
Network Working Group B. Callaghan
INTERNET DRAFT
Category: Informational
Expire in six months Sun Microsystems, Inc.
 October 1996

WebNFS Client Specification
<draft-callaghan-webnfs-client-00.txt>

Abstract

 This document describes a lightweight binding mechanism that
 allows NFS clients to obtain service from WebNFS-enabled
 servers with a minimum of protocol overhead. In removing
 this overhead, WebNFS clients see benefits in faster response
 to requests, easy transit of packet filter firewalls and
 TCP-based proxies, and better server scalability.

Status of this Memo

 This memo provides information for the Internet community.
 This memo does not specify an Internet standard of any kind.
 Distribution of this memo is unlimited.

Table of Contents

1. Introduction . 2
2. TCP vs UDP . 2
3. Well-known Port . 2
4. NFS Version 3 . 3
4.1 Transfer Size . 3
4.2 Fast Writes . 4
4.3 READDIRPLUS . 5
5. Public Filehandle . 5
5.1 NFS Version 2 Public Filehandle 5
5.2 NFS Version 3 Public Filehandle 6
6. Multi-component Lookup 6
6.1 Canonical Path vs. Native Path 7
6.2 Symbolic Links . 8
6.2.1 Absolute Link . 8
6.2.2 Relative Link . 8
6.3 Filesystem Spanning Pathnames 9
7. Contacting the Server 10
8. Mount Protocol . 11
9. Exploiting Concurrency 12
9.1 Read-ahead . 12
9.2 Concurrent File Download 13
10. Timeout and Retransmission 14
11. Bibliography . 15
12. Security Considerations 16
13. Acknowledgements . 17

https://datatracker.ietf.org/doc/html/draft-callaghan-webnfs-client-00.txt

14. Author's Address . 17

1. Introduction

 The NFS protocol provides access to shared filesystems
 across networks. It is designed to be machine, operating
 system, network architecture, and transport protocol independent.
 The protocol currently exists in two versions: version 2 [RFC1094]
 and version 3 [RFC1813], both built on Sun RPC [RFC1831] at its
 associated eXternal Data Representation (XDR) [RFC1832] and
 Binding Protocol [RFC1833].

 WebNFS provides additional semantics that can be
 applied to NFS version 2 and 3 to eliminate the overhead
 of PORTMAP and MOUNT protocols, make the protocol easier
 to use where firewall transit is required, and reduce
 the number of LOOKUP requests required to identify
 a particular file on the server. WebNFS server requirements
 are described in RFC mmmm.

2. TCP vs UDP

 The NFS protocol is most well known for its use of UDP which
 performs acceptably on local area networks. However, on wide area
 networks with error prone, high-latency connections and bandwidth
 contention, TCP is well respected for its congestion control and
 superior error handling. A growing number of NFS implementations
 now support the NFS protocol over TCP connections.

 Use of NFS version 3 is particularly well matched to the use
 of TCP as a transport protocol. Version 3 removes the arbitrary
 8k transfer size limit of version 2, allowing the READ or
 WRITE of very large streams of data over a TCP connection.
 Note that NFS version 2 is also supported on TCP connections,
 though the benefits of TCP data streaming will not be as great.

 A WebNFS client must first attempt to connect to its server
 with a TCP connection. If the server refuses the connection,
 the client should attempt to use UDP.

3. Well-known Port

 While Internet protocols are generally identified by registered
 port number assignments, RPC based protocols register a 32 bit
 program number and a dynamically assigned port with the portmap
 service which is registered on the well-known port 111. Since
 the NFS protocol is RPC-based, NFS servers register their port
 assignment with the portmap service.

 NFS servers are constrained by a requirement to re-register
 at the same port after a server crash and recovery so that

https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813
https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc1833

 clients can recover simply by retransmitting an RPC request
 until a response is received. This is simpler than the
 alternative of having the client repeatedly check with
 the portmap service for a new port assignment. NFS servers
 typically achieve this port invariance by registering a
 constant port assignment, 2049, for both UDP and TCP.

