Network Working Group S. Cantor TOC

Internet-Draft Internet2
Intended status: Standards Track May 27, 2010
Expires: November 28, 2010

A SASL Mechanism for SAML Enhanced Clients
draft-cantor-ietf-sasl-saml-ec-00.txt

Abstract

Security Assertion Markup Language (SAML) 2.0 is a generalized
framework for the exchange of security-related information between
asserting and relying parties. Simple Authentication and Security Layer
(SASL) is an application framework to facilitate an extensible
authentication model. This document specifies a SASL mechanism for SAML
2.0 that leverages the capabilities of a SAML- aware "enhanced client"
to address significant barriers to federated authentication in a manner
that encourages reuse of existing SAML bindings and profiles designed
for non-browser scenarios.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on November 28, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Terminology
3. Applicability for Non-HTTP Use Cases
4. SAML SASL Mechanism Specification
4.1. Advertisement
4.2. Initiation
4.3. Server Response
4.4. User Authentication with Identity Provider
4.5. Client Response
4.6. Outcome
4.7. Additional Notes
5. Example
6. Security Considerations
6.1. Risks Left Unaddressed
6.2. User Privacy
6.3. Collusion between RPs
7. IANA Considerations
8 Normative References

Appendix A. Acknowledgments

Appendix B. Changes
8 Author's Address

1. Introduction TOC

Security Assertion Markup Language (SAML) 2.0 (Cantor, S., Kemp, J.,
Philpott, R., and E. Maler, “Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML) V2.0,” March 2005.)
[OASIS.saml-core-2.0-0s] is a modular specification that provides
various means for a user to be identified to a relying party (RP)
through the exchange of (typically signed) assertions issued by an
identity provider (IdP). It includes a number of protocols, protocol
bindings (Cantor, S., Hirsch, F., Kemp, J., Philpott, R., and E. Maler,
“Bindings for the OASIS Security Assertion Markup Language (SAML)
V2.0,"” March 2005.) [0ASIS.saml-bindings-2.0-0s], and interoperability
profiles (Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra, P.,
Philpott, R., and E. Maler, “Profiles for the OASIS Security Assertion
Markup Language (SAML) V2.0,” March 2005.) [OASIS.saml-profiles-2.0-0s]
designed for different use cases.

Simple Authentication and Security lLayer (SASL) (Melnikov, A. and K.
Zeilenga, “Simple Authentication and Security Layer (SASL),”

June 2006.) [RFC4422] is a generalized mechanism for identifying and
authenticating a user and for optionally negotiating a security layer
for subsequent protocol interactions. SASL is used by application
protocols like IMAP, POP and XMPP. The effect is to make authentication
modular, so that newer authentication mechanisms can be added as
needed.

The mechanism specified in this document allows a SASL-enabled server
to act as a SAML relying party, or service provider (SP), by
advertising this mechanism as an option for SASL clients that support
the use of SAML to communicate identity and attribute information.
Clients supporting this mechanism are termed "enhanced clients" in SAML
terminology because they understand the federated authentication model
and have specific knowledge of the IdP(s) associated with the user.
This knowledge, and the ability to act on it, addresses a significant
problem with browser-based SAML profiles known as the "discovery", or
"where are you from?" (WAYF) problem. Obviating the need for the RP to
interact with the client to determine the right IdP (and its network
location) is both a user interface and security improvement.

The SAML mechanism described in this document is an adaptation of an
existing SAML profile, the Enhanced Client or Proxy (ECP) Profile
(Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra, P., Philpott,
R., and E. Maler, “Profiles for the OASIS Security Assertion Markup
Language (SAML) V2.0,"” March 2005.) [OASIS.saml-profiles-2.0-0s], and
therefore does not establish a separate authentication, integrity and
confidentiality mechanism. It is anticipated that existing security
layers, such as Transport Layer Security (TLS), will continued to be
used.

Figure 1 (Interworking Architecture) describes the interworking between
SAML and SASL: this document requires enhancements to the RP and to the
client (as the two SASL communication endpoints) but no changes to the
SAML IdP are assumed apart from its support for the applicable SAML
profile. To accomplish this, a SAML protocol exchange between the RP
and the IdP, brokered by the client, is tunneled within SASL. There is
no assumed communication between the RP and the IdP, but such
communication may occur in conjunction with additional SAML-related
profiles not in scope for this document.

| SAML |
| Relying |
| Party |
I I
SRS +
N

+--]--+

| sl |

S| Al |

Al M|

S|t |

L

I

+--]--+

o a e aaa s + Vv

| | LRREEEEEEEE +
SAML	SAML SOAP	
Identity	<--------------- >	Client
Provider	Binding	
Fommm e e m oo + oo m e e oo +

Figure 1: Interworking Architecture

2. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]
(Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” March 1997.).

