
Internet Engineering Task Force M. Campagna
Internet-Draft E. Crockett
Intended status: Experimental AWS
Expires: September 28, 2019 March 27, 2019

BIKE and SIKE Hybrid Key Exchange Cipher Suites for Transport Layer
Security (TLS)

draft-campagna-tls-bike-sike-hybrid-00

Abstract

 This document describes new hybrid key exchange schemes for the
 Transport Layer Security (TLS) protocol, which are based on combining
 Elliptic Curve Diffie Hellman (ECDH) with one of the Bit Flipping Key
 Exchange (BIKE) or the Supersingular Isogeny Key Exchange (SIKE)
 schemes. In particular, this document specifies the use of BIKE or
 SIKE in combination with ECDHE as a hybrid key agreement in a TLS 1.2
 handshake, together with the use of ECDSA or RSA for authentication.
 Hybrid key exchange refers to executing two separate key exchanges
 and subsequently feeding the two resulting shared secrets into the
 existing TLS Pseudo Random Function (PRF), in order to derive a
 master secret.

Context

 This draft is experimental. It is intended to define hybrid key
 exchanges in sufficient detail to allow independent experimentations
 to interoperate. While the NIST standardization process is still a
 few years away from being complete, we know that many TLS users have
 highly sensitive workloads that would benefit from the speculative
 additional protections provided by quantum-safe key exchanges. These
 key exchanges are likely to change through the standardization
 process. Early experiments serve to understand the real-world
 performance characteristics of these quantum-safe schemes as well as
 provide speculative additional confidentiality assurances against a
 future adversary with a large-scale quantum computer.

 Comments are solicited and can be sent to all authors at
 mcampagna@amazon.com.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Campagna & Crockett Expires September 28, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft Hybrid Key Exchange for TLS March 2019

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 28, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 4

2. Key Exchange Algorithms 4
2.1. Key Encapsulation Method (KEM) 5
2.2. ECDHE_BIKE_[SIG] . 6
2.3. ECDHE_SIKE_[SIG] . 6

3. Hybrid Premaster Secret 7
3.1. Concatenated premaster secret 7

4. TLS Extensions for BIKE and SIKE 7
5. Data Structures and Computations 8
5.1. Client Hello Extensions 8
5.1.1. When these extensions are sent 8
5.1.2. Meaning of these extensions 8
5.1.3. Structure of these extensions 8
5.1.4. Actions of the sender 9
5.1.5. Actions of the receiver 9
5.1.6. Supported BIKE Parameter Extension 9
5.1.7. Supported SIKE Parameter Extension 10

5.2. Server Key Exchange 11
5.2.1. When this message is sent 11
5.2.2. Meaning of this message 11

https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Campagna & Crockett Expires September 28, 2019 [Page 2]

Internet-Draft Hybrid Key Exchange for TLS March 2019

5.2.3. Structure of this message 11
5.2.4. Actions of the sender 13
5.2.5. Actions of the receiver 13

5.3. Client Key Exchange 13
5.3.1. When this message is sent 13
5.3.2. Meaning of the message 13
5.3.3. Structure of this message 14
5.3.4. Actions of the sender 14
5.3.5. Actions of the receiver 15

 5.4. Derivation of the master secret for hybrid key agreement 15
6. Cipher Suites . 15
7. Security Considerations [DRAFT] 17
8. IANA Considerations . 17
9. Acknowledgements . 17
10. Normative References . 17
Appendix A. Additional Stuff 18

 Authors' Addresses . 18

1. Introduction

 Quantum-safe (or post-quantum) key exchanges are being developed in
 order to provide secure key establishment against an adversary with
 access to a quantum computer. Under such a threat model, the current
 key exchange mechanisms would be vulnerable. BIKE and SIKE are two
 such schemes which were submitted to the NIST Call for Proposals for
 Post Quantum Cryptographic Schemes. While these schemes are still
 being analyzed as part of that process, there is already a need to
 protect the confidentiality of today's TLS connections against a
 future adversary with a quantum computer. Hybrid key exchanges are
 designed to provide two parallel key exchanges: one which is
 classical (e.g., ECDHE) and the other which is quantum-safe (e.g.,
 BIKE or SIKE). This strategy is emerging as a method to
 speculatively provide additional security to existing protocols.