 To avoid the overhead of contacting the server's portmap
 service, and to facilitate transit through packet filtering
 firewalls, WebNFS clients optimistically assume that WebNFS
 servers register on port 2049. Most NFS servers use this
 port assignment already, so this client optimism is well
 justified. Refer to section 8 for further details on port
 binding.

4. NFS Version 3

 NFS version 3 corrects deficiencies in version 2 of the protocol
 as well as providing a number of features suitable to WebNFS
 clients accessing servers over high-latency, low-bandwidth
 connections.

4.1 Transfer Size

 NFS version 2 limited the amount of data in a single request
 or reply to 8 kilobytes. This limit was based on what was
 then considered a reasonable upper bound on the amount of
 data that could be transmitted in a UDP datagram across an
 Ethernet. The 8k transfer size limitation affects READ, WRITE,
 and READDIR requests. When using version 2, a WebNFS client
 must not transmit any request that exceeds the 8k transfer
 size. Additionally, the client must be able to adjust its
 requests to suit servers that limit transfer sizes to values
 smaller than 8k.

 NFS version 3 removes the 8k limit, allowing the client and
 server to negotiate whatever limit they choose. Larger
 transfer sizes are preferred since they require fewer READ
 or WRITE requests to transfer a given amount of data and
 utilize a TCP stream more efficiently.

 While the client can use the FSINFO procedure to request the
 server's maximum and preferred transfer sizes, in the
 interests of keeping the number of NFS requests to a
 minimum, WebNFS clients should optimistically choose a
 transfer size and make corrections if necessary based on the
 server's response.

 For instance, given that the file attributes returned with
 the filehandle from a LOOKUP request indicate that the file

 has a size of 50k, the client might transmit a READ request
 for 50k. If the server returns only 32k, then the client
 can assume that the server's maximum transfer size is 32k
 and issue another read request for the remaining data.
 The server will indicate positively when the end of file
 is reached.

 A similar strategy can be used when writing to a file on
 the server, though the client should be more conservative
 in choosing write request sizes so as to avoid transmitting
 large amounts of data that the server cannot handle.

4.2 Fast Writes

 NFS version 2 requires the server to write client data
 to stable storage before responding to the client.
 This avoids the possibility of the the server crashing
 and losing the client's data after a positive response.
 While this requirement protects the client from data
 loss, it requires that the server direct client write
 requests directly to the disk, or to buffer client data
 in expensive non-volatile memory (NVRAM). Either way,
 the effect is poor write performance, either through
 inefficient synchronous writes to the disk or through the
 limited buffering available in NVRAM.

 NFS version 3 provides clients with the option of having the
 server buffer a series of WRITE requests in unstable storage.
 A subsequent COMMIT request from the client will have the
 server flush the data to stable storage and have the client
 verify that the server lost none of the data. Since fast
 writes benefit both the client and the server, WebNFS clients
 should use WRITE/COMMIT when writing to the server.

4.3 READDIRPLUS

 The NFS version 2 READDIR procedure is also supported in
 version 3. READDIR returns the names of the entries in
 a directory along with their fileids. Browser programs that
 display directory contents as a list will usually display
 more than just the filename; a different icon may be displayed
 if the entry is a directory or a file. Similarly, the browser
 may display the file size, and date of last modification.

 Since this additional information is not returned by READDIR,
 version 2 clients must issue a series of LOOKUP requests, one
 per directory member, to retrieve the attribute data. Clearly
 this is an expensive operation where the directory is large
 (perhaps several hundred entries) and the network latency is high.

 The version 3 READDIRPLUS request allows the client to retrieve

 not only the names of the directory entries, but also their
 file attributes and filehandles in a single call. WebNFS clients
 that require attribute information for directory entries should
 use READDIRPLUS in preference to READDIR.

5. Public Filehandle

 NFS filehandles are normally created by the server and used
 to identify uniquely a particular file or directory on the server.
 The client does not normally create filehandles or have any
 knowledge of the contents of a filehandle.

 The public filehandle is an an exception. It is an NFS filehandle
 with a reserved value and special semantics that allow an initial
 filehandle to be obtained. A WebNFS client can use the public
 filehandle as an initial filehandle rather than using the MOUNT
 protocol. Since NFS version 2 and version 3 have different
 filehandle formats, the public filehandle is defined differently
 for each.

