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BBR Congestion Control

Abstract

This document specifies the BBR congestion control algorithm. BBR

("Bottleneck Bandwidth and Round-trip propagation time") uses recent

measurements of a transport connection's delivery rate, round-trip

time, and packet loss rate to build an explicit model of the network

path. BBR then uses this model to control both how fast it sends

data and the maximum volume of data it allows in flight in the

network at any time. Relative to loss-based congestion control

algorithms such as Reno [RFC5681] or CUBIC [RFC8312], BBR offers

substantially higher throughput for bottlenecks with shallow buffers

or random losses, and substantially lower queueing delays for

bottlenecks with deep buffers (avoiding "bufferbloat"). BBR can be

implemented in any transport protocol that supports packet-delivery

acknowledgment. Thus far, open source implementations are available

for TCP [RFC793] and QUIC [RFC9000]. This document specifies version

2 of the BBR algorithm, also sometimes referred to as BBRv2 or bbr2.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.
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1. Introduction

The Internet has traditionally used loss-based congestion control

algorithms like Reno ([Jac88], [Jac90], [WS95] [RFC5681]) and CUBIC

([HRX08], [RFC8312]). These algorithms worked well for many years

because they were sufficiently well-matched to the prevalent range

of bandwidth-delay products and degrees of buffering in Internet

paths. As the Internet has evolved, loss-based congestion control is

increasingly problematic in several important scenarios:

Shallow buffers: In shallow buffers, packet loss can happen

even when a link has low utilization. With high-speed, long-
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haul links employing commodity switches with shallow buffers,

loss-based congestion control can cause abysmal throughput

because it overreacts, multiplicatively decreasing the sending

rate upon packet loss, and only slowly growing its sending rate

thereafter. This can happen even if the packet loss arises from

transient traffic bursts when the link is mostly idle.

Deep buffers: At the edge of today's Internet, loss-based

congestion control can cause the problem of "bufferbloat", by

repeatedly filling deep buffers in last-mile links and causing

high queuing delays.

Dynamic traffic workloads: With buffers of any depth, dynamic

mixes of newly-entering flows or flights of data from recently

idle flows can cause frequent packet loss. In such scenarios

loss-based congestion control can fail to maintain its fair

share of bandwidth, leading to poor application performance.

In both the shallow-buffer (1.) or dynamic-traffic (3.) scenarios

mentioned above it is difficult to achieve full throughput with

loss-based congestion control in practice: for CUBIC, sustaining

10Gbps over 100ms RTT needs a packet loss rate below 0.000003%

(i.e., more than 40 seconds between packet losses), and over a 100ms

RTT path a more feasible loss rate like 1% can only sustain at most

3 Mbps [RFC8312]. These limitations apply no matter what the

bottleneck link is capable of or what the connection's fair share

is. Furthermore, failure to reach the fair share can cause poor

throughpout and poor tail latency for latency-sensitive

applications.

The BBR ("Bottleneck Bandwidth and Round-trip propagation time")

congestion control algorithm is a model-based algorithm that takes

an approach different from loss-based congestion control: BBR uses

recent measurements of a transport connection's delivery rate,

round-trip time, and packet loss rate to build an explicit model of

the network path, including its estimated available bandwidth,

bandwidth-delay product, and the maximum volume of data that the

connection can place in-flight in the network without causing

excessive queue pressure. It then uses this model in order to guide

its control behavior in seeking high throughput and low queue

pressure.

This document describes the current version of the BBR algorithm,

BBRv2. The previous version of the algorithm, BBRv1, was described

previously at a high level [CCGHJ16][CCGHJ17]. The implications of

BBR in allowing high utilization of high-speed networks with shallow

buffers have been discussed in other work [MM19]. Active work on the

BBR algorithm is continuing.
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This document is organized as follows. Section 2 provides various

definitions that will be used throughout this document. Section 3

provides an overview of the design of the BBR algorithm, and section

4 describes the BBR algorithm in detail, including BBR's network

path model, control parameters, and state machine. Section 5

describes the implementation status, section 6 describes security

considerations, section 7 notes that there are no IANA

considerations, and section 8 closes with Acknowledgments.

2. Terminology

This document defines state variables and constants for the BBR

algorithm.

The variables starting with C, P, or rs not defined below are

defined in [draft-cheng-iccrg-delivery-rate-estimation].

2.1. Transport Connection State

C.delivered: The total amount of data (tracked in octets or in

packets) delivered so far over the lifetime of the transport

connection C.

SMSS: The Sender Maximum Segment Size.

is_cwnd_limited: True if the connection has fully utilized its cwnd

at any point in the last packet-timed round trip.

InitialCwnd: The initial congestion window set by the transport

protocol implementation for the connection at initialization time.

2.2. Per-Packet State

packet.delivered: C.delivered when the given packet was sent by

transport connection C.

packet.departure_time: The earliest pacing departure time for the

given packet.

packet.tx_in_flight: The volume of data that was estimated to be in

flight at the time of the transmission of the packet.

