
Internet Congestion Control Research Group N. Cardwell
Internet-Draft Y. Cheng
Intended status: Experimental S. Hassas Yeganeh
Expires: January 4, 2018 V. Jacobson
 Google, Inc
 July 03, 2017

BBR Congestion Control
draft-cardwell-iccrg-bbr-congestion-control-00

Abstract

 This document specifies the BBR congestion control algorithm. BBR
 uses recent measurements of a transport connection's delivery rate
 and round-trip time to build an explicit model that includes both the
 maximum recent bandwidth available to that connection, and its
 minimum recent round-trip delay. BBR then uses this model to control
 both how fast it sends data and the maximum amount of data it allows
 in flight in the network at any time. Relative to loss-based
 congestion control algorithms such as Reno [RFC5681] or CUBIC
 [draft-ietf-tcpm-cubic], BBR offers substantially higher throughput
 for bottlenecks with shallow buffers or random losses, and
 substantially lower queueing delays for bottlenecks with deep buffers
 (avoiding "bufferbloat"). This algorithm can be implemented in any
 transport protocol that supports packet-delivery acknowledgment (thus
 far, open source implementations are available for TCP [RFC793] and
 QUIC [draft-ietf-quic-transport-00]).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Cardwell, et al. Expires January 4, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft BBR July 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Design Overview . 6
3.1. Network Path Model 6
3.2. Target Operating Point 6
3.3. Control Parameters 6
3.4. State Machine Design Overview 7
3.4.1. State Transition Diagram 7

3.5. Algorithm Organization 7
3.5.1. Initialization 8
3.5.2. Per-ACK Steps . 8
3.5.3. Per-Transmit Steps 8

3.6. Environment and Usage 8
4. Detailed Algorithm . 9
4.1. Maintaining the Network Path Model 9
4.1.1. BBR.BtlBw . 9
4.1.2. BBR.RTprop . 12

4.2. BBR Control Parameters 14
4.2.1. Pacing Rate . 14
4.2.2. Send Quantum . 15
4.2.3. Congestion Window 16

4.3. State Machine . 20
4.3.1. Initialization Steps 21
4.3.2. Startup . 22
4.3.3. Drain . 23
4.3.4. ProbeBW . 24
4.3.5. ProbeRTT . 27

5. Implementation Status . 29
6. Security Considerations 30
7. IANA Considerations . 30
8. Acknowledgments . 30

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Cardwell, et al. Expires January 4, 2018 [Page 2]

Internet-Draft BBR July 2017

9. References . 31
9.1. Normative References 31
9.2. Informative References 31

 Authors' Addresses . 33

1. Introduction

 The Internet has largely used loss-based congestion control
 algorithms like Reno ([Jac88], [Jac90], [WS95] [RFC5681]) and CUBIC
 ([HRX08], [draft-ietf-tcpm-cubic]), which assume that packet loss is
 equivalent to congestion. These algorithms worked well for many
 years, not due to first principles but rather because Internet
 switches' and routers' queues were generally well-matched to the
 bandwidth of Internet links. As a result, queues tended to fill up
 and drop excess packets close to the moment when senders had really
 begun sending data too fast.

 But packet loss is not equivalent to congestion. Congestion can be
 thought of as a condition that occurs when a network path operates on
 a sustained basis with more data in flight than the bandwidth-delay
 product (BDP) of the path. As the Internet has evolved, loss-based
 congestion control is increasingly problematic because packet loss
 increasingly happens at moments that are divorced from the onset of
 congestion:

 1. Shallow buffers: in shallow buffers, packet loss happens before
 congestion. With today's high-speed, long-haul links employing
 commodity switches with shallow buffers, loss-based congestion
 control can result in abysmal throughput because it overreacts,
 multiplicatively decreasing the sending rate upon packet loss,
 even if the packet loss comes from transient traffic bursts (this
 kind of packet loss can be quite frequent even when the link is
 mostly idle). Because of this dynamic, it is difficult to
 achieve full utilization with loss-based congestion control in
 practice: sustaining 10Gbps over 100ms RTT needs a packet loss
 rate below 0.000003%, and over a 100ms RTT path a more feasible
 loss rate like 1% can only sustain at most 3 Mbps (no matter what
 the bottleneck link is capable of) [draft-ietf-tcpm-cubic].

 2. Deep buffers: at bottleneck links with deep buffers, congestion
 happens before packet loss. At the edge of today's Internet,
 loss-based congestion control causes the "bufferbloat" problem,
 by repeatedly filling the deep buffers in many last-mile links
 and causing up to seconds of needless queuing delay.

 The BBR congestion control algorithm takes a different approach:
 rather than assuming that packet loss is equivalent to congestion,

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic

Cardwell, et al. Expires January 4, 2018 [Page 3]

Internet-Draft BBR July 2017

 BBR builds a model of the network path in order to avoid and respond
 to actual congestion.

 The BBR algorithm has been described previously at a high level
 [CCGHJ16][CCGHJ17], and active work on the BBR algorithm is
 continuing. This document describes the current BBR algorithm in
 detail.

 This document is organized as follows. Section 2 provides various
 definitions that will be used throughout this document. Section 3
 provides an overview of the design of the BBR algorithm, and section

4 describes the BBR algorithm in detail, including BBR's network path
 model, control parameters, and state machine. Section 5 describes
 the implementation status, section 6 describes security
 considerations, section 7 notes that there are no IANA
 considerations, and section 8 closes with Acknowledgments.

2. Terminology

 This document defines the following state variables and constants for
 the BBR algorithm:

 BBR.pacing_rate: The current pacing rate for a BBR flow, which
 controls inter-packet spacing.

 BBR.send_quantum: The maximum size of a data aggregate scheduled and
 transmitted together.

 cwnd: The transport sender's congestion window, which limits the
 amount of data in flight.

 BBR.BtlBw: BBR's estimated bottleneck bandwidth available to the
 transport flow, estimated from the maximum delivery rate sample in a
 sliding window.

 BBR.BtlBwFilter: The max filter used to estimate BBR.BtlBw.

 BtlBwFilterLen: A constant specifying the length of the BBR.BtlBw max
 filter window for BBR.BtlBwFilter, BtlBwFilterLen is 10 packet-timed
 round trips.

 BBR.RTprop: BBR's estimated two-way round-trip propagation delay of
 the path, estimated from the windowed minimum recent round-trip delay
 sample.

 BBR.rtprop_stamp: The wall clock time at which the current BBR.RTProp
 sample was obtained.

Cardwell, et al. Expires January 4, 2018 [Page 4]

Internet-Draft BBR July 2017

 BBR.rtprop_expired: A boolean recording whether the BBR.RTprop has
 expired and is due for a refresh with an application idle period or a
 transition into ProbeRTT state.

 RTpropFilterLen: A constant specifying the length of the RTProp min
 filter window, RTpropFilterLen is 10 secs.

 BBR.pacing_gain: The dynamic gain factor used to scale BBR.BtlBw to
 produce BBR.pacing_rate.

 BBR.cwnd_gain: The dynamic gain factor used to scale the estimated
 BDP to produce a congestion window (cwnd).

 BBRHighGain: A constant specifying the minimum gain value that will
 allow the sending rate to double each round (2/ln(2) ~= 2.89), used
 in Startup mode for both BBR.pacing_gain and BBR.cwnd_gain.

 BBR.filled_pipe: A boolean that records whether BBR estimates that it
 has ever fully utilized its available bandwidth ("filled the pipe").

 BBRMinPipeCwnd: The minimal cwnd value BBR tries to target using: 4
 packets, or 4 * SMSS

 BBR.round_count: Count of packet-timed round trips.

 BBR.round_start: A boolean that BBR sets to true once per packet-
 timed round trip, on ACKs that advance BBR.round_count.

 BBR.next_round_delivered: packet.delivered value denoting the end of
 a packet-timed round trip.

 BBRGainCycleLen: the number of phases in the BBR ProbeBW gain cycle:
 8.

 ProbeRTTInterval: A constant specifying the minimum time interval
 between ProbeRTT states: 10 secs.

 ProbeRTTDuration: A constant specifying the minimum duration for
 which ProbeRTT state holds inflight to BBRMinPipeCwnd or fewer
 packets: 200 ms.

 SMSS: The Sender Maximum Segment Size.

 The variables starting with C, P, or rs are defined in
 [draft-cheng-iccrg-delivery-rate-estimation].