 The public filehandle is a zero filehandle. For NFS version 2
 this is a filehandle with 32 zero octets. A version 3 public
 filehandle has zero length.

5.1 NFS Version 2 Public Filehandle

 A version 2 filehandle is defined in RFC 1094 as an opaque value
 occupying 32 octets. A version 2 public filehandle has a zero
 in each octet, i.e. all zeros.

 1 32
 +-+
 |0|
 +-+

5.2 NFS Version 3 Public Filehandle

 A version 3 filehandle is defined in RFC 1813 as a variable length
 opaque value occupying up to 64 octets. The length of the filehandle
 is indicated by an integer value contained in a 4 octet value
 which describes the number of valid octets that follow. A version
 3 public filehandle has a length of zero.

 +-+-+-+-+
 | 0 |
 +-+-+-+-+

https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813

6. Multi-component Lookup

 Normally the NFS LOOKUP request (version 2 or 3) takes
 a directory filehandle along with the name of a directory
 member, and returns the filehandle of the directory member.
 If a client needs to evaluate a pathname that contains
 a sequence of components, then beginning with the directory
 filehandle of the first component it must issue a series of LOOKUP
 requests one component at a time. For instance, evaluation of
 the Unix path "a/b/c" will generate separate LOOKUP requests for
 each component of the pathname "a", "b", and "c".

 A LOOKUP request that uses the public filehandle can provide
 a pathname containing multiple components. The server is
 expected to evaluate the entire pathname and return a filehandle
 for the final component. Both canonical (slash-separated) and
 server native pathnames are supported.

 For example, rather than evaluate the path "a/b/c" as:

 LOOKUP FH=0x0 "a" --->
 <--- FH=0x1
 LOOKUP FH=0x1 "b" --->
 <--- FH=0x2
 LOOKUP FH=0x2 "c" --->
 <--- FH=0x3

 Relative to the public filehandle these three LOOKUP
 requests can be replaced by a single multi-component
 lookup:

 LOOKUP FH=0x0 "a/b/c" --->
 <--- FH=0x3

 Multi-component lookup is supported only for LOOKUP
 requests relative to the public filehandle.

6.1 Canonical Path vs. Native Path

 If the pathname in a multi-component LOOKUP request begins
 with an ASCII character, then it must be a canonical path.
 A canonical path is a hierarchically-related, slash-separated
 sequence of components, <directory>/<directory>/.../<name>.
 Occurrences of the "/" character within a component must be
 escaped using the escape code %2f. Non-ascii characters within
 components must also be escaped using the "%" character to
 introduce a two digit hexadecimal code. Occurrences of the "%"
 character that do not introduce an encoded character must themselves
 be encoded with %25.

 If the first character of the path is a slash, then the canonical
 path will be evaluated relative to the server's root directory.

 If the first character is not a slash, then the path will be
 evaluated relative to the directory with which the public
 filehandle is associated.

 Not all WebNFS servers can support arbitrary use of absolute
 paths. Clearly, the server cannot return a filehandle if
 the path identifies a file or directory that is not exported
 by the server. In addition, some servers will not return
 a filehandle if the path names a file or directory in an
 exported filesystem different from the one that is associated
 with the public filehandle.

 If the first character of the path is 0x80 (non-ascii) then
 the following character is the first in a native path.
 A native path conforms to the normal pathname syntax of the
 server. For example:

 Lookup for Canonical Path:

 LOOKUP FH=0x0 "/a/b/c"

 Lookup for Native Path:

 LOOKUP FH=0x0 0x80 "a:b:c"

6.2 Symbolic Links

 On Unix servers, components within a pathname may be symbolic
 links. The server will evaluate these symbolic links as a part
 of the normal pathname evaluation process. If the final
 component is a symbolic link, the server will return its filehandle,
 rather than evaluate it.

 If the attributes returned with a filehandle indicate that
 it refers to a symbolic link, then it is the client's
 responsibility to deal with the link by fetching the contents
 of the link using the READLINK procedure. What follows is
 determined by the contents of the link.

 Evaluation of symbolic links by the client is defined only
 if the symbolic link is retrieved via the multi-component
 lookup of a canonical path.

