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Abstract

   This document describes a cryptographic suite of algorithms ideal for
   constrained embedded systems.  It uses the existing IEEE 802.15.4
   standard as a starting point, builds upon existing embedded
   cryptographic primitives and suggests additional elliptic curve
   cryptography (ECC) algorithms and curves.  The goal is to define a
   complete suite of algorithms ideal for embedded systems.
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   described in the Simplified BSD License.
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1.  Introduction

   Constrained embedded systems and in particular devices for wireless
   personal and body area networks (WPAN and BAN respectively), have
   unique computation, power and bandwidth constraints.  These systems
   are seeing wider deployment in Smart Energy, Home Automation,
   Personal Home and Health Care, and more broadly the so-called
   Internet of Things.  The environments in which they are being
   deployed require varying degrees of security.

   The Cryptographic Suite for Embedded Systems (SuiteE) aims to
   optimally meet the wide variety of cryptographic requirements, by
   providing a compact and complete collection of cryptographic
   algorithms having minimal code space, computational requirements and
   bandwidth usage.  Additionally the selection of these algorithms are
   tuned to minimize overall system costs in mass production by
   selecting easily embeddable algorithms which will further reduce code
   space, energy usage and increase computational performance.  It is
   expected that this suite of algorithms can be used to provide
   security solutions in the 6lowpan and CoRE space.

   Mass production economics see many benefits of placing fixed routines
   in hardware.  The benefits are in code space, performance, battery
   life, and overall cost of the device.  This is the fundamental reason
   why most IEEE 802.15.4 devices implement AES in hardware today.
   Considering the projected scale of the so-called Internet of things
   (Cisco estimates the smart grid alone to be 100 to 1000 times the
   size of the Internet today), efficiencies and cost savings realized
   in embedding more of the lower level operations in hardware
   transforms into a basic requirement - technology selection should
   afford benefits to embedding in hardware.

   Many of the environments in which these new embedded systems are
   being deployed have a life expectancy of 20+ years.  This requires
   the selection of key lifecycle management mechanisms at a security
   level adequate to deliver the desired security services for the
   lifespan of the system.  [NIST57] provides recommendations on general
   key management and security levels.  We summarize the comparable
   strengths table and recommended minimum sizes:
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   +-----------+----------+-----------+-----------------+--------------+
   | Algorithm | Security | Symmetric |     Integer     |   Elliptic   |
   |  Lifetime | Strength |  Key Size |  Factorization  |     Curve    |
   |           |          |           |   Cryptography  | Cryptography |
   |           |          |           | Key Size (e.g., |   (ECC) Key  |
   |           |          |           |    RSA) Size    |     Size     |
   +-----------+----------+-----------+-----------------+--------------+
   |  Through  |  80 bits |     80    |       1024      |      160     |
   |    2010   |          |           |                 |              |
   |           |          |           |                 |              |
   |  Through  |  112 bit |    112    |       2048      |      256     |
   |    2030   |          |           |                 |              |
   |           |          |           |                 |              |
   |   Beyond  |  128 bit |    128    |       3072      |      256     |
   |    2030   |          |           |                 |              |
   |           |          |           |                 |              |
   |  >Beyond  |  192 bit |    192    |       7680      |      384     |
   |    2030   |          |           |                 |              |
   |           |          |           |                 |              |
   |  >>Beyond |  256 bit |    256    |      15360      |      512     |
   |    2030   |          |           |                 |              |
   +-----------+----------+-----------+-----------------+--------------+

   [NIST57] does not provide guidance on life span for security
   strengths for 192 and 256 bit presumably because of the uncertainty
   in forecasting technology 30+ years out.

   Considering the expected life span of many of these systems and best
   industry practice we target the 128 bit security strengths for
   SuiteE.

   The design goals of SuiteE are:

      Provide re-usable primitives

      Reduce code size

      To be suitable for hardware implementation

      Reduce computational costs

      Reduce energy usage and increase battery lifespan

   A complete cryptographic cipher suite should consist of primitives
   from which the security services of identification and
   authentication, confidentiality, data integrity and non-repudiation
   can be provided.  We prescribe an encryption scheme with
   authentication, a deterministic random number generator, a hash
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   function, a key-agreement scheme, a digital signature scheme, and a
   certificate scheme that achieves a 128-bit security level, and
   achieves the goals identified above.

   The remainder of this document is organized as follows.  Section 2
   provides an authenticated encryption mode AES-CCM*.  Section 3
   provides a deterministic random number generator.  Section 4
   describes a hashing algorithm using the existing AES core in an AES-
   MMO mode.  Section 6 indicates why elliptic curve technology is
   selected and the specific curve selection sect283k1.  Section 7
   specifies the use of an elliptic curve signature scheme with partial
   message recovery.  Section 8 provides an implicit certificate scheme.

Section 9 describes an elliptic curve based mutual authenticated key
   agreement scheme.
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2.  Encryption

   IEEE 802.15.4 [IEEE-802.15.4-2003] specifies the use of AES-CCM*, a
   variation of the Counter Mode with Cipher Block Chaining MAC (CBC-
   MAC) using AES-128.  AES-128 is specified in [FIPS-197].  Using
   [IEEE-802.15.4-2003] as the normative reference we present a
   description of AES-CCM* here.

