +------------+

             Figure 1: TLS Session Key Interface Architecture

4.2.  Security Analysis

4.2.1.  Edge Server

   Edge Servers are serving the TLS traffic of the TLS Clients.  Edge
   Servers performs all necessary operations except the cryptographic
   operations involving the private keys associated to the TLS Server.

   If an Edge Server becomes compromised, an attacker is still likely to
   perform some operations with the private key of the TLS Server by
   interacting with the Key Server.  The corrupted Edge Server may, for
   example, generate the TLS master secrets and impersonates the Edge
   Server.  However, such attacks are not different from those that
   existed on TLS Server.

   The presented architecture presents the following advantages.  First
   the private key remains protected and cannot be retrieved by the
   attacker.  This was obviously not the case when the key was hosted on
   the corrupted TLS Server.  Then, the attack is contained to the



Cairns, et al.           Expires April 21, 2016                 [Page 6]



Internet-Draft                   TLS SKI                    October 2015

   communications involving the Edge Servers.  The corrupted Edge Server
   does not compromise the other Edge Servers in the same way as when
   the private key of the TLS Server is copied on all Edge Servers.
   With the presented architecture, addressing the attack locally to the
   corrupted Edge Server is sufficient.  Note that in the case Edge
   Servers are dynamically provisioned, it is likely that the
   vulnerability found on one Edge Server may be also be found on other
   Edge Servers.  Such consideration are out of scope of the proposed
   architecture, and are inherent to deployment cloning VMs or
   instantiating VMs with an identical configuration.  At last, Edge
   Servers are not working on their own and still require some
   communications with a centralized Key Server.  Such communications
   with the Key Server may also be used to qualify the activities of the
   Edge Servers, and thus used to detect any abnormal behaviors.  This
   of course requires the Key Server to log and monitor the Edge
   Servers' activities.

   If an Edge Server becomes compromised, an attacker may perform
   attacks such as chosen plain text attacks if it can request clear
   text data to be encrypted or chosen cipher text attacks in case it
   can provide encrypted data and get the corresponding clear text.  One
   way to limit such attacks is to monitor the activity of the Edge
   Servers, and raise an alarm when suspicious activity has been
   detected.  In case the Edge Server has been tagged with a suspicious
   activity, further investigations and audit may be performed on line
   if the Edge Server is still running or off line otherwise.  One way
   to increase the difficulty of performing such attack is to make the
   chosen text harder.  This could be handled at the API level for
   example, as detailed in Section 4.2.3.

   A similar attack may be performed in an orchestrated way, for example
   when multiple Edge Servers are compromised and are collaborating.
   Collaboration may be used to perform a chosen plain text attack or a
   chosen cipher text attack for example.  The advantage of using
   multiple compromised Edge Servers, is that the various requests are
   less likely to be detected than if being sent by a single Edge
   Server.  Such attacks may be detected by monitoring the traffic not
   on a per-Edge Server basis, but instead globally, and for example
   look at the randomness distribution of the provided clear text or
   cipher text.

   If a Edge Server has been compromised and its private key has be
   retrieved by the attacker, the attacker, is then able to send request
   to the Key Server on behalf of the Edge Server.  If the credentials
   are not bound to the IP addresses, the queries attack may even be
   performed from another host or IP address than the Edge Server.



Cairns, et al.           Expires April 21, 2016                 [Page 7]



Internet-Draft                   TLS SKI                    October 2015

4.2.2.  Key Server

   The Key Server is a crucial element of the architecture which
   centralizes all the cryptographic operations involving the private
   key of the TLS Server.  The responsibility of the Key Server is top
   keep the private key secret, while keeping the service available.

   Although the Figure 1 represents only one Key Server, the
   architecture may have multiple Key Servers in order to address the
   traffic load or in order to provide high availability.  Increasing
   the number of Key Servers increases the surface of attack and so the
   risk of leakage for the private key.

   Even though the number of Key Servers may increase it number is
   expected to remain way below the number of Edge Servers of TLS
   Servers with a copy of the private key.  As a result, the risks are
   still reduced by several orders of magnitudes.

   Increasing the number may also require some coordinated monitoring.
   In fact, a single Key Server provides some centralized way to control
   the cryptographic operations requested globally and for each
   individual Edge Server.  With multiple Key Servers, such analyze may
   not be performed solely within the Key Server.  Instead, logging data
   may be outsourced to another component that performs the analysis.

   If Key Server becomes compromised, the attacker is able to decrypt
   any cypher text encrypted with the public key.  More especially, an
   attacker is able to read the server and client randoms as well as the
   pre-master secret and then generate the session key.  This is true
   for on path traffic, but also for recorded traffic.  For that purpose
   it is recommended to favor key exchanges that enforce perfect forward
   secrecy.  In other words RSA is not recommended as specified in
   section F.1.1.2 of [RFC5246].