6.2.1 Absolute Link

 If the first character of the link text is a slash "/", then
 the following path can be assumed to be absolute. The entire path
 must be evaluated by the server relative to the public filehandle:

 LOOKUP FH=0x0 "a/b" --->
 <--- FH=0x1 (symbolic link)

 READLINK FH=0x1 --->
 <--- "/x/y"
 LOOKUP FH=0x0 "/x/y"
 <--- FH=0x2

 So in this case the client just passes the link text back
 to the server for evaluation.

6.2.2 Relative Link

 If the first character of the link text is not a slash, then
 the following path can be assumed to be relative to the location
 of the symbolic link. To evaluate this correctly, the client
 must substitute the link text in place of the final pathname
 component that named the link and issue a another LOOKUP relative
 to the public filehandle.

 LOOKUP FH=0x0 "a/b" --->
 <--- FH=0x1 (symbolic link)
 READLINK FH=0x1 --->
 <--- "x/y"
 LOOKUP FH=0x0 "a/x/y"
 <--- FH=0x2

 By substituting the link text in the link path and having
 the server evaluate the new path, the server effectively
 gets to evaluate the link relative to the link's location.

 The client may also "clean up" the resulting pathname by
 removing redundant components as described in Section 4. of
 RFC 1808.

6.3 Filesystem Spanning Pathnames

 NFS LOOKUP requests normally do not cross from one
 filesystem to another on the server. For instance
 if the server has the following export and mounts:

 /export (exported)

 /export/bigdata (mountpoint)

 then an NFS LOOKUP for "bigdata" using the filehandle for
 "/export" will return a "no file" error because the LOOKUP
 request did not cross the mountpoint on the server. There
 is a practical reason for this limitation: if the server
 permitted the mountpoint crossing to occur, then a Unix client
 might receive ambiguous fileid information inconsistent with
 it's view of a single remote mount for "/export". It is
 expected that the client resolve this by mirroring the additional
 server mount, e.g.

https://datatracker.ietf.org/doc/html/rfc1808#section-4
https://datatracker.ietf.org/doc/html/rfc1808#section-4

 Client Server

 /mnt <--- mounted on --- /export

 /mnt/bigdata <--- mounted on --- /export/bigdata

 However, this semantic changes if the client issues
 the filesystem spanning LOOKUP relative to the public
 filehandle. If the following filesystems are exported:

 /export (exported public)

 /export/bigdata (exported mountpoint)

 then an NFS LOOKUP for "bigdata" relative to the public
 filehandle will cross the mountpoint - just as if the
 client had issued a MOUNT request - but only if the
 new filesystem is exported, and only if the server
 supports Export Spanning Pathnames described in Section 6.3
 of RFC [mmmm].

7. Contacting the Server

 WebNFS clients should be optimistic in assuming that the server
 supports WebNFS, but should be capable of fallback to
 conventional methods for server access if the server does not
 support WebNFS.

 The client should start with the assumption that the
 server supports:

 - NFS version 3.

 - NFS TCP connections.

 - Public Filehandles.

 If these assumptions are not met, the client should
 fall back gracefully with a minimum number of
 messages. The following steps are recommended:

 1. Attempt to create a TCP connection to the server's
 port 2049.

 If the connection fails then assume that a request
 sent over UDP will work. Use UDP port 2049.

 Do not use the PORTMAP protocol to determine the
 server's port unless the server does not respond to
 port 2049 for both TCP and UDP.

 2. Assume WebNFS and V3 are supported.
 Send an NFS version 3 LOOKUP with the public filehandle
 for the requested pathname.

 If the server returns an RPC PROG_MISMATCH error then
 assume that NFS version 3 is not supported. Retry
 the LOOKUP with an NFS version 2 public filehandle.

 Note: The first call may not necessarily be a LOOKUP
 if the operation is directed at the public filehandle
 itself, e.g. a READDIR or READDIRPLUS of the directory
 that is associated with the public filehandle.

 If the server returns an NFS3ERR_STALE, NFS3ERR_INVAL, or
 NFS3ERR_BADHANDLE error, then assume that the server does
 not support WebNFS since it does not recognize the public
 filehandle. The client must use the server's portmap
 service to locate and use the MOUNT protocol to obtain an
 initial filehandle for the requested path.