The reader is also assumed to be familiar with the terms used in the
SAML 2.0 specification, and an understanding of the Enhanced Client or
Proxy (ECP) Profile (Hughes, J., Cantor, S., Hodges, J., Hirsch, F.,
Mishra, P., Philpott, R., and E. Maler, “Profiles for the 0ASIS
Security Assertion Markup Language (SAML) V2.0,” March 2005.)
[OASIS.saml-profiles-2.0-0s] is necessary, as part of this mechanism
explicitly reuses and references it.

3. Applicability for Non-HTTP Use Cases TOC

While SAML is designed to support a variety of application scenarios,
the profiles for authentication defined in the original standard are
designed around HTTP applications. They are not, however, limited to
browsers, because it was recognized that browsers suffer from a variety
of functional and security deficiencies that would be useful to avoid
where possible. Specifically, the notion of an "Enhanced Client" (or a
proxy acting as one on behalf of a browser, thus the term "ECP") was
specified for a software component that acted like a browser from an
application perspective, but included sufficient awareness of SAML to
play a more conscious role in the authentication exchange between the
RP and the IdP. What follows is an outline of the Enhanced Client or
Proxy (ECP) Profile (Hughes, J., Cantor, S., Hodges, J., Hirsch, F.,
Mishra, P., Philpott, R., and E. Maler, “Profiles for the O0ASIS
Security Assertion Markup Language (SAML) V2.0,” March 2005.)
[OASIS.saml-profiles-2.0-0s], as applied to the web/HTTP service use
case:

1. The Enhanced Client requests a resource of a Relying Party (RP)
(via an HTTP request). In doing so, it advertises its
"enhanced" capability using HTTP headers.

2. The RP, desiring SAML authentication and noting the client's
capabilities, responds not with an HTTP redirect or form, but
with a SOAP (Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H., Thatte, S., and D. Winer, “Simple
Object Access Protocol (SOAP) 1.1,” May 2000.) [W3C.soapll]
envelope containing a SAML <AuthnRequest> along with some
supporting headers. This request identifies the RP (and may be
signed), and may provide hints to the client as to what IdPs
the RP finds acceptable, but the choice of IdP is generally
left to the client.

3. The client is then responsible for delivering the body of the
SOAP message in a new envelope to the IdP it is instructed to
use (often via configuration ahead of time). The user
authenticates to the IdP ahead of, during, or after the
delivery of this message, and perhaps explicitly authorizes the
response to the RP.

4. Whether authentication succeeds or fails, the IdP responds with
its own SOAP envelope, generally containing a SAML <Response>
message for delivery to the RP. In a successful case, the
message will include a SAML <Assertion> containing
authentication, and possibly attribute, information about the
user. Either the response or assertion alone is signed, and the

assertion may be encrypted to a key negotiated with or known to
belong to the RP.

5. The client then delivers a new SOAP envelope containing the
<Response> to the RP at a location the IdP directs (which acts
as an additional, though limited, defense against MITM
attacks). This completes the SAML exchange.

6. The RP now has sufficient identity information to approve the
original HTTP request or not, and acts accordingly. Everything
between the original request and this response can be thought
of as an "interruption" of the original HTTP exchange.

When considering this flow in the context of an arbitrary application
protocol and SASL, the RP and the client both must change their code to
implement this SASL mechanism, but the IdP can remain untouched. The
existing RP/client exchange that is tunneled through HTTP also maps
well to the tunneling of that same exchange in SASL. In the parlance of
SASL (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security
Layer (SASL),” June 2006.) [RFC4422], this mechanism is "variable", in
that the client can accompany its authentication request with an
"initial response" consisting of a SAML <Response> obtained from an
IdP. The steps are shown from below:

1. The server MAY advertise the SAML2OEC capability.

2. The client initiates a SASL authentication with SAML20EC. It
MAY include an initial response.

3. The server sends the client one of two responses:

1. an indication of success or failure (if the client
included an initial response).

2. a challenge containing a BASE64-encoded SOAP envelope
containing a SAML <AuthnRequest>.