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation

Cardwell, et al. Expires January 4, 2018 [Page 5]

Internet-Draft BBR July 2017

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Design Overview

3.1. Network Path Model

 BBR is a model-based congestion control algorithm: its behavior is
 based on an explicit model of the network path over which a transport
 flow travels. BBR's model includes explicit estimates of two
 parameters:

 1. BBR.BtlBw: the estimated bottleneck bandwidth available to the
 transport flow, estimated from the maximum delivery rate sample
 from a moving window.

 2. BBR.RTprop: the estimated two-way round-trip propagation delay of
 the path, estimated from the the minimum round-trip delay sample
 from a moving window.

3.2. Target Operating Point

 BBR uses its model to seek an operating point with high throughput
 and low delay. To operate near the optimal operating point, the
 point with maximum throughput and minimum delay [K79] [GK81], the
 system needs to maintain two conditions:

 1. Rate balance: the bottleneck packet arrival rate equals the
 bottleneck bandwidth available to the transport flow.

 2. Full pipe: the total data in in fight along the path is equal to
 the BDP.

 BBR uses its model to maintain an estimate of the optimal operating
 point for the connection. To aim for rate balance BBR paces packets
 at or near BBR.BtlBw, and to aim for a full pipe it modulates the
 pacing rate to maintain an amount of data in flight near the
 estimated bandwidth-delay product (BDP) of the path, or BBR.BtlBw *
 BBR.RTprop.

3.3. Control Parameters

 BBR uses its model to control the connection's sending behavior, to
 keep it near the target operating point. Rather than using a single
 control parameter, like the cwnd parameter that limits the volume of
 in-flight data in the Reno and CUBIC congestion control algorithms,
 BBR uses three distinct control parameters:

https://datatracker.ietf.org/doc/html/rfc2119

Cardwell, et al. Expires January 4, 2018 [Page 6]

Internet-Draft BBR July 2017

 1. pacing rate: the rate at which BBR sends data.

 2. send quantum: the maximum size of any aggregate that the
 transport sender implementation may need to transmit in order to
 amortize per-packet transmission overheads.

 3. cwnd: the maximum volume of data BBR allows in-flight in the
 network at any time.

3.4. State Machine Design Overview

 BBR varies its three control parameters with a simple state machine.
 The state machine aims for high throughput, low latency, and an
 approximately fair sharing of bandwidth by alternating sequentially
 between probing first for BBR.BtlBw and then for BBR.RTprop.

 A BBR flow starts in the Startup state, and ramps up its sending rate
 quickly. When it estimates the pipe is full, it enters the Drain
 state to drain the queue. In steady state a BBR flow only uses the
 ProbeBW state, to periodically briefly raise inflight to probe for
 higher BBR.BtlBw samples, and (if needed) the ProbeRTT state, to
 briefly lower inflight to probe for lower BBR.RTprop samples.

3.4.1. State Transition Diagram

 The following state transition diagram summarizes the flow of control
 and the relationship between the different states:

 |
 V
 +---> Startup ----+
 | | |
 | V |
 | Drain ----+
 | | |
 | V |
 +---> ProbeBW -----+
 | ^ | |
 | | | |
 | +----+ |
 | |
 +---- ProbeRTT <---+

3.5. Algorithm Organization

 The BBR algorithm executes steps upon connection initialization, upon
 each ACK, and upon each transmission. All of the sub-steps invoked
 referenced below are described below.

Cardwell, et al. Expires January 4, 2018 [Page 7]

Internet-Draft BBR July 2017

3.5.1. Initialization

 Upon transport connection initialization, BBR executes its
 initialization steps:

 BBROnConnectionInit():
 BBRInit()

3.5.2. Per-ACK Steps

 On every ACK, the BBR algorithm executes the following
 BBRUpdateOnACK() steps in order to update its network path model,
 update its state machine, and adjust its control parameters to adapt
 to the updated model:

 BBRUpdateOnACK():
 BBRUpdateModelAndState()
 BBRUpdateControlParameters()

 BBRUpdateModelAndState():
 BBRUpdateBtlBw()
 BBRCheckCyclePhase()
 BBRCheckFullPipe()
 BBRCheckDrain()
 BBRUpdateRTprop()
 BBRCheckProbeRTT()

 BBRUpdateControlParameters()
 BBRSetPacingRate()
 BBRSetSendQuantum()
 BBRSetCwnd()

3.5.3. Per-Transmit Steps

 When transmitting, BBR merely needs to check for the case where the
 flow is restarting from idle:

 BBROnTransmit():
 BBRHandleRestartFromIdle()

3.6. Environment and Usage

 BBR is a congestion control algorithm that is agnostic to transport-
 layer and link-layer technologies, requires only sender-side changes,
 and does not require changes in the network. Open source
 implementations of BBR are available for the TCP [RFC793] and QUIC
 [draft-ietf-quic-transport-00] transport protocols, and these

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00

Cardwell, et al. Expires January 4, 2018 [Page 8]

Internet-Draft BBR July 2017

 implementations have been used in production for a large volume of
 Internet traffic.

4. Detailed Algorithm

4.1. Maintaining the Network Path Model

 As noted above, BBR is a model-based congestion control algorithm: it
 is based on an explicit model of the network path over which a
 transport flow travels. This model includes two estimated
 parameters: BBR.BtlBw, and BBR.RTprop.

4.1.1. BBR.BtlBw

 BBR.BtlBw is BBR's estimate of the bottleneck bandwidth available to
 data transmissions for the transport flow. At any time, a transport
 connection's data transmissions experience exactly one slowest link
 or bottleneck. The bottleneck's delivery rate determines the
 connection's maximum data-delivery rate. BBR tries to closely match
 its sending rate to this bottleneck delivery rate to help seek "rate
 balance", where the flow's packet arrival rate at the bottleneck
 equals BBR.BtlBw. The bottleneck rate varies over the life of a
 connection, so BBR continually estimates BBR.BtlBw using recent
 delivery rate samples.

4.1.1.1. Delivery Rate Samples for Estimating BBR.BtlBw

 Since calculating delivery rate samples is subtle, and the samples
 are useful independent of congestion control, the approach BBR uses
 for measuring each single delivery rate sample is specified in a
 separate Internet Draft [draft-cheng-iccrg-delivery-rate-estimation].

4.1.1.2. BBR.BtlBw Max Filter

 Delivery rate samples tend to be below the bottleneck bandwidth
 available to the flow, due to "noise" introduced by random variation
 in physical transmission processes (e.g. radio link layer noise) or
 queues along the network path. Thus to filter out these effects BBR
 uses a max filter: BBR estimates BBR.BtlBw using the windowed maximum
 recent delivery rate sample seen by the connection over that past
 BtlBwFilterLen round trips.

 The length of the BBR.BtlBw max filter window is BtlBwFilterLen = 10
 round trips. This length is driven by trade-offs among several
 considerations:

 o The BtlBwFilterLen is long enough to cover an entire ProbeBW gain
 cycle (see the "ProbeBW" section below). This ensures that the

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation

Cardwell, et al. Expires January 4, 2018 [Page 9]

Internet-Draft BBR July 2017

 window contains at least some delivery rate samples that are the
 result of data transmitted with a super-unity pacing_gain (a
 pacing_gain larger than 1.0). Such super-unity delivery rate
 samples are instrumental in revealing the path's underlying
 available bandwidth even when there is noise from delivery rate
 shortfalls due to aggregation delays, queuing delays from cross-
 traffic, lossy link layers with uncorrected losses, or non-
 congestive buffer drops (e.g., brief coincident bursts in a
 shallow buffer).

 o The BtlBwFilterLen aims to be long enough to cover short-term
 fluctuations in the network's delivery rate due to the
 aforementioned sources of noise. In particular, the delivery rate
 for radio link layers (e.g., wifi and cellular technologies) can
 be highly variable, and the filter window needs to be long enough
 to remember "good" delivery rate samples in order to be robust to
 such variations.

 o The BtlBwFilterLen aims to be short enough to respond in a timely
 manner to real reductions in the bandwidth available to a flow,
 whether because new flows have started sharing the bottleneck, or
 the bottleneck link service rate has reduced due to physical
 changes, policy changes, or routing changes. In any of these
 cases, existing BBR flows traversing the bottleneck should, in a
 timely manner, reduce their BBR.BtlBw estimates and thus pacing
 rate and in-flight data, in order to match the sending behavior to
 the new available bandwidth.

