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Abstract

   This document specifies the BBR congestion control algorithm.  BBR
   uses recent measurements of a transport connection's delivery rate
   and round-trip time to build an explicit model that includes both the
   maximum recent bandwidth available to that connection, and its
   minimum recent round-trip delay.  BBR then uses this model to control
   both how fast it sends data and the maximum amount of data it allows
   in flight in the network at any time.  Relative to loss-based
   congestion control algorithms such as Reno [RFC5681] or CUBIC
   [draft-ietf-tcpm-cubic], BBR offers substantially higher throughput
   for bottlenecks with shallow buffers or random losses, and
   substantially lower queueing delays for bottlenecks with deep buffers
   (avoiding "bufferbloat").  This algorithm can be implemented in any
   transport protocol that supports packet-delivery acknowledgment (thus
   far, open source implementations are available for TCP [RFC793] and
   QUIC [draft-ietf-quic-transport-00]).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 4, 2018.
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   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Internet has largely used loss-based congestion control
   algorithms like Reno ([Jac88], [Jac90], [WS95] [RFC5681]) and CUBIC
   ([HRX08], [draft-ietf-tcpm-cubic]), which assume that packet loss is
   equivalent to congestion.  These algorithms worked well for many
   years, not due to first principles but rather because Internet
   switches' and routers' queues were generally well-matched to the
   bandwidth of Internet links.  As a result, queues tended to fill up
   and drop excess packets close to the moment when senders had really
   begun sending data too fast.

   But packet loss is not equivalent to congestion.  Congestion can be
   thought of as a condition that occurs when a network path operates on
   a sustained basis with more data in flight than the bandwidth-delay
   product (BDP) of the path.  As the Internet has evolved, loss-based
   congestion control is increasingly problematic because packet loss
   increasingly happens at moments that are divorced from the onset of
   congestion:

   1.  Shallow buffers: in shallow buffers, packet loss happens before
       congestion.  With today's high-speed, long-haul links employing
       commodity switches with shallow buffers, loss-based congestion
       control can result in abysmal throughput because it overreacts,
       multiplicatively decreasing the sending rate upon packet loss,
       even if the packet loss comes from transient traffic bursts (this
       kind of packet loss can be quite frequent even when the link is
       mostly idle).  Because of this dynamic, it is difficult to
       achieve full utilization with loss-based congestion control in
       practice: sustaining 10Gbps over 100ms RTT needs a packet loss
       rate below 0.000003%, and over a 100ms RTT path a more feasible
       loss rate like 1% can only sustain at most 3 Mbps (no matter what
       the bottleneck link is capable of) [draft-ietf-tcpm-cubic].

   2.  Deep buffers: at bottleneck links with deep buffers, congestion
       happens before packet loss.  At the edge of today's Internet,
       loss-based congestion control causes the "bufferbloat" problem,
       by repeatedly filling the deep buffers in many last-mile links
       and causing up to seconds of needless queuing delay.

   The BBR congestion control algorithm takes a different approach:
   rather than assuming that packet loss is equivalent to congestion,

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-cubic
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   BBR builds a model of the network path in order to avoid and respond
   to actual congestion.

   The BBR algorithm has been described previously at a high level
   [CCGHJ16][CCGHJ17], and active work on the BBR algorithm is
   continuing.  This document describes the current BBR algorithm in
   detail.

   This document is organized as follows.  Section 2 provides various
   definitions that will be used throughout this document.  Section 3
   provides an overview of the design of the BBR algorithm, and section

4 describes the BBR algorithm in detail, including BBR's network path
   model, control parameters, and state machine.  Section 5 describes
   the implementation status, section 6 describes security
   considerations, section 7 notes that there are no IANA
   considerations, and section 8 closes with Acknowledgments.

2.  Terminology

   This document defines the following state variables and constants for
   the BBR algorithm:

   BBR.pacing_rate: The current pacing rate for a BBR flow, which
   controls inter-packet spacing.

   BBR.send_quantum: The maximum size of a data aggregate scheduled and
   transmitted together.

   cwnd: The transport sender's congestion window, which limits the
   amount of data in flight.

   BBR.BtlBw: BBR's estimated bottleneck bandwidth available to the
   transport flow, estimated from the maximum delivery rate sample in a
   sliding window.

   BBR.BtlBwFilter: The max filter used to estimate BBR.BtlBw.

   BtlBwFilterLen: A constant specifying the length of the BBR.BtlBw max
   filter window for BBR.BtlBwFilter, BtlBwFilterLen is 10 packet-timed
   round trips.

   BBR.RTprop: BBR's estimated two-way round-trip propagation delay of
   the path, estimated from the windowed minimum recent round-trip delay
   sample.

   BBR.rtprop_stamp: The wall clock time at which the current BBR.RTProp
   sample was obtained.
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   BBR.rtprop_expired: A boolean recording whether the BBR.RTprop has
   expired and is due for a refresh with an application idle period or a
   transition into ProbeRTT state.

   RTpropFilterLen: A constant specifying the length of the RTProp min
   filter window, RTpropFilterLen is 10 secs.

   BBR.pacing_gain: The dynamic gain factor used to scale BBR.BtlBw to
   produce BBR.pacing_rate.

   BBR.cwnd_gain: The dynamic gain factor used to scale the estimated
   BDP to produce a congestion window (cwnd).

   BBRHighGain: A constant specifying the minimum gain value that will
   allow the sending rate to double each round (2/ln(2) ~= 2.89), used
   in Startup mode for both BBR.pacing_gain and BBR.cwnd_gain.

   BBR.filled_pipe: A boolean that records whether BBR estimates that it
   has ever fully utilized its available bandwidth ("filled the pipe").

   BBRMinPipeCwnd: The minimal cwnd value BBR tries to target using: 4
   packets, or 4 * SMSS

   BBR.round_count: Count of packet-timed round trips.

   BBR.round_start: A boolean that BBR sets to true once per packet-
   timed round trip, on ACKs that advance BBR.round_count.

   BBR.next_round_delivered: packet.delivered value denoting the end of
   a packet-timed round trip.

   BBRGainCycleLen: the number of phases in the BBR ProbeBW gain cycle:
   8.

   ProbeRTTInterval: A constant specifying the minimum time interval
   between ProbeRTT states: 10 secs.

   ProbeRTTDuration: A constant specifying the minimum duration for
   which ProbeRTT state holds inflight to BBRMinPipeCwnd or fewer
   packets: 200 ms.

   SMSS: The Sender Maximum Segment Size.

   The variables starting with C, P, or rs are defined in
   [draft-cheng-iccrg-delivery-rate-estimation].

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation
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   The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Design Overview

3.1.  Network Path Model

   BBR is a model-based congestion control algorithm: its behavior is
   based on an explicit model of the network path over which a transport
   flow travels.  BBR's model includes explicit estimates of two
   parameters:

   1.  BBR.BtlBw: the estimated bottleneck bandwidth available to the
       transport flow, estimated from the maximum delivery rate sample
       from a moving window.

   2.  BBR.RTprop: the estimated two-way round-trip propagation delay of
       the path, estimated from the the minimum round-trip delay sample
       from a moving window.