 This document describes additions to TLS to support BIKE and SIKE
 Hybrid Key Exchanges, applicable to TLS Version 1.2 [RFC5246]. In
 particular, it defines the use of the ECDH together with BIKE or
 SIKE, as a hybrid key agreement method.

 The remainder of this document is organized as follows. Section 2
 provides an overview of BIKE- and SIKE-based key exchange algorithms
 for TLS. Section 3 describes how BIKE and SIKE can be combined with
 ECDHE to form a premaster secret. TLS extensions that allow a client
 to negotiate the use of specific BIKE and SIKE parameters are
 presented in Section 4. Section 5 specifies various data structures
 needed for a BIKE- or SIKE-based hybrid key exchange handshake, their
 encoding in TLS messages, and the processing of those messages.

Section 6 defines new BIKE and SIKE hybrid-based cipher suites and

https://datatracker.ietf.org/doc/html/rfc5246

Campagna & Crockett Expires September 28, 2019 [Page 3]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 identifies a small subset of these as recommended for all
 implementations of this specification. Section 7 discusses some
 security considerations. Section 8 describes IANA considerations for
 the name spaces created by this document. Section 9 gives
 acknowledgments.

 Implementation of this specification requires familiarity with TLS
 [RFC5246], TLS extensions [RFC6066], BIKE, and SIKE.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2. Key Exchange Algorithms

 This document introduces two new hybrid-based key exchange methods
 for TLS. They use ECDHE with either BIKE or SIKE, in order to
 compute the TLS premaster secret. The master secret derivation is
 augmented to include the ClientKeyExchange message. The derivation
 of the encryption/MAC keys and initialization vectors is independent
 of the key exchange algorithm and not impacted by the introduction of
 these hybrid key exchanges.

 The table below summarizes the new hybrid key exchange schemes.

 +-------------------------------+-----------------------------------+
 | Hybrid Key Exchange Scheme | Description |
 | Name | |
 +-------------------------------+-----------------------------------+
ECDHE_BIKE_RSA	ECDHE and BIKE with RSA
	signatures.
ECDHE_BIKE_ECDSA	ECDHE and BIKE with ECDSA
	signatures.
ECDHE_SIKE_RSA	ECDHE and SIKE with RSA
	signatures.
ECDHE_SIKE_ECDSA	ECDHE and SIKE with ECDSA
	signatures.
 +-------------------------------+-----------------------------------+

 Table 1: BIKE and SIKE Hybrid Key Exchange Schemes

 These schemes are intended to provide quantum-safe forward secrecy.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc2119

Campagna & Crockett Expires September 28, 2019 [Page 4]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 Client Server
 ------ ------

 ClientHello -------->
 ServerHello
 Certificate
 ServerKeyExchange
 CertificateRequest*+
 <-------- ServerHelloDone
 Certificate*+
 ClientKeyExchange
 CertificateVerify*+
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished

 Application Data <-------> Application Data

 * message is not sent under some conditions
 + message is not sent unless client authentication
 is desired

 Figure 1: Message flow in a hybrid TLS handshake

 Figure 1 shows the messages involved in the TLS key establishment
 protocol (aka full handshake). The addition of hybrid key exchanges
 has direct impact on the ClientHello, the ServerHello, the
 ServerKeyExchange, and the ClientKeyExchange messages. Next, we
 describe each hybrid key exchange scheme in greater detail in terms
 of the content and processing of these messages. For ease of
 exposition, we defer discussion of the optional BIKE- and SIKE-
 specific extensions (which impact the Hello messages) until

Section 4.