4.1.1.3. Tracking Time for the BBR.BtlBw Max Filter

 BBR tracks time for the BBR.BtlBw filter window using a virtual (non-
 wall-clock) time tracked by BBR.round_count, a count of "packet-
 timed" round-trips. BBR uses this virtual BBR.round_count because it
 is more robust than using wall clock time. In particular, arbitrary
 intervals of wall clock time can elapse due to variations in RTTs or
 timer delays for retransmission timeouts, causing wall-clock-timed
 bandwidth estimates to "time out" too quickly.

 The BBR.round_count counts packet-timed round trips by recording
 state about a sentinel packet, and waiting for an ACK of any data
 packet that was sent after that sentinel packet, using the following
 pseudocode:

 Upon connection initialization:

Cardwell, et al. Expires January 4, 2018 [Page 10]

Internet-Draft BBR July 2017

 BBRInitRoundCounting():
 BBR.next_round_delivered = 0
 BBR.round_start = false
 BBR.round_count = 0

 Upon sending each packet transmission:

 packet.delivered = BBR.delivered

 Upon receiving an ACK for a given data packet:

 BBRUpdateRound():
 BBR.delivered += packet.size
 if (packet.delivered >= BBR.next_round_delivered)
 BBR.next_round_delivered = BBR.delivered
 BBR.round_count++
 BBR.round_start = true
 else
 BBR.round_start = false

4.1.1.4. BBR.BtlBw and Application-limited Delivery Rate Samples

 Transmissions can be application-limited, meaning the transmission
 rate is limited by the application rather than the congestion control
 algorithm. This is quite common because of request/response traffic.
 When there is a transmission opportunity but no data to send, the
 delivery rate sampler marks the corresponding bandwidth sample(s) as
 application-limited [draft-cheng-iccrg-delivery-rate-estimation].
 The BBR.BtlBw estimator carefully decides which samples to include in
 the bandwidth model to ensure that BBR.BtlBw reflects network limits,
 not application limits. By default, the estimator discards
 application-limited samples, since by definition they reflect
 application limits. However, the estimator does use application-
 limited samples if the measured delivery rate happens to be larger
 than the current BBR.BtlBw estimate, since this indicates the current
 BBR.BtlBw estimate is too low.

4.1.1.5. Updating the BBR.BtlBw Max Filter

 For every ACK that acknowledges some data packets as delivered, BBR
 invokes BBRUpdateBtlBw() to update the BBR.BtlBw estimator as follows
 (here packet.delivery_rate is the delivery rate sample obtained from
 the "packet" that has just been ACKed, as specified in
 [draft-cheng-iccrg-delivery-rate-estimation]):

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation
https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation

Cardwell, et al. Expires January 4, 2018 [Page 11]

Internet-Draft BBR July 2017

 BBRUpdateBtlBw()
 BBRUpdateRound()
 if (rs.delivery_rate >= BBR.BtlBw || ! rs.is_app_limited)
 BBR.BtlBw = update_windowed_max_filter(
 filter=BBR.BtlBwFilter,
 value=rs.delivery_rate,
 time=BBR.round_count,
 window_length=BtlBwFilterLen)

4.1.2. BBR.RTprop

 BBR.RTprop is BBR's estimate of the round-trip propagation delay of
 the path over which a transport connection is sending. The path's
 round-trip propagation delay determines the minimum amount of time
 over which the connection must be willing to sustain transmissions at
 the BBR.BtlBw rate, and thus the minimum amount of data needed in-
 flight, for the connection to reach full utilization (a "Full Pipe").
 The round-trip propagation delay can vary over the life of a
 connection, so BBR continually estimates RTProp using recent round-
 trip delay samples.

4.1.2.1. Round-Trip Time Samples for Estimating BBR.RTprop

 For every data packet a connection sends, BBR calculates an RTT
 sample that measures the time interval from sending a data packet
 until that packet is acknowledged.

 For the most part, the same considerations and mechanisms that apply
 to RTT estimation for the purposes of retransmission timeout
 calculations [RFC6298] apply to BBR RTT samples. Namely, BBR does
 not use RTT samples based on the transmission time of retransmitted
 packets, since these are ambiguous, and thus unreliable. Also, BBR
 calculates RTT samples using both cumulative and selective
 acknowledgments (if the transport supports [RFC2018] SACK options or
 an equivalent mechanism), or transport-layer timestamps (if the
 transport supports [RFC7323] TCP timestamps or an equivalent
 mechanism).

 The only divergence from RTT estimation for retransmission timeouts
 is in the case where a given acknowledgment ACKs more than one data
 packet. In order to be conservative and schedule long timeouts to
 avoid spurious retransmissions, the maximum among such potential RTT
 samples is typically used for computing retransmission timeouts;
 i.e., SRTT is typically calculated using the data packet with the
 earliest transmission time. By contrast, in order for BBR to try to
 reach the minimum amount of data in flight to fill the pipe, BBR uses
 the minimum among such potential RTT samples; i.e., BBR calculates
 the RTT using the data packet with the latest transmission time.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7323

Cardwell, et al. Expires January 4, 2018 [Page 12]

Internet-Draft BBR July 2017

4.1.2.2. BBR.RTprop Min Filter

 RTT samples tend to be above the round-trip propagation delay of the
 path, due to "noise" introduced by random variation in physical
 transmission processes (e.g. radio link layer noise), queues along
 the network path, the receiver's delayed ack strategy, ack
 aggregation, etc. Thus to filter out these effects BBR uses a min
 filter: BBR estimates BBR.RTprop using the minimum recent RTT sample
 seen by the connection over that past RTpropFilterLen seconds. (Many
 of the same network effects that can decrease delivery rate
 measurements can increase RTT samples, which is why BBR's min-
 filtering approach for RTTs is the complement of its max-filtering
 approach for delivery rates.)

 The length of the RTProp min filter window is RTpropFilterLen = 10
 secs. This is driven by trade-offs among several considerations:

 o The RTpropFilterLen is longer than ProbeRTTInterval, so that it
 covers an entire ProbeRTT cycle (see the "ProbeRTT" section
 below). This helps ensure that the window can contain RTT samples
 that are the result of data transmitted with inflight below the
 estimated BDP of the flow. Such RTT samples are important for
 helping to reveal the path's underlying two-way propagation delay
 even when the aforementioned "noise" effects can often obscure it.

 o The RTpropFilterLen aims to be long enough to avoid needing to cut
 in-flight and throughput often. Measuring two-way propagation
 delay requires in-flight to be at or below BDP, which risks some
 amount of underutilization, so BBR uses a filter window long
 enough that such underutilization events can be rare.

 o The RTpropFilterLen aims to be long enough that many applications
 have a "natural" moment of silence or low utilization that can cut
 in-flight below BDP and naturally serve to refresh the BBR.RTprop,
 without requiring BBR to force an artificial cut in in-flight.
 This applies to many popular applications, including Web, RPC,
 chunked audio or video traffic.

 o The RTpropFilterLen aims to be short enough to respond in a timely
 manner to real increases in the two-way propagation delay of the
 path, e.g. due to route changes, which are expected to typically
 happen on time scales of 30 seconds or longer.

4.1.2.3. Updating the BBR.RTprop Min Filter

 Upon transmitting each packet, BBR (or the associated transport
 protocol) stores in per-packet data the wall-clock transmission time
 of the packet (Now() returns the current wall-clock time):

Cardwell, et al. Expires January 4, 2018 [Page 13]

Internet-Draft BBR July 2017

 packet.send_time = Now()

 For every ACK that acknowledges some data packets as delivered, BBR
 (or the associated transport protocol) calculates an RTT sample "rtt"
 as follows:

 packet.rtt = Now() - packet.send_time

 A BBR implementation MAY use a generic windowed min filter to track
 BBR.RTprop. However, a significant savings in space can be achieved
 by using the same state to track BBR.RTprop and ProbeRTT timing, so
 this document describes this combined approach. With this approach,
 on every ACK that provides an RTT sample BBR updates the BBR.RTprop
 estimator as follows:

 BBRUpdateRTprop()
 BBR.rtprop_expired =
 Now() > BBR.rtprop_stamp + RTpropFilterLen
 if (packet.rtt >= 0 and
 (packet.rtt <= BBR.RTprop or BBR.rtprop_expired))
 BBR.RTprop = packet.rtt
 BBR.rtprop_stamp = Now()

 Here BBR.rtprop_expired is a boolean recording whether the BBR.RTprop
 has expired and is due for a refresh, via either an application idle
 period or a transition into ProbeRTT state.