   In the sections that follow we will assume that the basic block
   cipher is AES-128 as specified in [FIPS-197].  We will represent AES-
   128 as a function E taking two 128-bit inputs, a message block M, and
   key K, with 128-bit output C = E(M, K).

2.1.  AES-CTR Mode

   CTR mode or Counter Mode is a block cipher mode for providing
   confidentiality.  It has some specific advantages in that both the
   encryption and decryption routines only require the block cipher to
   operate in a forward, or encrypt-only, direction.

   Input: a 128-bit symmetric key K, and a plaintext message P of length
   Plen, and initial counter value CTR

   1.  Compute m = ceiling(Plen/128).

   2.  Apply the counter generator function to CTR to compute CTR_1,
       CTR_2, ..., CTR_m.

   3.  Compute S_j = E(CTR_j, K), for j = 1,...,m.

   4.  Let S = S_1||S_2||...||S_m, where || indicates concatenation.

   5.  Compute C = P XOR MSB_Plen(S), where MSB_X( ) takes the X most
       significant bits.

   Output: C

   The Decryption routine for CTR mode is symmetric.

   Input: a 128-bit symmetric key K, and a ciphertext message C of
   length Clen, and initial counter value CTR

   1.  Compute m = ceiling(Clen/128).

   2.  Apply the counter generator function to CTR to compute CTR_1,
       CTR_2, ..., CTR_m.
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   3.  Compute S_j = E(CTR_j, K), for j = 1,...,m.

   4.  Let S = S_1||S_2||...||S_m, where || indicates concatenation.

   5.  Compute P = C XOR MSB_Clen(S), where MSB_X( ) takes the X most
       significant bits.

   Output: P

2.2.  AES-CBC-MAC Mode

   Cipher Block Chaining MAC Mode, CBC-MAC mode uses a block cipher to
   provide data integrity.  Unlike CTR mode, that operates on arbitrary
   length strings CBC-MAC requires message padding to be on a multiple
   of the block length.  The last message block will be padded out using
   zero bytes.

   Input: a 128-bit symmetric key K, a message M of length Mlen

   1.  Form B by padding message M on the right with 0-bytes to be on a
       byte boundary of the block length (16-bytes).

   2.  Form B = B_1||B_2||...||B_m.

   3.  Set O_0 to a zeroized block-length byte string.

   4.  Compute O_j = E(O_j-1 XOR B_j, K).

   5.  Set MAC T = O_m.

   Output: T

   Verification is done by identical computation on input K, message M,
   and purported MAC T' and an additional check where the computed MAC
   value T is compared to the received MAC value T' and accepted only if
   T = T'.

2.3.  AES-CCM* Mode

   CCM mode is an authenticate and encrypt mode for block ciphers
   defined in [NIST-800-38C].  It is defined on a 128-bit block size
   block cipher.  CCM* modifies this description to allow for modes that
   require only authentication, as well as variable length
   authentication tags.
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2.3.1.  AES-CCM* Encrypt

   We break this section up into 3 subsections, input transformation,
   authentication transformation, and encryption transformation.  We
   will assume that the following inputs are provided to the routines.

   Input:

      a.  A 128-bit symmetric key K.

      b.  A value 1 < L < 9.

      c.  A nonce N of 15 - L octets, unique within the usage of the key
      K.

      d.  An octet string m of length l(m), where 0 <= l(m) < 2^8L.

      e.  An octet string a of length l(a), where 0 <= l(a) < 2^64.

2.3.1.1.  Input Transformation

   Input:

      a.  An octet string m of length l(m), where 0 <= l(m) < 2^8L.

      b.  An octet string a of length l(a), where 0 <= l(a) < 2^64.

   1.  Represent the length l(a) as an octet string L(a).

          a.  If l(a) = 0, then L(a) is an empty string.

          b.  If 0 < l(a) < 2^16 - 2^8, then L(a) is the 2-octet
          representation of l(a).

          c.  If 2^16 - 2^8 <= l(a) < 2^32, then L(a) is the right-
          concatenation of the octet 0xff, the octet 0xfe, and the
          4-octet encoding of l(a).

          d.  If 2^32 <= l(a) < 2^64, then L(a) is the right-
          concatenation of the octet 0xff, the octet 0xff, and the
          8-octet encoding of l(a).

   2.  Form AddAuthData = L(a)||a||0^t, where 0^t is the smallest non-
       negative string of t zero octets so that the resulting
       AddAuthData octet length is a multiple of 16.

   3.  Form PlaintextData = m || 0^s, where 0^s is the smallest non-
       negative string of s zero octets so that the resulting
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       PlaintextData octet length is a multiple of 16.

   4.  Form AuthData = AddAuthData || PlaintextData.

   Output: AuthData

2.3.1.2.  Authentication Transformation

   Input:

      a.  A 128-bit symmetric key K.

      b.  The octet string AuthData, created in the input
      transformation.

      c.  A nonce N of 15 - L octets, unique within the usage of the key
      K.

      d.  The length l(m), where 0 <= l(m) < 2^8L.