2.1. Key Encapsulation Method (KEM)

 A key encapsulation mechanism (KEM) is a set of three algorithms

 o key generation (KeyGen)

 o encapsulation (Encaps)

 o decapsulation (Decaps)

 and a defined key space, where

 o "KeyGen()": returns a public and a secret key (pk, sk).

Campagna & Crockett Expires September 28, 2019 [Page 5]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 o "Encaps(pk)": takes pk as input and outputs ciphertext c and a key
 K from the key space.

 o "Decaps(sk, c)": takes sk and c as input, and returns a key K or
 ERROR. K is called the session key.

 The security of a KEM is discussed in Section 7. BIKE and SIKE are
 two examples of a KEM.

2.2. ECDHE_BIKE_[SIG]

 This section describes the two nearly identical hybrid key exchanges
 ECDHE_BIKE_RSA and ECDHE_BIKE_ECDSA. For the remainder of this
 section SIG refers to either RSA or ECDSA. The server sends its
 ephemeral ECDH public key and ephemeral BIKE public key generated
 using the BIKE Key Encapsulation Method (KEM) and a specification of
 the corresponding curve and BIKE parameters in the ServerKeyExchange
 message. These parameters MUST be signed with the signature
 algorithm SIG using the private key corresponding to the public key
 in the server's certificate.

 The client generates an ECDHE key pair on the same curve as the
 server's ephemeral ECDH key, and computes a ciphertext value based on
 the BIKE public key provided by the server, and sends them in the
 ClientKeyExchange message. The client computes and holds the BIKE-
 encapsulated key (K) as a contribution to the premaster secret.

 Both client and server perform an ECDH operation and use the
 resultant shared secret (Z) as part of the premaster secret. The
 server computes the BIKE decapsulation routine to compute the
 encapsulated key (K), or to produce an error message in case the
 decapsulation fails.

2.3. ECDHE_SIKE_[SIG]

 This section describes the two nearly identical hybrid key exchanges
 ECDHE_SIKE_RSA and ECDHE_SIKE_ECDSA. For the remainder of this
 section SIG refers to either RSA or ECDSA. ECDHE_SIKE_[SIG] is
 nearly identical to ECDHE_BIKE_[SIG]. The server sends its ephemeral
 ECDH public key and ephemeral SIKE public key generated using the
 SIKE Key Encapsulation Method (KEM) and a specification of the
 corresponding ECDH curve and SIKE parameters in the ServerKeyExchange
 message. These parameters MUST be signed with the signature
 algorithm SIG using the private key corresponding to the public key
 in the server's certificate.

Campagna & Crockett Expires September 28, 2019 [Page 6]

Internet-Draft Hybrid Key Exchange for TLS March 2019

3. Hybrid Premaster Secret

 This section defines new hybrid key exchanges for TLS 1.2 [RFC5246].
 Here, both the server and the client compute two shared secrets: the
 previously defined ECDHE shared secret Z from RFC 6066, and another
 shared secret K from the underlying BIKE or SIKE key encapsulation
 method.

 To simplify the text when we speak about BIKE or SIKE interchangeably
 we will simply denote this as [KEM].

3.1. Concatenated premaster secret

 Form the premaster secret for ECDHE_[KEM]_[SIG] hybrid key exchanges
 as the concatenation of the ECDHE shared secret Z with the KEM key K
 to form the opaque data value "premaster_secret = Z || K".

4. TLS Extensions for BIKE and SIKE

 Two new TLS extensions are defined in this specification:

 1. the Supported BIKE Parameters Extension, and

 2. the Supported SIKE Parameters Extension.

 These allow negotiating the use of specific [KEM] parameter sets
 during a handshake starting a new session. These extensions are
 especially relevant for constrained clients that may only support a
 limited number of [KEM] parameter sets. They follow the general
 approach outlined in RFC 6066; message details are specified in

Section 5. The client enumerates the BIKE and SIKE parameters it
 supports by including the appropriate extensions in its ClientHello
 message.