4.2. BBR Control Parameters

 BBR uses three distinct but interrelated control parameters: pacing
 rate, send quantum, and congestion window (cwnd).

4.2.1. Pacing Rate

 To help match the packet-arrival rate to the bottleneck link's
 departure rate, BBR paces data packets. Pacing enforces a maximum
 rate at which BBR schedules packets for transmission. Pacing is the
 primary mechanism that BBR uses to control its sending behavior; BBR
 implementations MUST implement pacing.

 The sending host implements pacing by maintaining inter-packet
 spacing at the time each packet is scheduled for transmission,
 calculating the next transmission time for a packet for a given flow
 (here "next_send_time") as a function of the most recent packet size
 and the current pacing rate, as follows:

 next_send_time = Now() + packet.size / pacing_rate

Cardwell, et al. Expires January 4, 2018 [Page 14]

Internet-Draft BBR July 2017

 To adapt to the bottleneck, in general BBR sets the pacing rate to be
 proportional to BBR.BtlBw, with a dynamic gain, or scaling factor of
 proportionality, called pacing_gain.

 When a BBR flow starts it has no BBR.BtlBw estimate. So in this case
 it sets an initial pacing rate based on the transport sender
 implementation's initial congestion window ("InitialCwnd", e.g. from
 [RFC6298]), the initial SRTT (smoothed round-trip time) after the
 first non-zero RTT sample, and the initial pacing_gain:

 BBRInitPacingRate():
 nominal_bandwidth = InitialCwnd / (SRTT ? SRTT : 1ms)
 BBR.pacing_rate = BBR.pacing_gain * nominal_bandwidth

 After initialization, on each data ACK BBR updates its pacing rate to
 be proportional to BBR.BtlBw, as long as it estimates that it has
 filled the pipe (BBR.filled_pipe is true; see the "Startup" section
 below for details), or doing so increases the pacing rate. Limiting
 the pacing rate updates in this way helps the connection probe
 robustly for bandwidth until it estimates it has reached its full
 available bandwidth ("filled the pipe"). In particular, this
 prevents the pacing rate from being reduced when the connection has
 only seen application-limited samples. BBR updates the pacing rate
 on each ACK by executing the BBRSetPacingRate() step as follows:

 BBRSetPacingRateWithGain(pacing_gain):
 rate = pacing_gain * BBR.BtlBw
 if (BBR.filled_pipe || rate > BBR.pacing_rate)
 BBR.pacing_rate = rate

 BBRSetPacingRate():
 BBRSetPacingRateWithGain(BBR.pacing_gain)

4.2.2. Send Quantum

 In order to amortize per-packet host overheads involved in the
 sending process, high-performance transport sender implementations
 often schedule an aggregate containing multiple packets (multiple
 MSS) worth of data as a single quantum (using TSO, GSO, or other
 offload mechanisms [DC13]). The BBR congestion control algorithm
 makes this control decision explicitly, dynamically calculating a
 BBR.send_quantum control parameter that specifies the maximum size of
 these transmission aggregates. This decision is based on a trade-
 off: a smaller BBR.send_quantum is preferred a lower data rates
 because it results in shorter packet bursts, shorter queues, lower
 queueing delays, and lower rates of packet loss; a bigger
 BBR.send_quantum can be required at higher data rates because it
 results in lower CPU overheads at the sending and receiving hosts,

https://datatracker.ietf.org/doc/html/rfc6298

Cardwell, et al. Expires January 4, 2018 [Page 15]

Internet-Draft BBR July 2017

 who can ship larger amounts of data with a single trip through the
 networking stack.

 On each ACK, BBR runs BBRSetSendQuantum() to update BBR.send_quantum
 as follows:

 BBRSetSendQuantum():
 if (BBR.pacing_rate < 1.2 Mbps)
 BBR.send_quantum = 1 * MSS
 else if (BBR.pacing_rate < 24 Mbps)
 BBR.send_quantum = 2 * MSS
 else
 BBR.send_quantum = min(BBR.pacing_rate * 1ms, 64KBytes)

 A BBR implementation MAY use alternate approaches to select a
 BBR.send_quantum, as appropriate for the CPU overheads anticipated
 for senders and receivers, and buffering considerations anticipated
 in the network path. However, for the sake of the network and other
 users, a BBR implementation SHOULD attempt to use the smallest
 feasible quanta.

4.2.3. Congestion Window

 The congestion window, or cwnd, controls the maximum volume of data
 BBR allows in flight in the network at any time. BBR's adapts the
 cwnd based on its model of the network path and the state machine's
 decisions about how to probe that path.

 By default, BBR grows its cwnd to meet its target cwnd,
 BBR.target_cwnd, which is scaled to adapt to the estimated BDP
 computed from its path model. But BBR's selection of cwnd is
 designed to explicitly trade off among competing considerations that
 dynamically adapt to various conditions. So in loss recovery BBR
 more conservatively adjusts its sending behavior based on more recent
 delivery samples, and if BBR needs to re-probe the current BBR.RTprop
 of the path then it cuts its cwnd accordingly. The following
 sections describe the various considerations that impact cwnd.

4.2.3.1. Initial cwnd

 At its core, BBR is about using measurements to build a model of the
 network path and then adapting control decisions to the path based on
 that model. As such, the selection of the initial cwnd is considered
 to be outside the scope of the BBR algorithm, since at initialization
 there are no measurements yet upon which BBR can operate. Thus, at
 initialization, BBR uses the transport sender implementation's
 initial congestion window (e.g. from [RFC6298] for TCP).

https://datatracker.ietf.org/doc/html/rfc6298

Cardwell, et al. Expires January 4, 2018 [Page 16]

Internet-Draft BBR July 2017

4.2.3.2. Target cwnd

 The BBR BBR.target_cwnd is the upper bound on the volume of data BBR
 allows in flight. This bound is always in place, and dominates when
 all other considerations have been satisfied: the flow is not in loss
 recovery, does not need to probe BBR.RTprop, and has accumulated
 confidence in its model parameters by receiving enough ACKs to
 gradually grow the current cwnd to meet the BBR.target_cwnd.

 On each ACK, BBR calculates the BBR.target_cwnd as follows:

 BBRInflight(gain):
 if (BBR.RTprop == Inf)
 return InitialCwnd /* no valid RTT samples yet */
 quanta = 3*BBR.send_quantum
 estimated_bdp = BBR.BtlBw * BBR.RTprop
 return gain * estimated_bdp + quanta

 BBRUpdateTargetCwnd():
 BBR.target_cwnd = BBRInflight(BBR.cwnd_gain)

 The "estimated_bdp" term allows enough packets in flight to fully
 utilize the estimated BDP of the path, by allowing the flow to send
 at BBR.BtlBw for a duration of BBR.RTprop. Scaling up the BDP by
 cwnd_gain, selected by the BBR state machine to be above 1.0 at all
 times, bounds in-flight data to a small multiple of the BDP, in order
 to handle common network and receiver pathologies, such as delayed,
 stretched, or aggregated ACKs [A15]. The "quanta" term allows enough
 quanta in flight on the sending and receiving hosts to reach full
 utilization even in high-throughput environments using offloading
 mechanisms.

4.2.3.3. Minimum cwnd for Pipelining

 Normally (except in the immediate aftermath of entering loss
 recovery), BBR imposes a floor of BBRMinPipeCwnd (4 packets, i.e. 4 *
 MSSS). This floor helps ensure that even at very low BDPs, and with
 a transport like TCP where a receiver may ACK only every alternate
 MSS of data, there are enough packets in flight to maintain full
 pipelining. In particular BBR tries to allow at least 2 data packets
 in flight and ACKs for at least 2 data packets on the path from
 receiver to sender.

4.2.3.4. Modulating cwnd in Loss Recovery

 BBR interprets loss as a hint that there may be recent changes in
 path behavior that are not yet fully reflected in its model of the
 path, and thus it needs to be more conservative.