3.2.  Target Operating Point

   BBR uses its model to seek an operating point with high throughput
   and low delay.  To operate near the optimal operating point, the
   point with maximum throughput and minimum delay [K79] [GK81], the
   system needs to maintain two conditions:

   1.  Rate balance: the bottleneck packet arrival rate equals the
       bottleneck bandwidth available to the transport flow.

   2.  Full pipe: the total data in in fight along the path is equal to
       the BDP.

   BBR uses its model to maintain an estimate of the optimal operating
   point for the connection.  To aim for rate balance BBR paces packets
   at or near BBR.BtlBw, and to aim for a full pipe it modulates the
   pacing rate to maintain an amount of data in flight near the
   estimated bandwidth-delay product (BDP) of the path, or BBR.BtlBw *
   BBR.RTprop.

3.3.  Control Parameters

   BBR uses its model to control the connection's sending behavior, to
   keep it near the target operating point.  Rather than using a single
   control parameter, like the cwnd parameter that limits the volume of
   in-flight data in the Reno and CUBIC congestion control algorithms,
   BBR uses three distinct control parameters:

https://datatracker.ietf.org/doc/html/rfc2119
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   1.  pacing rate: the rate at which BBR sends data.

   2.  send quantum: the maximum size of any aggregate that the
       transport sender implementation may need to transmit in order to
       amortize per-packet transmission overheads.

   3.  cwnd: the maximum volume of data BBR allows in-flight in the
       network at any time.

3.4.  State Machine Design Overview

   BBR varies its three control parameters with a simple state machine.
   The state machine aims for high throughput, low latency, and an
   approximately fair sharing of bandwidth by alternating sequentially
   between probing first for BBR.BtlBw and then for BBR.RTprop.

   A BBR flow starts in the Startup state, and ramps up its sending rate
   quickly.  When it estimates the pipe is full, it enters the Drain
   state to drain the queue.  In steady state a BBR flow only uses the
   ProbeBW state, to periodically briefly raise inflight to probe for
   higher BBR.BtlBw samples, and (if needed) the ProbeRTT state, to
   briefly lower inflight to probe for lower BBR.RTprop samples.

3.4.1.  State Transition Diagram

   The following state transition diagram summarizes the flow of control
   and the relationship between the different states:

                |
                V
       +---> Startup  ----+
       |        |         |
       |        V         |
       |      Drain   ----+
       |        |         |
       |        V         |
       +---> ProbeBW -----+
       |      ^    |      |
       |      |    |      |
       |      +----+      |
       |                  |
       +---- ProbeRTT <---+

3.5.  Algorithm Organization

   The BBR algorithm executes steps upon connection initialization, upon
   each ACK, and upon each transmission.  All of the sub-steps invoked
   referenced below are described below.
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3.5.1.  Initialization

   Upon transport connection initialization, BBR executes its
   initialization steps:

     BBROnConnectionInit():
       BBRInit()

3.5.2.  Per-ACK Steps

   On every ACK, the BBR algorithm executes the following
   BBRUpdateOnACK() steps in order to update its network path model,
   update its state machine, and adjust its control parameters to adapt
   to the updated model:

     BBRUpdateOnACK():
       BBRUpdateModelAndState()
       BBRUpdateControlParameters()

     BBRUpdateModelAndState():
       BBRUpdateBtlBw()
       BBRCheckCyclePhase()
       BBRCheckFullPipe()
       BBRCheckDrain()
       BBRUpdateRTprop()
       BBRCheckProbeRTT()

     BBRUpdateControlParameters()
       BBRSetPacingRate()
       BBRSetSendQuantum()
       BBRSetCwnd()

3.5.3.  Per-Transmit Steps

   When transmitting, BBR merely needs to check for the case where the
   flow is restarting from idle:

     BBROnTransmit():
       BBRHandleRestartFromIdle()

3.6.  Environment and Usage

   BBR is a congestion control algorithm that is agnostic to transport-
   layer and link-layer technologies, requires only sender-side changes,
   and does not require changes in the network.  Open source
   implementations of BBR are available for the TCP [RFC793] and QUIC
   [draft-ietf-quic-transport-00] transport protocols, and these

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
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   implementations have been used in production for a large volume of
   Internet traffic.

4.  Detailed Algorithm

4.1.  Maintaining the Network Path Model

   As noted above, BBR is a model-based congestion control algorithm: it
   is based on an explicit model of the network path over which a
   transport flow travels.  This model includes two estimated
   parameters: BBR.BtlBw, and BBR.RTprop.

4.1.1.  BBR.BtlBw

   BBR.BtlBw is BBR's estimate of the bottleneck bandwidth available to
   data transmissions for the transport flow.  At any time, a transport
   connection's data transmissions experience exactly one slowest link
   or bottleneck.  The bottleneck's delivery rate determines the
   connection's maximum data-delivery rate.  BBR tries to closely match
   its sending rate to this bottleneck delivery rate to help seek "rate
   balance", where the flow's packet arrival rate at the bottleneck
   equals BBR.BtlBw.  The bottleneck rate varies over the life of a
   connection, so BBR continually estimates BBR.BtlBw using recent
   delivery rate samples.

4.1.1.1.  Delivery Rate Samples for Estimating BBR.BtlBw

   Since calculating delivery rate samples is subtle, and the samples
   are useful independent of congestion control, the approach BBR uses
   for measuring each single delivery rate sample is specified in a
   separate Internet Draft [draft-cheng-iccrg-delivery-rate-estimation].

4.1.1.2.  BBR.BtlBw Max Filter

   Delivery rate samples tend to be below the bottleneck bandwidth
   available to the flow, due to "noise" introduced by random variation
   in physical transmission processes (e.g. radio link layer noise) or
   queues along the network path.  Thus to filter out these effects BBR
   uses a max filter: BBR estimates BBR.BtlBw using the windowed maximum
   recent delivery rate sample seen by the connection over that past
   BtlBwFilterLen round trips.

   The length of the BBR.BtlBw max filter window is BtlBwFilterLen = 10
   round trips.  This length is driven by trade-offs among several
   considerations:

   o  The BtlBwFilterLen is long enough to cover an entire ProbeBW gain
      cycle (see the "ProbeBW" section below).  This ensures that the

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation
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      window contains at least some delivery rate samples that are the
      result of data transmitted with a super-unity pacing_gain (a
      pacing_gain larger than 1.0).  Such super-unity delivery rate
      samples are instrumental in revealing the path's underlying
      available bandwidth even when there is noise from delivery rate
      shortfalls due to aggregation delays, queuing delays from cross-
      traffic, lossy link layers with uncorrected losses, or non-
      congestive buffer drops (e.g., brief coincident bursts in a
      shallow buffer).

   o  The BtlBwFilterLen aims to be long enough to cover short-term
      fluctuations in the network's delivery rate due to the
      aforementioned sources of noise.  In particular, the delivery rate
      for radio link layers (e.g., wifi and cellular technologies) can
      be highly variable, and the filter window needs to be long enough
      to remember "good" delivery rate samples in order to be robust to
      such variations.

   o  The BtlBwFilterLen aims to be short enough to respond in a timely
      manner to real reductions in the bandwidth available to a flow,
      whether because new flows have started sharing the bottleneck, or
      the bottleneck link service rate has reduced due to physical
      changes, policy changes, or routing changes.  In any of these
      cases, existing BBR flows traversing the bottleneck should, in a
      timely manner, reduce their BBR.BtlBw estimates and thus pacing
      rate and in-flight data, in order to match the sending behavior to
      the new available bandwidth.