   1.  Form the byte Flags = Reserved || Adata || M || L, where the
       1-bit Reserved field is reserved for future expansions and shall
       be set to '0'.  The 1-bit Adata field is set to '0' if l(a) = 0
       and set to '1' if l(a) > 0.  The M field is the 3-bit
       representation of the integer (M - 2)/2 if M > 0 and of the
       integer 0 if M = 0, in most-significant-bit-first order.  The L
       field is the 3-bit representation of the integer L - 1, in most-
       significant-bit-first order.

   2.  Form B0 = Flags || Nonce N || l(m)

   3.  Parse the message AuthData as B1 || B2 || ... ||Bt, where each
       message block Bi is a 16-octet string.

   4.  The CBC-MAC value T = AES-CBC-MAC(B_0 || AuthData, K) as defined
       by Section 2.2.

   Output: T

2.3.1.3.  Encryption Transformation

   Input:

      a.  A 128-bit symmetric key K.

      b.  PlaintextData from Section 2.3.1.1.
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      c.  The authentication tag output T from Section 2.3.1.2.

      d.  A nonce N of length 15-L bytes.

   1.  Form Flags = Reserved0 || Reserved1 || 000 || L', where the
       reserved bits Reserved0 and Reserved1 is '0', and L' is the 3-bit
       representation of the integer L - 1.

   2.  Form the A_i = Flags || Nonce N || Counter_i, where Counter_i is
       an L-octet representation of the integer i = 0, 1, 2, ..., t.

   3.  Parse the PlaintextData from Section 2.3.1.1 into 16-octet blocks
       M_1, ..., M_t.

   4.  Compute C_i = E(A_i, K) XOR M_i for i = 1, ..., t.

   5.  Compute Ciphertext as the leftmost l(m) bits of C_1 || ... ||
       C_t.

   6.  Compute S_0 = E(A_0, K) XOR T.

   7.  Compute AuthTag as the leftmost M octets of S_0.

   Output: Ciphertext and AuthTag

2.3.2.  AES-CCM* Decrypt

   We break this section up into 2 subsections, decryption and
   authentication verification.  The AES-CCM* Decryption process should
   both decrypt any encrypted portion of the message, and authenticate
   the decrypted message.  It will return an error code, or plaintext
   data.  We will assume that the following inputs are provided to the
   routines.

   Input:

      a.  A 128-bit symmetric key K.

      b.  A nonce N of 15 - L octets, unique within the usage of the key
      K.

      c.  An M-octet tag AuthTag.

      d.  An octet string Ciphertext of length l(c), where 0 <= l(c) - M
      < 2^8L.
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2.3.2.1.  Decryption Transformation

   Input:

      a.  A 128-bit symmetric key K.

      b.  A nonce N of 15 - L octets, unique within the usage of the key
      K.

      c.  An M-octet tag AuthTag.

      d.  An octet string Ciphertext of length l(c), where 0 <= l(c) - M
      < 2^8L.

   1.  Form C_0 from AuthTag by padding on the right by the least number
       of 0 octets so that C_0 is an octet string of length 16.

   2.  Form CiphertextData by right concatenation of C with the smallest
       number of 0 octets so the resulting string is of octet length
       divisible by 16.

   3.  Form Flags = Reserved0 || Reserved1 || 000 || L', where the
       reserved bits Reserved0 and Reserved1 are '0', and L' is the
       3-bit representation of the integer L - 1.

   4.  Form the A_i = Flags || Nonce N || Counter_i, where Counter_i is
       an L-octet representation of the integer i = 0, 1, 2, ..., t.

   5.  Parse the C_0||CiphertextData into 16-octet blocks C_0, C_1, ...,
       C_t.

   6.  Compute P_i = E(A_i, K) XOR C_i for i = 0, ..., t.

   7.  Form U as the rightmost M-octets of P_0.

   8.  Form Plaintext leftmost l(c) octets of P_1||...||P_t.

   Output: U and Plaintext

2.3.2.2.  Verification Transformation

   Input:

      a.  A 128-bit symmetric key K.

      b.  Plaintext of length l(c), where 0 <= l(c) < 2^8L.
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      c.  U, the purported MAC of Plaintext.

      d.  A nonce N of 15 - L octets, unique within the usage of the key
      K.

   1.  Compute T as the output of the authentication transformation
Section 2.3.1.2 with the inputs, key K, Plaintext, nonce N, and

       length value l(c).

   2.  Form T' as the leftmost M octets of T.

   3.  If T' = U output Plaintext, otherwise output error code INVALID.

   Output: Plaintext or INVALID
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3.  Deterministic Random Number Generator

   This section provides a reduced set of options to the CTR_DRBG
   definition using AES as defined in [NIST-800-90].

      Restrict the CTR_DRBG to the use of AES-128 delivering 128-bit
      security.

      General assumption of a full-entropy seed, removing the extra
      coding needed for the block_cipher_df and the BCC function as
      defined in [NIST-800-90]

      The personalization_string and additional_input options are not
      supported.

      Set maximum_number_of_bits_per_request = 2^16.  (Based on
      convenient word boundary.)

      Set reseed_interval = 2^48.  (Based on maximizing life of a device
      that may not have an entropy source.)

