Ad-Hoc URI List Management in the Session Initiation Protocol (SIP)
draft-camarillo-sipping-adhoc-management-00.txt

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 6, 2004.

Copyright Notice

Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

This document defines two mechanisms to manage ad-hoc URI lists in SIP. In the first mechanism, the user agent sends an updated version of the entire list to the server. In the second mechanism, the server provides the user agent with a URI (e.g., http) that can be used to manipulate the list using an out-of-band mechanism (e.g., XCAP). We define the Associated-List-Manipulation header field that carries a URI that allows manipulating an ad-hoc list.
Table of Contents

1. Introduction ... 3
2. Terminology ... 3
3. List Substitution 3
4. Out-of-Band Management 3
5. Examples ... 4
5.1 List Substitution 6
5.2 Out-of-Band Management 7
6. Security Considerations 7
7. IANA Considerations 7
8. Acknowledgments 7
 Normative References 8
 Author’s Address 8
 Intellectual Property and Copyright Statements 9
1. Introduction

SIP messages can carry URI lists using the "list" SIP and SIPS URI parameter defined in [3]. An application server receiving a SIP request with a URI list creates a so called ad-hoc URI list, which is valid for the duration of the service provided by the server.

Once an ad-hoc URI list is created at the server, the user agent may need to manipulate it (e.g., add URIs to the list and remove URIs from the list). Section 3 and Section 4 describe two methods to perform ad-hoc URI list management.

2. Terminology

In this document, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119 [1] and indicate requirement levels for compliant implementations.

3. List Substitution

A user agent MAY provide an application server with an updated version of the ad-hoc list by sending a request with a "list" parameter [3] in its Request-URI. The "list" parameter MUST contain a pointer to the updated list. (The method of this request depends on the service being delivered.) On reception of such a request, the application server MUST substitute the previous ad-hoc list with the list referenced by the "list" parameter.

4. Out-of-Band Management

Section 3 describes how to send a complete URI list to an application server that substitutes the previous one. Following this approach, a user agent that wants to modify a single URI in a long URI list needs to resend the whole list.

Still, there are URI list management mechanisms, such as the XCAP usage defined in [2], that allow user agents to manipulate URI lists more efficiently. We define a new SIP header field called Associated-List-Manipulation that allows a server to provide a URI to the client to manipulate the ad-hoc list using an out-of-band mechanism. The XCAP Usage for Resource Lists MUST be supported. Other mechanisms MAY be supported.

The ABNF of the Associated-List-Manipulation header field is:
List-Manipulation = "Associated-List-Manipulation" HCOLON absoluteURI

5. Examples

This section shows how to use the mechanisms described in Section 3 and Section 4 to manipulate the list of participants in an ad-hoc conference. This example illustrates the use of both mechanisms. It does not mandate how ad-hoc conference services have to be implemented.

When the ad-hoc conferencing server in this example receives an initial INVITE with a URI list, it sends out an INVITE to each URI in the list and creates an ad-hoc conference with all of them. If, at a later point, a URI is added to the list, the conference server INVITEs the new user. If a URI is removed from the list, the conference server BYEs the user.

Carol creates an ad-hoc conference on the server by sending the INVITE request shown in Figure 1. The list parameter in the Request-URI points to a MIME body that carries the list of participants.

INVITE sip:ad-hoc@example.com;list=cid:cn35t8jf02@example.com SIP/2.0
Via: SIP/2.0/TCP client.chicago.example.com
;branch=z9hG4bKhjs8ass83
Max-Forwards: 70
To: "Ad-Hoc Conferences" <sip:ad-hoc@example.com>
From: Carol <sip:carol@chicago.example.com>;tag=32331
Call-ID: d432fa84b4c76e66710
CSeq: 1 INVITE
Contact: <sip:carol@client.chicago.example.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
 SUBSCRIBE, NOTIFY
Allow-Events: dialog
Accept: application/sdp, message/sipfrag,
 application/resource-lists+xml
Content-Type: multipart/mixed;boundary="boundary1"
Content-Length: 731