 A TLS client that proposes [KEM] cipher suites in its ClientHello
 message SHOULD include these extensions. Servers implementing a
 [KEM] cipher suite MUST support these extensions, and when a client
 uses these extensions, servers MUST NOT negotiate the use of a [KEM]
 parameter set unless they can complete the handshake while respecting
 the choice of parameters specified by the client. This eliminates
 the possibility that a negotiated hybrid handshake will be
 subsequently aborted due to a client's inability to deal with the
 server's [KEM] key.

 The client MUST NOT include these extensions in the ClientHello
 message if it does not propose any [KEM] cipher suites. That is, if
 a client does not support BIKE, it must not include the BIKE
 parameters extension, and if the client does not support SIKE, it

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066

Campagna & Crockett Expires September 28, 2019 [Page 7]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 must not include the SIKE parameter extension. A client that
 proposes a [KEM] scheme may choose not to include these extensions.
 In this case, the server is free to choose any one of the parameter
 sets listed in Section 5. That section also describes the structure
 and processing of these extensions in greater detail.

 In the case of session resumption, the server simply ignores the
 Supported [KEM] Parameter Extension appearing in the current
 ClientHello message. These extensions only play a role during
 handshakes negotiating a new session.

5. Data Structures and Computations

 This section specifies the data structures and computations used by
 [KEM] hybrid-key agreement mechanisms specified in Sections 2, 3, and
 4. The presentation language used here is the same as that used in
 TLS 1.2 [RFC5246].

5.1. Client Hello Extensions

 This section specifies two TLS extensions that can be included with
 the ClientHello message as described in RFC 6066, and the Supported
 [KEM] Parameters Extension.

5.1.1. When these extensions are sent

 The extensions SHOULD be sent along with any ClientHello message that
 proposes the associated [KEM] cipher suites.

5.1.2. Meaning of these extensions

 These extensions allow a client to enumerate the BIKE or SIKE
 parameters sets it supports.

5.1.3. Structure of these extensions

 The general structure of TLS extensions is described in RFC 6066, and
 this specification adds two new types to ExtensionType.

 enum {
 bike_parameters(0xFE01),
 sike_parameters(0xFE02)
 } ExtensionType;

 where

 o "bike_parameters" (Supported BIKE Parameters Extension): Indicates
 the set of BIKE parameters supported by the client. For this

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066

Campagna & Crockett Expires September 28, 2019 [Page 8]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 extension, the opaque extension_data field contains
 BIKEParameterList. See Section 5.1.6 for details.

 o "sike_parameters" (Supported SIKE Parameters Extension): Indicates
 the set of SIKE parameters supported by the client. For this
 extension, the opaque extension_data field contains
 SIKEParameterList. See Section 5.1.7 for details.

5.1.4. Actions of the sender

 A client that proposes a [KEM] hybrid key exchange cipher suites in
 its ClientHello message appends these extensions (along with any
 others), enumerating the parameters it supports. Clients SHOULD send
 the Supported BIKE Parameters Extension if it supports a BIKE hybrid
 key exchange cipher suite, and it SHOULD send the Supported SIKE
 Parameters Extension if it supports a SIKE hybrid key exchange cipher
 suite.

5.1.5. Actions of the receiver

 A server that receives a ClientHello containing one or both of these
 extensions MUST use the client's enumerated capabilities to guide its
 selection of an appropriate cipher suite. One of the proposed [KEM]
 cipher suites must be negotiated only if the server can successfully
 complete the handshake while using the [KEM] parameters supported by
 the client (cf. Section 5.1.6 and Section 5.1.7.)

 If a server does not understand the Supported [KEM] Parameters
 Extension, or is unable to complete the [KEM] handshake while
 restricting itself to the enumerated parameters, it MUST NOT
 negotiate the use of the corresponding [KEM] cipher suite. Depending
 on what other cipher suites are proposed by the client and supported
 by the server, this may result in a fatal handshake failure alert due
 to the lack of common cipher suites.