4.1.1.3.  Tracking Time for the BBR.BtlBw Max Filter

   BBR tracks time for the BBR.BtlBw filter window using a virtual (non-
   wall-clock) time tracked by BBR.round_count, a count of "packet-
   timed" round-trips.  BBR uses this virtual BBR.round_count because it
   is more robust than using wall clock time.  In particular, arbitrary
   intervals of wall clock time can elapse due to variations in RTTs or
   timer delays for retransmission timeouts, causing wall-clock-timed
   bandwidth estimates to "time out" too quickly.

   The BBR.round_count counts packet-timed round trips by recording
   state about a sentinel packet, and waiting for an ACK of any data
   packet that was sent after that sentinel packet, using the following
   pseudocode:

   Upon connection initialization:
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     BBRInitRoundCounting():
       BBR.next_round_delivered = 0
       BBR.round_start = false
       BBR.round_count = 0

   Upon sending each packet transmission:

     packet.delivered = BBR.delivered

   Upon receiving an ACK for a given data packet:

     BBRUpdateRound():
       BBR.delivered += packet.size
       if (packet.delivered >= BBR.next_round_delivered)
         BBR.next_round_delivered = BBR.delivered
         BBR.round_count++
         BBR.round_start = true
       else
         BBR.round_start = false

4.1.1.4.  BBR.BtlBw and Application-limited Delivery Rate Samples

   Transmissions can be application-limited, meaning the transmission
   rate is limited by the application rather than the congestion control
   algorithm.  This is quite common because of request/response traffic.
   When there is a transmission opportunity but no data to send, the
   delivery rate sampler marks the corresponding bandwidth sample(s) as
   application-limited [draft-cheng-iccrg-delivery-rate-estimation].
   The BBR.BtlBw estimator carefully decides which samples to include in
   the bandwidth model to ensure that BBR.BtlBw reflects network limits,
   not application limits.  By default, the estimator discards
   application-limited samples, since by definition they reflect
   application limits.  However, the estimator does use application-
   limited samples if the measured delivery rate happens to be larger
   than the current BBR.BtlBw estimate, since this indicates the current
   BBR.BtlBw estimate is too low.

4.1.1.5.  Updating the BBR.BtlBw Max Filter

   For every ACK that acknowledges some data packets as delivered, BBR
   invokes BBRUpdateBtlBw() to update the BBR.BtlBw estimator as follows
   (here packet.delivery_rate is the delivery rate sample obtained from
   the "packet" that has just been ACKed, as specified in
   [draft-cheng-iccrg-delivery-rate-estimation]):

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation
https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation
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     BBRUpdateBtlBw()
       BBRUpdateRound()
       if (rs.delivery_rate >= BBR.BtlBw || ! rs.is_app_limited)
           BBR.BtlBw = update_windowed_max_filter(
                         filter=BBR.BtlBwFilter,
                         value=rs.delivery_rate,
                         time=BBR.round_count,
                         window_length=BtlBwFilterLen)

4.1.2.  BBR.RTprop

   BBR.RTprop is BBR's estimate of the round-trip propagation delay of
   the path over which a transport connection is sending.  The path's
   round-trip propagation delay determines the minimum amount of time
   over which the connection must be willing to sustain transmissions at
   the BBR.BtlBw rate, and thus the minimum amount of data needed in-
   flight, for the connection to reach full utilization (a "Full Pipe").
   The round-trip propagation delay can vary over the life of a
   connection, so BBR continually estimates RTProp using recent round-
   trip delay samples.

4.1.2.1.  Round-Trip Time Samples for Estimating BBR.RTprop

   For every data packet a connection sends, BBR calculates an RTT
   sample that measures the time interval from sending a data packet
   until that packet is acknowledged.

   For the most part, the same considerations and mechanisms that apply
   to RTT estimation for the purposes of retransmission timeout
   calculations [RFC6298] apply to BBR RTT samples.  Namely, BBR does
   not use RTT samples based on the transmission time of retransmitted
   packets, since these are ambiguous, and thus unreliable.  Also, BBR
   calculates RTT samples using both cumulative and selective
   acknowledgments (if the transport supports [RFC2018] SACK options or
   an equivalent mechanism), or transport-layer timestamps (if the
   transport supports [RFC7323] TCP timestamps or an equivalent
   mechanism).

   The only divergence from RTT estimation for retransmission timeouts
   is in the case where a given acknowledgment ACKs more than one data
   packet.  In order to be conservative and schedule long timeouts to
   avoid spurious retransmissions, the maximum among such potential RTT
   samples is typically used for computing retransmission timeouts;
   i.e., SRTT is typically calculated using the data packet with the
   earliest transmission time.  By contrast, in order for BBR to try to
   reach the minimum amount of data in flight to fill the pipe, BBR uses
   the minimum among such potential RTT samples; i.e., BBR calculates
   the RTT using the data packet with the latest transmission time.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7323
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4.1.2.2.  BBR.RTprop Min Filter

   RTT samples tend to be above the round-trip propagation delay of the
   path, due to "noise" introduced by random variation in physical
   transmission processes (e.g. radio link layer noise), queues along
   the network path, the receiver's delayed ack strategy, ack
   aggregation, etc.  Thus to filter out these effects BBR uses a min
   filter: BBR estimates BBR.RTprop using the minimum recent RTT sample
   seen by the connection over that past RTpropFilterLen seconds.  (Many
   of the same network effects that can decrease delivery rate
   measurements can increase RTT samples, which is why BBR's min-
   filtering approach for RTTs is the complement of its max-filtering
   approach for delivery rates.)

   The length of the RTProp min filter window is RTpropFilterLen = 10
   secs.  This is driven by trade-offs among several considerations:

   o  The RTpropFilterLen is longer than ProbeRTTInterval, so that it
      covers an entire ProbeRTT cycle (see the "ProbeRTT" section
      below).  This helps ensure that the window can contain RTT samples
      that are the result of data transmitted with inflight below the
      estimated BDP of the flow.  Such RTT samples are important for
      helping to reveal the path's underlying two-way propagation delay
      even when the aforementioned "noise" effects can often obscure it.

   o  The RTpropFilterLen aims to be long enough to avoid needing to cut
      in-flight and throughput often.  Measuring two-way propagation
      delay requires in-flight to be at or below BDP, which risks some
      amount of underutilization, so BBR uses a filter window long
      enough that such underutilization events can be rare.

   o  The RTpropFilterLen aims to be long enough that many applications
      have a "natural" moment of silence or low utilization that can cut
      in-flight below BDP and naturally serve to refresh the BBR.RTprop,
      without requiring BBR to force an artificial cut in in-flight.
      This applies to many popular applications, including Web, RPC,
      chunked audio or video traffic.

   o  The RTpropFilterLen aims to be short enough to respond in a timely
      manner to real increases in the two-way propagation delay of the
      path, e.g. due to route changes, which are expected to typically
      happen on time scales of 30 seconds or longer.