   Key Servers centralize all cryptographic operations performed with
   the private key of the TLS Servers.  This provides the Key Servers a
   bottle neck position.  If the Key Servers undergo a DoS or DDoS
   attack, they can prevent the Edge Servers to set TLS sessions.  Key
   Servers should be over provisioned, and should be able to rate limit
   requests from Edge Servers.  In addition to authenticated traffic,
   the Edge Server should be able to detect when traffic is being
   replayed or when the identity of an Edge Server has been usurped -
   like the Edge Server being stolen its private key.

https://datatracker.ietf.org/doc/html/rfc5246


Cairns, et al.           Expires April 21, 2016                 [Page 8]



Internet-Draft                   TLS SKI                    October 2015

4.2.3.  Communication and SKI

   The communication using the SKI MUST be mutually authenticated and
   encrypted in order to have a malicious node hijacking the
   communication or pretending its is a legitimate Edge Server and
   serving TLS Clients.

   Similarly, the communication between Edge Servers and Key Server
   should be encrypted in order to avoid a malicious nodes to collect a
   collection of clear text with their associated encrypted text and
   eventually perform a replay attack.

   TLS or IPsec are good candidates too secure the SKI communication.

   SKI MUST be designed with strong access control in order to limit the
   scope of actions performed by an authorized Edge Servers.  This may
   be performed by checking the properties of the inputs as well as
   defining which inputs and actions are permitted.

   Inputs provided to the Key Servers should be considered in order to
   reduce the surface of attack.  Suppose the Edge Server needs to
   encrypt the hash of two random number.  One way could do is first let
   the Edge Server hash the two random number and then ask the Key
   Server to encrypt the resulting hash.  Such design exposes the Key
   Server to clear text attack as, any fixed value value could be fixed
   to the hash.  On the other hand, the Edge Server could also provide
   the two numbers to the Key Server, which in turn perform the hash
   followed by the encryption.  Doing so provides less control to the
   Edge Server for choosing the clear text.  Note also that in the
   second case, the Key Server is performing more operations, and
   communications may involve more data to be carried.  As a result,
   security and performance may be balanced.

   Similarly, parameters provided should be strictly controlled in order
   to narrow the scope of clear text / cipher text chosen attacks, and
   when possible, length or syntax should be checked.  In addition, when
   an error occurs, the Key Server should limit the information provided
   to the Edge Server.  For example, it may be better to simply reject
   the request with a general error message that does not specify the
   specific error encountered, so this information may not be used by
   the attacker.  On the other hand, th error should be logged
   precisely, so it may be used during the analysis.

4.3.  Security Requirements

   Here are the following requirements or recommendations regarding the
   architecture.



Cairns, et al.           Expires April 21, 2016                 [Page 9]



Internet-Draft                   TLS SKI                    October 2015

   REQ 1:  The activity of the Edge Servers MUST be logged and audited
           in order to detect suspicious activity.

   REQ 2:  The request from Edge Servers MUST be globally monitored in
           order to detect some orchestrated attacks not detected at the
           Edge Server level.

   REQ 3:  RSA based authentication is not recommended to preserve TLS
           Client privacy and confidentiality in case of Key Server
           leakage.

   REQ 4:  The communication between the Edge Server and the Key Server
           MUST be mutually authenticated and encrypted.  The use of
           perfect forward secrecy cypher suites is recommended.

   REQ 5:  SKI MUST be designed to limit the possible operations
           performed by the Edge Server.  This involves strict control
           of the parameters as well as specific design to avoid clear
           text or cipher attacks.

   REQ 6:  SKI MUST NOT provide the Edge Server extra information in
           case an error occurs.

   REQ 7:  SKI and Key Server MUST be monitored and logged to enable
           further investigation and analysis.

5.  Session Key Interface (SKI)

   TLS provides different methods in order to agree on the pre_master
   secret.  One way - designated as "rsa" in [RFC5246] - consists in the
   TLS Client provides the pre_master secret encrypted in a Client Key
   Exchange message.  The TLS Client encrypts the pre_master with the
   public key previously provided by the server in a Server Certificate
   message.