 WebNFS clients can benefit by caching information about the
 server: whether the server supports TCP connections (if TCP is
 supported then the client should cache the TCP connection as
 well), which protocol the server supports and whether the server
 supports public filehandles. If the server does not support
 public filehandles, the client may choose to cache the port
 assignment of the MOUNT service as well as previously used
 pathnames and their filehandles.

8. Mount Protocol

 If the server returns an error to the client that indicates
 no support for public filehandles, the client must use the
 MOUNT protocol to convert the given pathname to a filehandle.
 Version 1 of the MOUNT protocol is described in Appendix A of
 RFC 1094 and version 3 in Appendix I of RFC 1813. Version 2
 of the MOUNT protocol is identical to version 1 except for
 the addition of a procedure MOUNTPROC_PATHCONF which returns
 POSIX pathconf information from the server.

 At this point the client must already have some indication
 as to which version of the NFS protocol is supported on the
 server. Since the filehandle format differs between NFS
 versions 2 and 3, the client must select the appropriate
 version of the MOUNT protocol. MOUNT versions 1 and 2 return
 only NFS version 2 filehandles, whereas MOUNT version 3 returns

https://datatracker.ietf.org/doc/html/rfc1094#appendix-A
https://datatracker.ietf.org/doc/html/rfc1094#appendix-A
https://datatracker.ietf.org/doc/html/rfc1813#appendix-I

 NFS version 3 filehandles.

 Unlike the NFS service, the MOUNT service is not registered on a
 well-known port. The client must use the PORTMAP service to
 locate the server's MOUNT port before it can transmit a
 MOUNTPROC_MNT request to retrieve the filehandle corresponding to
 the requested path.

 Client Server
 ------ ------

 -------------- MOUNT port ? --------------> Portmapper
 <-------------- Port=984 ------------------

 ------- Filehandle for /export/foo ? ----> Mountd @ port 984
 <--------- Filehandle=0xf82455ce0.. ------

 NFS servers commonly use a client's successful MOUNTPROC_MNT
 request request as an indication that the client has "mounted"
 the filesystem and may maintain this information in a file
 that lists the filesystems that clients currently have mounted.
 This information is removed from the file when the client
 transmits an MOUNTPROC_UMNT request. Upon receiving a
 successful reply to a MOUNTPROC_MNT request, a WebNFS client
 should send a MOUNTPROC_UMNT request to prevent an accumulation
 of "mounted" records on the server.

 Note that the additional overhead of the PORTMAP and MOUNT
 protocols will have an effect on the client's binding time
 to the server and the dynamic port assignment of the MOUNT
 protocol may preclude easy firewall or proxy server transit.

 The client may regain some performance improvement by utilizing
 a pathname prefix cache. For instance, if the client already
 has a filehandle for the pathname "a/b" then there is a good
 chance that the filehandle for "a/b/c" can be recovered by
 by a lookup of "c" relative to the filehandle for "a/b",
 eliminating the need to have the MOUNT protocol translate
 the pathname. However, there are risks in doing this.
 Since the LOOKUP response provides no indication of filesystem
 mountpoint crossing on the server, the relative LOOKUP may
 fail, since NFS requests do not normally cross mountpoints
 on the server. The MOUNT service can be relied upon to
 evaluate the pathname correctly - including the crossing
 of mountpoints where necessary.

9. Exploiting Concurrency

 NFS servers are known for their high capacity and their
 responsiveness to clients transmitting multiple concurrent
 requests. For best performance, a WebNFS client should take

 advantage of server concurrency. The RPC protocol on which the NFS
 protocol is based, provides transport-independent support for this
 concurrency via a unique transaction ID (XID) in every NFS
 request.

 There is no need for a client to open multiple TCP connections
 to transmit concurrent requests. The RPC record marking
 protocol allows the client to transmit and receive a stream
 of NFS requests and replies over a single connection.

