
Network Working Group M. Campagna
Internet-Draft Certicom Corp.
Intended status: Standards Track October 12, 2012
Expires: April 15, 2013

A Cryptographic Suite for Embedded Systems (SuiteE)
draft-campagna-suitee-04

Abstract

 This document describes a cryptographic suite of algorithms ideal for
 constrained embedded systems. It uses the existing IEEE 802.15.4
 standard as a starting point, builds upon existing embedded
 cryptographic primitives and suggests additional elliptic curve
 cryptography (ECC) algorithms and curves. The goal is to define a
 complete suite of algorithms ideal for embedded systems.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 15, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Campagna Expires April 15, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SuiteE October 2012

 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Encryption . 6
2.1. AES-CTR Mode . 6
2.2. AES-CBC-MAC Mode . 7
2.3. AES-CCM* Mode . 7
2.3.1. AES-CCM* Encrypt 8
2.3.2. AES-CCM* Decrypt 10

3. Deterministic Random Number Generator 13
3.1. CTR_Update . 13
3.2. CTR_Init . 14
3.3. CTR_Generate . 15

4. Hash . 16
4.1. Prefix-Free Encoding 16
4.2. MD-strengthening . 16
4.2.1. MD-strengthening-1 17
4.2.2. MD-strengthening-2 17
4.2.3. MD-strengthening-3 18

4.3. MMO Construction . 18
5. Key Derivation Function 19
6. Curve Selection . 20
6.1. SECT283K1 Curve Parameters 21

7. Elliptic Curve Signatures with Partial Message Recovery . . . 22
7.1. Message Encoding and Decoding Methods 22
7.1.1. Message Encoding 22
7.1.2. Decoding Messages 23

7.2. Elliptic Curve Pintsov-Vanstone Signatures (ECPVS) 23
7.2.1. Signature Generation 24
7.2.2. Signature Verification 24

8. Elliptic Curve Implicit Certificates (ECQV) 26
8.1. Certificate Request 26
8.2. Certificate Generation 27
8.3. Certificate Reception 28
8.4. Certificate Public Key Extraction 28

9. Elliptic Curve Key Agreement Scheme 30
9.1. ECMQV . 30

10. References . 32
10.1. Normative References 32
10.2. Informative References 34

Appendix A. Acknowledgments 36
 Author's Address . 37

Campagna Expires April 15, 2013 [Page 2]

Internet-Draft SuiteE October 2012

1. Introduction

 Constrained embedded systems and in particular devices for wireless
 personal and body area networks (WPAN and BAN respectively), have
 unique computation, power and bandwidth constraints. These systems
 are seeing wider deployment in Smart Energy, Home Automation,
 Personal Home and Health Care, and more broadly the so-called
 Internet of Things. The environments in which they are being
 deployed require varying degrees of security.

 The Cryptographic Suite for Embedded Systems (SuiteE) aims to
 optimally meet the wide variety of cryptographic requirements, by
 providing a compact and complete collection of cryptographic
 algorithms having minimal code space, computational requirements and
 bandwidth usage. Additionally the selection of these algorithms are
 tuned to minimize overall system costs in mass production by
 selecting easily embeddable algorithms which will further reduce code
 space, energy usage and increase computational performance. It is
 expected that this suite of algorithms can be used to provide
 security solutions in the 6lowpan and CoRE space.

 Mass production economics see many benefits of placing fixed routines
 in hardware. The benefits are in code space, performance, battery
 life, and overall cost of the device. This is the fundamental reason
 why most IEEE 802.15.4 devices implement AES in hardware today.
 Considering the projected scale of the so-called Internet of things
 (Cisco estimates the smart grid alone to be 100 to 1000 times the
 size of the Internet today), efficiencies and cost savings realized
 in embedding more of the lower level operations in hardware
 transforms into a basic requirement - technology selection should
 afford benefits to embedding in hardware.

 Many of the environments in which these new embedded systems are
 being deployed have a life expectancy of 20+ years. This requires
 the selection of key lifecycle management mechanisms at a security
 level adequate to deliver the desired security services for the
 lifespan of the system. [NIST57] provides recommendations on general
 key management and security levels. We summarize the comparable
 strengths table and recommended minimum sizes:

Campagna Expires April 15, 2013 [Page 3]

Internet-Draft SuiteE October 2012

 +-----------+----------+-----------+-----------------+--------------+
Algorithm	Security	Symmetric	Integer	Elliptic
Lifetime	Strength	Key Size	Factorization	Curve
			Cryptography	Cryptography
			Key Size (e.g.,	(ECC) Key
			RSA) Size	Size
+-----------+----------+-----------+-----------------+--------------+				
Through	80 bits	80	1024	160
2010				
Through	112 bit	112	2048	256
2030				
Beyond	128 bit	128	3072	256
2030				
>Beyond	192 bit	192	7680	384
2030				
>>Beyond	256 bit	256	15360	512
2030				
 +-----------+----------+-----------+-----------------+--------------+

 [NIST57] does not provide guidance on life span for security
 strengths for 192 and 256 bit presumably because of the uncertainty
 in forecasting technology 30+ years out.

 Considering the expected life span of many of these systems and best
 industry practice we target the 128 bit security strengths for
 SuiteE.

 The design goals of SuiteE are:

 Provide re-usable primitives

 Reduce code size

 To be suitable for hardware implementation

 Reduce computational costs

 Reduce energy usage and increase battery lifespan

 A complete cryptographic cipher suite should consist of primitives
 from which the security services of identification and
 authentication, confidentiality, data integrity and non-repudiation
 can be provided. We prescribe an encryption scheme with
 authentication, a deterministic random number generator, a hash

Campagna Expires April 15, 2013 [Page 4]

Internet-Draft SuiteE October 2012

 function, a key-agreement scheme, a digital signature scheme, and a
 certificate scheme that achieves a 128-bit security level, and
 achieves the goals identified above.

 The remainder of this document is organized as follows. Section 2
 provides an authenticated encryption mode AES-CCM*. Section 3
 provides a deterministic random number generator. Section 4
 describes a hashing algorithm using the existing AES core in an AES-
 MMO mode. Section 6 indicates why elliptic curve technology is
 selected and the specific curve selection sect283k1. Section 7
 specifies the use of an elliptic curve signature scheme with partial
 message recovery. Section 8 provides an implicit certificate scheme.

Section 9 describes an elliptic curve based mutual authenticated key
 agreement scheme.