Cardwell, et al. Expires January 4, 2018 [Page 17]

Internet-Draft BBR July 2017

 Upon a retransmission timeout, meaning the sender thinks all in-
 flight packets are lost, BBR conservatively reduces cwnd to one
 packet (1 MSS) and sends a single packet. Then BBR gradually
 increases cwnd using the normal approach outlined below in "Core cwnd
 Adjustment Mechanism".

 When a BBR sender detects packet loss but there are still packets in
 flight, on the first round of the loss-repair process BBR temporarily
 reduces the cwnd to match the current delivery rate as ACKs arrive.
 On second and later rounds of loss repair, it ensures the sending
 rate never exceeds twice the current delivery rate as ACKs arrive.

 When BBR exits loss recovery it restores the cwnd to the "last known
 good" value that cwnd held before entering recovery. This applies
 equally whether the flow exits loss recovery because it finishes
 repairing all losses or because it executes an "undo" event after
 inferring that a loss recovery event was spurious.

 There are several ways to implement this high-level design for
 updating cwnd in loss recovery. One is as follows:

 Upon retransmission timeout (RTO):

 BBR.prior_cwnd = BBRSaveCwnd()
 cwnd = 1

 Upon entering Fast Recovery, set cwnd to the number of packets still
 in flight (allowing at least one for a fast retransmit):

 BBR.prior_cwnd = BBRSaveCwnd()
 cwnd = packets_in_flight + max(packets_delivered, 1)
 BBR.packet_conservation = true

 Upon every ACK in Fast Recovery, run the following
 BBRModulateCwndForRecovery() steps, which help ensure packet
 conservation on the first round of recovery, and sending at no more
 than twice the current delivery rate on later rounds of recovery
 (given that "packets_delivered" packets were newly marked ACKed or
 SACKed and "packets_lost" were newly marked lost):

 BBRModulateCwndForRecovery():
 if (packets_lost > 0)
 cwnd = max(cwnd - packets_lost, 1)
 if (BBR.packet_conservation)
 cwnd = max(cwnd, packets_in_flight + packets_delivered)

 After one round-trip in Fast Recovery:

Cardwell, et al. Expires January 4, 2018 [Page 18]

Internet-Draft BBR July 2017

 BBR.packet_conservation = false

 Upon exiting loss recovery (RTO recovery or Fast Recovery), either by
 repairing all losses or undoing recovery, BBR restores the best-known
 cwnd value we had upon entering loss recovery:

 BBR.packet_conservation = false
 BBRRestoreCwnd()

 The BBRSaveCwnd() and BBRRestoreCwnd() helpers help remember and
 restore the last-known good cwnd (the latest cwnd unmodulated by loss
 recovery or ProbeRTT), and is defined as follows:

 BBRSaveCwnd():
 if (not InLossRecovery() and BBR.state != ProbeRTT)
 return cwnd
 else
 return max(BBR.prior_cwnd, cwnd)

 BBRRestoreCwnd():
 cwnd = max(cwnd, BBR.prior_cwnd)

4.2.3.5. Modulating cwnd in ProbeRTT

 If BBR decides it needs to enter the ProbeRTT state (see the
 "ProbeRTT" section below), its goal is to quickly reduce the volume
 of in-flight data and drain the bottleneck queue, thereby allowing
 measurement of BBR.RTprop. To implement this mode, BBR bounds the
 cwnd to BBRMinPipeCwnd, the minimal value that allows pipelining (see
 the "Minimum cwnd for Pipelining" section, above):

 BBRModulateCwndForProbeRTT():
 if (BBR.state == ProbeRTT)
 cwnd = min(cwnd, BBRMinPipeCwnd)

4.2.3.6. Core cwnd Adjustment Mechanism

 The network path and traffic traveling over it can make sudden
 dramatic changes. To adapt to these changes smoothly and robustly,
 and reduce packet losses in such cases, BBR uses a conservative
 strategy. When cwnd is above the BBR.target_cwnd derived from BBR's
 path model, BBR cuts the cwnd immediately to the target. When cwnd
 is below BBR.target_cwnd, BBR raises the cwnd gradually and
 cautiously, increasing cwnd by no more than the amount of data
 acknowledged (cumulatively or selectively) upon each ACK.

Cardwell, et al. Expires January 4, 2018 [Page 19]

Internet-Draft BBR July 2017

 Specifically, on each ACK that acknowledges "packets_delivered"
 packets as newly ACKed or SACKed, BBR runs the following BBRSetCwnd()
 steps to update cwnd:

 BBRSetCwnd():
 BBRUpdateTargetCwnd()
 BBRModulateCwndForRecovery()
 if (not BBR.packet_conservation) {
 if (BBR.filled_pipe)
 cwnd = min(cwnd + packets_delivered, BBR.target_cwnd)
 else if (cwnd < BBR.target_cwnd || BBR.delivered < InitialCwnd)
 cwnd = cwnd + packets_delivered
 cwnd = max(cwnd, BBRMinPipeCwnd)
 }
 BBRModulateCwndForProbeRTT()

 There are several considerations here. If BBR has measured enough
 samples to achieve confidence that it has filled the pipe (see the
 description of BBR.filled_pipe in the "Startup" section below), then
 it increases its cwnd based on the number of packets delivered, while
 bounding its cwnd to be no larger than the BBR.target_cwnd adapted to
 the estimated BDP. Otherwise, if the cwnd is below the target, or
 the sender has marked so little data delivered (less than
 InitialCwnd) that it does not yet judge its BBR.BtlBw estimate and
 BBR.target_cwnd as useful, then it increases cwnd without bounding it
 to be below the target. Finally, BBR imposes a floor of
 BBRMinPipeCwnd in order to allow pipelining even with small BDPs (see
 the "Minimum cwnd for Pipelining" section, above).

4.3. State Machine

 BBR implements a simple state machine that uses the network path
 model described above to guide its decisions, and the control
 parameters described above to enact its decisions. At startup, BBR
 probes to build a model of the network path; to adapt to later
 changes to the path or its traffic, BBR must continue to probe to
 update its model. If the available bottleneck bandwidth increases,
 BBR must send faster to discover this. Likewise, if the actual
 round-trip propagation delay changes, this changes the BDP, and thus
 BBR must send slower to get inflight below the new BDP in order to
 measure the new BBR.RTprop. Thus, BBR's state machine runs periodic,
 sequential experiments, sending faster to check for BBR.BtlBw
 increases or sending slower to check for BBR.RTprop decreases. The
 frequency, magnitude, duration, and structure of these experiments
 differ depending on what's already known (startup or steady-state)
 and sending application behavior (intermittent or continuous).

 This state machine has several goals:

Cardwell, et al. Expires January 4, 2018 [Page 20]

Internet-Draft BBR July 2017

 o Achieve high throughput by efficiently utilizing available
 bandwidth.

 o Achieve low latency by keeping queues bounded and small.

 o Periodically send multiplicatively faster to probe the network to
 quickly discover newly-available bandwidth (in time proportional
 to the logarithm of the newly-available bandwidth).

 o If needed, send slower in order to drain the bottleneck queue and
 probe the network to try to estimate the network's two-way
 propagation delay.

 o Share bandwidth with other flows in an approximately fair manner.

 o Feed samples to the BBR.BtlBw and BBR.RTprop estimators to refresh
 and update the model.

 BBR's state machine uses two control mechanisms. First and foremost,
 it uses the pacing_gain (see the "Pacing Rate" section), which
 controls how fast packets are sent relative to BBR.BtlBw and is thus
 key to BBR's ability to learn. A pacing_gain > 1 decreases inter-
 packet time time and increases inflight. A pacing_gain < 1 has the
 opposite effect, increasing inter-packet time and generally
 decreasing inflight. Second, if the state machine needs to quickly
 reduce inflight to a particular absolute value, it uses the cwnd.

 The following sections describe each state in turn.