   We give a basic description of the AES block-cipher-based DRBG in the
   next few subsections.  The description includes an update function,
   an initialization function, and a generate function.  We will leave
   it up to implementers to consider other optional functions such as
   reseed.

   We define the state of the CTR_DRBG using the following structure.

           struct{
             uint64  counter;  //  64-bit counter
             uchar   V[16];    //  state
             uchar   K[16];    //  key
           }ctr_drbg;

3.1.  CTR_Update

   The update function CTR_Update() modifies the internal state
   variables V and K of the DRBG structure using provided data.

   Input:

      a.  The current state V.

      b.  The current key K.

      c.  A 32-byte input, data.
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   1.  temp = AES(V+1 (mod 2^128), K) || AES(V+2 (mod 2^128), K).

   2.  temp = temp XOR data.

   3.  K = leftmost 16 bytes of temp.

   4.  V = rightmost 16 bytes of temp.

   Output:

      a.  The updated state V.

      b.  The updated key K.

   Functionally we write (V, K) = CTR_Update(V, K, data).

3.2.  CTR_Init

   The update function CTR_Update() modifies the internal state
   variables V and K of the DRBG structure using provided data.

   Input:

      a.  A full entropy 32-byte seed.

   1.  Set V = 0^128, K = 0^128, zeroize state V, and K.

   2.  (V, K) = CTR_Update(V, K, seed).

   3.  Set counter = 1.

   Output:

      a.  State (counter, V, K)

   Functionally we write (counter V, K) = CTR_Init(seed).

   NOTE: The CTR_Init() function can be simplified by making the
   observation that the resulting state is simply an XOR of the seed
   value with the fixed output values of AES(0^127||1_2, 0^128)||
   AES(0^126||10_2, 0^128) = 58E2FCCEFA7E3061367F1D57A4E7455A0388DACE60B
   6A392F328C2B971B2FE78_{16}, or (K||V) =
   58E2FCCEFA7E3061367F1D57A4E7455A0388DACE60B6A392F328C2B971B2FE78 XOR
   seed.
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3.3.  CTR_Generate

   The function CTR_Generate() modifies the internal state variables V
   and K of the DRBG structure, and generates a random output of the
   requested length rlen bytes.  If the counter has exceeded 2^48 or
   rlen exceeds 2^16, an ERROR is returned, and the state is not
   modified.

   Input:

      a.  Current state (counter, V, K).

      b.  Requested number of bytes, rlen.

   1.  If counter > 2^48 return ERROR.

   2.  If rlen > 2^16 return ERROR.

   3.  Set output = NULL

   4.  while(length(temp) < rlen)

          a.  V = V + 1 (mod 2^128).

          b. output ||= AES(V, K).

   5.  output = leftmost rlen bytes of output.

   6.  (V, K) = CTR_Update(V, K, 0^256).

   7.  Set counter = counter + 1.

   Output:

      a.  State (counter, V, K)

      b.  Either NULL and ERROR, or output and SUCCESS

   Functionally we write ((counter V, K), (output, RESULT_CODE)) =
   CTR_Generate(V, K, data).
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4.  Hash

   [ISO-10118-2] specifies hash functions using an n-bit block cipher.
   The first function from [ISO-10118-2] ("Hash-function one") maps
   arbitrary length inputs to n-bit outputs.  This is the Matyas-Meyer-
   Oseas (MMO) construction described in [MOV96].  In the first
   subsection we specify a family of Merkle-Damgard strengthening (or
   MD-strengthening) functions that aims to account for existing
   deployments in ZigBee Smart Energy, and provide a gradual MD-
   strengthening that reduces padding on small messages.

   The following subsection details an MMO construction that utilizes
   two input pre-processing steps.  The first is a prefix-free encoding:
   the bitlength of the message encoded as a 128-bit integer is
   prepended to the input message.  The second is the more common MD-
   strengthening transform, which essentially appends an encoding of the
   length and ensures the output is a multiple of the block length.

   The hash function defined here is a not a general purpose hash
   function at the 128-bit security level, as it does not provide
   collision resistance.  Application of this hash function should
   conform to the usages defined in this specification.  The use of this
   hash function elsewhere requires careful consideration.

4.1.  Prefix-Free Encoding

   The prefix-free encoding step is defined as follows:

   Input: message M of bitlength Mlen

   Output: M' of bitlength Mlen + 128

      1.  If Mlen >= 2^64 return ERROR.

      2.  Convert Mlen to a bit string Mblen of length 128 bits, where
      the first 64 where Mblen is the 128-bit little-endian integer
      representation of Mlen.  (Note that the leftmost 64 bits will
      always be zero.)

      3.  Prepend (left-pad) and output Mblen to M, i.e., output M' =
      Mblen||M.

4.2.  MD-strengthening

   This section defines an escalating MD-strengthening padding scheme to
   account for minimizing additional blocks for small messages, and
   expanding length encoding for larger messages.  Additionally it
   allows for compliance with existing applications of MMO hashing
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   defined in ZigBee Smart Energy 1.0.  For messages less than 2^16 bits
   we use MD-strengthening-1, for messages of length less than 2^32 bits
   but greater than 2^16 - 1 bits we use MD-strengthening-2, and for
   messages of length less than 2^64 bits but greater than 2^32 - 1 bits
   we use MD-strengthening-3

4.2.1.  MD-strengthening-1

   Input: A message M of bitlength Mlen.