Campagna Expires April 15, 2013 [Page 5]

Internet-Draft SuiteE October 2012

2. Encryption

 IEEE 802.15.4 [IEEE-802.15.4-2003] specifies the use of AES-CCM*, a
 variation of the Counter Mode with Cipher Block Chaining MAC (CBC-
 MAC) using AES-128. AES-128 is specified in [FIPS-197]. Using
 [IEEE-802.15.4-2003] as the normative reference we present a
 description of AES-CCM* here.

 In the sections that follow we will assume that the basic block
 cipher is AES-128 as specified in [FIPS-197]. We will represent AES-
 128 as a function E taking two 128-bit inputs, a message block M, and
 key K, with 128-bit output C = E(M, K).

2.1. AES-CTR Mode

 CTR mode or Counter Mode is a block cipher mode for providing
 confidentiality. It has some specific advantages in that both the
 encryption and decryption routines only require the block cipher to
 operate in a forward, or encrypt-only, direction.

 Input: a 128-bit symmetric key K, and a plaintext message P of length
 Plen, and initial counter value CTR

 1. Compute m = ceiling(Plen/128).

 2. Apply the counter generator function to CTR to compute CTR_1,
 CTR_2, ..., CTR_m.

 3. Compute S_j = E(CTR_j, K), for j = 1,...,m.

 4. Let S = S_1||S_2||...||S_m, where || indicates concatenation.

 5. Compute C = P XOR MSB_Plen(S), where MSB_X() takes the X most
 significant bits.

 Output: C

 The Decryption routine for CTR mode is symmetric.

 Input: a 128-bit symmetric key K, and a ciphertext message C of
 length Clen, and initial counter value CTR

 1. Compute m = ceiling(Clen/128).

 2. Apply the counter generator function to CTR to compute CTR_1,
 CTR_2, ..., CTR_m.

Campagna Expires April 15, 2013 [Page 6]

Internet-Draft SuiteE October 2012

 3. Compute S_j = E(CTR_j, K), for j = 1,...,m.

 4. Let S = S_1||S_2||...||S_m, where || indicates concatenation.

 5. Compute P = C XOR MSB_Clen(S), where MSB_X() takes the X most
 significant bits.

 Output: P

2.2. AES-CBC-MAC Mode

 Cipher Block Chaining MAC Mode, CBC-MAC mode uses a block cipher to
 provide data integrity. Unlike CTR mode, that operates on arbitrary
 length strings CBC-MAC requires message padding to be on a multiple
 of the block length. The last message block will be padded out using
 zero bytes.

 Input: a 128-bit symmetric key K, a message M of length Mlen

 1. Form B by padding message M on the right with 0-bytes to be on a
 byte boundary of the block length (16-bytes).

 2. Form B = B_1||B_2||...||B_m.

 3. Set O_0 to a zeroized block-length byte string.

 4. Compute O_j = E(O_j-1 XOR B_j, K).

 5. Set MAC T = O_m.

 Output: T

 Verification is done by identical computation on input K, message M,
 and purported MAC T' and an additional check where the computed MAC
 value T is compared to the received MAC value T' and accepted only if
 T = T'.

2.3. AES-CCM* Mode

 CCM mode is an authenticate and encrypt mode for block ciphers
 defined in [NIST-800-38C]. It is defined on a 128-bit block size
 block cipher. CCM* modifies this description to allow for modes that
 require only authentication, as well as variable length
 authentication tags.

Campagna Expires April 15, 2013 [Page 7]

Internet-Draft SuiteE October 2012

2.3.1. AES-CCM* Encrypt

 We break this section up into 3 subsections, input transformation,
 authentication transformation, and encryption transformation. We
 will assume that the following inputs are provided to the routines.

 Input:

 a. A 128-bit symmetric key K.

 b. A value 1 < L < 9.

 c. A nonce N of 15 - L octets, unique within the usage of the key
 K.

 d. An octet string m of length l(m), where 0 <= l(m) < 2^8L.

 e. An octet string a of length l(a), where 0 <= l(a) < 2^64.

2.3.1.1. Input Transformation

 Input:

 a. An octet string m of length l(m), where 0 <= l(m) < 2^8L.

 b. An octet string a of length l(a), where 0 <= l(a) < 2^64.

 1. Represent the length l(a) as an octet string L(a).

 a. If l(a) = 0, then L(a) is an empty string.

 b. If 0 < l(a) < 2^16 - 2^8, then L(a) is the 2-octet
 representation of l(a).

 c. If 2^16 - 2^8 <= l(a) < 2^32, then L(a) is the right-
 concatenation of the octet 0xff, the octet 0xfe, and the
 4-octet encoding of l(a).

 d. If 2^32 <= l(a) < 2^64, then L(a) is the right-
 concatenation of the octet 0xff, the octet 0xff, and the
 8-octet encoding of l(a).

 2. Form AddAuthData = L(a)||a||0^t, where 0^t is the smallest non-
 negative string of t zero octets so that the resulting
 AddAuthData octet length is a multiple of 16.

 3. Form PlaintextData = m || 0^s, where 0^s is the smallest non-
 negative string of s zero octets so that the resulting

Campagna Expires April 15, 2013 [Page 8]

Internet-Draft SuiteE October 2012

 PlaintextData octet length is a multiple of 16.

 4. Form AuthData = AddAuthData || PlaintextData.

 Output: AuthData

2.3.1.2. Authentication Transformation

 Input:

 a. A 128-bit symmetric key K.

 b. The octet string AuthData, created in the input
 transformation.

 c. A nonce N of 15 - L octets, unique within the usage of the key
 K.

 d. The length l(m), where 0 <= l(m) < 2^8L.

 1. Form the byte Flags = Reserved || Adata || M || L, where the
 1-bit Reserved field is reserved for future expansions and shall
 be set to '0'. The 1-bit Adata field is set to '0' if l(a) = 0
 and set to '1' if l(a) > 0. The M field is the 3-bit
 representation of the integer (M - 2)/2 if M > 0 and of the
 integer 0 if M = 0, in most-significant-bit-first order. The L
 field is the 3-bit representation of the integer L - 1, in most-
 significant-bit-first order.

 2. Form B0 = Flags || Nonce N || l(m)

 3. Parse the message AuthData as B1 || B2 || ... ||Bt, where each
 message block Bi is a 16-octet string.

 4. The CBC-MAC value T = AES-CBC-MAC(B_0 || AuthData, K) as defined
 by Section 2.2.

 Output: T

2.3.1.3. Encryption Transformation

 Input:

 a. A 128-bit symmetric key K.

 b. PlaintextData from Section 2.3.1.1.