4.3.1. Initialization Steps

 Upon transport connection initialization, BBR executes the following
 steps:

 BBRInit():
 init_windowed_max_filter(filter=BBR.BtlBwFilter, value=0, time=0)
 BBR.rtprop = SRTT ? SRTT : Inf
 BBR.rtprop_stamp = Now()
 BBR.probe_rtt_done_stamp = 0
 BBR.probe_rtt_round_done = false
 BBR.packet_conservation = false
 BBR.prior_cwnd = 0
 BBR.idle_restart = false
 BBRInitRoundCounting()
 BBRInitFullPipe()
 BBRInitPacingRate()
 BBREnterStartup()

Cardwell, et al. Expires January 4, 2018 [Page 21]

Internet-Draft BBR July 2017

4.3.2. Startup

4.3.2.1. Startup Dynamics

 When a BBR flow starts up, it performs its first (and most rapid)
 sequential probe/drain process. Network link bandwidths currently
 span a range of at least 11 orders of magnitude, from a few bps to
 100 Gbps. To quickly learn BBR.BtlBw, given this huge range to
 explore, BBR's Startup state does an exponential search of the rate
 space, doubling the sending rate each round. This finds BBR.BtlBw in
 O(log_2(BDP)) round trips.

 To achieve this rapid probing in the smoothest possible fashion, upon
 entry into Startup state BBR sets BBR.pacing_gain and BBR.cwnd_gain
 to BBRHighGain = 2/ln(2) ~= 2.89, the minimum gain value that will
 allow the sending rate to double each round. Hence, when
 initializing a connection, or upon any later entry into Startup mode,
 BBR executes the following BBREnterStartup() steps:

 BBREnterStartup():
 BBR.state = Startup
 BBR.pacing_gain = BBRHighGain
 BBR.cwnd_gain = BBRHighGain

 As BBR grows its sending rate rapidly, it obtains higher delivery
 rate samples, BBR.BtlBw increases, and the pacing rate and cwnd both
 adapt by smoothly growing in proportion. Once the pipe is full, a
 queue generally forms, but the cwnd_gain bounds any queue to
 (cwnd_gain - 1) * BDP, and the immediately following Drain state is
 designed to quickly drain that queue.

4.3.2.2. Estimating When Startup has Filled the Pipe

 During Startup, BBR estimates whether the pipe is full by looking for
 a plateau in the BBR.BtlBw estimate. The output of this "full pipe"
 estimator is tracked in BBR.filled_pipe, a boolean that records
 whether BBR estimates that it has ever fully utilized its available
 bandwidth ("filled the pipe"). If BBR notices that there are several
 (three) rounds where attempts to double the delivery rate actually
 result in little increase (less than 25 percent), then it estimates
 that it has reached BBR.BtlBw, sets BBR.filled_pipe to true, exits
 Startup and enters Drain.

 Upon connection initialization the full pipe estimator runs:

Cardwell, et al. Expires January 4, 2018 [Page 22]

Internet-Draft BBR July 2017

 BBRInitFullPipe():
 BBR.filled_pipe = false
 BBR.full_bw = 0
 BBR.full_bw_count = 0

 Once per round trip, upon an ACK that acknowledges new data, and when
 the delivery rate sample is not application-limited (see
 [draft-cheng-iccrg-delivery-rate-estimation]), BBR runs the "full
 pipe" estimator, if needed:

 BBRCheckFullPipe():
 if BBR.filled_pipe or
 not BBR.round_start or rs.is_app_limited
 return // no need to check for a full pipe now
 if (BBR.BtlBw >= BBR.full_bw * 1.25) // BBR.BtlBw still growing?
 BBR.full_bw = BBR.BtlBw // record new baseline level
 BBR.full_bw_count = 0
 return
 BBR.full_bw_count++ // another round w/o much growth
 if (BBR.full_bw_count >= 3)
 BBR.filled_pipe = true

 BBR waits three rounds in order to have solid evidence that the
 sender is not detecting a delivery-rate plateau that was temporarily
 imposed by the receive window. Allowing three rounds provides time
 for the receiver's receive-window autotuning to open up the receive
 window and for the BBR sender to realize that BBR.BtlBw should be
 higher: in the first round the receive-window autotuning algorithm
 grows the receive window; in the second round the sender fills the
 higher receive window; in the third round the sender gets higher
 delivery-rate samples. This three-round threshold was validated by
 YouTube experimental data.

4.3.3. Drain

 In Startup, when the BBR "full pipe" estimator estimates that BBR has
 filled the pipe, BBR switches to its Drain state. In Drain, BBR aims
 to quickly drain any queue created in Startup by switching to a
 pacing_gain well below 1.0; specifically, it uses a pacing_gain that
 is the inverse of the value used during Startup, which drains the
 queue in one round:

 BBREnterDrain():
 BBR.state = Drain
 BBR.pacing_gain = 1/BBRHighGain // pace slowly
 BBR.cwnd_gain = bbr_high_gain // maintain cwnd

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation

Cardwell, et al. Expires January 4, 2018 [Page 23]

Internet-Draft BBR July 2017

 In Drain, when the number of packets in flight matches the estimated
 BDP, meaning BBR estimates that the queue has been fully drained but
 the pipe is still full, then BBR leaves Drain and enters ProbeBW. To
 implement this, upon every ACK BBR executes:

 BBRCheckDrain():
 if (BBR.state == Startup and BBR.filled_pipe)
 BBREnterDrain()
 if (BBR.state == Drain and packets_in_flight <= BBRInflight(1.0))
 BBREnterProbeBW() // we estimate queue is drained

4.3.4. ProbeBW

4.3.4.1. Gain Cycling Dynamics

 BBR flows spend the vast majority of their time in ProbeBW state,
 probing for bandwidth using an approach called gain cycling, which
 helps BBR flows reach high throughput, low queuing delay, and
 convergence to a fair share of bandwidth. With gain cycling, BBR
 cycles through a sequence of values for the pacing_gain. It uses an
 eight-phase cycle with the following pacing_gain values: 5/4, 3/4, 1,
 1, 1, 1, 1, 1. Each phase normally lasts for roughly BBR.RTprop.

 In phase 0 of the gain cycle, BBR probes for more bandwidth by using
 a pacing_gain of 5/4, which gradually raises inflight. It does this
 until the elapsed time in the phase has been at least BBR.RTprop and
 either inflight has reached 5/4 * estimated_BDP (which may take
 longer than BBR.RTprop if BBR.RTprop is low) or some packets have
 been lost (suggesting that perhaps the path cannot actually hold 5/4
 * estimated_BDP in flight).

 Next, phase 1 of the gain cycle is designed to drain any queue at the
 bottleneck (the likely outcome of phase 0 if the pipe was full) by
 using a pacing_gain of 3/4, chosen to be the same distance below 1
 that 5/4 is above 1. This phase lasts until either a full BBR.RTprop
 has elapsed or inflight drops below estimated_BDP (suggesting that
 the queue has drained earlier than expected, perhaps because of
 application-limited behavior).

 Finally, phases 2 through 7 of the gain cycle are designed to cruise
 with a short queue and full utilization by using a pacing_gain of
 1.0. Each of these phases lasts for the BBR.RTprop.

 The average gain across all phases is 1.0 because ProbeBW aims for
 its average pacing rate to equal BBR.BtlBw, the estimated available
 bandwidth, and thus maintain high utilization, while maintaining a
 small, well-bounded queue.

Cardwell, et al. Expires January 4, 2018 [Page 24]

Internet-Draft BBR July 2017

 Note that while gain cycling varies the pacing_gain value, during
 ProbeBW the cwnd_gain stays constant at two, since delayed,
 stretched, or aggregated acks can strike at any time (see the "Target
 cwnd" section).

4.3.4.2. Gain Cycling Randomization

 To improve mixing and fairness, and to reduce queues when multiple
 BBR flows share a bottleneck, BBR randomizes the phases of ProbeBW
 gain cycling by randomly picking an initial phase, from among all but
 the 3/4 phase, when entering ProbeBW.

 Why not start cycling with 3/4? The main advantage of the 3/4
 pacing_gain is to drain any queue that can be created by running a
 5/4 pacing_gain when the pipe is already full. When exiting Drain or
 ProbeRTT and entering ProbeBW, there is typically no queue to drain,
 so the 3/4 gain does not provide that advantage. Using 3/4 in those
 contexts only has a cost: a link utilization for that round of 3/4
 instead of 1. Since starting with 3/4 would have a cost but no
 benefit, and since entering ProbeBW happens at the start of any
 connection long enough to have a Drain, BBR uses this small
 optimization.

4.3.4.3. Gain Cycling Algorithm

 BBR's ProbeBW gain cycling algorithm operates as follows.