4.1.2.3.  Updating the BBR.RTprop Min Filter

   Upon transmitting each packet, BBR (or the associated transport
   protocol) stores in per-packet data the wall-clock transmission time
   of the packet (Now() returns the current wall-clock time):
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     packet.send_time = Now()

   For every ACK that acknowledges some data packets as delivered, BBR
   (or the associated transport protocol) calculates an RTT sample "rtt"
   as follows:

     packet.rtt = Now() - packet.send_time

   A BBR implementation MAY use a generic windowed min filter to track
   BBR.RTprop.  However, a significant savings in space can be achieved
   by using the same state to track BBR.RTprop and ProbeRTT timing, so
   this document describes this combined approach.  With this approach,
   on every ACK that provides an RTT sample BBR updates the BBR.RTprop
   estimator as follows:

     BBRUpdateRTprop()
       BBR.rtprop_expired =
         Now() > BBR.rtprop_stamp + RTpropFilterLen
       if (packet.rtt >= 0 and
          (packet.rtt <= BBR.RTprop or BBR.rtprop_expired))
         BBR.RTprop = packet.rtt
         BBR.rtprop_stamp = Now()

   Here BBR.rtprop_expired is a boolean recording whether the BBR.RTprop
   has expired and is due for a refresh, via either an application idle
   period or a transition into ProbeRTT state.

4.2.  BBR Control Parameters

   BBR uses three distinct but interrelated control parameters: pacing
   rate, send quantum, and congestion window (cwnd).

4.2.1.  Pacing Rate

   To help match the packet-arrival rate to the bottleneck link's
   departure rate, BBR paces data packets.  Pacing enforces a maximum
   rate at which BBR schedules packets for transmission.  Pacing is the
   primary mechanism that BBR uses to control its sending behavior; BBR
   implementations MUST implement pacing.

   The sending host implements pacing by maintaining inter-packet
   spacing at the time each packet is scheduled for transmission,
   calculating the next transmission time for a packet for a given flow
   (here "next_send_time") as a function of the most recent packet size
   and the current pacing rate, as follows:

     next_send_time = Now() + packet.size / pacing_rate
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   To adapt to the bottleneck, in general BBR sets the pacing rate to be
   proportional to BBR.BtlBw, with a dynamic gain, or scaling factor of
   proportionality, called pacing_gain.

   When a BBR flow starts it has no BBR.BtlBw estimate.  So in this case
   it sets an initial pacing rate based on the transport sender
   implementation's initial congestion window ("InitialCwnd", e.g. from
   [RFC6298]), the initial SRTT (smoothed round-trip time) after the
   first non-zero RTT sample, and the initial pacing_gain:

     BBRInitPacingRate():
       nominal_bandwidth = InitialCwnd / (SRTT ? SRTT : 1ms)
       BBR.pacing_rate =  BBR.pacing_gain * nominal_bandwidth

   After initialization, on each data ACK BBR updates its pacing rate to
   be proportional to BBR.BtlBw, as long as it estimates that it has
   filled the pipe (BBR.filled_pipe is true; see the "Startup" section
   below for details), or doing so increases the pacing rate.  Limiting
   the pacing rate updates in this way helps the connection probe
   robustly for bandwidth until it estimates it has reached its full
   available bandwidth ("filled the pipe").  In particular, this
   prevents the pacing rate from being reduced when the connection has
   only seen application-limited samples.  BBR updates the pacing rate
   on each ACK by executing the BBRSetPacingRate() step as follows:

     BBRSetPacingRateWithGain(pacing_gain):
       rate = pacing_gain * BBR.BtlBw
       if (BBR.filled_pipe || rate > BBR.pacing_rate)
         BBR.pacing_rate = rate

     BBRSetPacingRate():
       BBRSetPacingRateWithGain(BBR.pacing_gain)

4.2.2.  Send Quantum

   In order to amortize per-packet host overheads involved in the
   sending process, high-performance transport sender implementations
   often schedule an aggregate containing multiple packets (multiple
   MSS) worth of data as a single quantum (using TSO, GSO, or other
   offload mechanisms [DC13]).  The BBR congestion control algorithm
   makes this control decision explicitly, dynamically calculating a
   BBR.send_quantum control parameter that specifies the maximum size of
   these transmission aggregates.  This decision is based on a trade-
   off: a smaller BBR.send_quantum is preferred a lower data rates
   because it results in shorter packet bursts, shorter queues, lower
   queueing delays, and lower rates of packet loss; a bigger
   BBR.send_quantum can be required at higher data rates because it
   results in lower CPU overheads at the sending and receiving hosts,

https://datatracker.ietf.org/doc/html/rfc6298
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   who can ship larger amounts of data with a single trip through the
   networking stack.

   On each ACK, BBR runs BBRSetSendQuantum() to update BBR.send_quantum
   as follows:

     BBRSetSendQuantum():
       if (BBR.pacing_rate < 1.2 Mbps)
         BBR.send_quantum = 1 * MSS
       else if (BBR.pacing_rate < 24 Mbps)
         BBR.send_quantum  = 2 * MSS
       else
         BBR.send_quantum  = min(BBR.pacing_rate * 1ms, 64KBytes)

   A BBR implementation MAY use alternate approaches to select a
   BBR.send_quantum, as appropriate for the CPU overheads anticipated
   for senders and receivers, and buffering considerations anticipated
   in the network path.  However, for the sake of the network and other
   users, a BBR implementation SHOULD attempt to use the smallest
   feasible quanta.

4.2.3.  Congestion Window

   The congestion window, or cwnd, controls the maximum volume of data
   BBR allows in flight in the network at any time.  BBR's adapts the
   cwnd based on its model of the network path and the state machine's
   decisions about how to probe that path.

   By default, BBR grows its cwnd to meet its target cwnd,
   BBR.target_cwnd, which is scaled to adapt to the estimated BDP
   computed from its path model.  But BBR's selection of cwnd is
   designed to explicitly trade off among competing considerations that
   dynamically adapt to various conditions.  So in loss recovery BBR
   more conservatively adjusts its sending behavior based on more recent
   delivery samples, and if BBR needs to re-probe the current BBR.RTprop
   of the path then it cuts its cwnd accordingly.  The following
   sections describe the various considerations that impact cwnd.