Campagna Expires April 15, 2013 [Page 9]

Internet-Draft SuiteE October 2012

 c. The authentication tag output T from Section 2.3.1.2.

 d. A nonce N of length 15-L bytes.

 1. Form Flags = Reserved0 || Reserved1 || 000 || L', where the
 reserved bits Reserved0 and Reserved1 is '0', and L' is the 3-bit
 representation of the integer L - 1.

 2. Form the A_i = Flags || Nonce N || Counter_i, where Counter_i is
 an L-octet representation of the integer i = 0, 1, 2, ..., t.

 3. Parse the PlaintextData from Section 2.3.1.1 into 16-octet blocks
 M_1, ..., M_t.

 4. Compute C_i = E(A_i, K) XOR M_i for i = 1, ..., t.

 5. Compute Ciphertext as the leftmost l(m) bits of C_1 || ... ||
 C_t.

 6. Compute S_0 = E(A_0, K) XOR T.

 7. Compute AuthTag as the leftmost M octets of S_0.

 Output: Ciphertext and AuthTag

2.3.2. AES-CCM* Decrypt

 We break this section up into 2 subsections, decryption and
 authentication verification. The AES-CCM* Decryption process should
 both decrypt any encrypted portion of the message, and authenticate
 the decrypted message. It will return an error code, or plaintext
 data. We will assume that the following inputs are provided to the
 routines.

 Input:

 a. A 128-bit symmetric key K.

 b. A nonce N of 15 - L octets, unique within the usage of the key
 K.

 c. An M-octet tag AuthTag.

 d. An octet string Ciphertext of length l(c), where 0 <= l(c) - M
 < 2^8L.

Campagna Expires April 15, 2013 [Page 10]

Internet-Draft SuiteE October 2012

2.3.2.1. Decryption Transformation

 Input:

 a. A 128-bit symmetric key K.

 b. A nonce N of 15 - L octets, unique within the usage of the key
 K.

 c. An M-octet tag AuthTag.

 d. An octet string Ciphertext of length l(c), where 0 <= l(c) - M
 < 2^8L.

 1. Form C_0 from AuthTag by padding on the right by the least number
 of 0 octets so that C_0 is an octet string of length 16.

 2. Form CiphertextData by right concatenation of C with the smallest
 number of 0 octets so the resulting string is of octet length
 divisible by 16.

 3. Form Flags = Reserved0 || Reserved1 || 000 || L', where the
 reserved bits Reserved0 and Reserved1 are '0', and L' is the
 3-bit representation of the integer L - 1.

 4. Form the A_i = Flags || Nonce N || Counter_i, where Counter_i is
 an L-octet representation of the integer i = 0, 1, 2, ..., t.

 5. Parse the C_0||CiphertextData into 16-octet blocks C_0, C_1, ...,
 C_t.

 6. Compute P_i = E(A_i, K) XOR C_i for i = 0, ..., t.

 7. Form U as the rightmost M-octets of P_0.

 8. Form Plaintext leftmost l(c) octets of P_1||...||P_t.

 Output: U and Plaintext

2.3.2.2. Verification Transformation

 Input:

 a. A 128-bit symmetric key K.

 b. Plaintext of length l(c), where 0 <= l(c) < 2^8L.

Campagna Expires April 15, 2013 [Page 11]

Internet-Draft SuiteE October 2012

 c. U, the purported MAC of Plaintext.

 d. A nonce N of 15 - L octets, unique within the usage of the key
 K.

 1. Compute T as the output of the authentication transformation
Section 2.3.1.2 with the inputs, key K, Plaintext, nonce N, and

 length value l(c).

 2. Form T' as the leftmost M octets of T.

 3. If T' = U output Plaintext, otherwise output error code INVALID.

 Output: Plaintext or INVALID

Campagna Expires April 15, 2013 [Page 12]

Internet-Draft SuiteE October 2012

3. Deterministic Random Number Generator

 This section provides a reduced set of options to the CTR_DRBG
 definition using AES as defined in [NIST-800-90].

 Restrict the CTR_DRBG to the use of AES-128 delivering 128-bit
 security.

 General assumption of a full-entropy seed, removing the extra
 coding needed for the block_cipher_df and the BCC function as
 defined in [NIST-800-90]

 The personalization_string and additional_input options are not
 supported.

 Set maximum_number_of_bits_per_request = 2^16. (Based on
 convenient word boundary.)

 Set reseed_interval = 2^48. (Based on maximizing life of a device
 that may not have an entropy source.)

 We give a basic description of the AES block-cipher-based DRBG in the
 next few subsections. The description includes an update function,
 an initialization function, and a generate function. We will leave
 it up to implementers to consider other optional functions such as
 reseed.

 We define the state of the CTR_DRBG using the following structure.

 struct{
 uint64 counter; // 64-bit counter
 uchar V[16]; // state
 uchar K[16]; // key
 }ctr_drbg;

3.1. CTR_Update

 The update function CTR_Update() modifies the internal state
 variables V and K of the DRBG structure using provided data.

 Input:

 a. The current state V.

 b. The current key K.

 c. A 32-byte input, data.

Campagna Expires April 15, 2013 [Page 13]

Internet-Draft SuiteE October 2012

 1. temp = AES(V+1 (mod 2^128), K) || AES(V+2 (mod 2^128), K).

 2. temp = temp XOR data.

 3. K = leftmost 16 bytes of temp.

 4. V = rightmost 16 bytes of temp.

 Output:

 a. The updated state V.

 b. The updated key K.

 Functionally we write (V, K) = CTR_Update(V, K, data).

3.2. CTR_Init

 The update function CTR_Update() modifies the internal state
 variables V and K of the DRBG structure using provided data.

 Input:

 a. A full entropy 32-byte seed.

 1. Set V = 0^128, K = 0^128, zeroize state V, and K.

 2. (V, K) = CTR_Update(V, K, seed).

 3. Set counter = 1.

 Output:

 a. State (counter, V, K)

 Functionally we write (counter V, K) = CTR_Init(seed).

 NOTE: The CTR_Init() function can be simplified by making the
 observation that the resulting state is simply an XOR of the seed
 value with the fixed output values of AES(0^127||1_2, 0^128)||
 AES(0^126||10_2, 0^128) = 58E2FCCEFA7E3061367F1D57A4E7455A0388DACE60B
 6A392F328C2B971B2FE78_{16}, or (K||V) =
 58E2FCCEFA7E3061367F1D57A4E7455A0388DACE60B6A392F328C2B971B2FE78 XOR
 seed.