   1.  If Mlen >= 2^16 return ERROR.

   2.  Pad the message M:

          a.  Right concatenate the message M with a '1' bit followed by
          k '0' bits where k is the least non-negative number such that
          Mlen + 1 + k = 112 mod 128.

          b.  Form the padded message M' by right concatenating the
          resulting string with a 16-bit string that is equal to the
          value Mlen.

   Output: M' = M_1, M_2, ..., M_m a padded message in 128-bit blocks.

4.2.2.  MD-strengthening-2

   Input: A message M of bitlength Mlen.

   1.  If Mlen < 2^16 or Mlen >= 2^32 return ERROR.

   2.  Pad the message M:

          a.  Right concatenate the message M with a '1' bit followed by
          k '0' bits where k is the least non-negative number such that
          Mlen + 1 + k = 80 mod 128.

          b.  Form the padded message M'' by right concatenating the
          resulting string with a 32-bit string that is equal the value
          Mlen.

          c.  Form the padded message M' by right concatenating M'' with
          a 16-bit 0 string.

   Output: M' = M_1, M_2, ..., M_m a padded message in 128-bit blocks.
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4.2.3.  MD-strengthening-3

   Input: A message M of bitlength Mlen.

   1.  If Mlen < 2^32 or Mlen= >= 2^64 return ERROR.

   2.  Pad the message M:

          a.  Right concatenate the message M with a '1' bit followed by
          k '0' bits where k is the least non-negative number such that
          Mlen + 1 + k = 16 mod 128.

          b.  Form the padded message M'' by right concatenating the
          resulting string with a 64-bit string that is equal the value
          Mlen.

          c.  Form the padded message M' by right concatenating M'' with
          a 48-bit 0 string.

   Output: M' = M_1, M_2, ..., M_m a padded message in 128-bit blocks.

4.3.  MMO Construction

   We describe the basic MMO construction on a message M that has been
   padded and MD-strengthened to be of length a multiple of the bit
   length of AES, 128 bits.

   Input: A message M of bitlength Mlen.

   1.  Apply the prefix-free encoding to M to form a bitstring M', with
       bitlength Mlen' = Mlen + 128.

   2.  Pad and format M' in 128-bit blocks using one of the MD routines
       specified above or return ERROR.

   3.  Set H_0 = 0^128, a zeroized 128-bit block.

   4.  Compute H_j = E(M_j, H_(j-1)) XOR M_j, for j = 1, ..., m.

   Output: H = H_m as the hash value.
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5.  Key Derivation Function

   At this time SuiteE does not recommend a particular key derivation
   function (KDF) for compliance.  That said, some of the SuiteE
   primitives do require use of a KDF.  One possible choice are the
   pseudorandom function-based constructions of KDFs given in
   [NIST-800-108] which are suitable, and may be instantiated with AES-
   CMAC as a pseudo-random function.
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6.  Curve Selection

   We will assume basic familiarity with Elliptic Curve Cryptography
   (ECC) notation and specifications.  Wherever possible we will refer
   to freely available standards and indicate alignment of these
   standards with other well known standards.  We will assume the
   notation in the Standards for Efficient Cryptography Group SEC 1,
   [SEC1].  This specification defines the basic ECC operations as well
   as the most widely standardized and used techniques.  The overall
   goal of [SEC1] is to provide a free standard that ensures conformance
   with other standard specifications, and is instructive to
   implementers on how to develop the necessary routines to build an
   elliptic curve cryptosystem.

   Elliptic curve cryptography is a natural public key technology to
   select given a goal of providing public key operations at a 128-bit
   security level on embedded systems.  ECC, like RSA and other public
   key cryptosystems provides security by the use of key pairs: a
   private key and a public key.  Security properties are built upon the
   assumption that the private key is securely generated and maintained
   within the confines of a cryptographic boundary.  Ideally, this means
   that private keys should be generated on the device in which the
   private keys will be used operationally.

   RSA key generation at the 128-bit security level requires the
   generation 1536-bit prime numbers, and performing integer operations
   on 3072-bit numbers.  The inability of embedded systems to generate
   these keys on devices today, and the future requirements to implement
   this in hardware makes RSA a poor choice.

   ECC key generation at the 128-bit security level requires the
   generation of a 256-bit random number and scalar point
   multiplication, which can be done efficiently in embedded systems
   today.

   Elliptic curves over binary fields have a distinct advantage over
   elliptic curves over prime fields in that they are more efficient and
   cost effective in hardware.  The binary curve sect283k1 as specified
   in [SEC2] is the most widely standardized and specified binary curve
   at the 128-bit security level.  It is a Koblitz curve, which has an
   advantage over random curves in performing point multiplication
   algorithms.

   For a basic description of the algorithms the reader is referred to
   [SEC1].  For a more complete background and optimizations for
   elliptic curves the reader is referred to [HMV04].