2.3. Per-ACK Rate Sample State

rs.delivered: The volume of data delivered between the transmission

of the packet that has just been ACKed and the current time.

rs.delivery_rate: The delivery rate (aka bandwidth) sample obtained

from the packet that has just been ACKed.
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rs.rtt: The RTT sample calculated based on the most recently-sent

segment of the segments that have just been ACKed.

rs.newly_acked: The volume of data cumulatively or selectively

acknowledged upon the ACK that was just received. (This quantity is

referred to as "DeliveredData" in [RFC6937].)

rs.newly_lost: The volume of data newly marked lost upon the ACK

that was just received.

rs.tx_in_flight: The volume of data that was estimated to be in

flight at the time of the transmission of the packet that has just

been ACKed (the most recently sent segment among segments ACKed by

the ACK that was just received).

rs.lost: The volume of data that was declared lost between the

transmission and acknowledgement of the packet that has just been

ACKed (the most recently sent segment among segments ACKed by the

ACK that was just received).

2.4. Output Control Parameters

cwnd: The transport sender's congestion window, which limits the

amount of data in flight.

BBR.pacing_rate: The current pacing rate for a BBR flow, which

controls inter-packet spacing.

BBR.send_quantum: The maximum size of a data aggregate scheduled and

transmitted together.

2.5. Pacing State and Parameters

BBR.pacing_gain: The dynamic gain factor used to scale BBR.bw to

produce BBR.pacing_rate.

BBRPacingMarginPercent: The static discount factor of 1% used to

scale BBR.bw to produce BBR.pacing_rate.

BBR.next_departure_time: The earliest pacing departure time for the

next packet BBR schedules for transmission.

2.6. cwnd State and Parameters

BBR.cwnd_gain: The dynamic gain factor used to scale the estimated

BDP to produce a congestion window (cwnd).

BBRStartupPacingGain: A constant specifying the minimum gain value

for calculating the pacing rate that will allow the sending rate to
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double each round (4*ln(2) ~= 2.77) [BBRStartupPacingGain]; used in

Startup mode for BBR.pacing_gain.

BBRStartupCwndGain: A constant specifying the minimum gain value for

calculating the cwnd that will allow the sending rate to double each

round (2.0); used in Startup mode for BBR.cwnd_gain.

BBR.packet_conservation: A boolean indicating whether BBR is

currently using packet conservation dynamics to bound cwnd.

2.7. General Algorithm State

BBR.state: The current state of a BBR flow in the BBR state machine.

BBR.round_count: Count of packet-timed round trips elapsed so far.

BBR.round_start: A boolean that BBR sets to true once per packet-

timed round trip, on ACKs that advance BBR.round_count.

BBR.next_round_delivered: packet.delivered value denoting the end of

a packet-timed round trip.

BBR.idle_restart: A boolean that is true if and only if a connection

is restarting after being idle.

2.8. Core Algorithm Design Parameters

BBRLossThresh: The maximum tolerated per-round-trip packet loss rate

when probing for bandwidth (the default is 2%).

BBRBeta: The default multiplicative decrease to make upon each round

trip during which the connection detects packet loss (the value is

0.7).

BBRHeadroom: The multiplicative factor to apply to BBR.inflight_hi

when attempting to leave free headroom in the path (e.g. free space

in the bottleneck buffer or free time slots in the bottleneck link)

that can be used by cross traffic (the value is 0.85).

BBRMinPipeCwnd: The minimal cwnd value BBR targets, to allow

pipelining with TCP endpoints that follow an "ACK every other

packet" delayed-ACK policy: 4 * SMSS.

2.9. Network Path Model Parameters

2.9.1. Data Rate Network Path Model Parameters

The data rate model parameters together estimate both the sending

rate required to reach the full bandwidth available to the flow
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(BBR.max_bw), and the maximum pacing rate control parameter that is

consistent with the queue pressure objective (BBR.bw).

BBR.max_bw: The windowed maximum recent bandwidth sample - obtained

using the BBR delivery rate sampling algorithm [draft-cheng-iccrg-

delivery-rate-estimation] - measured during the current or previous

bandwidth probing cycle (or during Startup, if the flow is still in

that state). (Part of the long-term model.)

BBR.bw_hi: The long-term maximum sending bandwidth that the

algorithm estimates will produce acceptable queue pressure, based on

signals in the current or previous bandwidth probing cycle, as

measured by loss. (Part of the long-term model.)

BBR.bw_lo: The short-term maximum sending bandwidth that the

algorithm estimates is safe for matching the current network path

delivery rate, based on any loss signals in the current bandwidth

probing cycle. This is generally lower than max_bw or bw_hi (thus

the name). (Part of the short-term model.)

BBR.bw: The maximum sending bandwidth that the algorithm estimates

is appropriate for matching the current network path delivery rate,

given all available signals in the model, at any time scale. It is

the min() of max_bw, bw_hi, and bw_lo.

2.9.2. Data Volume Network Path Model Parameters

The data volume model parameters together estimate both the volume

of in-flight data required to reach the full bandwidth available to

the flow (BBR.max_inflight), and the maximum volume of data that is

consistent with the queue pressure objective (cwnd).