5.1.6. Supported BIKE Parameter Extension

 enum {
 BIKE1r1-Level1 (1),
 BIKE1r1-Level3 (2),
 BIKE1r1-Level5 (3),
 BIKE2r1-Level1 (4),
 BIKE2r1-Level3 (5),
 BIKE2r1-Level5 (6),
 BIKE3r1-Level1 (7),
 BIKE3r1-Level3 (8),
 BIKE3r1-Level5 (9)
 } NamedBIKEKEM (2^8-1);

Campagna & Crockett Expires September 28, 2019 [Page 9]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 "BIKE1r1-Level1", etc: Indicates support of the corresponding BIKE
 parameters defined in BIKE, the round 1 candidate to the NIST Post
 Quantum Cryptography Standardization Process.

 struct {
 NamedBIKEKEM bike_parameter_list <1..2^8-1>
 } BIKEParameterList;

 Items in "bike_parameter_list" are ordered according to the client's
 preferences (favorite choice first).

 As an example, a client that only supports BIKE1r1-Level1 (value 1 =
 0x01) and BIKE2-Level1 (value 4 = 0x04) and prefers to use
 BIKE1r1-Level1 would include a TLS extension consisting of the
 following octets:

 FE 01 00 03 02 01 04

 Note that the first two octets indicate the extension type (Supported
 BIKE Parameter Extension), the next two octets indicates the length
 of the extension (00 03), and the next octet indicates the length of
 enumerated values (02).

5.1.7. Supported SIKE Parameter Extension

 enum {
 SIKEp503r1-KEM (1),
 SIKEp751r1-KEM (2),
 SIKEp964r1-KEM (3)
 } NamedSIKEKEM (2^8-1);

 SIKEp503r1-KEM, etc.: Indicates support of the corresponding SIKE
 parameters defined in SIKE, the round 1 candidate to the NIST Post
 Quantum Cryptography Standardization Process.

 struct {
 NamedSIKEKEM sike_parameter_list <1,..., 2^8 - 1>
 } SIKEParameterList;

 Items in sike_parameter_list are ordered according to the client's
 preferences (favorite choice first).

 As an example, a client that only supports SIKEp503r1-KEM (value 1 =
 0x01) and SIKEp751r1-KEM (value 2 = 0x02) and prefers to use
 SIKEp503r1-KEM would include a TLS extension consisting of the
 following octets:

 FE 02 00 03 02 01 02

Campagna & Crockett Expires September 28, 2019 [Page 10]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 Note that the first two octets indicate the extension type (Supported
 SIKE Parameter Extension), the next two octets indicates the length
 of the extension (00 03), and the next octet indicates the length of
 enumerated values (02).

5.2. Server Key Exchange

5.2.1. When this message is sent

 This message is sent when using the ECDHE_[KEM]_ECDSA and
 ECDHE_[KEM]_RSA hybrid key exchange algorithms.

5.2.2. Meaning of this message

 This message is used to convey the server's ephemeral ECDH and BIKE
 or SIKE public key to the client.

5.2.3. Structure of this message

 struct {
 opaque public_key <1,...,2^16 - 1>;
 } BIKEKEMPublicKey;

 public_key: This is a byte string representation of the BIKE public
 key following the conversion defined by the BIKE implementation.

 struct {
 NamedBIKEKEM bike_params;
 BIKEKEMPublicKey public;
 } ServerBIKEKEMParams;

 struct {
 opaque public_key <1,...,2^16 - 1>;
 } SIKEKEMPublicKey;

 where

 o "public_key": This is a byte string representation of the SIKE
 public key following the conversion routines of Section 1.2.9 of
 the SIKE specification [SIKE].

 struct {
 NamedSIKEKEM sike_params;
 SIKEKEMPublicKey public;
 } ServerSIKEKEMParams;

 The ServerKeyExchange message is extended as follows:

Campagna & Crockett Expires September 28, 2019 [Page 11]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 enum {
 ecdh_bike,
 ecdh_sike
 } KeyExchangeAlgorithm;

 "ecdh_bike": Indicates the ServerKeyExchange message contains an ECDH
 public key and the server's BIKE parameters. "ecdh_sike": Indicates
 the ServerKeyExchange message contains an ECDH public key and the
 server's SIKE parameters.

 select (KeyExchangeAlgorithm) {
 case ecdh_bike:
 ServerECDHParams ecdh_params;
 ServerBIKEKEMParams bike_params;
 Signature signed_params;
 case ecdh_sike:
 ServerECDHParams ecdh_params;
 ServerSIKEKEMParams sike_params;
 Signature signed_params;
 } ServerKeyExchange;

 where

 o "ecdh_params": Specifies the ECDH public key and associated domain
 parameters.

 o "bike_params": Specifies the BIKE public key and associated
 parameters.

 o "sike_params": Specifies the SIKE public key and associated
 parameters.

 o "signed_params": a signature over the server's key exchange
 parameters. The private key corresponding to the certified public
 key in the server's Certificate message is used for signing.

 digitally-signed struct {
 opaque client_random[32];
 opaque server_random[32];
 ServerDHParams ecdh_params;
 select (KeyExchangeAlgorithm) {
 case ecdh_bike:
 ServerBIKEKEMParams bike_params;
 case ecdh_sike:
 ServerSIKEKEMParams sike_params;
 } signed_params;

Campagna & Crockett Expires September 28, 2019 [Page 12]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 The parameters are hashed as part of the signing algorithm as
 follows, where H is the hash function used for generating the
 signature:

 For ECDHE_[KEM]_[SIG]:

 "H(client_random[32] + server_random[32] + ecdh_params +
 [KEM]_params)."

 NOTE: SignatureAlgorithm is "rsa" for the ECDHE_[KEM]_RSA and hybrid
 key exchange schemes. These cases are defined for TLS 1.2 [RFC5246].
 SignatureAlgorithm is "ecdsa" for ECDHE_[KEM]_ECDSA. ECDSA
 signatures are generated and verified as described in RFC 8422.

5.2.4. Actions of the sender

 The server selects elliptic curve domain parameters and an ephemeral
 ECDH public key corresponding to these parameters according to

RFC 8422. The server selects BIKE or SIKE parameters and an
 ephemeral public key corresponding to the parameters according to
 BIKE or SIKE respectively. It conveys this information to the client
 in the ServerKeyExchange message using the format defined above.

5.2.5. Actions of the receiver

 The client verifies the signature and retrieves the server's elliptic
 curve domain parameters and ephemeral ECDH public key and the [KEM]
 parameters and public key from the ServerKeyExchange message.

 A possible reason for a fatal handshake failure is that the client's
 capabilities for handling elliptic curves and point formats are
 exceeded (see RFC 8422), the [KEM] parameters are not supported (see

Section 5.1), or the signature does not verify.

5.3. Client Key Exchange

5.3.1. When this message is sent

 This message is sent in all key exchange algorithms. In the key
 exchanges defined in this document, it contains the client's
 ephemeral ECDH public key and the [KEM] ciphertext value.

5.3.2. Meaning of the message

 This message is used to convey ephemeral data relating to the key
 exchange belonging to the client (such as its ephemeral ECDH public
 key and the [KEM] ciphertext value).

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8422
https://datatracker.ietf.org/doc/html/rfc8422
https://datatracker.ietf.org/doc/html/rfc8422

Campagna & Crockett Expires September 28, 2019 [Page 13]

Internet-Draft Hybrid Key Exchange for TLS March 2019

5.3.3. Structure of this message

 The TLS ClientKeyExchange message is extended as follows.

 struct {
 opaque ciphertext <1,..., 2^16 - 1>;
 } BIKEKEMCiphertext;

 where

 o "ciphertext": This is a byte string representation of the BIKE
 ciphertext of the KEM construction. Since the underlying calling
 convention of the KEM API handles the ciphertext byte string
 directly it is sufficient to pass this as single byte string array
 in the protocol.