Campagna Expires April 15, 2013 [Page 14]

Internet-Draft SuiteE October 2012

3.3. CTR_Generate

 The function CTR_Generate() modifies the internal state variables V
 and K of the DRBG structure, and generates a random output of the
 requested length rlen bytes. If the counter has exceeded 2^48 or
 rlen exceeds 2^16, an ERROR is returned, and the state is not
 modified.

 Input:

 a. Current state (counter, V, K).

 b. Requested number of bytes, rlen.

 1. If counter > 2^48 return ERROR.

 2. If rlen > 2^16 return ERROR.

 3. Set output = NULL

 4. while(length(temp) < rlen)

 a. V = V + 1 (mod 2^128).

 b. output ||= AES(V, K).

 5. output = leftmost rlen bytes of output.

 6. (V, K) = CTR_Update(V, K, 0^256).

 7. Set counter = counter + 1.

 Output:

 a. State (counter, V, K)

 b. Either NULL and ERROR, or output and SUCCESS

 Functionally we write ((counter V, K), (output, RESULT_CODE)) =
 CTR_Generate(V, K, data).

Campagna Expires April 15, 2013 [Page 15]

Internet-Draft SuiteE October 2012

4. Hash

 [ISO-10118-2] specifies hash functions using an n-bit block cipher.
 The first function from [ISO-10118-2] ("Hash-function one") maps
 arbitrary length inputs to n-bit outputs. This is the Matyas-Meyer-
 Oseas (MMO) construction described in [MOV96]. In the first
 subsection we specify a family of Merkle-Damgard strengthening (or
 MD-strengthening) functions that aims to account for existing
 deployments in ZigBee Smart Energy, and provide a gradual MD-
 strengthening that reduces padding on small messages.

 The following subsection details an MMO construction that utilizes
 two input pre-processing steps. The first is a prefix-free encoding:
 the bitlength of the message encoded as a 128-bit integer is
 prepended to the input message. The second is the more common MD-
 strengthening transform, which essentially appends an encoding of the
 length and ensures the output is a multiple of the block length.

 The hash function defined here is a not a general purpose hash
 function at the 128-bit security level, as it does not provide
 collision resistance. Application of this hash function should
 conform to the usages defined in this specification. The use of this
 hash function elsewhere requires careful consideration.

4.1. Prefix-Free Encoding

 The prefix-free encoding step is defined as follows:

 Input: message M of bitlength Mlen

 Output: M' of bitlength Mlen + 128

 1. If Mlen >= 2^64 return ERROR.

 2. Convert Mlen to a bit string Mblen of length 128 bits, where
 the first 64 where Mblen is the 128-bit little-endian integer
 representation of Mlen. (Note that the leftmost 64 bits will
 always be zero.)

 3. Prepend (left-pad) and output Mblen to M, i.e., output M' =
 Mblen||M.

4.2. MD-strengthening

 This section defines an escalating MD-strengthening padding scheme to
 account for minimizing additional blocks for small messages, and
 expanding length encoding for larger messages. Additionally it
 allows for compliance with existing applications of MMO hashing

Campagna Expires April 15, 2013 [Page 16]

Internet-Draft SuiteE October 2012

 defined in ZigBee Smart Energy 1.0. For messages less than 2^16 bits
 we use MD-strengthening-1, for messages of length less than 2^32 bits
 but greater than 2^16 - 1 bits we use MD-strengthening-2, and for
 messages of length less than 2^64 bits but greater than 2^32 - 1 bits
 we use MD-strengthening-3

4.2.1. MD-strengthening-1

 Input: A message M of bitlength Mlen.

 1. If Mlen >= 2^16 return ERROR.

 2. Pad the message M:

 a. Right concatenate the message M with a '1' bit followed by
 k '0' bits where k is the least non-negative number such that
 Mlen + 1 + k = 112 mod 128.

 b. Form the padded message M' by right concatenating the
 resulting string with a 16-bit string that is equal to the
 value Mlen.

 Output: M' = M_1, M_2, ..., M_m a padded message in 128-bit blocks.

4.2.2. MD-strengthening-2

 Input: A message M of bitlength Mlen.

 1. If Mlen < 2^16 or Mlen >= 2^32 return ERROR.

 2. Pad the message M:

 a. Right concatenate the message M with a '1' bit followed by
 k '0' bits where k is the least non-negative number such that
 Mlen + 1 + k = 80 mod 128.

 b. Form the padded message M'' by right concatenating the
 resulting string with a 32-bit string that is equal the value
 Mlen.

 c. Form the padded message M' by right concatenating M'' with
 a 16-bit 0 string.

 Output: M' = M_1, M_2, ..., M_m a padded message in 128-bit blocks.

Campagna Expires April 15, 2013 [Page 17]

Internet-Draft SuiteE October 2012

4.2.3. MD-strengthening-3

 Input: A message M of bitlength Mlen.

 1. If Mlen < 2^32 or Mlen= >= 2^64 return ERROR.

 2. Pad the message M:

 a. Right concatenate the message M with a '1' bit followed by
 k '0' bits where k is the least non-negative number such that
 Mlen + 1 + k = 16 mod 128.

 b. Form the padded message M'' by right concatenating the
 resulting string with a 64-bit string that is equal the value
 Mlen.

 c. Form the padded message M' by right concatenating M'' with
 a 48-bit 0 string.

 Output: M' = M_1, M_2, ..., M_m a padded message in 128-bit blocks.

4.3. MMO Construction

 We describe the basic MMO construction on a message M that has been
 padded and MD-strengthened to be of length a multiple of the bit
 length of AES, 128 bits.

 Input: A message M of bitlength Mlen.

 1. Apply the prefix-free encoding to M to form a bitstring M', with
 bitlength Mlen' = Mlen + 128.

 2. Pad and format M' in 128-bit blocks using one of the MD routines
 specified above or return ERROR.

 3. Set H_0 = 0^128, a zeroized 128-bit block.

 4. Compute H_j = E(M_j, H_(j-1)) XOR M_j, for j = 1, ..., m.

 Output: H = H_m as the hash value.

Campagna Expires April 15, 2013 [Page 18]

Internet-Draft SuiteE October 2012

5. Key Derivation Function

 At this time SuiteE does not recommend a particular key derivation
 function (KDF) for compliance. That said, some of the SuiteE
 primitives do require use of a KDF. One possible choice are the
 pseudorandom function-based constructions of KDFs given in
 [NIST-800-108] which are suitable, and may be instantiated with AES-
 CMAC as a pseudo-random function.