4. In the latter case, the SASL client unpacks the SOAP message
and communicates with its chosen IdP to relay the SAML
<AuthnRequest> to it. This communication, and the
authentication with the IdP, proceeds separately from the SASL
process.

5. Upon completion of the exchange with the IdP, the client
responds to the SASL server with a BASE64-encoded SOAP envelope
containing the SAML <Response> it obtained, or a SOAP fault, as
warranted.

6. The SASL Server indicates success or failure.

Note: The details of the SAML processing, which are consistent with the
existing Enhanced Client or Proxy (ECP) Profile (Hughes, J., Cantor,
S., Hodges, J., Hirsch, F., Mishra, P., Philpott, R., and E. Maler,
“Profiles for the OASIS Security Assertion Markup Language (SAML)
V2.0,"” March 2005.) [O0ASIS.saml-profiles-2.0-0s], are such that the
client MUST interact with the IdP in order to complete any SASL
exchange with the RP. The assertions issued by the IdP for the purposes
of the profile, and by extension this SASL mechanism, are short lived,
and therefore cannot be cached by the client for later use.

Encompassed in step four is the client-driven selection of the IdP,
authentication to it, and the acquisition of a response to provide to
the SASL server. These processes are all external to SASL.

wWith all of this in mind, the typical flow appears as follows:

SASL Serv. Client IdP
|>----- (1)----- > | | Advertisement
I I I
|<----- (2)----- <| | Initiation
I I I
|>----- (3)----- >| | SASL Server Response
I I I
| |<- - -(4)- - >| SOAP AuthnRequest + user authn
I I I
|<----- (5)----- <| | SASL Client Response
I I I
|>----- (6)----- >| | Server sends Outcome
I I I

----- = SASL

- - - = SOAP over HTTPS (external to SASL)

Figure 2: Authentication flow (no initial response)

An alternative in which the client interacts with the IdP ahead of
time:

SASL Serv. Client IdP

|>----- (1)----- > | Advertisement
I I |
|<----- (2)----- <| | Initiation + Client Response
I I I
|>----- (3)----- >| | Server sends Outcome
I I |
----- = SASL

Figure 3: Authentication flow (with initial response)

4. SAML SASL Mechanism Specification TOC

Based on the previous figures, the following operations are defined by
the SAML SASL mechanism:

4.1. Advertisement TOC

To advertise that a server supports this mechanism, during application
session initiation, it displays the name "SAML2GEC" in the list of
supported SASL mechanisms.

4.2. Initiation TOC

A client initiates "SAML2OEC" authentication. If supported by the
application protocol, the client MAY include an initial response in the
same form described below (Client Response).

4.3. Server Response

Assuming no initial response from the client, the SASL server responds
with a BASE64 (Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” October 2006.) [RFC4648] encoded SOAP envelope constructed
in accordance with section 4.2.3.2 of [0OASIS.saml-profiles-2.0-0s]
(Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra, P., Philpott,
R., and E. Maler, “Profiles for the O0ASIS Security Assertion Markup
Language (SAML) V2.0,"” March 2005.). This includes adhering to the SOAP
header requirements of the SAML PAOS Binding (Cantor, S., Hirsch, F.,
Kemp, J., Philpott, R., and E. Maler, “Bindings for the O0ASIS Security
Assertion Markup Language (SAML) V2.0,” March 2005.)
[0ASIS.saml-bindings-2.0-0s], for compatibility with the existing
profile.

4.4. User Authentication with Identity Provider TOC

Upon receipt of the Server Response (Server Response), the steps
described in sections 4.2.3.3 through 4.2.3.6 of
[0OASIS.saml-profiles-2.0-o0s] (Hughes, J., Cantor, S., Hodges, J.,
Hirsch, F., Mishra, P., Philpott, R., and E. Maler, “Profiles for the
OASIS Security Assertion Markup Language (SAML) V2.0,” March 2005.) are
performed between the client and the chosen IdP. The means by which the
client determines the IdP to use, and where it is located, are out of
scope of this mechanism. The exact means of authentication to the IdP
are also out of scope, but clients supporting this mechanism MUST
support HTTP Basic Authentication as defined in [RFC2617] (Franks, J.,
Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
and L. Stewart, “HTTP Authentication: Basic and Digest Access
Authentication,” June 1999.) and SHOULD support client authentication
via TLS as defined in [RFC5246] (Dierks, T. and E. Rescorla, “The
Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.).