   Other methods are based on the Diffie Hellman approach, which
   provides perfect forward secrecy.  As described in section F.1.1.3 of
   [RFC4346], the TLS Server can either provide fixed Diffie Hellman
   parameters in a Server Certificate message or provide ephemeral
   Diffie Hellman parameters.  In the first case, the TLS Client may
   authenticate the Server Certificate with a DSA, RSA, ECDSA signature.
   The TLS Server provides certificates the TLS Client is able to check.
   In other words, the signature uses hash function and signature
   algorithms supported by the TLS Client.  When Diffie Hellman is not
   authenticated, then the Diffie Hellman value is not provided in the
   Server Certificate message.  Instead, it is provided in an additional
   Key Server Exchange message.  In the second case, when ephemeral
   Diffie Hellman values are provided the value is embedded in a Key

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4346


Cairns, et al.           Expires April 21, 2016                [Page 10]



Internet-Draft                   TLS SKI                    October 2015

   Server Exchange message with an additional Signature structure.  The
   Signature is computed by the TLS Server over the hash of the
   ephemeral Diffie Hellman key together with a set of temporary values
   (the ClientHello.random and the ServerHello.random) to avoid replay
   attacks.  The TLS Server provides the signature in accordance to the
   hash and signature function supported by the TLS Client as well as
   the key provided by the TLS Server in the Certificate message.

   As a result, the private key of the TLS Server is only involved when
   the following key exchanges algorithm (KeyExchangeAlgorithm) are
   agreed between the TLS Client and the Edge Server:

   RSA  when the pre_master is entirely generated by the TLS_Client and
      encrypted by the TLS Client in a Client Key Exchange message.
      This authentication method is defined in [RFC5246].

   DHE_RSA  when the hash of the ephemeral Diffie Hellman key associated
      to the temporary values is signed with the RSA private key.  This
      is defined in [RFC5246].

   ECDHE_RSA  Similar as above but with Elliptic Curve Diffie Hellman
      values with an RSA signature.  This method is defined in
      [RFC4492].

   ECDHE_ECDSA  Similar as above but with elliptic curve signature.
      This method is defined in [RFC4492].

   The following document only considers these key exchange protocols.
   If another key exchange protocol is negotiated, as currently defined,
   there is no need to perform cryptographic operations involving the
   private key.  As a result, such key exchange protocols do not require
   the Edge Server to interact with the Key Server, and are not
   considered in this document.  Instead, Edge Server should be
   provisioned with the appropriated certificates.

   DISCUSSION: It is not clear to me why DHE_DSS does not sign the
   DHParameters.

   This section designs the SKI.  Section 5.1 provides an overview of
   the SKI.  More specifically, it describes the information that is
   communicated between the Edge Server and the Key Server, but does not
   provide any details on the protocols used to exchange these
   information, nor how the private key is being identified.  This is
   left to Section 5.2 provides a specific implementation based on JSON
   and HTTP.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492


Cairns, et al.           Expires April 21, 2016                [Page 11]



Internet-Draft                   TLS SKI                    October 2015

5.1.  SKI Protocol Overview

   This section describes the interactions between the TLS Client, the
   Edge Server and the Key Server when either RSA or ephemeral Diffie
   Hellman (DHE_RSA, ECDHE_RSA or ECDHE_ECDSA) key agreement have been
   agreed between the TLS Client an dthe Edge Server.

   The description of this section applies for TLS 1.0 [RFC2246], TLS
   1.1 [RFC4346], TLS 1.2 [RFC5246], DTLS 1.0 [RFC4347], DTLS 1.1
   [RFC4347] and DTLS 1.2 [RFC6347].

5.1.1.  RSA

   In TLS1.2 [RFC5246] every session has a "master_secret" generated
   from a pre_master.  [RFC5246] and [RFC7627] defines different ways to
   generate the master_secret from the pre_master.  However, the way the
   pre_master is agreed remains similar.

   For information, in [RFC5246], the master_secret is generated as
   follows:

      master_secret = PRF(pre_master_secret, "master secret",
                             ClientHello.random + ServerHello.random)
                             [0..47];

      where:
      struct {
                   uint32 gmt_unix_time;   # 4 bytes
                   opaque random_bytes[28];
               } Random;

                               master_secret

   [RFC7627] defines the Extended Master Secret Extension where the
   "master_secret" is defined as follows:

    master_secret = PRF(pre_master_secret, "extended master secret",
                           session_hash)
                           [0..47];
    where:
       - session_hash = Hash(handshake_messages)
       - handshake_messages  is the concatenation of all the exchanged
         Handshake structures, as defined in Section 7.4 of [RFC5246].
       - Hash is as defined in Section 7.4.9 of [RFC5246]

   As defined in section 8.1.1 [RFC2546], the pre_master is 48-byte
   generated by the TLS Client.  The two first bytes indicates the TLS
   version and MUST be the same value as the one provided by the

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc2546#section-8.1.1


Cairns, et al.           Expires April 21, 2016                [Page 12]



Internet-Draft                   TLS SKI                    October 2015

   ClientHello.client_version, and the remaining 46 bytes are expected
   to be random.