Campagna Expires April 15, 2013 [Page 19]

Internet-Draft SuiteE October 2012

6. Curve Selection

 We will assume basic familiarity with Elliptic Curve Cryptography
 (ECC) notation and specifications. Wherever possible we will refer
 to freely available standards and indicate alignment of these
 standards with other well known standards. We will assume the
 notation in the Standards for Efficient Cryptography Group SEC 1,
 [SEC1]. This specification defines the basic ECC operations as well
 as the most widely standardized and used techniques. The overall
 goal of [SEC1] is to provide a free standard that ensures conformance
 with other standard specifications, and is instructive to
 implementers on how to develop the necessary routines to build an
 elliptic curve cryptosystem.

 Elliptic curve cryptography is a natural public key technology to
 select given a goal of providing public key operations at a 128-bit
 security level on embedded systems. ECC, like RSA and other public
 key cryptosystems provides security by the use of key pairs: a
 private key and a public key. Security properties are built upon the
 assumption that the private key is securely generated and maintained
 within the confines of a cryptographic boundary. Ideally, this means
 that private keys should be generated on the device in which the
 private keys will be used operationally.

 RSA key generation at the 128-bit security level requires the
 generation 1536-bit prime numbers, and performing integer operations
 on 3072-bit numbers. The inability of embedded systems to generate
 these keys on devices today, and the future requirements to implement
 this in hardware makes RSA a poor choice.

 ECC key generation at the 128-bit security level requires the
 generation of a 256-bit random number and scalar point
 multiplication, which can be done efficiently in embedded systems
 today.

 Elliptic curves over binary fields have a distinct advantage over
 elliptic curves over prime fields in that they are more efficient and
 cost effective in hardware. The binary curve sect283k1 as specified
 in [SEC2] is the most widely standardized and specified binary curve
 at the 128-bit security level. It is a Koblitz curve, which has an
 advantage over random curves in performing point multiplication
 algorithms.

 For a basic description of the algorithms the reader is referred to
 [SEC1]. For a more complete background and optimizations for
 elliptic curves the reader is referred to [HMV04].

 Throughout the following sections on elliptic curve cryptography we

Campagna Expires April 15, 2013 [Page 20]

Internet-Draft SuiteE October 2012

 will use the following notation

 Fq - is a finite field with q elements.

 E - an elliptic curve over Fq, given by the equation y^2 + xy = x^3 +
 ax^2 + b.

 E(Fq) - the group of elliptic curve points over Fq.

 G - is a base point in E(Fq) of a large prime order.

 n - is a large prime, and the order of the subgroup generated by G.

 h - is the cofactor, h = #E(Fq)/n.

 Further we will assume it is known how to generate elliptic curve key
 pairs, and will refer the reader to the freely available
 specification [SEC1]. In general a key pair is generated by taking a
 random integer d, 1 < d < n, and computing Q = dG, the addition of
 the point G to itself d times. In general all parties will have some
 assurances that the elliptic curve domain parameters are valid, and
 in particular are fixed to the selected sect283k1 curve parameters.

6.1. SECT283K1 Curve Parameters

 Fq - is a finite field with q = 2^283. Fq = F_2[X]/(f(x)), where
 f(x) = x^283 + x^12 + x^7 + x^5 + 1.

 E - the elliptic curve is defined as E:y^2 + xy = x^3 + b.

 G - is a base point in E of a large prime order, presented here in
 uncompressed octet encoding 04 0503213F 78CA4488 3F1A3B81 62F188E5
 53CD265F 23C1567A 16876913 B0C2AC24 58492836 01CCDA38 0F1C9E31
 8D90F95D 07E5426F E87E45C0 E8184698 E4596236 4E341161 77DD2259.

 n - is a large prime, and the order of the subgroup generated by G, n
 = 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577 265DFF7F
 94451E06 1E163C61.

 h - is the cofactor, #E(Fq)/n, h = 4.

Campagna Expires April 15, 2013 [Page 21]

Internet-Draft SuiteE October 2012

7. Elliptic Curve Signatures with Partial Message Recovery

 Elliptic Curve Pintsov-Vanstone Signatures (ECPVS) is an elliptic
 curve variant of Nyberg-Rueppel signatures. ECPVS is standardized in
 [X9.92.1] and [IEEE1363-A]. It has three distinct advantages over
 ECDSA when it comes to constrained environments. The first being
 that it allows for smaller signature sizes by the incorporation of
 part of the message into a signature field. The second is a
 simplification of the integer arithmetic. The signing transformation
 does not require a modular inverse, improving both code size and
 computational performance. The verification transformation requires
 no integer arithmetic and so also removes a modular inverse and
 modular multiplies in the verification transformation. The third is
 that it is a Schnorr signature scheme which loosens the collision
 resistance requirement on the underlying hash function [NSW07]. Thus
 the AES-MMO hash primitive in SuiteE (see Section Section 4)is
 sufficient for security. A second consequence is a performance
 increase in the signature verification, where a scalar multiply with
 a 256-bit integer (ECDSA) is replaced by a 128-bit integer (ECPVS).

 We assume all parties possess the domain parameters for the elliptic
 curve, as chosen in Section 6, and that the public keys of signers
 are validated as described in [SEC1], Section 3.2.2.

 The scheme presented here is a variant of ECPVS as presented in
 [X9.92.1], it removes the redundancy requirement on the input message
 by replacing the use of symmetric key encryption with the
 authenticated encryption functionality of SuiteE, AES-CCM*.

 ECPVS uses encoding and decoding routines to process signatures.

7.1. Message Encoding and Decoding Methods

 The following subsections specify the encoding and decoding operation
 primitives that shall be used to generate ECPVS signatures and to
 verify ECPVS signatures.

7.1.1. Message Encoding

 Input: The input to the encoding operation is:

 a. A recoverable message part, which is a bit string M of length
 Mlen bits.

 b. A bit string Z (used to derive a key).

 Steps

Campagna Expires April 15, 2013 [Page 22]

Internet-Draft SuiteE October 2012

 1. Form T = 00||M, by prepending a zero byte to the front of M.

 2. Apply the key derivation function KDF to the bit string Z to
 produce a 128-bit key K.

 3. Let (C, MAC) = AES-CCM*-ENCRYPT(T, K, 128).

 4. Form r = C||MAC, the concatenation of the cipher text value C
 with the computed MAC value.

 Output: r.

 We will denote this process as r = EM(M, Z), for encode message.

7.1.2. Decoding Messages

 Input: The input to the decoding operation is:

 a. The message representative, which is a bit string r of length
 rlen bits.

 b. A bit string Z.