 Upon entering ProbeBW, BBR (re)starts gain cycling with the
 following:

 BBREnterProbeBW():
 BBR.state = ProbeBW
 BBR.pacing_gain = 1
 BBR.cwnd_gain = 2
 BBR.cycle_index = BBRGainCycleLen - 1 - random_int_in_range(0..6)
 BBRAdvanceCyclePhase()

 On each ACK BBR runs BBRCheckCyclePhase(), to see if it's time to
 advance to the next gain cycle phase:

Cardwell, et al. Expires January 4, 2018 [Page 25]

Internet-Draft BBR July 2017

 BBRCheckCyclePhase():
 if (BBR.sate == ProbeBW and BBRIsNextCyclePhase()
 BBRAdvanceCyclePhase()

 BBRAdvanceCyclePhase():
 BBR.cycle_stamp = Now()
 BBR.cycle_index = (BBR.cycle_index + 1) % BBRGainCycleLen
 pacing_gain_cycle = [5/4, 3/4, 1, 1, 1, 1, 1, 1]
 BBR.pacing_gain = pacing_gain_cycle[BBR.cycle_index]

 BBRIsNextCyclePhase():
 is_full_length = (Now() - BBR.cycle_stamp) > BBR.RTprop
 if (BBR.pacing_gain == 1)
 return is_full_length
 if (BBR.pacing_gain > 1)
 return is_full_length and
 (packets_lost > 0 or
 prior_inflight >= BBRInflight(BBR.pacing_gain))
 else // (BBR.pacing_gain < 1)
 return is_full_length or
 prior_inflight <= BBRInflight(1)

 Here, "prior_inflight" is the amount of data that was in flight
 before processing this ACK.

4.3.4.4. Restarting From Idle

 When restarting from idle, BBR leaves its cwnd as-is and paces
 packets at exactly BBR.BtlBw, aiming to return as quickly as possible
 to its target operating point of rate balance and a full pipe.
 Specifically, if the flow's BBR.state is ProbeBW, and the flow is
 application-limited, and there are no packets in flight currently,
 then at the moment the flow sends one or more packets BBR sets
 BBR.pacing_rate to exactly BBR.BtlBw. More precisely, the BBR
 algorithm takes the following steps in BBRHandleRestartFromIdle()
 before sending a packet for a flow:

 BBRHandleRestartFromIdle():
 if (packets_in_flight == 0 and C.app_limited)
 BBR.idle_start = true
 if (BBR.state == ProbeBW)
 BBRSetPacingRateWithGain(1)

 The "Restarting Idle Connections" section of [RFC5681] suggests
 restarting from idle by slow-starting from the initial window.
 However, this approach was assuming a congestion control algorithm
 that had no estimate of the bottleneck bandwidth and no pacing, and
 thus resorted to relying on slow-starting driven by an ACK clock.

https://datatracker.ietf.org/doc/html/rfc5681

Cardwell, et al. Expires January 4, 2018 [Page 26]

Internet-Draft BBR July 2017

 The long (log_2(BDP)*RTT) delays required to reach full utilization
 with that "slow start after idle" approach caused many large
 deployments to disable this mechanism, resulting in a "BDP-scale
 line-rate burst" approach instead. Instead of these two approaches,
 BBR restarts by pacing at BBR.BtlBw, typically achieving approximate
 rate balance and a full pipe after only one BBR.RTprop has elapsed.

4.3.5. ProbeRTT

 To help probe for BBR.RTprop, BBR flows cooperate to periodically
 drain the bottleneck queue using a state called ProbeRTT, when
 needed. In any state other than ProbeRTT itself, if the RTProp
 estimate has not been updated (i.e., by getting a lower RTT
 measurement) for more than ProbeRTTInterval = 10 seconds, then BBR
 enters ProbeRTT and reduces the cwnd to a minimal value,
 BBRMinPipeCwnd (four packets). After maintaining BBRMinPipeCwnd or
 fewer packets in flight for at least ProbeRTTDuration (200 ms) and
 one round trip, BBR leaves ProbeRTT and transitions to either Startup
 or ProbeBW, depending on whether it estimates the pipe was filled
 already.

 BBR is designed to spend the vast majority of its time (about 98
 percent) in ProbeBW and the rest in ProbeRTT, based on a set of
 tradeoffs. ProbeRTT lasts long enough (at least ProbeRTTDuration =
 200 ms) to allow flows with different RTTs to have overlapping
 ProbeRTT states, while still being short enough to bound the
 throughput penalty of ProbeRTT's cwnd capping to roughly 2 percent
 (200 ms/10 seconds).

 As discussed in the "BBR.RTprop Min Filter" section above, BBR's
 BBR.RTprop filter window, RTpropFilterLen, and time interval between
 ProbeRTT states, ProbeRTTInterval, work in concert. A BBR
 implementation MUST use a RTpropFilterLen equal to or longer than
 ProbeRTTInterval, and to allow coordination with other BBR flows MUST
 use the standard ProbeRTTInterval of 10 secs. It is RECOMMENDED to
 use 10 secs for both RTpropFilterLen and ProbeRTTInterval. An
 RTpropFilterLen of 10 secs is short enough to allow quick convergence
 if traffic levels or routes change, but long enough so that
 interactive applications (e.g., Web pages, remote procedure calls,
 video chunks) often have natural silences or low-rate periods within
 the window where the flow's rate is low enough or long enough to
 drain its queue in the bottleneck. Then the BBR.RTprop filter
 opportunistically picks up these BBR.RTprop measurements, and RTProp
 refreshes without requiring ProbeRTT. This way, flows typically need
 only pay the 2 percent throughput penalty if there are multiple bulk
 flows busy sending over the entire ProbeRTTInterval window.

Cardwell, et al. Expires January 4, 2018 [Page 27]

Internet-Draft BBR July 2017

 On every ACK BBR executes BBRCheckProbeRTT() to handle the steps
 related to the ProbeRTT state as follows:

 BBRCheckProbeRTT():
 if (BBR.state != ProbeRTT and
 BBR.rtprop_expired and
 not BBR.idle_restart)
 BBREnterProbeRTT()
 BBRSaveCwnd()
 BBR.probe_rtt_done_stamp = 0
 if (BBR.state == ProbeRTT)
 BBRHandleProbeRTT()
 BBR.idle_restart = false

 BBREnterProbeRTT():
 BBR.state = ProbeRTT
 BBR.pacing_gain = 1
 BBR.cwnd_gain = 1

 BBRHandleProbeRTT():
 /* Ignore low rate samples during ProbeRTT: */
 C.app_limited =
 (BW.delivered + packets_in_flight) ? : 1
 if (BBR.probe_rtt_done_stamp == 0 and
 packets_in_flight <= BBRMinPipeCwnd)
 BBR.probe_rtt_done_stamp =
 Now() + ProbeRTTDuration
 BBR.probe_rtt_round_done = false
 BBR.next_round_delivered = BBR.delivered
 else if (BBR.probe_rtt_done_stamp != 0)
 if (BBR.round_start)
 BBR.probe_rtt_round_done = true
 if (BBR.probe_rtt_round_done and
 Now() > BBR.probe_rtt_done_stamp)
 BBR.rtprop_stamp = Now()
 BBRRestoreCwnd()
 BBRExitProbeRTT()

 BBRExitProbeRTT():
 if (BBR.filled_pipe)
 BBREnterProbeBW()
 else
 BBREnterStartup()

 When restarting from idle (BBR.idle_restart is true) and finding that
 the BBR.RTprop has expired, BBR does not enter ProbeRTT; the idleness
 is deemed a sufficient attempt to coordinate to drain the queue.

Cardwell, et al. Expires January 4, 2018 [Page 28]

Internet-Draft BBR July 2017

 The critical point is that before BBR raises its BBR.RTprop estimate
 (which will in turn raise its cwnd), it must first enter ProbeRTT to
 make a concerted and coordinated effort to drain the bottleneck queue
 and measure the BBR.RTprop. This allows the BBR.RTprop estimates of
 ensembles of BBR flows to stay well-anchored in reality, avoiding
 feedback loops of ever-increasing queues and RTT samples.