   The pre_master is encrypted with the public key of the TLS Server as
   a EncryptedPreMasterSecret structure sent in the Client Key Exchange
   Message as described in section 7.4.7.1 [RFC5246].  The encryption
   follows for compatibility with previous TLS version RSAES-PKCS1-v1_5
   scheme described in [RFC3447], which results in a 256 byte encrypted
   message for a 2048-bit RSA key or 128 byte encrypted message for a
   1024 bit RSA key.

          <---------- 256 bytes ------------------------------>
                   <-- 205 bytes -->       <-    48 bytes    ->
                                           <-  TLS  ->
                                             version
         +----+----+------------------+----+-----+-----+--------+
         | 00 | 02 | non-zero padding | 00 | maj | min | random |
         +----+----+------------------+----+-----+-----+--------+

   PKCS#1 padding for pre_master secret encrypted with 2048-bit RSA key

   Upon receiving a Client Key Exchange Message with a
   KeyExchangeAlgorithm set to rsa, the Edge Server sends a request for
   the pre_master to the Key Server.  The request provides the
   EncryptedPreMasterSecret as well as the ClientHello.client_version.

   Upon receiving the EncryptedPreMasterSecret and the
   ClientHello.client_version, the Key Server decrypts the
   EncryptedPreMasterSecret following [RFC3447].  If the decryption is
   successful, the Key Server MUST check the version indicated in the
   two first bytes corresponds to the ClientHello.client_version as well
   as the length of the clear text pre_master.  If one of the test
   fails, the Key Server MUST return an 'malformed request' error.  If
   any other error occurs an 'unspecified error' MUST be returned.  If
   it is successful, the Key Server returns the clear text of the
   pre_master.

   Upon receiving the response or the error, the Edge Server proceeds as
   defined in [RFC2546].  If the pre_master is provided, the Edge Server
   computes the master_secret as defined in [RFC5246] or in [RFC7627].
   If an error is returned, the Edge Server continue the exchange with a
   randomly generated pre_master.

   DISCUSSION: if SKI is the interface between the Edge Server and the
   Key Server, maybe we could return the master_secret directly.  Maybe
   an architecture with a Master Oracle and Key Server would better
   split the function between owning the private key - and only

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.7.1
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc2546
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7627


Cairns, et al.           Expires April 21, 2016                [Page 13]



Internet-Draft                   TLS SKI                    October 2015

   decrypting - and providing the master with associate TLS syntax
   checking.

5.1.2.  Ephemeral Diffie Hellman

   [RFC5246] defines how the TLS Client and the Edge Server agrees for
   DHE_RSA.  When the KeyExchangeAlgorythm has been agreed to dhe_rsa,
   as defined in section 7.4.3 of [RFC5246], the ServerKeyExchange
   message contains ServerDHParams as well as the Signature.

   [RFC4492] defines the extension that enables the TLS Client and the
   Edge Server to agree ECDHE_RSA or ECDHE_ECDSA for the key exchange
   algorithm.  When the KeyExchangeAlgorythm has been agreed to
   ec_diffie_hellman between the TLS Client and the Edge Server, as
   detailed in section 5.4 of [RFC4492], the ServerKeyExchange contains
   the ServerECDHParams and Signature.

   In order to build the signature, the Edge Server provides Key Server
   the type of the key (ECHDE or DHE), the corresponding public key, the
   hash function, the signature algorithm to be used (RSA, or ECDSA),
   the ClientHello.random and the ServerHello.random.

   Upon receiving the public key, the Key Server checks random numbers
   are 32bit long, and checks the validity of the public key.  If the
   input data is not valid or has the wrong size, the Key Server MUST
   reply with a 'malformed request' error.  Otherwise the Key Server
   hash and signs the output.  If any error occurs during the signing
   process, the server responds with an 'unspecified error' error.  If
   signing is successful, the server responds with the output data set
   to the result of the signing operation.

   Upon receiving the response or the error, the Edge Server proceeds as
   defined in [RFC2546].  If the pre_master is provided, the Edge Server
   computes the master_secret as defined in [RFC5246] or in [RFC7627].
   If an error is returned, the Edge Server continue the exchange with a
   randomly generated pre_master.