 Steps

 1. Apply the key derivation function KDF to the bit string Z to
 produce a 128-bit key K.

 2. Parse the message r = C||MAC, where MAC is the last 16 bytes, or
 return ERROR.

 3. Compute M' = AES-CCM*-DECRYPT(C, MAC, K, 128).

 4. If M' is ERROR value return ERROR.

 5. Parse M' = 00||M, where 00 is a zeroized byte, or return ERROR.

 6. return M.

 Output: ERROR or message value M.

 We will denote this process as M = EM^-1(r, Z), for decode message.

7.2. Elliptic Curve Pintsov-Vanstone Signatures (ECPVS)

 This section contains two subsections, signature generation and
 signature verification.

Campagna Expires April 15, 2013 [Page 23]

Internet-Draft SuiteE October 2012

7.2.1. Signature Generation

 Input: The input to the signature generation transformation is:

 a. A message (M, V), which is a pair of bit strings to be signed.
 M is the recoverable portion of the message, and V is the visible
 or plaintext portion of the message.

 b. An elliptic curve private key d.

 Steps:

 1. Generate an ephemeral key pair (k, R) with R = (x, y). (see:
 [SEC1] Section 3.2.1).

 2. Convert the field element x to a bit string Z. (see: [SEC1]
Section 2.3.5 and 2.3.2).

 3. Encode the recoverable portion of the message r = EM(M, Z).

 4. Compute H = AES-MMO(r||V), where || represents concatenation.

 5. Convert the bit string H to an integer e. (see: [SEC1] Section
2.3.1 and 2.3.8).

 6. Compute s = k - de (mod n).

 Output: (r, s) as the signature with partial message recovery on V.

7.2.2. Signature Verification

 Input: The input to verification is:

 a. A message V.

 b. A signature with partial message recovery (r, s).

 c. The elliptic curve public key Q belonging to the signer.

 Steps:

 1. If s is not an integer in the interval [1, n - 1], return ERROR.

 2. Compute H = AES-MMO(r||V).

 3. Convert the bit string H to an integer e. (see: [SEC1] Section
2.3.1 and 2.3.8).

Campagna Expires April 15, 2013 [Page 24]

Internet-Draft SuiteE October 2012

 4. Compute the elliptic curve point R = sG + eQ. Let x denote the
 x-coordinate of R.

 5. Convert the field element x to a bit string Z. (see: [SEC1]
Section 2.3.5 and 2.3.2).

 6. Use message decoding to compute: M = EM^-1(r, Z).

 7. If M is an ERROR value, return ERROR, else return M and VALID.

 Output: Either an ERROR, or a recovered message M and indication of a
 VALID signature.

Campagna Expires April 15, 2013 [Page 25]

Internet-Draft SuiteE October 2012

8. Elliptic Curve Implicit Certificates (ECQV)

 In this section we specify the Elliptic Curve Qu-Vanstone implicit
 certificate scheme (ECQV).

 A traditional certificate scheme consists of a certificate issuer
 with a key pair (d, Q) to produce a triplet binding an identity, I,
 and a public key, P, using a signature, sig, by invoking the issuer's
 private key d. We can represent this certificate as (I, P, sig). An
 implicit certificate binds an identity element with a public key
 without an explicit signature by creating a pair of elements; an
 identity, I, and a public key reconstruction value B. We can
 represent this certificate as (I, B).

 Verification of the certificate is implicit in the use of the public
 key. The public key is bound to the entity identified in the
 implicit certificate, and the certification process ensures that only
 this entity may recover the associated secret key. In effect,
 certificate verification is combined with the cryptographic primitive
 for which the signed key is being used. This provides two advantages
 over traditional certificates. The first is a cost savings on memory
 and bandwidth. Implicit certificates do not require an explicit
 signature, reducing the size of the cryptographic material to roughly
 1/3rd of a traditional certificate. The second is on computation,
 the public key reconstruction operation is computationally more
 efficient than a signature verification, and may be combined with
 other operations.

 The next five sections describe an implicit certificate scheme,
 defined in [SEC4]. As in the previous section the elliptic curve
 domain parameters and hash functions are assumed. It is also assumed
 that the CA has established a key pair (dCA, QCA), and all
 communicating parties have access to the public key QCA.

 We will assume that certificate validation routines have been
 established in regards to verifying certificate validity, key usage
 and certificate formatting. These checks will be assumed in steps in
 which certificate parsing takes place where possible error values may
 be returned.

8.1. Certificate Request

 This section describes the basic operations by which an entity A
 generates a certificate request. It is assumed that A and CA have an
 authenticated channel, but the channel may not be private.

 Input: none

Campagna Expires April 15, 2013 [Page 26]

Internet-Draft SuiteE October 2012

 Steps:

 1. Generate an elliptic curve key pair (kA, RA).(see: [SEC1] Section
3.2.1).

 Output: a key pair (kA, RA).

 The entity A, requesting the certificate, sends the public key RA
 along with purported identity of A to the Certificate Authority, and
 stores (kA, RA) for future use, keeping kA secret.

8.2. Certificate Generation

 This section describes the certificate generation process executed by
 a certificate authority. It is assumed that A and CA have an
 authenticated channel, but the channel may not be private.

 Input: the following items or equivalent

 a. The CA private key dCA.

 b. A certificate request consisting of a public key RA and an
 identifier for A.

 Steps:

 1. Validate the public key value RA, if it fails output ERROR. (see:
 [SEC1] Section 3.2.2).

 2. Generate an elliptic curve key pair (k, kG) (see: [SEC1] Section
3.2.1).

 3. Compute the elliptic curve point BA = RA + kG.

 4. Convert BA to an octet string BAS (see: [SEC1] Section 2.3.3).

 5. Encode the certificate CertA as an octet string consisting of
 BAS, and the identity element I, consisting of the identifier for
 A and other certificate validity and key usage information.

 6. Compute H = AES-MMO(CertA).

 7. Convert the bit string H to an integer e (see: [SEC1] Section
2.3.1 and 2.3.8).

 8. Compute the integer r = ek + dCA (mod n).

 Output: Either an implicit certificate CertA, and private key

Campagna Expires April 15, 2013 [Page 27]

Internet-Draft SuiteE October 2012

 contribution value r, or an ERROR value.

8.3. Certificate Reception

 This section describes the certificate reception process by which a
 certificate requester computes its private key.

 Input: the following items or equivalent

 a. The CA public key QCA.

 b. The key pair generated during the certificate request (kA,
 RA).

 c. The implicit certificate CertA.

 d. The private key contribution value r.