4.5. Client Response TOC

Assuming a response is obtained from the IdP, the client responds to
the SASL server with a BASE64 (Josefsson, S., “The Basel6, Base32, and
Base64 Data Encodings,” October 2006.) [RFC4648] encoded SOAP envelope
constructed in accordance with section 4.2.3.7 of
[OASIS.saml-profiles-2.0-0s] (Hughes, J., Cantor, S., Hodges, J.,
Hirsch, F., Mishra, P., Philpott, R., and E. Maler, “Profiles for the
OASIS Security Assertion Markup Language (SAML) V2.0,” March 2005.).
This includes adhering to the SOAP header requirements of the SAML PAOS
Binding (Cantor, S., Hirsch, F., Kemp, J., Philpott, R., and E. Maler,

“Bindings for the OASIS Security Assertion Markup Language (SAML)
V2.0,” March 2005.) [O0ASIS.saml-bindings-2.0-os], for compatibility
with the existing profile. If the client is unable to obtain a response
from the IdP, it responds to the SASL server with a base64-encoded SOAP
envelope containing a SOAP fault.

4.6. Outcome T0C

The SAML protocol exchange having completed, the SASL server will
transmit the outcome to the client.

4.7. Additional Notes TOC

Because this mechanism is an adaptation of an HTTP-based profile, there
are a few requirements outlined in [0ASIS.saml-profiles-2.0-0s]
(Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra, P., Philpott,
R., and E. Maler, “Profiles for the OASIS Security Assertion Markup
Language (SAML) V2.0,"” March 2005.) that make reference to a response
URL that is normally used to regulate where the client returns
information to the RP. There are also security-related checks built
into the profile that involve this location.

For compatibility with existing IdP and profile behavior, one or more
URLs MUST be associated with the SASL server and used to populate the
responseConsumerURL and AssertionConsumerServiceURL XML attributes
described in the profile. The parties then perform the steps described
in [OASIS.saml-profiles-2.0-0s] (Hughes, J., Cantor, S., Hodges, J.,
Hirsch, F., Mishra, P., Philpott, R., and E. Maler, “Profiles for the
OASIS Security Assertion Markup Language (SAML) V2.0,” March 2005.) as
usual.

A simple means of fulfilling this requirement is to populate this URL
with the RP's SAML "entityID", which is a unique identifier that is
required of all SAML RPs.

5. Example TOC

Suppose the user has an identity at the SAML IdP saml.example.org and a
Jabber Identifier (jid) "somenode@example.com", and wishes to
authenticate his XMPP connection to xmpp.example.com (and example.com
and example.org have established a SAML-capable trust relationship).
The authentication on the wire would then look something like the
following:

Step 1: Client initiates stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams’'
to="'example.com' version='1.0'>

Step 2: Server responds with a stream tag sent to client:

<stream:stream
xmlns="'jabber:client' xmlns:stream="http://etherx.jabber.org/streams'
id='some_id' from='example.com' version='1.0'>

Step 3: Server informs client of available authentication mechanisms:

<stream:features>

<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism>
<mechanism>SAML2QEC</mechanism>

</mechanisms>

</stream:features>

Step 4: Client selects an authentication mechanism:

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='SAML20EC'/>

Step 5: Server sends a BASE64 (Josefsson, S., “The Basel6, Base32, and
Base64 Data Encodings,” October 2006.) [RFC4648] encoded challenge to
client in the form of a SOAP envelope containing its SAML
<AuthnRequest>:

<challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
PFM6RW52ZWXxVCGUNCiAgICB4bWxuczpzYW1sPSJ1cm46b2FzaXM6bmFtZXM6AGMBUOFNTDOY
LJABYXNzZXJ0aWOuIgOKICAgIHhtbG5z0OnNhbWxwPSJ1cm46b2FzaXM6bmFtZXM6dGMEUBFN
TDoyLjA6cHIvAG9jb2wiDQogICAgeGlsbnM6UzOiaHROcDovL3NjaGVtYXMueGlsc29hcC5v
cmcvc29hcC91bnzZ1bGOwZS8iPgOKICA8UZpIZWFKkZXI+DQogICAgPHBhb3M6UMVXxdWVzdCB4
bwxuczpwYW9zPSJ1cm46bG1lizZzXJ0eTpwYW9z0j IwMDMtMDgiDQogICAQICBtZXNzYWd1SUQ9
ImMzYTRmMOGI5YzJKIiBTOM11c3RVbMR1cNNOYWSKPSIXIgOKICAQICAgUzphY3RvcjOiaHRO
cDovL3NjaGVtYXMueGlsc29hcC5vemevec29hcCOhY3Rveci9uZXh@IgOKICAgICAgemVzcG9u
c2VDb25zdW11clVSTDOiaHROCHM6LY94bXBwLmV4YW1iwbGUUY29tIgOKICAgICAgc2Vydmlj
ZTOidXJuOm9hc21z0Om5hbwWVzONRjOINBTUWEMi4wOnByb2ZpbGVZzOINTTzplY3AiLz4NCiAg
ICA8ZWNw01J1cXV1c3QNCiAgICAgIHhtbG5z0mVjcDOidXJuOm9hc21z0m5hbwWVzOnRjO1NB
TUW6Mi4wOnByb2ZpbGVzOINTTzplY3AiDQogICAgICBTOMFjdGOyPSJodHRwOi8vc2NoZWlh
cy54bWxzb2FwLm9yZy9zb2FwL2FjdG9yL251eHQiDQOgICAgICBTOM11c3RVbmR1cnNOYWS5k
PSIxIiBQcm92aWR1lck5hbwWU9IkphYmJ1lciBhdCBleGFtcGXx1LmNvbSI+DQogICAgICA8C2Ft
bDpJc3N1ZXI+aHROCHM6LY94bXBwLmV4YW1wbGUUY29tPC9zYW1s0k1lzc3V1cj4NCiAgICAS8
L2V3jcDpSZXF1ZXNOPgOKICA8LIM6SGVhZGVYPgOKICA8UZpCh2R5PgOKICAGIDXZYW1scDpB
dXRob1J1cXV1c3QNCiAgICAgIEIEPSIjM2EOZjhiOWMyZCIgVmVyc21lvbjOiMi4wIiBJIc3N1
ZUluc3RhbnQ9IjIwMDCtMTItMTBUMTE6Mzk6MzRaIgOKICAgICAgQUHIvAGOjh2xCaws5kawsn
PSJ1cm46b2FzaXM6bmFtZXM6AGMEUOFNTDOYLjA6YM1uZGluZ3MEUEFPUYINCiAgICAQIEFZ
c2VydGlvbkNvbnN1bwVvyu2vydmljzZvVSTDOiaHROCHM6LY94bXBwLmV4YW1wbGUUY29tIj4N
CiAgICAQIDxzYW1s0klzc3V1ciB4bwWxuczpzYW1sPSJicm46b2FzaXM6bmFtZXM6dGMEUOFN
TDOYLJjABYXNzZXJ0aWOuIj4NCiAgICAgICBodHRwczovL3htcHAUZXhhbXBsZS5jb20NCiAg
ICAQIDwvC2FthDpJc3N1ZXI+DQogICAgICA8Cc2FtbHA6TMFtZULEUG9saWN5IEFsbG93Q3J1
YXR1PSJOcNV1IgOKICAGICAQGICBGh3JtYXQ9InVybjpvYXNpczpuYWllczpOYzpTQUIMOjIu
MDpuYW1lawQtZm9ybwWFOONBlcnNpc3R1bnQiLz4NCiAgICAQIDXxzYW1scDpSZXF1ZXNOZWRB
dXRobkNvbnR1eHQgQ29tcGFyaXNvbj0izXhhY3QiPgOKICAgQICAQIDXzYW1sOkF1dGhuQ29u
dGV4dENSYXNzUmVmPgOKICAgICAgIHVYbjpVvYXNpczpuYW1lczp@YzpTQUIMOjIuMDphYzpj
bGFzc2Vz01Bhc3N3b3JkUHJIvAGY]jdGVkVHIhbnNwb3J0DQogICAgICAgPCOzYW1sOkF1dGhu
Q29udGV4dENSYXNzUmVmMPgOKICAQICAgPCOzYW1scDpSZXF1ZXNOZWRBAXRobkNvbnR1eHQ+
IAOKICAQIDwWvC2FtbHABQXVOaG5SZXF1ZXNOPgOKICA8LIM6QMIOKkeTANCjwvUzpFbnZ1bGOw
ZT4NCg==

</challenge>

The decoded envelope:

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<paos:Request xmlns:paos="urn:liberty:paos:2003-08"
messageID="c3a4f8b9c2d" S:mustUnderstand="1"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
responseConsumerURL="https://xmpp.example.com"
service="urn:oasis:names:tc:SAML:2.0:profiles:SS0:ecp"/>
<ecp:Request
xmlns:ecp="urn:oasis:names:tc:SAML:2.0:profiles:SS0:ecp"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
S:mustUnderstand="1" ProviderName="Jabber at example.com">
<saml:Issuer>https://xmpp.example.com</saml:Issuer>
</ecp:Request>
</S:Header>
<S:Body>
<samlp:AuthnRequest
ID="c3a4f8b9c2d" Version="2.0" IssueInstant="2007-12-10T11:39:342"
ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:PAOS"
AssertionConsumerServiceURL="https://xmpp.example.com">
<saml:Issuer xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
https://xmpp.example.com
</saml:Issuer>
<samlp:NameIDPolicy AllowCreate="true"
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"/>
<samlp:RequestedAuthnContext Comparison="exact">
<saml:AuthnContextClassRef>
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
</saml:AuthnContextClassRef>
</samlp:RequestedAuthnContext>
</samlp:AuthnRequest>
</S:Body>
</S:Envelope>

Step 5 (alt): Server returns error to client:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<incorrect-encoding/>

</failure>

</stream:stream>

Step 6: Client relays the request to IdP in a SOAP message transmitted
over HTTP (over TLS). HTTP portion not shown, use of Basic

Authentication is assumed. The body of the SOAP envelope is exactly the
same as received in the previous step.

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<samlp:AuthnRequest>
<!-- same as above -->
</samlp:AuthnRequest>
</S:Body>

</S:Envelope>

Step 7: IdP responds to client with a SOAP response containing a SAML
<Response> containing a short-lived SSO assertion (shown as an
encrypted variant in the example).

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<ecp:Response S:mustUnderstand="1"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
AssertionConsumerServiceURL="https://xmpp.example.com"/>
</S:Header>
<S:Body>
<samlp:Response ID="d43h94r389309r" Version="2.0"
IssueInstant="2007-12-10T11:42:34Z" InResponseTo="c3a4f8b9c2d"
Destination="https://xmpp.example.com">
<saml:Issuer>https://saml.example.org</saml:Issuer>
<samlp:Status>
<samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<saml:EncryptedAssertion>
<!-- contents elided -->
</saml:EncryptedAssertion>
</samlp:Response>
</S:Body>
</S:Envelope>

Step 8: Client sends BASE64 (Josefsson, S., “The Basel6, Base32, and
Base64 Data Encodings,” October 2006.) [RFC4648] encoded SOAP envelope

containing the SAML <Response> as a response to the SASL server's
challenge:

<response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
PFM6RW52ZWxVvCGUNCiAgICB4bWxuczpzYW1sPSJ1cm46b2FzaXM6bmFtZXM6AGMBUOFNTDoOyY
LJABYXNzZXJ0aWOuIgOKICAgIHhtbG5z0OnNhbWxwPSJ1cm46b2FzaXM6bmFtZXM6dGMEUBFN
TDoyLjA6CcHIvdG9jb2wiDQogICAgeGlsbnM6UzOiaHROcDoOVL3NjaGVtYXMueGlsc29hcC5v
cmcvc29hcC91bnzZ1bGOwZS8iPgOKICA8UZpIZWFkZXI+DQogICAgPHBhb3M6UMVZzcGOuc2Ug
eGlsbnM6cGFvczOidXJuOmxpYmVydHk6cGFvczoyMDAZLTA4IgOKICAgICAgUzphY3RvejO1
aHROcDovL3NjaGVtYXMueGlsc29hcC5vemevec29hcCOhY3Rvei9uzZXhOIgOKICAgICAgUzpt
dXNOVW5kZXJzdGFuzZDOiMSIgecmVmVGINZXNZYWd1SUQ9IjZjM2EOZjhiOWMyZCIVPgOKICAS
L1IM6SGVhZGVYyPgOKICA8UzpCh2R5PgOKICAGIDXZzYW1scDpSZXNwh25zZSBIJRDO1ZDQzabDko
CjM40TMWOXIiIFZ1cnNpb249IjIuMCINCiAgICAgICAgSXNZdWVIbnNOYW50PSIYMDA3LTEY
LTEWVDEX0]jQy0jMOWiIgSW5SZXNwb25zZVRVPSJIjM2EOZjhiOWMyZCINCiAgICAgICAgRGVZ
dGluYXRpb249Imh@dHBz0i8veGlwcC51eGFtcGXx1LmNvbSI+DQogICAgICA8c2FtbDpJc3N1
ZXI+aHROCHM6LY9zYW1sLmV4YW1wbGUub3JInPC9zYW1s0k1lzc3V1cj4NCiAgICAgIDXzYW1s
cDpTdGFOdXM+DQogICAQICAgIDXZzYW1scDpTdGFOAXNDb2R1DQogICAgICAgICAgICBWYWX1
ZT01idXJuOm9hc21z0m5hbwWVzONRjOINBTUWEM14wONNOYXR1czpTdWNjZXNzIi8+DQogICAg
ICABL3NhbWxwO1NOYXR1cz4NCiAgICAgIDXxzYW1s0kVuY3J5cHR1ZEFzc2VydGlvbj4NCiAg
ICAgICAgPCEtLSBjb250ZW50cyB1bG1lkZWQgLSO+DQogICAgICA8L3NhbWw6RWSjcnlwdGVk
QXNzZXJ0aw9uPgOKICAgIDwvCc2FtbHA6UMVZzcG9uc2U+DQogIDwvUzpCh2R5PgOKPCIOTOKVU
dmVsb3B1PgoK