4.2.3.1.  Initial cwnd

   At its core, BBR is about using measurements to build a model of the
   network path and then adapting control decisions to the path based on
   that model.  As such, the selection of the initial cwnd is considered
   to be outside the scope of the BBR algorithm, since at initialization
   there are no measurements yet upon which BBR can operate.  Thus, at
   initialization, BBR uses the transport sender implementation's
   initial congestion window (e.g. from [RFC6298] for TCP).

https://datatracker.ietf.org/doc/html/rfc6298


Cardwell, et al.         Expires January 4, 2018               [Page 16]



Internet-Draft                     BBR                         July 2017

4.2.3.2.  Target cwnd

   The BBR BBR.target_cwnd is the upper bound on the volume of data BBR
   allows in flight.  This bound is always in place, and dominates when
   all other considerations have been satisfied: the flow is not in loss
   recovery, does not need to probe BBR.RTprop, and has accumulated
   confidence in its model parameters by receiving enough ACKs to
   gradually grow the current cwnd to meet the BBR.target_cwnd.

   On each ACK, BBR calculates the BBR.target_cwnd as follows:

     BBRInflight(gain):
       if (BBR.RTprop == Inf)
         return InitialCwnd /* no valid RTT samples yet */
       quanta = 3*BBR.send_quantum
       estimated_bdp = BBR.BtlBw * BBR.RTprop
       return gain * estimated_bdp + quanta

     BBRUpdateTargetCwnd():
       BBR.target_cwnd = BBRInflight(BBR.cwnd_gain)

   The "estimated_bdp" term allows enough packets in flight to fully
   utilize the estimated BDP of the path, by allowing the flow to send
   at BBR.BtlBw for a duration of BBR.RTprop.  Scaling up the BDP by
   cwnd_gain, selected by the BBR state machine to be above 1.0 at all
   times, bounds in-flight data to a small multiple of the BDP, in order
   to handle common network and receiver pathologies, such as delayed,
   stretched, or aggregated ACKs [A15].  The "quanta" term allows enough
   quanta in flight on the sending and receiving hosts to reach full
   utilization even in high-throughput environments using offloading
   mechanisms.

4.2.3.3.  Minimum cwnd for Pipelining

   Normally (except in the immediate aftermath of entering loss
   recovery), BBR imposes a floor of BBRMinPipeCwnd (4 packets, i.e. 4 *
   MSSS).  This floor helps ensure that even at very low BDPs, and with
   a transport like TCP where a receiver may ACK only every alternate
   MSS of data, there are enough packets in flight to maintain full
   pipelining.  In particular BBR tries to allow at least 2 data packets
   in flight and ACKs for at least 2 data packets on the path from
   receiver to sender.

4.2.3.4.  Modulating cwnd in Loss Recovery

   BBR interprets loss as a hint that there may be recent changes in
   path behavior that are not yet fully reflected in its model of the
   path, and thus it needs to be more conservative.
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   Upon a retransmission timeout, meaning the sender thinks all in-
   flight packets are lost, BBR conservatively reduces cwnd to one
   packet (1 MSS) and sends a single packet.  Then BBR gradually
   increases cwnd using the normal approach outlined below in "Core cwnd
   Adjustment Mechanism".

   When a BBR sender detects packet loss but there are still packets in
   flight, on the first round of the loss-repair process BBR temporarily
   reduces the cwnd to match the current delivery rate as ACKs arrive.
   On second and later rounds of loss repair, it ensures the sending
   rate never exceeds twice the current delivery rate as ACKs arrive.

   When BBR exits loss recovery it restores the cwnd to the "last known
   good" value that cwnd held before entering recovery.  This applies
   equally whether the flow exits loss recovery because it finishes
   repairing all losses or because it executes an "undo" event after
   inferring that a loss recovery event was spurious.

   There are several ways to implement this high-level design for
   updating cwnd in loss recovery.  One is as follows:

   Upon retransmission timeout (RTO):

     BBR.prior_cwnd = BBRSaveCwnd()
     cwnd = 1

   Upon entering Fast Recovery, set cwnd to the number of packets still
   in flight (allowing at least one for a fast retransmit):

     BBR.prior_cwnd = BBRSaveCwnd()
     cwnd = packets_in_flight + max(packets_delivered, 1)
     BBR.packet_conservation = true

   Upon every ACK in Fast Recovery, run the following
   BBRModulateCwndForRecovery() steps, which help ensure packet
   conservation on the first round of recovery, and sending at no more
   than twice the current delivery rate on later rounds of recovery
   (given that "packets_delivered" packets were newly marked ACKed or
   SACKed and "packets_lost" were newly marked lost):

     BBRModulateCwndForRecovery():
       if (packets_lost > 0)
         cwnd = max(cwnd - packets_lost, 1)
       if (BBR.packet_conservation)
         cwnd = max(cwnd, packets_in_flight + packets_delivered)

   After one round-trip in Fast Recovery:
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     BBR.packet_conservation = false

   Upon exiting loss recovery (RTO recovery or Fast Recovery), either by
   repairing all losses or undoing recovery, BBR restores the best-known
   cwnd value we had upon entering loss recovery:

     BBR.packet_conservation = false
     BBRRestoreCwnd()

   The BBRSaveCwnd() and BBRRestoreCwnd() helpers help remember and
   restore the last-known good cwnd (the latest cwnd unmodulated by loss
   recovery or ProbeRTT), and is defined as follows:

     BBRSaveCwnd():
       if (not InLossRecovery() and BBR.state != ProbeRTT)
         return cwnd
       else
         return max(BBR.prior_cwnd, cwnd)

     BBRRestoreCwnd():
       cwnd = max(cwnd, BBR.prior_cwnd)

4.2.3.5.  Modulating cwnd in ProbeRTT

   If BBR decides it needs to enter the ProbeRTT state (see the
   "ProbeRTT" section below), its goal is to quickly reduce the volume
   of in-flight data and drain the bottleneck queue, thereby allowing
   measurement of BBR.RTprop.  To implement this mode, BBR bounds the
   cwnd to BBRMinPipeCwnd, the minimal value that allows pipelining (see
   the "Minimum cwnd for Pipelining" section, above):

     BBRModulateCwndForProbeRTT():
       if (BBR.state == ProbeRTT)
         cwnd = min(cwnd, BBRMinPipeCwnd)

4.2.3.6.  Core cwnd Adjustment Mechanism

   The network path and traffic traveling over it can make sudden
   dramatic changes.  To adapt to these changes smoothly and robustly,
   and reduce packet losses in such cases, BBR uses a conservative
   strategy.  When cwnd is above the BBR.target_cwnd derived from BBR's
   path model, BBR cuts the cwnd immediately to the target.  When cwnd
   is below BBR.target_cwnd, BBR raises the cwnd gradually and
   cautiously, increasing cwnd by no more than the amount of data
   acknowledged (cumulatively or selectively) upon each ACK.
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   Specifically, on each ACK that acknowledges "packets_delivered"
   packets as newly ACKed or SACKed, BBR runs the following BBRSetCwnd()
   steps to update cwnd:

     BBRSetCwnd():
       BBRUpdateTargetCwnd()
       BBRModulateCwndForRecovery()
       if (not BBR.packet_conservation) {
         if (BBR.filled_pipe)
           cwnd = min(cwnd + packets_delivered, BBR.target_cwnd)
         else if (cwnd < BBR.target_cwnd || BBR.delivered < InitialCwnd)
           cwnd = cwnd + packets_delivered
         cwnd = max(cwnd, BBRMinPipeCwnd)
       }
       BBRModulateCwndForProbeRTT()

   There are several considerations here.  If BBR has measured enough
   samples to achieve confidence that it has filled the pipe (see the
   description of BBR.filled_pipe in the "Startup" section below), then
   it increases its cwnd based on the number of packets delivered, while
   bounding its cwnd to be no larger than the BBR.target_cwnd adapted to
   the estimated BDP.  Otherwise, if the cwnd is below the target, or
   the sender has marked so little data delivered (less than
   InitialCwnd) that it does not yet judge its BBR.BtlBw estimate and
   BBR.target_cwnd as useful, then it increases cwnd without bounding it
   to be below the target.  Finally, BBR imposes a floor of
   BBRMinPipeCwnd in order to allow pipelining even with small BDPs (see
   the "Minimum cwnd for Pipelining" section, above).