 Steps:

 1. Parse the certificate CertA into an octet string BAS and an
 identity element I or return ERROR.

 2. Convert BAS to a public key BA or return ERROR (see: [SEC1]
Section 2.3.4).

 3. Validate the public key value BA or return ERROR (see: [SEC1]
Section 3.2.2).

 4. Compute H = AES-MMO(CertA).

 5. Convert the bit string H to an integer e (see: [SEC1] Section
2.3.1 and 2.3.8).

 6. Compute the private key dA = r + ekA (mod n).

 7. Compute QA = eBA + QCA.

 8. Verify QA = (dA)G otherwise halt and return ERROR.

 Output: Either a key pair (dA, QA), or an ERROR value.

8.4. Certificate Public Key Extraction

 This section describes the certificate public key reconstruction
 operation. This would be done by any entity desiring to authenticate
 a cryptographic operation with entity A.

Campagna Expires April 15, 2013 [Page 28]

Internet-Draft SuiteE October 2012

 Input: the following items or equivalent

 a. The CA public key QCA.

 b. The implicit certificate CertA.

 Steps:

 1. Parse the certificate CertA into an octet string BAS and an
 identity element I or return ERROR.

 2. Convert BAS to a public key BA or return ERROR.(see: [SEC1]
Section 2.3.4).

 3. Validate the public key value BA or return ERROR.(see: [SEC1]
Section 3.2.2).

 4. Compute H = AES-MMO(CertA).

 5. Convert the bit string H to an integer e. (see: [SEC1] Section
2.3.1 and 2.3.8).

 6. Compute QA = eBA + QCA.

 Output: Either an alleged public key QA, or an ERROR value.

 We say the output is "alleged" since the party that extracted it does
 not at this point know that it belongs to the party identified in
 CertA. However, the scheme does guarantee that only the identified
 party possesses the secret key associated to QA.

Campagna Expires April 15, 2013 [Page 29]

Internet-Draft SuiteE October 2012

9. Elliptic Curve Key Agreement Scheme

 The elliptic curve MQV, or ECMQV scheme is a key agreement scheme
 based on ECC. We give a description here, but will refer to [SEC1]
 as the definitive normative reference. ECMQV can provide a variety
 of security properties and we refer the reader to [NIST-800-56] to
 use an instantiation of ECMQV that best satisfies their application
 security goals. We select ECMQV for SuiteE because of its well
 studied security properties, wide standardization, existing
 deployment in the constrained environment space and the computational
 and bandwidth savings it can provide over competing methods to
 provide an authenticated key agreement scheme.

 As in previous ECC sections we will assume all parties have agreed
 upon and access to validated elliptic curve parameters, and for the
 purpose of SuiteE this is the sect283k1 curve as defined in [SEC2].

9.1. ECMQV

 This section defines the basic operations of the ECMQV primitive. We
 will assume the two communicating parties A and B have established
 two key pairs (dA1, QA1) and (dA2, QA2), and (dB1, QB1) and (dB2,
 QB2) respectively. The description is presented from A's reference
 point, B would perform the same operations with analogous key pairs.
 The first of each public key may be a static public key derived from
 an implicit certificate and used to authenticate the entity.

 Input: The following or equivalent

 a. Two key pairs (dA1, QA1) and (dA2, QA2).

 b. Two partially validated public keys QB1, QB2 purportedly owned
 by B.

 c. A key derivation function KDF, and an agreed upon key data
 length klength.

 d. [Optional] shared information, SHARED_INFO for the KDF.

 Steps:

 1. Compute an integer QA2bar from QA2:

 a. Convert the x-coordinate of QA2 to an integer x.

 b. Set xbar = x (mod 2^(ceiling(log_2(n)/2)). (For SuiteE,
 xbar = x mod 2^142.)

Campagna Expires April 15, 2013 [Page 30]

Internet-Draft SuiteE October 2012

 c. Set QA2bar = xbar + 2^(ceiling(log_2(n)/2). (For SuiteE
 QA2bar = xbar + 2^142.)

 2. Compute the integer s = dA2 + QA2bar*dA2 (mod n)

 3. Compute an integer QB2bar from QB2:

 a. Convert the x-coordinate of QB2 to an integer x'.

 b. Set xbar' = x' (mod 2^(ceiling(log_2(n)/2)). (For SuiteE,
 xbar' = x' mod 2^142.)

 c. Set QB2bar = xbar' + 2^(ceiling(log_2(n)/2). (For SuiteE
 QB2bar = xbar' + 2^142.)

 4. Compute the point P = h*s(QB2 + QB2bar*QB1), where h is the
 cofactor defined as #E(Fq)/n, which is 4 for the SuiteE curve
 sect283k1.

 5. If P = point at infinity output ERROR and exit.

 6. Convert the x-coordinate of P to an octet string Z.

 7. Use the KDF function with input Z, klength, and the optional
 SHARED_INFO, to generate either the shared key value K or return
 an ERROR.

 Output: Shared secret key K of klength, or an ERROR value.

Campagna Expires April 15, 2013 [Page 31]

Internet-Draft SuiteE October 2012

10. References

10.1. Normative References

 [FIPS-180-3]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS 180-3, October 2008, <http://

csrc.nist.gov/publications/fips/fips180-3/
fips180-3_final.pdf>.

 [FIPS-197]
 National Institute of Standards and Technology, "Advanced
 Encryption Standard", FIPS 197, November 2001, <http://

csrc.nist.gov/publications/fips/fips197/fips-197.pdf>.

 [IEEE-802.15.4-2003]
 IEEE Computer Society, "IEEE Standard for Information
 technology -- Part 15.4: Wireless Medium Access Control
 (MAC) and Physical Layer (PHY) Specifications for Low-Rate
 Wireless Personal Area Networks (LR-WPANs)", IEEE Standard
 for Information technology 802.15.4, October 2003.

 [ISO-10118-2]
 International Organization for Standards and the
 International Electrotechnical Commission, "ISO/IEC
 10118-2, Information technology - Security techniques -
 Hash functions - Part 2: Hash-functions using an n-bit
 block cipher", Information technology - Security
 techniques 10118-2, December 2000.

 [NIST-800-108]
 National Institute of Standards and Technology, "NIST SP
 800-108, Recommendation for Key Derivation Using
 Pseudorandom Functions", NIST Special Publication 800-108,
 October 2009, <http://csrc.nist.gov/publications/nistpubs/

800-108/sp800-108.pdf>.