5. Implementation Status

 This section records the status of known implementations of the
 algorithm defined by this specification at the time of posting of
 this Internet-Draft, and is based on a proposal described in
 [RFC7942]. The description of implementations in this section is
 intended to assist the IETF in its decision processes in progressing
 drafts to RFCs. Please note that the listing of any individual
 implementation here does not imply endorsement by the IETF.
 Furthermore, no effort has been spent to verify the information
 presented here that was supplied by IETF contributors. This is not
 intended as, and must not be construed to be, a catalog of available
 implementations or their features. Readers are advised to note that
 other implementations may exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

 As of the time of writing, the following implementations of BBR have
 been publicly released:

 o Linux TCP

 * Source code URL:

 + https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/lin
ux.git/tree/net/ipv4/tcp_bbr.c

 * Source: Google

 * Maturity: production

 * License: dual-licensed: GPLv2 / BSD

 * Contact: https://groups.google.com/d/forum/bbr-dev

 * Last updated: June 30, 2017

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_bbr.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_bbr.c
https://groups.google.com/d/forum/bbr-dev

Cardwell, et al. Expires January 4, 2018 [Page 29]

Internet-Draft BBR July 2017

 o QUIC

 * Source code URLs:

 + https://chromium.googlesource.com/chromium/src/net/+/master/
 quic/core/congestion_control/bbr_sender.cc

 + https://chromium.googlesource.com/chromium/src/net/+/master/
 quic/core/congestion_control/bbr_sender.h

 * Source: Google

 * Maturity: production

 * License: BSD-style

 * Contact: https://groups.google.com/d/forum/bbr-dev

 * Last updated: June 30, 2017

6. Security Considerations

 This proposal makes no changes to the underlying security of
 transport protocols or congestion control algorithms. BBR shares the
 same security considerations as the existing standard congestion
 control algorithm [RFC5681].

7. IANA Considerations

 This document has no IANA actions. Here we are using that phrase,
 suggested by [RFC5226], because BBR does not modify or extend the
 wire format of any network protocol, nor does it add new dependencies
 on assigned numbers. BBR involves only a change to the congestion
 control algorithm of a transport sender, and does not involve changes
 in the network, the receiver, or any network protocol.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

8. Acknowledgments

 The authors are grateful to Len Kleinrock for his work on the theory
 underlying congestion control. We are indebted to Larry Brakmo for
 pioneering work on the Vegas [BP95] and New Vegas [B15] congestion
 control algorithms, which presaged many elements of BBR, and for
 Larry's advice and guidance during BBR's early development. The
 authors would also like to thank C. Stephen Gunn, Eric Dumazet, Ian
 Swett, Jana Iyengar, Victor Vasiliev, Nandita Dukkipati, Pawel

https://chromium.googlesource
https://chromium.googlesource
https://groups.google.com/d/forum/bbr-dev
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5226

Cardwell, et al. Expires January 4, 2018 [Page 30]

Internet-Draft BBR July 2017

 Jurczyk, Biren Roy, David Wetherall, Amin Vahdat, Leonidas
 Kontothanassis, and the YouTube, google.com, Bandwidth Enforcer, and
 Google SRE teams for their invaluable help and support.

9. References

9.1. Normative References

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment
 Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", May 2008.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6298] Paxson, V., "Computing TCP's Retransmission Timer",
RFC 6298, June 2011.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, "TCP Extensions for High Performance",
 September 2014.

 [RFC793] Postel, J., "Transmission Control Protocol", September
 1981.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", July 2016.

9.2. Informative References

 [A15] Abrahamsson, M., "TCP ACK suppression", IETF AQM mailing
 list , November 2015, <https://www.ietf.org/mail-

archive/web/aqm/current/msg01480.html>.

 [B15] Brakmo, L., "TCP-NV: An Update to TCP-Vegas", , August
 2015, <https://docs.google.com/document/d/1o-53jbO_xH-

m9g2YCgjaf5bK8vePjWP6Mk0rYiRLK-U/edit>.

 [BP95] Brakmo, L. and L. Peterson, "TCP Vegas: end-to-end
 congestion avoidance on a global Internet", IEEE Journal
 on Selected Areas in Communications 13(8): 1465-1480 ,
 October 1995.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6298
https://www.ietf.org/mail-archive/web/aqm/current/msg01480.html
https://www.ietf.org/mail-archive/web/aqm/current/msg01480.html
https://docs.google.com/document/d/1o-53jbO_xH-m9g2YCgjaf5bK8vePjWP6Mk0rYiRLK-U/edit
https://docs.google.com/document/d/1o-53jbO_xH-m9g2YCgjaf5bK8vePjWP6Mk0rYiRLK-U/edit

Cardwell, et al. Expires January 4, 2018 [Page 31]

Internet-Draft BBR July 2017

 [CCGHJ16] Cardwell, N., Cheng, Y., Gunn, C., Hassas Yeganeh, S., and
 V. Jacobson, "BBR: Congestion-Based Congestion Control",
 ACM Queue Oct 2016, September-October 2016,
 <http://queue.acm.org/detail.cfm?id=3022184>.

 [CCGHJ17] Cardwell, N., Cheng, Y., Gunn, C., Hassas Yeganeh, S., and
 V. Jacobson, "BBR: Congestion-Based Congestion Control",
 Communications of the ACM Feb 2017, February 2017,
 <https://cacm.acm.org/magazines/2017/2/212428-bbr-

congestion-based-congestion-control/pdf>.

 [DC13] Dumazet, E. and Y. Cheng, "TSO, fair queuing, pacing:
 three's a charm", IETF 88 , November 2013,
 <https://www.ietf.org/proceedings/88/slides/slides-88-

tcpm-9.pdf>.

 [draft-cheng-iccrg-delivery-rate-estimation]
 Cheng, Y., Cardwell, N., Hassas Yeganeh, S., and V.
 Jacobson, "Delivery Rate Estimation", draft-cheng-iccrg-

delivery-rate-estimation-00 (work in progress), June 2017,
 <https://tools.ietf.org/html/draft-cheng-iccrg-delivery-

rate-estimation-00>.

 [draft-ietf-quic-transport-00]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-00 (work
 in progress), Nov 2016, <https://tools.ietf.org/html/

draft-ietf-quic-transport-00>.

 [draft-ietf-tcpm-cubic]
 Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
 R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",

draft-ietf-tcpm-cubic-04 (work in progress), February
 2017, <https://tools.ietf.org/html/draft-ietf-tcpm-cubic-

04>.

 [GK81] Gail, R. and L. Kleinrock, "An Invariant Property of
 Computer Network Power", Proceedings of the International
 Conference on Communications June, 1981,
 <http://www.lk.cs.ucla.edu/data/files/Gail/power.pdf>.

 [HRX08] Ha, S., Rhee, I., and L. Xu, "CUBIC: A New TCP-Friendly
 High-Speed TCP Variant", ACM SIGOPS Operating System
 Review , 2008.

http://queue.acm.org/detail.cfm?id=3022184
https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/pdf
https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/pdf
https://www.ietf.org/proceedings/88/slides/slides-88-tcpm-9.pdf
https://www.ietf.org/proceedings/88/slides/slides-88-tcpm-9.pdf
https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation
https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://tools.ietf.org/html/draft-ietf-quic-transport-00
https://tools.ietf.org/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic-04
https://tools.ietf.org/html/draft-ietf-tcpm-cubic-04
https://tools.ietf.org/html/draft-ietf-tcpm-cubic-04
http://www.lk.cs.ucla.edu/data/files/Gail/power.pdf

Cardwell, et al. Expires January 4, 2018 [Page 32]

Internet-Draft BBR July 2017

 [Jac88] Jacobson, V., "Congestion Avoidance and Control", SIGCOMM
 1988, Computer Communication Review, vol. 18, no. 4, pp.
 314-329 , August 1988, <ftp://ftp.ee.lbl.gov/papers/

congavoid.ps.Z>.

 [Jac90] Jacobson, V., "Modified TCP Congestion Avoidance
 Algorithm", end2end-interest mailing list , April 1990,
 <ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail>.

 [K79] Kleinrock, L., "Power and deterministic rules of thumb for
 probabilistic problems in computer communications",
 Proceedings of the International Conference on
 Communications 1979.

 [WS95] Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2:
 The Implementation", Addison-Wesley , 1995.

Authors' Addresses

 Neal Cardwell
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: ncardwell@google.com

 Yuchung Cheng
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043
 USA

 Email: ycheng@google.com

 Soheil Hassas Yeganeh
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: soheil@google.com

ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

Cardwell, et al. Expires January 4, 2018 [Page 33]

Internet-Draft BBR July 2017

 Van Jacobson
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043

 Email: vanj@google.com

Cardwell, et al. Expires January 4, 2018 [Page 34]