   Throughout the following sections on elliptic curve cryptography we
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   will use the following notation

   Fq - is a finite field with q elements.

   E - an elliptic curve over Fq, given by the equation y^2 + xy = x^3 +
   ax^2 + b.

   E(Fq) - the group of elliptic curve points over Fq.

   G - is a base point in E(Fq) of a large prime order.

   n - is a large prime, and the order of the subgroup generated by G.

   h - is the cofactor, h = #E(Fq)/n.

   Further we will assume it is known how to generate elliptic curve key
   pairs, and will refer the reader to the freely available
   specification [SEC1].  In general a key pair is generated by taking a
   random integer d, 1 < d < n, and computing Q = dG, the addition of
   the point G to itself d times.  In general all parties will have some
   assurances that the elliptic curve domain parameters are valid, and
   in particular are fixed to the selected sect283k1 curve parameters.

6.1.  SECT283K1 Curve Parameters

   Fq - is a finite field with q = 2^283.  Fq = F_2[X]/(f(x)), where
   f(x) = x^283 + x^12 + x^7 + x^5 + 1.

   E - the elliptic curve is defined as E:y^2 + xy = x^3 + b.

   G - is a base point in E of a large prime order, presented here in
   uncompressed octet encoding 04 0503213F 78CA4488 3F1A3B81 62F188E5
   53CD265F 23C1567A 16876913 B0C2AC24 58492836 01CCDA38 0F1C9E31
   8D90F95D 07E5426F E87E45C0 E8184698 E4596236 4E341161 77DD2259.

   n - is a large prime, and the order of the subgroup generated by G, n
   = 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577 265DFF7F
   94451E06 1E163C61.

   h - is the cofactor, #E(Fq)/n, h = 4.
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7.  Elliptic Curve Signatures with Partial Message Recovery

   Elliptic Curve Pintsov-Vanstone Signatures (ECPVS) is an elliptic
   curve variant of Nyberg-Rueppel signatures.  ECPVS is standardized in
   [X9.92.1] and [IEEE1363-A].  It has three distinct advantages over
   ECDSA when it comes to constrained environments.  The first being
   that it allows for smaller signature sizes by the incorporation of
   part of the message into a signature field.  The second is a
   simplification of the integer arithmetic.  The signing transformation
   does not require a modular inverse, improving both code size and
   computational performance.  The verification transformation requires
   no integer arithmetic and so also removes a modular inverse and
   modular multiplies in the verification transformation.  The third is
   that it is a Schnorr signature scheme which loosens the collision
   resistance requirement on the underlying hash function [NSW07].  Thus
   the AES-MMO hash primitive in SuiteE (see Section Section 4)is
   sufficient for security.  A second consequence is a performance
   increase in the signature verification, where a scalar multiply with
   a 256-bit integer (ECDSA) is replaced by a 128-bit integer (ECPVS).

   We assume all parties possess the domain parameters for the elliptic
   curve, as chosen in Section 6, and that the public keys of signers
   are validated as described in [SEC1], Section 3.2.2.

   The scheme presented here is a variant of ECPVS as presented in
   [X9.92.1], it removes the redundancy requirement on the input message
   by replacing the use of symmetric key encryption with the
   authenticated encryption functionality of SuiteE, AES-CCM*.

   ECPVS uses encoding and decoding routines to process signatures.

7.1.  Message Encoding and Decoding Methods

   The following subsections specify the encoding and decoding operation
   primitives that shall be used to generate ECPVS signatures and to
   verify ECPVS signatures.

7.1.1.  Message Encoding

   Input: The input to the encoding operation is:

      a.  A recoverable message part, which is a bit string M of length
      Mlen bits.

      b.  A bit string Z (used to derive a key).

   Steps
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   1.  Form T = 00||M, by prepending a zero byte to the front of M.

   2.  Apply the key derivation function KDF to the bit string Z to
       produce a 128-bit key K.

   3.  Let (C, MAC) = AES-CCM*-ENCRYPT(T, K, 128).

   4.  Form r = C||MAC, the concatenation of the cipher text value C
       with the computed MAC value.

   Output: r.

   We will denote this process as r = EM(M, Z), for encode message.

7.1.2.  Decoding Messages

   Input: The input to the decoding operation is:

      a.  The message representative, which is a bit string r of length
      rlen bits.

      b.  A bit string Z.

   Steps

   1.  Apply the key derivation function KDF to the bit string Z to
       produce a 128-bit key K.

   2.  Parse the message r = C||MAC, where MAC is the last 16 bytes, or
       return ERROR.

   3.  Compute M' = AES-CCM*-DECRYPT(C, MAC, K, 128).

   4.  If M' is ERROR value return ERROR.

   5.  Parse M' = 00||M, where 00 is a zeroized byte, or return ERROR.

   6.  return M.

   Output: ERROR or message value M.

   We will denote this process as M = EM^-1(r, Z), for decode message.

7.2.  Elliptic Curve Pintsov-Vanstone Signatures (ECPVS)

   This section contains two subsections, signature generation and
   signature verification.
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7.2.1.  Signature Generation

   Input: The input to the signature generation transformation is:

      a.  A message (M, V), which is a pair of bit strings to be signed.
      M is the recoverable portion of the message, and V is the visible
      or plaintext portion of the message.

      b.  An elliptic curve private key d.