 [NIST-800-38C]
 National Institute of Standards and Technology, "NIST SP
 800-38C, Recommendation for Block Cipher Modes of
 Operation: The CCM Mode for Authentication and
 Confidentiality", NIST Special Publication 800-38C,
 July 2007, <http://csrc.nist.gov/publications/nistpubs/

800-38C/SP800-38C_updated-July20_2007.pdf>.

 [NIST-800-56]
 National Institute of Standards and Technology,
 "Recommendation for Pair-wise Key Establishment Schemes

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf

Campagna Expires April 15, 2013 [Page 32]

Internet-Draft SuiteE October 2012

 Using Discrete Logarithm Cryptography (Revised)", NIST
 Special Publication 800-56a, March 2007, <http://

csrc.nist.gov/publications/nistpubs/800-56A/
SP800-56A_Revision1_Mar08-2007.pdf>.

 [NIST-800-57]
 National Institute of Standards and Technology,
 "Recommendation for Key Management - Part 1: General
 (Revised)", NIST Special Publication 800-57, March 2007, <

http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf>.

 [NIST-800-90]
 National Institute of Standards and Technology, "NIST SP
 800-90, Recommendation for Random Number Generation Using
 Deterministic Random Bit Generators(Revised)", NIST
 Special Publication 800-90, March 2007, <http://

csrc.nist.gov/publications/nistpubs/800-90/
SP800-90revised_March2007.pdf>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, September 2003.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,

RFC 3766, April 2004.

 [SEC1] Standards for Efficient Cryptography Group, "SEC1:
 Elliptic Curve Cryptography", SEC 1, May 2009,
 <http://www.secg.org/download/aid-780/sec1-v2.pdf>.

 [SEC2] Standards for Efficient Cryptography Group, "SEC2:
 Recommended Elliptic Curve Domain Parameters", SEC 2,
 September 2010,
 <http://www.secg.org/download/aid-784/sec2-v2.pdf>.

 [SEC4] Standards for Efficient Cryptography Group, "Elliptic
 Curve Qu-Vanstone Implicit Certificate Scheme (ECQV),
 v0.97", SEC 4, March 2011,
 <http://www.secg.org/download/aid-785/sec4-0.97.pdf>.

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/bcp86
https://datatracker.ietf.org/doc/html/rfc3766
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-784/sec2-v2.pdf
http://www.secg.org/download/aid-785/sec4-0.97.pdf

Campagna Expires April 15, 2013 [Page 33]

Internet-Draft SuiteE October 2012

 [X9.92.1] Accredited Standards Committee X9, Inc., "Public Key
 Cryptography for the Financial Services Industry - Digital
 Signature Algorithms Giving Partial Message Recovery -
 Part 1: Elliptic Curve Pintsov-Vanstone Signatures
 (ECPVS)", X9 92-1, 2009, <http://webstore.ansi.org/
 RecordDetail.aspx?sku=ANSI+X9.92-1-2009>.

 [ZigBee] ZigBee Standards Organization, "ZigBee Specification,
 revision 17", October 2007, <http://www.zigbee.org/

ZigBeeSpecificationDownloadRequest/tabid/311/
Default.aspx>.

 Registration required.

10.2. Informative References

 [HMV04] Hankerson, D., Menezes, A., and S. Vanstone, "Guide to
 Elliptic Curve Cryptography", 2004.

 Springer, ISBN 038795273X.

 [IEEE1363]
 Institute of Electrical and Electronics Engineers,
 "Standard Specifications for Public Key Cryptography",
 IEEE 1363, 2000.

 [IEEE1363-A]
 Institute of Electrical and Electronics Engineers,
 "Standard Specifications for Public Key Cryptography -
 Amendment 1: Additional Techniques", IEEE 1363a, 2004.

 [LMQSV98] Law, L., Menezes, A., Qu, M., Solinas, J., and S.
 Vanstone, "An Efficient Protocol for Authenticated Key
 Agreement", University of Waterloo Technical Report
 CORR 98-05, August 1998, <http://

www.cacr.math.uwaterloo.ca/techreports/1998/
corr98-05.pdf>.

 [MOV96] Menezes, A., van Oorschot, P., and S. Vanstone, "Handbook
 of Applied Cryptography", 1996,
 <http://www.cacr.math.uwaterloo.ca/hac>.

 CRC Press, ISBN 0-8493-8523-7. Available online.

 [NIST57] Barker, E., Barker, W., Burr, W., Polk, W., and M. Smid,
 "Recommendation for Key Management - Part 1: General
 (revised)", March 2007, <http://csrc.nist.gov/
 publications/nistpubs/800-57/

http://webstore.ansi.org/
http://www.zigbee.org/ZigBeeSpecificationDownloadRequest/tabid/311/Default.aspx
http://www.zigbee.org/ZigBeeSpecificationDownloadRequest/tabid/311/Default.aspx
http://www.zigbee.org/ZigBeeSpecificationDownloadRequest/tabid/311/Default.aspx
http://www.cacr.math.uwaterloo.ca/techreports/1998/corr98-05.pdf
http://www.cacr.math.uwaterloo.ca/techreports/1998/corr98-05.pdf
http://www.cacr.math.uwaterloo.ca/techreports/1998/corr98-05.pdf
http://www.cacr.math.uwaterloo.ca/hac
http://csrc.nist.gov/

Campagna Expires April 15, 2013 [Page 34]

Internet-Draft SuiteE October 2012

 sp800-57-Part1-revised2_Mar08-2007.pdf>.

 NIST Special Publication 800-57

 [NSW07] Neven, G., Smart, N., and B. Warinschi, "Hash function
 requirements for Schnorr signatures", Journal of
 Mathematical Cryptology Volume 3 Number 1, May 2009.

 [X9.123] Accredited Standards Committee X9, Inc., "Elliptic Curve
 Qu-Vanstone Implicit Certificates (Draft)", X9 123, 2011.

 [ZigBeeSE]
 ZigBee Standards Organization, "ZigBee Smart Energy
 Profile Specification, revision 15", December 2008, <http:
 //www.zigbee.org/
 ZigBeeSmartEnergyPublicApplicationProfile/tabid/312/
 Default.aspx>.

 Registration required.

Campagna Expires April 15, 2013 [Page 35]

Internet-Draft SuiteE October 2012

Appendix A. Acknowledgments

Campagna Expires April 15, 2013 [Page 36]

Internet-Draft SuiteE October 2012

Author's Address

 Matthew Campagna
 Certicom Corp.
 4701 Tahoe Boulevard
 Mississauga, Ontario L4W 0B5
 Canada

 Email: mcampagna@certicom.com

Campagna Expires April 15, 2013 [Page 37]