5.2.  SKI Specification

   The Session Key Interface is based on a request-response pattern
   where the Edge Server sends a SKI Request to the Key Server
   requesting a specific private key operation that the Edge Server
   needs to complete a TLS handshake.  The Edge Server's request
   includes data to be processed, the identifier of the private key to
   be used, and any options necessary for the Key Server to correctly
   perform the requested operation.  The Key Server answers with a SKI
   Response containing either the requested output data or an error.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.3
https://datatracker.ietf.org/doc/html/rfc4492#section-5.4
https://datatracker.ietf.org/doc/html/rfc2546
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7627


Cairns, et al.           Expires April 21, 2016                [Page 14]



Internet-Draft                   TLS SKI                    October 2015

   Any request-response protocol can be used to carry the SKI payloads.
   Two obvious choices are the Hypertext Transfer Protocol (HTTP)
   [RFC7540] and the Constrained Application Protocol (CoAP) [RFC7252].
   Which protocol to use is application specific.  SKI requests are by
   default sent to the Request-URI '/ski'.  The interface between the
   Edge Server and the Key Server MUST be protected by a security
   protocol providing integrity protection, confidentiality, and mutual
   authentication.  If TLS is used, the implementation MUST fulfill at
   least the security requirements in [RFC7540] Section 9.2.

   Two formats are defined for the SKI Payload format: the JavaScript
   Object Notation (JSON) [RFC7159] and the Concise Binary Object
   Representation (CBOR) [RFC7049].  In JSON, byte strings are Base64
   encoded [RFC4648].  Which format to use is application specific.  The
   payload consists of a single JSON or CBOR object consisting of one or
   more attribute-value pairs.  The following attributes are defined:

   'protocol'  REQUIRED in SKI requests.  Specifies the protocol version
      negotiated in the handshake between Client and Edge Server.  Can
      take one of the values 'TLS 1.0', 'TLS 1.1', 'TLS 1.2', 'DTLS
      1.0', or 'DTLS 1.2'.

   'spki'  REQUIRED in SKI requests.  Byte string that identifies the
      Subject Public Key Info (SPKI) of a X.509 certificate [RFC5280] or
      a raw public key [RFC7250].  Contains a SHA-256 SPKI Fingerprint
      as defined in [RFC7469]

   'method'  Included in SKI requests to indicate the key exchange
      method.  Can take one of the values 'ECDHE' or 'RSA'.  MAY be
      omitted if the default value 'ECDHE' is used.

   'hash'  Included in SKI requests.  MUST be used if a hash algorithm
      other than the default hash algorithm has been negotiated using
      the "signature_algorithms" extension.  Can take one of the values
      'SHA-224', 'SHA-256', 'SHA-384', or 'SHA-512'.

   'input'  REQUIRED in SKI requests.  Byte string containing the input
      data to the private key operation.  For static RSA it contains the
      encrypted premaster secret (EncryptedPreMasterSecret).  For ECDHE
      it contains the data to be signed (ClientRandom + ServerRandom +
      ServerECDHParams).

   'output'  Included in successful SKI responses.  Byte string
      containing the output data from the private key operation.  For
      static RSA it contains the premaster secret (PreMasterSecret).
      For ECDHE is contains the signature (Signature).

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7540#section-9.2
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7469


Cairns, et al.           Expires April 21, 2016                [Page 15]



Internet-Draft                   TLS SKI                    October 2015

   'error'  Included in SKI responses to indicate a fatal error.  Can
      take one of the values 'request denied', 'spki not found',
      'malformed request', or 'unspecified error'.  SHALL not be sent
      together with 'output'.

5.2.1.  Key Server Processing

   The Key Server determines how to handle a SKI request based on the
   values provided for the 'protocol', 'spki', 'hash', and 'method'
   attributes.  If the Key Server cannot parse the SKI request it MUST
   respond with a 'malformed request' error.  If a private key matching
   the 'spki' value is not found, the Key Server MUST respond with a
   'spki not found' error.  If the Edge Server is not authorized to
   receive a response to the specific request, the Key Server MUST
   respond with a 'request denied' error.

   DISCUSSION: For TLS1.0/DTLS1.0 only uses MD5 and SHA-1 are defined.
   SHA-256 only appears in TLS1.2.  I suspect there are some additional
   checks to be done, or maybe that is fine to have TLS1.0 with these
   algorithms.

6.  Interaction with TLS Extensions

   Most TLS extensions interact seamlessly with SKI, but it is worth
   noting the few that do not:

      [RFC6091] defines the use of OpenPGP certificates with TLS.  As
      OpenPGP certificates do not have a SPKI field, SKI will not work
      with this extension unless the public key identification mechanism
      is updated.

      [RFC6962] certificate transparency conflict with the proposed
      version of SKI since it requires signing of timestamps, while SKI
      only allows signing of valid ECDHE parameters.

   A few other TLS extensions may have problems if a TLS client connects
   to different Edge Servers:

      [RFC5077] defines session resumption with session tickets.  As
      this extension uses a secret key stored on the server issuing the
      ticket, it only works if the resumption Edge Server has the same
      secret key.