   Steps:

   1.  Generate an ephemeral key pair (k, R) with R = (x, y). (see:
       [SEC1] Section 3.2.1).

   2.  Convert the field element x to a bit string Z. (see: [SEC1]
Section 2.3.5 and 2.3.2).

   3.  Encode the recoverable portion of the message r = EM(M, Z).

   4.  Compute H = AES-MMO(r||V), where || represents concatenation.

   5.  Convert the bit string H to an integer e. (see: [SEC1] Section
2.3.1 and 2.3.8).

   6.  Compute s = k - de (mod n).

   Output: (r, s) as the signature with partial message recovery on V.

7.2.2.  Signature Verification

   Input: The input to verification is:

      a.  A message V.

      b.  A signature with partial message recovery (r, s).

      c.  The elliptic curve public key Q belonging to the signer.

   Steps:

   1.  If s is not an integer in the interval [1, n - 1], return ERROR.

   2.  Compute H = AES-MMO(r||V).

   3.  Convert the bit string H to an integer e. (see: [SEC1] Section
2.3.1 and 2.3.8).
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   4.  Compute the elliptic curve point R = sG + eQ.  Let x denote the
       x-coordinate of R.

   5.  Convert the field element x to a bit string Z. (see: [SEC1]
Section 2.3.5 and 2.3.2).

   6.  Use message decoding to compute: M = EM^-1(r, Z).

   7.  If M is an ERROR value, return ERROR, else return M and VALID.

   Output: Either an ERROR, or a recovered message M and indication of a
   VALID signature.
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8.  Elliptic Curve Implicit Certificates (ECQV)

   In this section we specify the Elliptic Curve Qu-Vanstone implicit
   certificate scheme (ECQV).

   A traditional certificate scheme consists of a certificate issuer
   with a key pair (d, Q) to produce a triplet binding an identity, I,
   and a public key, P, using a signature, sig, by invoking the issuer's
   private key d.  We can represent this certificate as (I, P, sig).  An
   implicit certificate binds an identity element with a public key
   without an explicit signature by creating a pair of elements; an
   identity, I, and a public key reconstruction value B. We can
   represent this certificate as (I, B).

   Verification of the certificate is implicit in the use of the public
   key.  The public key is bound to the entity identified in the
   implicit certificate, and the certification process ensures that only
   this entity may recover the associated secret key.  In effect,
   certificate verification is combined with the cryptographic primitive
   for which the signed key is being used.  This provides two advantages
   over traditional certificates.  The first is a cost savings on memory
   and bandwidth.  Implicit certificates do not require an explicit
   signature, reducing the size of the cryptographic material to roughly
   1/3rd of a traditional certificate.  The second is on computation,
   the public key reconstruction operation is computationally more
   efficient than a signature verification, and may be combined with
   other operations.

   The next five sections describe an implicit certificate scheme,
   defined in [SEC4].  As in the previous section the elliptic curve
   domain parameters and hash functions are assumed.  It is also assumed
   that the CA has established a key pair (dCA, QCA), and all
   communicating parties have access to the public key QCA.

   We will assume that certificate validation routines have been
   established in regards to verifying certificate validity, key usage
   and certificate formatting.  These checks will be assumed in steps in
   which certificate parsing takes place where possible error values may
   be returned.

8.1.  Certificate Request

   This section describes the basic operations by which an entity A
   generates a certificate request.  It is assumed that A and CA have an
   authenticated channel, but the channel may not be private.

   Input: none
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   Steps:

   1.  Generate an elliptic curve key pair (kA, RA).(see: [SEC1] Section
3.2.1).

   Output: a key pair (kA, RA).

   The entity A, requesting the certificate, sends the public key RA
   along with purported identity of A to the Certificate Authority, and
   stores (kA, RA) for future use, keeping kA secret.

8.2.  Certificate Generation

   This section describes the certificate generation process executed by
   a certificate authority.  It is assumed that A and CA have an
   authenticated channel, but the channel may not be private.

   Input: the following items or equivalent

      a.  The CA private key dCA.

      b.  A certificate request consisting of a public key RA and an
      identifier for A.

   Steps:

   1.  Validate the public key value RA, if it fails output ERROR. (see:
       [SEC1] Section 3.2.2).

   2.  Generate an elliptic curve key pair (k, kG) (see: [SEC1] Section
3.2.1).

   3.  Compute the elliptic curve point BA = RA + kG.

   4.  Convert BA to an octet string BAS (see: [SEC1] Section 2.3.3).

   5.  Encode the certificate CertA as an octet string consisting of
       BAS, and the identity element I, consisting of the identifier for
       A and other certificate validity and key usage information.

   6.  Compute H = AES-MMO(CertA).

   7.  Convert the bit string H to an integer e (see: [SEC1] Section
2.3.1 and 2.3.8).

   8.  Compute the integer r = ek + dCA (mod n).

   Output: Either an implicit certificate CertA, and private key
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   contribution value r, or an ERROR value.

8.3.  Certificate Reception

   This section describes the certificate reception process by which a
   certificate requester computes its private key.