 struct {
 opaque ciphertext <1,..., 2^16 - 1>;
 } SIKEKEMCiphertext;

 where

 o "ciphertext": This is a byte string representation of the SIKE
 ciphertext of the KEM construction. It is the concatenation of a
 public_key with a fixed-length masked secret value. Since the
 underlying calling convention of the KEM API handles the
 ciphertext byte string directly it is sufficient to pass this as
 single byte string array in the protocol.

 struct {
 select (KeyExchangeAlgorithm) {
 case ecdh_bike:
 ClientECDiffieHellmanPublic ecdh_public;
 BIKEKEMCiphertext ciphertext;
 case ecdh_sike:
 ClientECDiffieHellmanPublic ecdh_public;
 SIKEKEMCiphertext ciphertext;
 } exchange_keys;
 } ClientKeyExchange;

5.3.4. Actions of the sender

 The client selects an ephemeral ECDH public key corresponding to the
 parameters it received from the server according to RFC 8422 and
 [KEM] ciphertexts according to BIKE or SIKE respectively. It conveys
 this information to the client in the ClientKeyExchange message using
 the format defined above.

https://datatracker.ietf.org/doc/html/rfc8422

Campagna & Crockett Expires September 28, 2019 [Page 14]

Internet-Draft Hybrid Key Exchange for TLS March 2019

5.3.5. Actions of the receiver

 The server retrieves the client's ephemeral ECDH public key and the
 [KEM] ciphertext from the ClientKeyExchange message and checks that
 it is on the same elliptic curve as the server's ECDH key, and that
 the [KEM] ciphertexts conform to the domain parameters selected by
 the server.

 In the case of BIKE there is a decapsulation failure rate no greater
 than 10^(-7). In the case of a decapsulation failure, an
 implementation MUST abort the handshake.

5.4. Derivation of the master secret for hybrid key agreement

 This section defines a new hybrid master secret derivation. It is
 defined under the assumption that we use the concatenated premaster
 secret defined in Section 3.1 (Section 3.1). Recall in this case the
 premaster_secret = Z || K, where Z it the ECDHE shared secret, and K
 is the KEM shared secret.

 We define the master secret as follows:

 master_secret[48] = TLS-PRF(secret, label, seed)

 where

 o "secret": the premaster_secret,

 o "label": the string "hybrid master secret", and

 o "seed": the concatenation of ClientHello.random ||
 ServerHello.random || ClientKeyExchange

6. Cipher Suites

 The table below defines new hybrid key exchange cipher suites that
 use the key exchange algorithms specified in Section 2 (Section 2).

Campagna & Crockett Expires September 28, 2019 [Page 15]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 +---+
 | Ciphersuite |
 +---+
 | CipherSuite TLS_ECDHE_BIKE_ECDSA_WITH_AES_128_GCM_SHA256 = { |
 | 0xFF, 0x01 } |
 | |
 | CipherSuite TLS_ECDHE_BIKE_ECDSA_WITH_AES_256_GCM_SHA384 = { |
 | 0xFF, 0x02 } |
 | |
 | CipherSuite TLS_ECDHE_BIKE_RSA_WITH_AES_128_GCM_SHA256 = { |
 | 0xFF, 0x03 } |
 | |
 | CipherSuite TLS_ECDHE_BIKE_RSA_WITH_AES_256_GCM_SHA384 = { |
 | 0xFF, 0x04 } |
 | |
 | CipherSuite TLS_ECDHE_SIKE_ECDSA_WITH_AES_128_GCM_SHA256 = { |
 | 0xFF, 0x05 } |
 | |
 | CipherSuite TLS_ECDHE_SIKE_ECDSA_WITH_AES_256_GCM_SHA384 = { |
 | 0xFF, 0x06 } |
 | |
 | CipherSuite TLS_ECDHE_SIKE_RSA_WITH_AES_128_GCM_SHA256 = { |
 | 0xFF, 0x07 } |
 | |
 | CipherSuite TLS_ECDHE_SIKE_RSA_WITH_AES_256_GCM_SHA384 = { |
 | 0xFF, 0x08 } |
 +---+

 Table 2: TLS hybrid key exchange cipher suites

 The key exchange method, cipher, and hash algorithm for each of these
 cipher suites are easily determined by examining the name. Ciphers
 and hash algorithms are defined in RFC 5288.