      [RFC5746] defines the renegotiation_info extension for secure
      renegotiation.  As this extension is facilitated by binding the
      renegotiation to the previous connection, it only works if the
      renegotiation is done to the same Edge Server.



Cairns, et al.           Expires April 21, 2016                [Page 16]



Internet-Draft                   TLS SKI                    October 2015

7.  Examples

   Note: Lengths of hexadecimal and base64 encoded strings in examples
   are not intended to be realistic.  For readability, COSE objects are
   represented using CBOR's diagnostic notation [RFC7049].

7.1.  ECDHE_ECDSA Key Exchange

   If an ECDHE key exchange method is used, the Edge Server MUST receive
   the SKI Response before it can send the ServerKeyExchange message.
   An example message flow is shown in Figure 2.

+--------+                            +-------------+     +------------+
| Client |                            | Edge Server |     | Key Server |
+--------+                            +-------------+     +------------+

        ClientHello (Client Random)
     --------------------------------------->
        ServerHello (Server Random)
     <---------------------------------------
        Certificate (Server Certificate)
     <---------------------------------------
                                                 SKI Request
                                            -------------------->
                                                 SKI Response
        ServerKeyExchange                   <--------------------
        (ECDHParams, Signature)
     <---------------------------------------
        ClientKeyExchange (ClientDHPublic)
     --------------------------------------->
        Finished
     <-------------------------------------->

               Figure 2: Message Flow for ECDHE Key Exchange

7.1.1.  SKI Request and Response with JSON/HTTP

https://datatracker.ietf.org/doc/html/rfc7049


Cairns, et al.           Expires April 21, 2016                [Page 17]



Internet-Draft                   TLS SKI                    October 2015

   SKI Request:

     POST /ski HTTP/1.1
     Host: keyserver.example.com
     Content-Type: application/json
     Content-Length: 166

     {
       "protocol": "TLS 1.2",
       "method": "ECDHE",
       "hash": "SHA-256",
       "spki": "mPgHXSvrW6ygN4uhPnl0W2uGMSbCDjFV1bfkaVT5",
       "input": "Bn1eaonvIyCDFd9Ek8UyghL9SA1FXcDplnk8zNlLXBL4H0FAEFyvFO"
     }

   SKI Response:

     HTTP/1.1 200 OK
     Content-Type: application/json
     Content-Length: 62

     {
       "output": "eysh5GCSbIjjHzDt7Co5PUuVnDePbUYI839yv30bJWquwJ3vyADor"
     }

   SKI Request:

     POST /ski HTTP/1.1
     Host: keyserver.example.com
     Content-Type: application/json
     Content-Length: 128

     {
       "protocol": "TLS 1.1",
       "spki": "p8FU0McKWBBLEEFfQbnJPjW3Q6EcZ5t11cKKcuwj",
       "input": "yWCMO9P0yINtHUT17ZO1X1mUgwh1CrTGan9QaAGph9AnCO4HA44nez"
     }

   SKI Response:

     HTTP/1.1 200 OK
     Content-Type: application/json
     Content-Length: 62

     {
       "output": "m7nJUltTVMiaQJyDcKPaq0ZOtfuRVnUt1cUx5KoP3w75MqpSelutO"
     }



Cairns, et al.           Expires April 21, 2016                [Page 18]



Internet-Draft                   TLS SKI                    October 2015

7.1.2.  SKI Request and Response with CBOR/CoAP

   SKI Request:

     Header: POST (T=CON, Code=0.03, MID=0x1337)
     Uri-Path: "ski"
     Content-Format: 60 (application/cbor)
     Payload: {
                "protocol": "TLS 1.0",
                "spki": h'a1fa7ec57a6a5485756c45ab58b2c992',
                "input": h'd2e61706059a16714e4716853e2917e34'
              }

   SKI Response:

     Header: 2.04 Changed (T=ACK, Code=2.04, MID=0x1337)
     Content-Format: 60 (application/cbor)
     Payload: { "output": h'2c8a0001b8295ab44d1930b8efdd9fb40' }

7.2.  Static RSA Key Exchange

   If the static RSA key exchange method is used, the Edge Server MUST
   receive the SKI Response before it can send the Finished message.  An
   example message flow is shown in Figure 3.