   Input: the following items or equivalent

      a.  The CA public key QCA.

      b.  The key pair generated during the certificate request (kA,
      RA).

      c.  The implicit certificate CertA.

      d.  The private key contribution value r.

   Steps:

   1.  Parse the certificate CertA into an octet string BAS and an
       identity element I or return ERROR.

   2.  Convert BAS to a public key BA or return ERROR (see: [SEC1]
Section 2.3.4).

   3.  Validate the public key value BA or return ERROR (see: [SEC1]
Section 3.2.2).

   4.  Compute H = AES-MMO(CertA).

   5.  Convert the bit string H to an integer e (see: [SEC1] Section
2.3.1 and 2.3.8).

   6.  Compute the private key dA = r + ekA (mod n).

   7.  Compute QA = eBA + QCA.

   8.  Verify QA = (dA)G otherwise halt and return ERROR.

   Output: Either a key pair (dA, QA), or an ERROR value.

8.4.  Certificate Public Key Extraction

   This section describes the certificate public key reconstruction
   operation.  This would be done by any entity desiring to authenticate
   a cryptographic operation with entity A.
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   Input: the following items or equivalent

      a.  The CA public key QCA.

      b.  The implicit certificate CertA.

   Steps:

   1.  Parse the certificate CertA into an octet string BAS and an
       identity element I or return ERROR.

   2.  Convert BAS to a public key BA or return ERROR.(see: [SEC1]
Section 2.3.4).

   3.  Validate the public key value BA or return ERROR.(see: [SEC1]
Section 3.2.2).

   4.  Compute H = AES-MMO(CertA).

   5.  Convert the bit string H to an integer e. (see: [SEC1] Section
2.3.1 and 2.3.8).

   6.  Compute QA = eBA + QCA.

   Output: Either an alleged public key QA, or an ERROR value.

   We say the output is "alleged" since the party that extracted it does
   not at this point know that it belongs to the party identified in
   CertA.  However, the scheme does guarantee that only the identified
   party possesses the secret key associated to QA.
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9.  Elliptic Curve Key Agreement Scheme

   The elliptic curve MQV, or ECMQV scheme is a key agreement scheme
   based on ECC.  We give a description here, but will refer to [SEC1]
   as the definitive normative reference.  ECMQV can provide a variety
   of security properties and we refer the reader to [NIST-800-56] to
   use an instantiation of ECMQV that best satisfies their application
   security goals.  We select ECMQV for SuiteE because of its well
   studied security properties, wide standardization, existing
   deployment in the constrained environment space and the computational
   and bandwidth savings it can provide over competing methods to
   provide an authenticated key agreement scheme.

   As in previous ECC sections we will assume all parties have agreed
   upon and access to validated elliptic curve parameters, and for the
   purpose of SuiteE this is the sect283k1 curve as defined in [SEC2].

9.1.  ECMQV

   This section defines the basic operations of the ECMQV primitive.  We
   will assume the two communicating parties A and B have established
   two key pairs (dA1, QA1) and (dA2, QA2), and (dB1, QB1) and (dB2,
   QB2) respectively.  The description is presented from A's reference
   point, B would perform the same operations with analogous key pairs.
   The first of each public key may be a static public key derived from
   an implicit certificate and used to authenticate the entity.

   Input: The following or equivalent

      a.  Two key pairs (dA1, QA1) and (dA2, QA2).

      b.  Two partially validated public keys QB1, QB2 purportedly owned
      by B.

      c.  A key derivation function KDF, and an agreed upon key data
      length klength.

      d.  [Optional] shared information, SHARED_INFO for the KDF.

   Steps:

   1.  Compute an integer QA2bar from QA2:

          a.  Convert the x-coordinate of QA2 to an integer x.

          b.  Set xbar = x (mod 2^(ceiling(log_2(n)/2)).  (For SuiteE,
          xbar = x mod 2^142.)



Campagna                 Expires April 15, 2013                [Page 30]



Internet-Draft                   SuiteE                     October 2012

          c.  Set QA2bar = xbar + 2^(ceiling(log_2(n)/2).  (For SuiteE
          QA2bar = xbar + 2^142.)

   2.  Compute the integer s = dA2 + QA2bar*dA2 (mod n)

   3.  Compute an integer QB2bar from QB2:

          a.  Convert the x-coordinate of QB2 to an integer x'.

          b.  Set xbar' = x' (mod 2^(ceiling(log_2(n)/2)).  (For SuiteE,
          xbar' = x' mod 2^142.)

          c.  Set QB2bar = xbar' + 2^(ceiling(log_2(n)/2).  (For SuiteE
          QB2bar = xbar' + 2^142.)

   4.  Compute the point P = h*s(QB2 + QB2bar*QB1), where h is the
       cofactor defined as #E(Fq)/n, which is 4 for the SuiteE curve
       sect283k1.

   5.  If P = point at infinity output ERROR and exit.

   6.  Convert the x-coordinate of P to an octet string Z.

   7.  Use the KDF function with input Z, klength, and the optional
       SHARED_INFO, to generate either the shared key value K or return
       an ERROR.

   Output: Shared secret key K of klength, or an ERROR value.
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