</response>

The decoded envelope:

<S:Envelope
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<paos:Response xmlns:paos="urn:liberty:paos:2003-08"
S:actor="http://schemas.xmlsoap.org/soap/actor/next"
S:mustUnderstand="1" refToMessageID="6c3a4f8b9c2d"/>
</S:Header>
<S:Body>
<samlp:Response ID="d43h94r389309r" Version="2.0"
IssueInstant="2007-12-10T11:42:34Z" InResponseTo="c3a4f8b9c2d"
Destination="https://xmpp.example.com">
<saml:Issuer>https://saml.example.org</saml:Issuer>
<samlp:Status>
<samlp:StatusCode
Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
<saml:EncryptedAssertion>
<!-- contents elided -->
</saml:EncryptedAssertion>
</samlp:Response>
</S:Body>
</S:Envelope>

Step 9: Server informs client of successful authentication:

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Step 9 (alt): Server informs client of failed authentication:

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<temporary-auth-failure/>

</failure>

</stream:stream>

Step 10: Client initiates a new stream to server:

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
to="'example.com' version='1.0'>

Step 11: Server responds by sending a stream header to client along
with any additional features (or an empty features element):

<stream:stream xmlns='jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
id='c2s_345"' from='example.com' version='1.0'>
<stream:features>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
<session xmlns='urn:ietf:params:xml:ns:xmpp-session'/>
</stream:features>

Step 12: Client binds a resource:

<ig type='set' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<resource>someresource</resource>
</bind>
</iqgq>

Step 13: Server informs client of successful resource binding:

<iq type='result' id='bind_1'>
<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
<jid>somenode@example.com/someresource</jid>
</bind>
</iqgq>

Please note: line breaks were added to the base64 for clarity.

6. Security Considerations TOC

This section will address only security considerations associated with
the use of SAML with SASL applications. For considerations relating to
SAML in general, the reader is referred to the SAML specification and

to other literature. Similarly, for general SASL Security
Considerations, the reader is referred to that specification.

6.1. Risks Left Unaddressed TOC

The adaptation of a web-based profile that is largely designed around
security-oblivious clients and a bearer model for security token
validation results in a number of basis security exposures that should
be weighed against the compatibility and client simplification benefits
of this mechanism.

Protection against "Man in the Middle" attacks is left to lower layer
protocols such as TLS, and the development of user interfaces able to
implement that has not been effectively demonstrated. Failure to detect
a MITM can result in phishing of the user's credentials if the attacker
is between the client and IdP, or the theft and misuse of a short-lived
credential (the SAML assertion) if the attacker is able to impersonate
a RP. SAML allows for source address checking as a minor mitigation to
the latter threat, but this is often impractical. IdPs can mitigate to
some extent the exposure of personal information to RP attackers by
encrypting assertions with authenticated keys.

This mechanism also does not support the use of channel bindings or
supply a SASL security layer, so there is no assurance that the TLS
endpoints are related to the SASL endpoints.

6.2. User Privacy TOC

The IdP is aware of each RP that a user logs into. There is nothing in
the protocol to hide this information from the IdP. It is not a
requirement to track the activity, but there is nothing technically
that prohibits the collection of information. SASL servers should be
aware that SAML IdPs will track - to some extent - user access to their
services.