4.3.  State Machine

   BBR implements a simple state machine that uses the network path
   model described above to guide its decisions, and the control
   parameters described above to enact its decisions.  At startup, BBR
   probes to build a model of the network path; to adapt to later
   changes to the path or its traffic, BBR must continue to probe to
   update its model.  If the available bottleneck bandwidth increases,
   BBR must send faster to discover this.  Likewise, if the actual
   round-trip propagation delay changes, this changes the BDP, and thus
   BBR must send slower to get inflight below the new BDP in order to
   measure the new BBR.RTprop.  Thus, BBR's state machine runs periodic,
   sequential experiments, sending faster to check for BBR.BtlBw
   increases or sending slower to check for BBR.RTprop decreases.  The
   frequency, magnitude, duration, and structure of these experiments
   differ depending on what's already known (startup or steady-state)
   and sending application behavior (intermittent or continuous).

   This state machine has several goals:
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   o  Achieve high throughput by efficiently utilizing available
      bandwidth.

   o  Achieve low latency by keeping queues bounded and small.

   o  Periodically send multiplicatively faster to probe the network to
      quickly discover newly-available bandwidth (in time proportional
      to the logarithm of the newly-available bandwidth).

   o  If needed, send slower in order to drain the bottleneck queue and
      probe the network to try to estimate the network's two-way
      propagation delay.

   o  Share bandwidth with other flows in an approximately fair manner.

   o  Feed samples to the BBR.BtlBw and BBR.RTprop estimators to refresh
      and update the model.

   BBR's state machine uses two control mechanisms.  First and foremost,
   it uses the pacing_gain (see the "Pacing Rate" section), which
   controls how fast packets are sent relative to BBR.BtlBw and is thus
   key to BBR's ability to learn.  A pacing_gain > 1 decreases inter-
   packet time time and increases inflight.  A pacing_gain < 1 has the
   opposite effect, increasing inter-packet time and generally
   decreasing inflight.  Second, if the state machine needs to quickly
   reduce inflight to a particular absolute value, it uses the cwnd.

   The following sections describe each state in turn.

4.3.1.  Initialization Steps

   Upon transport connection initialization, BBR executes the following
   steps:

     BBRInit():
       init_windowed_max_filter(filter=BBR.BtlBwFilter, value=0, time=0)
       BBR.rtprop = SRTT ? SRTT : Inf
       BBR.rtprop_stamp = Now()
       BBR.probe_rtt_done_stamp = 0
       BBR.probe_rtt_round_done = false
       BBR.packet_conservation = false
       BBR.prior_cwnd = 0
       BBR.idle_restart = false
       BBRInitRoundCounting()
       BBRInitFullPipe()
       BBRInitPacingRate()
       BBREnterStartup()
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4.3.2.  Startup

4.3.2.1.  Startup Dynamics

   When a BBR flow starts up, it performs its first (and most rapid)
   sequential probe/drain process.  Network link bandwidths currently
   span a range of at least 11 orders of magnitude, from a few bps to
   100 Gbps.  To quickly learn BBR.BtlBw, given this huge range to
   explore, BBR's Startup state does an exponential search of the rate
   space, doubling the sending rate each round.  This finds BBR.BtlBw in
   O(log_2(BDP)) round trips.

   To achieve this rapid probing in the smoothest possible fashion, upon
   entry into Startup state BBR sets BBR.pacing_gain and BBR.cwnd_gain
   to BBRHighGain = 2/ln(2) ~= 2.89, the minimum gain value that will
   allow the sending rate to double each round.  Hence, when
   initializing a connection, or upon any later entry into Startup mode,
   BBR executes the following BBREnterStartup() steps:

     BBREnterStartup():
       BBR.state = Startup
       BBR.pacing_gain = BBRHighGain
       BBR.cwnd_gain = BBRHighGain

   As BBR grows its sending rate rapidly, it obtains higher delivery
   rate samples, BBR.BtlBw increases, and the pacing rate and cwnd both
   adapt by smoothly growing in proportion.  Once the pipe is full, a
   queue generally forms, but the cwnd_gain bounds any queue to
   (cwnd_gain - 1) * BDP, and the immediately following Drain state is
   designed to quickly drain that queue.

4.3.2.2.  Estimating When Startup has Filled the Pipe

   During Startup, BBR estimates whether the pipe is full by looking for
   a plateau in the BBR.BtlBw estimate.  The output of this "full pipe"
   estimator is tracked in BBR.filled_pipe, a boolean that records
   whether BBR estimates that it has ever fully utilized its available
   bandwidth ("filled the pipe").  If BBR notices that there are several
   (three) rounds where attempts to double the delivery rate actually
   result in little increase (less than 25 percent), then it estimates
   that it has reached BBR.BtlBw, sets BBR.filled_pipe to true, exits
   Startup and enters Drain.

   Upon connection initialization the full pipe estimator runs:
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     BBRInitFullPipe():
       BBR.filled_pipe = false
       BBR.full_bw = 0
       BBR.full_bw_count = 0

   Once per round trip, upon an ACK that acknowledges new data, and when
   the delivery rate sample is not application-limited (see
   [draft-cheng-iccrg-delivery-rate-estimation]), BBR runs the "full
   pipe" estimator, if needed:

     BBRCheckFullPipe():
       if BBR.filled_pipe or
          not BBR.round_start or rs.is_app_limited
         return  // no need to check for a full pipe now
       if (BBR.BtlBw >= BBR.full_bw * 1.25)  // BBR.BtlBw still growing?
         BBR.full_bw = BBR.BtlBw    // record new baseline level
         BBR.full_bw_count = 0
         return
       BBR.full_bw_count++ // another round w/o much growth
       if (BBR.full_bw_count >= 3)
         BBR.filled_pipe = true

   BBR waits three rounds in order to have solid evidence that the
   sender is not detecting a delivery-rate plateau that was temporarily
   imposed by the receive window.  Allowing three rounds provides time
   for the receiver's receive-window autotuning to open up the receive
   window and for the BBR sender to realize that BBR.BtlBw should be
   higher: in the first round the receive-window autotuning algorithm
   grows the receive window; in the second round the sender fills the
   higher receive window; in the third round the sender gets higher
   delivery-rate samples.  This three-round threshold was validated by
   YouTube experimental data.