+--------+                            +-------------+     +------------+
| Client |                            | Edge Server |     | Key Server |
+--------+                            +-------------+     +------------+

          ClientHello (Client Random)
     --------------------------------------->
          ServerHello (Server Random)
     <---------------------------------------
          Certificate (Server Certificate)
     <---------------------------------------
          ClientKeyExchange
          (Encrypted Premaster Secret)
     --------------------------------------->
                                                 SKI Request
                                            -------------------->
                                                 SKI Response
                                            <--------------------
                     Finished
     <-------------------------------------->

            Figure 3: Message Flow for Static RSA Key Exchange



Cairns, et al.           Expires April 21, 2016                [Page 19]



Internet-Draft                   TLS SKI                    October 2015

7.2.1.  SKI Request and Response with JSON/HTTP

   SKI Request:

     POST /ski HTTP/1.1
     Host: keyserver.example.com
     Content-Type: application/json
     Content-Length: 145

     {
       "protocol": "TLS 1.2",
       "method": "RSA",
       "spki": "QItwmcEKcuMhCWIdESDPBbZtNgfwS7w84wizTk47",
       "input": "dEHffkdIoi2YhQmsqcum3kDk2cToQqO2JLzJVi4q8pJSvfSUyyhRv7"
     }

   SKI Response:

     HTTP/1.1 200 OK
     Content-Type: application/json
     Content-Length: 62

     {
       "output": "CtehRGUae6NQ0daIuClSTg3nW62zqPvYTjnvIV0mt5kM49tIq9uDG"
     }

7.2.2.  SKI Request and Response with CBOR/CoAP

   SKI Request:

     Header: POST (T=CON, Code=0.03, MID=0xabba)
     Uri-Path: "ski"
     Content-Format: 60 (application/cbor)
     Payload: {
                "protocol": "TLS 1.2",
                "method": "RSA",
                "spki": h'8378d0547da09484b8ae509565b0a595',
                "input": h'9da2d7a363ead429141f4dcad20befb6043'
              }

   SKI Response:

     Header: 2.04 Changed (T=ACK, Code=2.04, MID=0xabba)
     Content-Format: 60 (application/cbor)
     Payload: { "output" : h'827628ca533a1d1191acb0e106fb' }



Cairns, et al.           Expires April 21, 2016                [Page 20]



Internet-Draft                   TLS SKI                    October 2015

8.  IANA Considerations

   This document defines the following.  TODO...

9.  Security Considerations

   The security considerations in [RFC5246], [RFC4492], and [RFC7525]
   apply to this document as well.

   The TLS Session Key Interface increases the security by making it
   possible to store private keys in a highly trusted location,
   physically separated from client facing servers.  The main feature
   that separates TLS SKI from traditional TLS is the secure connection
   between the Edge Server and the Key Server.  This connection is
   relied on to ensure that the servers are mutually authenticated and
   that the connection between them is private.  A compromised Edge
   Server can still access client data as well as submit requests to the
   Key Server.  However, the risks are reduces since no private keys can
   be compromised and the Key Server can at any time prevent the Edge
   Server from starting new TLS connections.

   A compromised Edge Server could potentially launch timing side-
   channel attacks or buffer overflow attacks.  And as the Key Server
   has limited knowledge of the input data it signs or decrypts, a
   compromised edge server could try to get the Key Server to process
   maliciously crafted input data resulting in a signed message or the
   decryption of the PreMasterSecret from another connection.  However,
   these attacks are not introduced by SKI since they could be performed
   on a compromised traditional TLS server and, with the exception of
   the signing attack, can even be launched by a TLS client against an
   uncompromised TLS server.

10.  Acknowledgements

   The authors would like to thank Magnus Thulstrup and Hans Spaak for
   their valuable comments and feedback.

11.  References

   [HEART]    Codenomicon, "The Heartbleed Bug",
              <http://heartbleed.com/>.

   [RFC2246]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, DOI 10.17487/RFC2246, January 1999,

              <http://www.rfc-editor.org/info/rfc2246>.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc7525
http://heartbleed.com/
https://datatracker.ietf.org/doc/html/rfc2246
http://www.rfc-editor.org/info/rfc2246


Cairns, et al.           Expires April 21, 2016                [Page 21]



Internet-Draft                   TLS SKI                    October 2015

   [RFC2546]  Durand, A. and B. Buclin, "6Bone Routing Practice",
RFC 2546, DOI 10.17487/RFC2546, March 1999,

              <http://www.rfc-editor.org/info/rfc2546>.

   [RFC3447]  Jonsson, J. and B. Kaliski, "Public-Key Cryptography
              Standards (PKCS) #1: RSA Cryptography Specifications
              Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
              2003, <http://www.rfc-editor.org/info/rfc3447>.

   [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.1", RFC 4346,
              DOI 10.17487/RFC4346, April 2006,
              <http://www.rfc-editor.org/info/rfc4346>.

   [RFC4347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
              <http://www.rfc-editor.org/info/rfc4347>.