It is also out of scope of the mechanism to determine under what
conditions an IdP will release particular information to a relying
party, and it is generally unclear in what fashion user consent could
be established in real time for the release of particular information.
The SOAP exchange with the IdP does not preclude such interaction, but
neither does it define that interoperably.

TOC

6.3. Collusion between RPs

Depending on the information supplied by the IdP, it may be possible
for RPs to correlate data that they have collected. By using the same
identifier to log into every RP, collusion between RPs is possible.
SAML supports the notion of pairwise, or targeted/directed, identity.
This allows the IdP to manage opaque, pairwise identifiers for each
user that are specific to each RP. However, correlation is often
possible based on other attributes supplied, and is generally a topic
that is beyond the scope of this mechanism. It is sufficient to say
that this mechanism does not introduce new correlation opportunities
over and above the use of SAML in web-based use cases.

7. IANA Considerations TOC

The IANA is requested to register the following SASL profile:
SASL mechanism profile: SAML20OEC

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.
Owner/Change controller: the IETF

Note: None

8. Normative References TOC

[OASIS.saml- Cantor, S., Hirsch, F., Kemp, J., Philpott, R.,
bindings-2.0- and E. Maler, “Bindings for the OASIS Security
0s] Assertion Markup Language (SAML) V2.0,” OASIS
Standard saml-bindings-2.0-0s, March 2005.
[OASIS.saml- Cantor, S., Kemp, J., Philpott, R., and E. Maler,
core-2.0-0s] “Assertions and Protocol for the OASIS Security

Assertion Markup Language (SAML) V2.0,"” O0ASIS
Standard saml-core-2.0-o0s, March 2005.

[OASIS.saml- Hughes, J., Cantor, S., Hodges, J., Hirsch, F.,
profiles-2.0- Mishra, P., Philpott, R., and E. Maler, “Profiles
0s] for the O0ASIS Security Assertion Markup Language

(SAML) V2.0,"” OASIS Standard OASIS.saml-
profiles-2.0-0s, March 2005.

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Reguirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999 (TXT,
HTML, XML).

[RFC4422] Melnikov, A. and K. Zeilenga, “Simple
Authentication and Security lLayer (SASL),”
RFC 4422, June 2006 (TXT).

[RFC4648] Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” RFC 4648, October 2006 (TXT).
[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer

Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[W3C.soapll] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H., Thatte, S., and D.
Winer, “Simple Object Access Protocol (SOAP) 1.1,”
W3C Note soapll, May 2000.

Appendix A. Acknowledgments TOC

The author would like to thank Klaas Wierenga and Sam Hartman for their
contributions.

mailto:cantor.2@osu.edu
mailto:Frederick.Hirsch@nokia.com
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
mailto:
mailto:cantor.2@osu.edu
mailto:Jeff.Hodges@neustar.biz
mailto:Frederick.Hirsch@nokia.com
mailto:pmishra@principalidentity.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://www.rfc-editor.org/rfc/rfc4422.txt
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
mailto:dbox@develop.com
mailto:davide@us.ibm.com
mailto:gopalk@microsoft.com
mailto:andrewl@microsoft.com
mailto:Noah_Mendelsohn@lotus.com
mailto:frystyk@microsoft.com
mailto:satisht@microsoft.com
mailto:dave@userland.com
mailto:dave@userland.com
http://www.w3.org/TR/SOAP/

Appendix B. Changes TOC
This section to be removed prior to publication.

*00 Initial Revision, largely adapted from draft-wierenga-ietf-
sasl-saml-00.

Author's Address
_T0C
Scott Cantor
Internet2
2740 Airport Drive
Columbus, Ohio 43219
United States
Phone: +1 614 247 6147
Email: cantor.2@osu.edu

mailto:cantor.2@osu.edu

	A SASL Mechanism for SAML Enhanced Clientsdraft-cantor-ietf-sasl-saml-ec-00.txt
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Applicability for Non-HTTP Use Cases
	4. SAML SASL Mechanism Specification
	4.1. Advertisement
	4.2. Initiation
	4.3. Server Response
	4.4. User Authentication with Identity Provider
	4.5. Client Response
	4.6. Outcome
	4.7. Additional Notes
	5. Example
	6. Security Considerations
	6.1. Risks Left Unaddressed
	6.2. User Privacy
	6.3. Collusion between RPs
	7. IANA Considerations
	8. Normative References
	Appendix A. Acknowledgments
	Appendix B. Changes
	Author's Address