4.3.3.  Drain

   In Startup, when the BBR "full pipe" estimator estimates that BBR has
   filled the pipe, BBR switches to its Drain state.  In Drain, BBR aims
   to quickly drain any queue created in Startup by switching to a
   pacing_gain well below 1.0; specifically, it uses a pacing_gain that
   is the inverse of the value used during Startup, which drains the
   queue in one round:

     BBREnterDrain():
       BBR.state = Drain
       BBR.pacing_gain = 1/BBRHighGain  // pace slowly
       BBR.cwnd_gain = bbr_high_gain    // maintain cwnd

https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation
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   In Drain, when the number of packets in flight matches the estimated
   BDP, meaning BBR estimates that the queue has been fully drained but
   the pipe is still full, then BBR leaves Drain and enters ProbeBW.  To
   implement this, upon every ACK BBR executes:

     BBRCheckDrain():
       if (BBR.state == Startup and BBR.filled_pipe)
         BBREnterDrain()
       if (BBR.state == Drain and packets_in_flight <= BBRInflight(1.0))
         BBREnterProbeBW()  // we estimate queue is drained

4.3.4.  ProbeBW

4.3.4.1.  Gain Cycling Dynamics

   BBR flows spend the vast majority of their time in ProbeBW state,
   probing for bandwidth using an approach called gain cycling, which
   helps BBR flows reach high throughput, low queuing delay, and
   convergence to a fair share of bandwidth.  With gain cycling, BBR
   cycles through a sequence of values for the pacing_gain.  It uses an
   eight-phase cycle with the following pacing_gain values: 5/4, 3/4, 1,
   1, 1, 1, 1, 1.  Each phase normally lasts for roughly BBR.RTprop.

   In phase 0 of the gain cycle, BBR probes for more bandwidth by using
   a pacing_gain of 5/4, which gradually raises inflight.  It does this
   until the elapsed time in the phase has been at least BBR.RTprop and
   either inflight has reached 5/4 * estimated_BDP (which may take
   longer than BBR.RTprop if BBR.RTprop is low) or some packets have
   been lost (suggesting that perhaps the path cannot actually hold 5/4
   * estimated_BDP in flight).

   Next, phase 1 of the gain cycle is designed to drain any queue at the
   bottleneck (the likely outcome of phase 0 if the pipe was full) by
   using a pacing_gain of 3/4, chosen to be the same distance below 1
   that 5/4 is above 1.  This phase lasts until either a full BBR.RTprop
   has elapsed or inflight drops below estimated_BDP (suggesting that
   the queue has drained earlier than expected, perhaps because of
   application-limited behavior).

   Finally, phases 2 through 7 of the gain cycle are designed to cruise
   with a short queue and full utilization by using a pacing_gain of
   1.0.  Each of these phases lasts for the BBR.RTprop.

   The average gain across all phases is 1.0 because ProbeBW aims for
   its average pacing rate to equal BBR.BtlBw, the estimated available
   bandwidth, and thus maintain high utilization, while maintaining a
   small, well-bounded queue.
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   Note that while gain cycling varies the pacing_gain value, during
   ProbeBW the cwnd_gain stays constant at two, since delayed,
   stretched, or aggregated acks can strike at any time (see the "Target
   cwnd" section).

4.3.4.2.  Gain Cycling Randomization

   To improve mixing and fairness, and to reduce queues when multiple
   BBR flows share a bottleneck, BBR randomizes the phases of ProbeBW
   gain cycling by randomly picking an initial phase, from among all but
   the 3/4 phase, when entering ProbeBW.

   Why not start cycling with 3/4?  The main advantage of the 3/4
   pacing_gain is to drain any queue that can be created by running a
   5/4 pacing_gain when the pipe is already full.  When exiting Drain or
   ProbeRTT and entering ProbeBW, there is typically no queue to drain,
   so the 3/4 gain does not provide that advantage.  Using 3/4 in those
   contexts only has a cost: a link utilization for that round of 3/4
   instead of 1.  Since starting with 3/4 would have a cost but no
   benefit, and since entering ProbeBW happens at the start of any
   connection long enough to have a Drain, BBR uses this small
   optimization.

4.3.4.3.  Gain Cycling Algorithm

   BBR's ProbeBW gain cycling algorithm operates as follows.

   Upon entering ProbeBW, BBR (re)starts gain cycling with the
   following:

     BBREnterProbeBW():
       BBR.state = ProbeBW
       BBR.pacing_gain = 1
       BBR.cwnd_gain = 2
       BBR.cycle_index = BBRGainCycleLen - 1 - random_int_in_range(0..6)
       BBRAdvanceCyclePhase()

   On each ACK BBR runs BBRCheckCyclePhase(), to see if it's time to
   advance to the next gain cycle phase:
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     BBRCheckCyclePhase():
       if (BBR.sate == ProbeBW and BBRIsNextCyclePhase()
         BBRAdvanceCyclePhase()

     BBRAdvanceCyclePhase():
       BBR.cycle_stamp = Now()
       BBR.cycle_index = (BBR.cycle_index + 1) % BBRGainCycleLen
       pacing_gain_cycle = [5/4, 3/4, 1, 1, 1, 1, 1, 1]
       BBR.pacing_gain = pacing_gain_cycle[BBR.cycle_index]

     BBRIsNextCyclePhase():
       is_full_length = (Now() - BBR.cycle_stamp) > BBR.RTprop
       if (BBR.pacing_gain == 1)
         return is_full_length
       if (BBR.pacing_gain > 1)
         return is_full_length and
                   (packets_lost > 0 or
                    prior_inflight >= BBRInflight(BBR.pacing_gain))
       else  //  (BBR.pacing_gain < 1)
         return is_full_length or
                    prior_inflight <= BBRInflight(1)

   Here, "prior_inflight" is the amount of data that was in flight
   before processing this ACK.

4.3.4.4.  Restarting From Idle

   When restarting from idle, BBR leaves its cwnd as-is and paces
   packets at exactly BBR.BtlBw, aiming to return as quickly as possible
   to its target operating point of rate balance and a full pipe.
   Specifically, if the flow's BBR.state is ProbeBW, and the flow is
   application-limited, and there are no packets in flight currently,
   then at the moment the flow sends one or more packets BBR sets
   BBR.pacing_rate to exactly BBR.BtlBw.  More precisely, the BBR
   algorithm takes the following steps in BBRHandleRestartFromIdle()
   before sending a packet for a flow:

     BBRHandleRestartFromIdle():
       if (packets_in_flight == 0 and C.app_limited)
         BBR.idle_start = true
         if (BBR.state == ProbeBW)
           BBRSetPacingRateWithGain(1)

   The "Restarting Idle Connections" section of [RFC5681] suggests
   restarting from idle by slow-starting from the initial window.
   However, this approach was assuming a congestion control algorithm
   that had no estimate of the bottleneck bandwidth and no pacing, and
   thus resorted to relying on slow-starting driven by an ACK clock.

https://datatracker.ietf.org/doc/html/rfc5681
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   The long (log_2(BDP)*RTT) delays required to reach full utilization
   with that "slow start after idle" approach caused many large
   deployments to disable this mechanism, resulting in a "BDP-scale
   line-rate burst" approach instead.  Instead of these two approaches,
   BBR restarts by pacing at BBR.BtlBw, typically achieving approximate
   rate balance and a full pipe after only one BBR.RTprop has elapsed.