 It is recommended that any implementation of this specification
 include at least one of

 o CipherSuite TLS_ECDHE_BIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF,
 0x04 }

 o CipherSuite TLS_ECDHE_SIKE_RSA_WITH_AES_256_GCM_SHA384 = { 0xFF,
 0x08 }

 using the parameters BIKE1r1-Level1 or SIKEp503r1-KEM.

https://datatracker.ietf.org/doc/html/rfc5288

Campagna & Crockett Expires September 28, 2019 [Page 16]

Internet-Draft Hybrid Key Exchange for TLS March 2019

7. Security Considerations [DRAFT]

 The security considerations in TLS 1.2 [RFC5246] and RFC 8422 apply
 to this document as well. In addition, as described in RFC 5288 and

RFC 5289, these cipher suites may only be used with TLS 1.2 or
 greater.

 The description of a KEM is provided in Section 2.1. The security of
 the KEM is defined through the indistinguishability K against a
 chosen-plaintext (IND-CPA) and against a chosen-ciphertext (IND-CCA)
 adversary. We are focused here on the IND-CPA security of the KEM.

 In the IND-CPA experiment of KEMs, an oracle generates keys (sk, pk)
 with "KeyGen()", computes (c, K) with "Encaps(pk)", and draws
 uniformly at random a value R from the key space, and a random bit b.
 The adversary is an algorithm A that is given (pk, c, K) if b=1, and
 (pk, c, R) if b=0. Algorithm A outputs a bit b' as a guess for b,
 and wins if b' = b.

8. IANA Considerations

 This document describes three new name spaces for use with the TLS
 protocol:

9. Acknowledgements

10. Normative References

 [BIKE] Misoczki, R., Aragon, N., Barreto, P., Bettaieb, S.,
 Bidoux, L., Blazy, O., Deneuville, J., Gaborit, P.,
 Gueron, S., Guneysu, T., Melchor, C., Persichetti, E.,
 Sendrier, N., Tillich, J., and G. Zemor, "BIKE: Bit
 Flipping Key Encapsulation", March 2018,
 <http://http://bikesuite.org/files/BIKE.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8422
https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc5289
http://http://bikesuite.org/files/BIKE.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246

Campagna & Crockett Expires September 28, 2019 [Page 17]

Internet-Draft Hybrid Key Exchange for TLS March 2019

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 DOI 10.17487/RFC5288, August 2008,
 <https://www.rfc-editor.org/info/rfc5288>.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 DOI 10.17487/RFC5289, August 2008,
 <https://www.rfc-editor.org/info/rfc5289>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [SIKE] Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De
 Feo, L., Hess, B., Jalali, A., Koziel, B., LaMacchia, B.,
 Longa, P., Naehrig, M., Renes, J., Soukharev, V., and D.
 Urbanik, "Supersingular Isogeny Key Encapsulation",
 November 2017, <https://sike.org/files/SIDH-spec.pdf>.

Appendix A. Additional Stuff

 This becomes an Appendix.

Authors' Addresses

 Matt Campagna
 AWS

 Email: campagna@amazon.com

 Eric Crockett
 AWS

 Email: ericcro@amazon.com

https://datatracker.ietf.org/doc/html/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://datatracker.ietf.org/doc/html/rfc5289
https://www.rfc-editor.org/info/rfc5289
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://sike.org/files/SIDH-spec.pdf

Campagna & Crockett Expires September 28, 2019 [Page 18]