   [RFC4492]  Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
              Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
              for Transport Layer Security (TLS)", RFC 4492,
              DOI 10.17487/RFC4492, May 2006,
              <http://www.rfc-editor.org/info/rfc4492>.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <http://www.rfc-editor.org/info/rfc4648>.

   [RFC5054]  Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
              "Using the Secure Remote Password (SRP) Protocol for TLS
              Authentication", RFC 5054, DOI 10.17487/RFC5054, November
              2007, <http://www.rfc-editor.org/info/rfc5054>.

   [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
              "Transport Layer Security (TLS) Session Resumption without
              Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
              January 2008, <http://www.rfc-editor.org/info/rfc5077>.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC5246, August 2008,
              <http://www.rfc-editor.org/info/rfc5246>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <http://www.rfc-editor.org/info/rfc5280>.

https://datatracker.ietf.org/doc/html/rfc2546
http://www.rfc-editor.org/info/rfc2546
https://datatracker.ietf.org/doc/html/rfc3447
http://www.rfc-editor.org/info/rfc3447
https://datatracker.ietf.org/doc/html/rfc4346
http://www.rfc-editor.org/info/rfc4346
https://datatracker.ietf.org/doc/html/rfc4347
http://www.rfc-editor.org/info/rfc4347
https://datatracker.ietf.org/doc/html/rfc4492
http://www.rfc-editor.org/info/rfc4492
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5054
http://www.rfc-editor.org/info/rfc5054
https://datatracker.ietf.org/doc/html/rfc5077
http://www.rfc-editor.org/info/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
http://www.rfc-editor.org/info/rfc5280


Cairns, et al.           Expires April 21, 2016                [Page 22]



Internet-Draft                   TLS SKI                    October 2015

   [RFC5746]  Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
              "Transport Layer Security (TLS) Renegotiation Indication
              Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
              <http://www.rfc-editor.org/info/rfc5746>.

   [RFC6091]  Mavrogiannopoulos, N. and D. Gillmor, "Using OpenPGP Keys
              for Transport Layer Security (TLS) Authentication",

RFC 6091, DOI 10.17487/RFC6091, February 2011,
              <http://www.rfc-editor.org/info/rfc6091>.

   [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <http://www.rfc-editor.org/info/rfc6347>.

   [RFC6962]  Laurie, B., Langley, A., and E. Kasper, "Certificate
              Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
              <http://www.rfc-editor.org/info/rfc6962>.

   [RFC7049]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
              October 2013, <http://www.rfc-editor.org/info/rfc7049>.

   [RFC7159]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
              2014, <http://www.rfc-editor.org/info/rfc7159>.

   [RFC7250]  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
              Weiler, S., and T. Kivinen, "Using Raw Public Keys in
              Transport Layer Security (TLS) and Datagram Transport
              Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
              June 2014, <http://www.rfc-editor.org/info/rfc7250>.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <http://www.rfc-editor.org/info/rfc7252>.

   [RFC7469]  Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
              Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
              2015, <http://www.rfc-editor.org/info/rfc7469>.

   [RFC7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
              "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
              2015, <http://www.rfc-editor.org/info/rfc7525>.

https://datatracker.ietf.org/doc/html/rfc5746
http://www.rfc-editor.org/info/rfc5746
https://datatracker.ietf.org/doc/html/rfc6091
http://www.rfc-editor.org/info/rfc6091
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc6962
http://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7250
http://www.rfc-editor.org/info/rfc7250
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7469
http://www.rfc-editor.org/info/rfc7469
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525


Cairns, et al.           Expires April 21, 2016                [Page 23]



Internet-Draft                   TLS SKI                    October 2015

   [RFC7540]  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
              Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
              DOI 10.17487/RFC7540, May 2015,
              <http://www.rfc-editor.org/info/rfc7540>.

   [RFC7627]  Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
              Langley, A., and M. Ray, "Transport Layer Security (TLS)
              Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
              <http://www.rfc-editor.org/info/rfc7627>.

Authors' Addresses

   Kelsey Cairns
   Washington State University
   Pullman, WA 99164-2752
   USA

   Email: kcairns@wsu.edu

   John Mattsson
   Ericsson AB
   SE-164 80 Stockholm
   Sweden

   Email: john.mattsson@ericsson.com

   Robert Skog
   Ericsson AB
   SE-164 80 Stockholm
   Sweden

   Email: robert.skog@ericsson.com

   Daniel Migault
   Ericsson
   8400 boulevard Decarie
   Montreal, QC   H4P 2N2
   Canada

   Phone: +1 514-452-2160
   Email: daniel.migault@ericsson.com

https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7627
http://www.rfc-editor.org/info/rfc7627


Cairns, et al.           Expires April 21, 2016                [Page 24]