9.1 Read-ahead

 To keep the number of READ requests to a minimum, a WebNFS
 client should use the maximum transfer size that it and the
 server can support. The client can often optimize utilization
 of the link bandwidth by transmitting concurrent READ requests.
 The optimum number of READ requests needs to be determined
 dynamically taking into account the available bandwidth, link
 latency, and I/O bandwidth of the client and server, e.g.
 the following series of READ requests show a client using
 a single read-ahead to transfer a 128k file from the server
 with 32k READ requests:

 READ XID=77 offset=0 for 32k -->
 READ XID=78 offset=32k for 32k -->
 <-- Data for XID 77
 READ XID=79 offset=64k for 32k -->
 <-- Data for XID 78
 READ XID=80 offset=96k for 32k -->
 <-- Data for XID 79
 <-- Data for XID 80

 The client must be able to handle the return of data
 out of order. For instance, in the above example the
 data for XID 78 may be received before the data for XID 77.

 The client should be careful not to use read-ahead beyond
 the capacity of the server, network, or client, to handle
 the data. This might be determined by a heuristic that
 measures throughput as the download proceeds.

9.2 Concurrent File Download

 A client may combine read-ahead with concurrent download

 of multiple files. A practical example is that of Web
 pages that contain multiple images, or a Java Applet that
 imports multiple class files from the server.

 Omitting read-ahead for clarity, the download of multiple
 files, "file1", "file2", and "file3" might look something
 like this:

 LOOKUP XID=77 0x0 "file1" -->
 LOOKUP XID=78 0x0 "file2" -->
 LOOKUP XID=79 0x0 "file3" -->
 <-- FH=0x01 for XID 77
 READ XID=80 0x01 offset=0 for 32k -->
 <-- FH=0x02 for XID 78
 READ XID=81 0x02 offset=0 for 32k -->
 <-- FH=0x03 for XID 79
 READ XID=82 0x03 offset=0 for 32k -->
 <-- Data for XID 80
 <-- Data for XID 81
 <-- Data for XID 82

 Note that the replies may be received in a different order
 from the order in which the requests were transmitted. This
 is not a problem, since RPC uses the XID to match requests
 with replies. A benefit of the request/reply multiplexing
 provided by the RPC protocol is that the download of a large
 file that requires many READ requests will not delay the
 concurrent download of smaller files.

 Again, the client must be careful not to drown the server
 with download requests.

10.0 Timeout and Retransmission

 A WebNFS client should follow the example of conventional
 NFS clients and handle server or network outages gracefully.
 If a reply is not received within a given timeout, the client
 should retransmit the request with its original XID (described
 in Section 8 of RFC 1831). The XID can be used by the server
 to detect duplicate requests and avoid unnecessary work.

 While it would seem that retransmission over a TCP connection
 is unnecessary (since TCP is responsible for detecting
 and retransmitting lost data), at the RPC layer retransmission
 is still required for recovery from a lost TCP connection, perhaps
 due to a server crash or, because of resource limitations, the server
 has closed the connection. When the TCP connection is lost, the
 client must re-establish the connection and retransmit pending
 requests.

 The client should set the request timeout according to the

https://datatracker.ietf.org/doc/html/rfc1831#section-8

 following guidelines:

 - A timeout that is too small may result in the
 wasteful transmission of duplicate requests.
 The server may be just slow to respond, either because
 it is heavily loaded, or because the link latency is high.

 - A timeout that is too large may harm throughput if
 the request is lost and the connection is idle waiting
 for the retransmission to occur.

 - The optimum timeout may vary with the server's
 responsiveness over time, and with the congestion
 and latency of the network.

 - The optimum timeout will vary with the type of NFS
 request. For instance, the response to a LOOKUP
 request will be received more quickly than the response
 to a READ request.

 - The timeout should be increased according to an
 exponential backoff until a limit is reached.
 For instance, if the timeout is 1 second, the
 first retransmitted request should have a timeout of
 two seconds, the second retransmission 4 seconds, and
 so on until the timeout reaches a limit, say 30 seconds.
 This avoids flooding the network with retransmission
 requests when the server is down, or overloaded.

 As a general rule of thumb, the client should start with
 a long timeout until the server's responsiveness is determined.
 The timeout can then be set to a value that reflects the
 server's responsiveness to previous requests.