--boundary1
Content-Type: application/sdp
Content-Length: 160

v=0
o=carol 2890844526 2890842807 IN IP4 chicago.example.com
s=Example Subject
c=IN IP4 192.0.0.1
t=0 0
m=audio 20000 RTP/AVP 0
m=video 20002 RTP/AVP 31

--boundary1
Content-Type: application/resource-lists+xml
Content-Length: 367
Content-ID: <cn35t8jf02@example.com>

<?xml version="1.0" encoding="UTF-8"?><resource-lists xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><list name="ad-hoc-1"><entry name="1" uri="sip:bill@example.com" /></list></resource-lists>--boundary1--

Figure 1: INVITE request

SIP/2.0 200 OK
Via: SIP/2.0/TCP client.chicago.example.com
 ;branch=z9hG4bKhjhs8ass83;received=192.0.2.4
To: "Ad-Hoc Conferences" <sip:ad-hoc@example.com>;tag=733413
From: Carol <sip:carol@chicago.example.com>;tag=32331
Call-ID: d432fa84b4c76e66710
CSeq: 1 INVITE
Contact: <sip:34@example.com>;isfocus
Associated-List-Manipulation: http://xcap.example.com/lists/yourlist
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER,
 SUBSCRIBE, NOTIFY
Allow-Events: dialog, conference
Accept: application/sdp, application/conference-info+xml,
 application/resource-lists+xml, message/sipfrag
Supported: replaces, join
Content-Type: application/sdp
Content-Length: 312

v=0
o=focus431 2890844526 2890842807 IN IP4 ms5.conf.example.com
s=Example Subject
i=Example Conference Hosted by Example.com
u=http://conf.example.com/3402934234
The conference server responds with the 200 (OK) in Figure 1, which carries the URI for the conference in its Contact header field and a URI for manipulating the URI list in its Associated-List-Manipulation header field.

5.1 List Substitution

Carol wants to remove Bill and Joe from the conference. She sends the re-INVITE in Figure 3 to the conference server with an updated URI list in a "list" parameter.

INVITE sip:34@example.com;isfocus;list=cid:cn35t8j@example.com SIP/2.0
Via: SIP/2.0/TCP client.chicago.example.com
;branch=z9hG4bKhjhs8ass83
Max-Forwards: 70
To: "Ad-Hoc Conferences" <sip:ad-hoc@example.com>
From: Carol <sip:carol@chicago.example.com>;tag=32331
Call-ID: d432fa84b4c76e66710
CSeq: 2 INVITE
Contact: <sip:carol@client.chicago.example.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY
Allow-Events: dialog
Accept: application/sdp, message/sipfrag, application/resource-lists+xml
Conten-Type: multipart/mixed;boundary="boundary1"
Content-Length: xxx

--boundary1
Content-Type: application/sdp
Content-Length: 160

v=0
o=carol 2890844526 2890842807 IN IP4 chicago.example.com
s=Example Subject
c=IN IP4 192.0.0.1
t=0 0
m=audio 20000 RTP/AVP 0
5.2 Out-of-Band Management

Now, Carol wants to add Alice to the conference. This time, she uses the http URI received in the Associated-List-Manipulation header field. She uses XCAP to add Alice’s URI, so no SIP traffic is exchanged between her and the server.

6. Security Considerations

TBD.

7. IANA Considerations

This document registers the Associated-List-Manipulation SIP header field, which is described in Section 4. This header field is to be added to the header field registry under http://www.iana.org/assignments/sip-parameters.

 Header Name: Associated-List-Manipulation

 Compact Form: (none)

8. Acknowledgments

Adam Roach, Jonathan Rosenberg, and Orit Levin provided useful comments on this document.

Normative References

Author's Address

Gonzalo Camarillo
Ericsson
Hirsalantie 11
Jorvas 02420
Finland

EMail: Gonzalo.Camarillo@ericsson.com
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

Full Copyright Statement

Copyright (C) The Internet Society (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.