4.3.5.  ProbeRTT

   To help probe for BBR.RTprop, BBR flows cooperate to periodically
   drain the bottleneck queue using a state called ProbeRTT, when
   needed.  In any state other than ProbeRTT itself, if the RTProp
   estimate has not been updated (i.e., by getting a lower RTT
   measurement) for more than ProbeRTTInterval = 10 seconds, then BBR
   enters ProbeRTT and reduces the cwnd to a minimal value,
   BBRMinPipeCwnd (four packets).  After maintaining BBRMinPipeCwnd or
   fewer packets in flight for at least ProbeRTTDuration (200 ms) and
   one round trip, BBR leaves ProbeRTT and transitions to either Startup
   or ProbeBW, depending on whether it estimates the pipe was filled
   already.

   BBR is designed to spend the vast majority of its time (about 98
   percent) in ProbeBW and the rest in ProbeRTT, based on a set of
   tradeoffs.  ProbeRTT lasts long enough (at least ProbeRTTDuration =
   200 ms) to allow flows with different RTTs to have overlapping
   ProbeRTT states, while still being short enough to bound the
   throughput penalty of ProbeRTT's cwnd capping to roughly 2 percent
   (200 ms/10 seconds).

   As discussed in the "BBR.RTprop Min Filter" section above, BBR's
   BBR.RTprop filter window, RTpropFilterLen, and time interval between
   ProbeRTT states, ProbeRTTInterval, work in concert.  A BBR
   implementation MUST use a RTpropFilterLen equal to or longer than
   ProbeRTTInterval, and to allow coordination with other BBR flows MUST
   use the standard ProbeRTTInterval of 10 secs.  It is RECOMMENDED to
   use 10 secs for both RTpropFilterLen and ProbeRTTInterval.  An
   RTpropFilterLen of 10 secs is short enough to allow quick convergence
   if traffic levels or routes change, but long enough so that
   interactive applications (e.g., Web pages, remote procedure calls,
   video chunks) often have natural silences or low-rate periods within
   the window where the flow's rate is low enough or long enough to
   drain its queue in the bottleneck.  Then the BBR.RTprop filter
   opportunistically picks up these BBR.RTprop measurements, and RTProp
   refreshes without requiring ProbeRTT.  This way, flows typically need
   only pay the 2 percent throughput penalty if there are multiple bulk
   flows busy sending over the entire ProbeRTTInterval window.
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   On every ACK BBR executes BBRCheckProbeRTT() to handle the steps
   related to the ProbeRTT state as follows:

     BBRCheckProbeRTT():
       if (BBR.state != ProbeRTT and
           BBR.rtprop_expired and
           not BBR.idle_restart)
         BBREnterProbeRTT()
         BBRSaveCwnd()
         BBR.probe_rtt_done_stamp = 0
       if (BBR.state == ProbeRTT)
         BBRHandleProbeRTT()
       BBR.idle_restart = false

     BBREnterProbeRTT():
       BBR.state = ProbeRTT
       BBR.pacing_gain = 1
       BBR.cwnd_gain = 1

     BBRHandleProbeRTT():
       /* Ignore low rate samples during ProbeRTT: */
       C.app_limited =
         (BW.delivered + packets_in_flight) ? : 1
       if (BBR.probe_rtt_done_stamp == 0 and
           packets_in_flight <= BBRMinPipeCwnd)
         BBR.probe_rtt_done_stamp =
           Now() + ProbeRTTDuration
         BBR.probe_rtt_round_done = false
         BBR.next_round_delivered = BBR.delivered
       else if (BBR.probe_rtt_done_stamp != 0)
         if (BBR.round_start)
           BBR.probe_rtt_round_done = true
         if (BBR.probe_rtt_round_done and
             Now() > BBR.probe_rtt_done_stamp)
           BBR.rtprop_stamp = Now()
           BBRRestoreCwnd()
           BBRExitProbeRTT()

     BBRExitProbeRTT():
       if (BBR.filled_pipe)
         BBREnterProbeBW()
       else
         BBREnterStartup()

   When restarting from idle (BBR.idle_restart is true) and finding that
   the BBR.RTprop has expired, BBR does not enter ProbeRTT; the idleness
   is deemed a sufficient attempt to coordinate to drain the queue.
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   The critical point is that before BBR raises its BBR.RTprop estimate
   (which will in turn raise its cwnd), it must first enter ProbeRTT to
   make a concerted and coordinated effort to drain the bottleneck queue
   and measure the BBR.RTprop.  This allows the BBR.RTprop estimates of
   ensembles of BBR flows to stay well-anchored in reality, avoiding
   feedback loops of ever-increasing queues and RTT samples.

5.  Implementation Status

   This section records the status of known implementations of the
   algorithm defined by this specification at the time of posting of
   this Internet-Draft, and is based on a proposal described in
   [RFC7942].  The description of implementations in this section is
   intended to assist the IETF in its decision processes in progressing
   drafts to RFCs.  Please note that the listing of any individual
   implementation here does not imply endorsement by the IETF.
   Furthermore, no effort has been spent to verify the information
   presented here that was supplied by IETF contributors.  This is not
   intended as, and must not be construed to be, a catalog of available
   implementations or their features.  Readers are advised to note that
   other implementations may exist.

   According to [RFC7942], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".

   As of the time of writing, the following implementations of BBR have
   been publicly released:

   o  Linux TCP

      *  Source code URL:

         +  https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/lin
ux.git/tree/net/ipv4/tcp_bbr.c

      *  Source: Google

      *  Maturity: production

      *  License: dual-licensed: GPLv2 / BSD

      *  Contact: https://groups.google.com/d/forum/bbr-dev

      *  Last updated: June 30, 2017

https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_bbr.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_bbr.c
https://groups.google.com/d/forum/bbr-dev
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   o  QUIC

      *  Source code URLs:

         +  https://chromium.googlesource.com/chromium/src/net/+/master/
            quic/core/congestion_control/bbr_sender.cc

         +  https://chromium.googlesource.com/chromium/src/net/+/master/
            quic/core/congestion_control/bbr_sender.h

      *  Source: Google

      *  Maturity: production

      *  License: BSD-style

      *  Contact: https://groups.google.com/d/forum/bbr-dev

      *  Last updated: June 30, 2017

6.  Security Considerations

   This proposal makes no changes to the underlying security of
   transport protocols or congestion control algorithms.  BBR shares the
   same security considerations as the existing standard congestion
   control algorithm [RFC5681].

7.  IANA Considerations

   This document has no IANA actions.  Here we are using that phrase,
   suggested by [RFC5226], because BBR does not modify or extend the
   wire format of any network protocol, nor does it add new dependencies
   on assigned numbers.  BBR involves only a change to the congestion
   control algorithm of a transport sender, and does not involve changes
   in the network, the receiver, or any network protocol.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.
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