11.0 Bibliography

[RFC1808] R. Fielding,
 "Relative Uniform Resource Locators," RFC-1808,
 June 1995

http://www.internic.net/rfc/rfc1808.txt

[RFC1831] R. Srinivasan, "RPC: Remote Procedure Call
 Protocol Specification Version 2," RFC-1831,
 August 1995.

http://www.internic.net/rfc/rfc1831.txt

[RFC1832] R. Srinivasan, "XDR: External Data Representation
 Standard," RFC-1832, August 1995.

http://www.internic.net/rfc/rfc1832.txt

[RFC1833] R. Srinivasan, "Binding Protocols for ONC RPC

https://datatracker.ietf.org/doc/html/rfc1808
http://www.internic.net/rfc/rfc1808.txt
https://datatracker.ietf.org/doc/html/rfc1831
http://www.internic.net/rfc/rfc1831.txt
https://datatracker.ietf.org/doc/html/rfc1832
http://www.internic.net/rfc/rfc1832.txt

 Version 2," RFC-1833, August 1995.
http://www.internic.net/rfc/rfc1833.txt

[RFC1094] Sun Microsystems, Inc., "Network Filesystem
 Specification," RFC-1094, DDN Network
 Information Center, SRI International, Menlo
 Park, CA. NFS version 2 protocol
 specification.

http://www.internic.net/rfc/rfc1094.txt

[RFC1813] Sun Microsystems, Inc., "NFS Version 3 Protocol
 Specification," RFC-1813, DDN Network
 Information Center, SRI International, Menlo
 Park, CA. NFS version 3 protocol
 specification.

http://www.internic.net/rfc/rfc1813.txt

[RFCmmmm] B. Callaghan, "WebNFS Server Specification,"
 RFC-mmmm, October 1996.

http://www.internic.net/rfc/rfcmmmm.txt

[Sandberg] Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh,
 B. Lyon, "Design and Implementation of the Sun
 Network Filesystem," USENIX Conference
 Proceedings, USENIX Association, Berkeley, CA,
 Summer 1985. The basic paper describing the
 SunOS implementation of the NFS version 2
 protocol, and discusses the goals, protocol
 specification and trade-offs.

[X/OpenNFS] X/Open Company, Ltd., X/Open CAE Specification:
 Protocols for X/Open Internetworking: XNFS,
 X/Open Company, Ltd., Apex Plaza, Forbury Road,
 Reading Berkshire, RG1 1AX, United Kingdom,
 1991. This is an indispensable reference for
 NFS version 2 protocol and accompanying
 protocols, including the Lock Manager and the
 Portmapper.

[X/OpenPCNFS] X/Open Company, Ltd., X/Open CAE Specification:
 Protocols for X/Open Internetworking: (PC)NFS,
 Developer's Specification, X/Open Company, Ltd.,
 Apex Plaza, Forbury Road, Reading Berkshire, RG1
 1AX, United Kingdom, 1991. This is an
 indispensable reference for NFS version 2
 protocol and accompanying protocols, including
 the Lock Manager and the Portmapper.

12. Security Considerations

 Since the WebNFS server features are based on NFS protocol

https://datatracker.ietf.org/doc/html/rfc1833
http://www.internic.net/rfc/rfc1833.txt
https://datatracker.ietf.org/doc/html/rfc1094
http://www.internic.net/rfc/rfc1094.txt
https://datatracker.ietf.org/doc/html/rfc1813
http://www.internic.net/rfc/rfc1813.txt
http://www.internic.net/rfc/rfcmmmm.txt

 versions 2 and 3, the RPC based security considerations
 described in RFC 1094, RFC 1831, and RFC 1832 apply here also.

 Clients and servers may separately negotiate secure
 connection schemes for authentication, data integrity,
 and privacy.

13. Acknowledgements

 This specification was extensively reviewed by the NFS
 group at SunSoft and brainstormed by Michael Eisler.

14. Author's Address

 Address comments related to this document to:

 nfs@eng.sun.com

 Brent Callaghan
 Sun Microsystems, Inc.
 2550 Garcia Avenue
 Mailstop Mpk17-201
 Mountain View, CA 94043-1100

 Phone: 1-415-786-5067
 Email: brent.callaghan@eng.sun.com
 Fax: 1-415-786-5896

https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1832