BBR.min_rtt: The windowed minimum round-trip time sample measured

over the last MinRTTFilterLen = 10 seconds. This attempts to

estimate the two-way propagation delay of the network path when all

connections sharing a bottleneck are using BBR, but also allows BBR

to estimate the value required for a bdp estimate that allows full

throughput if there are legacy loss-based Reno or CUBIC flows

sharing the bottleneck.

BBR.bdp: The estimate of the network path's BDP (Bandwidth-Delay

Product), computed as: BBR.bdp = BBR.bw * BBR.min_rtt.

BBR.extra_acked: A volume of data that is the estimate of the recent

degree of aggregation in the network path.

BBR.offload_budget: The estimate of the minimum volume of data

necessary to achieve full throughput when using sender (TSO/GSO) and

receiver (LRO, GRO) host offload mechanisms.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



BBR.max_inflight: The estimate of the volume of in-flight data

required to fully utilize the bottleneck bandwidth available to the

flow, based on the BDP estimate (BBR.bdp), the aggregation estimate

(BBR.extra_acked), the offload budget (BBR.offload_budget), and

BBRMinPipeCwnd.

BBR.inflight_hi: Analogous to BBR.bw_hi, the long-term maximum

volume of in-flight data that the algorithm estimates will produce

acceptable queue pressure, based on signals in the current or

previous bandwidth probing cycle, as measured by loss. That is, if a

flow is probing for bandwidth, and observes that sending a

particular volume of in-flight data causes a loss rate higher than

the loss rate objective, it sets inflight_hi to that volume of data.

(Part of the long-term model.)

BBR.inflight_lo: Analogous to BBR.bw_lo, the short-term maximum

volume of in-flight data that the algorithm estimates is safe for

matching the current network path delivery process, based on any

loss signals in the current bandwidth probing cycle. This is

generally lower than max_inflight or inflight_hi (thus the name).

(Part of the short-term model.)

2.10. State for Responding to Congestion

BBR.bw_latest: a 1-round-trip max of delivered bandwidth

(rs.delivery_rate).

BBR.inflight_latest: a 1-round-trip max of delivered volume of data

(rs.delivered).

2.11. Estimating BBR.max_bw

BBR.MaxBwFilter: The filter for tracking the maximum recent

rs.delivery_rate sample, for estimating BBR.max_bw.

MaxBwFilterLen: The filter window length for BBR.MaxBwFilter = 2

(representing up to 2 ProbeBW cycles, the current cycle and the

previous full cycle).

BBR.cycle_count: The virtual time used by the BBR.max_bw filter

window. Note that BBR.cycle_count only needs to be tracked with a

single bit, since the BBR.MaxBwFilter only needs to track samples

from two time slots: the previous ProbeBW cycle and the current

ProbeBW cycle.

2.12. Estimating BBR.extra_acked

BBR.extra_acked_interval_start: the start of the time interval for

estimating the excess amount of data acknowledged due to aggregation

effects.
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BBR.extra_acked_delivered: the volume of data marked as delivered

since BBR.extra_acked_interval_start.

BBR.ExtraACKedFilter: the max filter tracking the recent maximum

degree of aggregation in the path.

BBRExtraAckedFilterLen = The window length of the

BBR.ExtraACKedFilter max filter window: 10 (in units of packet-timed

round trips).

2.13. Startup Parameters and State

BBR.filled_pipe: A boolean that records whether BBR estimates that

it has ever fully utilized its available bandwidth ("filled the

pipe").

BBR.full_bw: A recent baseline BBR.max_bw to estimate if BBR has

"filled the pipe" in Startup.

BBR.full_bw_count: The number of non-app-limited round trips without

large increases in BBR.full_bw.

2.14. ProbeRTT and min_rtt Parameters and State

2.14.1. Parameters for Estimating BBR.min_rtt

BBR.min_rtt_stamp: The wall clock time at which the current

BBR.min_rtt sample was obtained.

MinRTTFilterLen: A constant specifying the length of the BBR.min_rtt

min filter window, MinRTTFilterLen is 10 secs.

2.14.2. Parameters for Scheduling ProbeRTT

BBRProbeRTTCwndGain = A constant specifying the gain value for

calculating the cwnd during ProbeRTT: 0.5 (meaning that ProbeRTT

attempts to reduce in-flight data to 50% of the estimated BDP).

ProbeRTTDuration: A constant specifying the minimum duration for

which ProbeRTT state holds inflight to BBRMinPipeCwnd or fewer

packets: 200 ms.

ProbeRTTInterval: A constant specifying the minimum time interval

between ProbeRTT states: 5 secs.

BBR.probe_rtt_min_delay: The minimum RTT sample recorded in the last

ProbeRTTInterval.

BBR.probe_rtt_min_stamp: The wall clock time at which the current

BBR.probe_rtt_min_delay sample was obtained.
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BBR.probe_rtt_expired: A boolean recording whether the

BBR.probe_rtt_min_delay has expired and is due for a refresh with an

application idle period or a transition into ProbeRTT state.

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Design Overview

3.1. High-Level Design Goals

The high-level goal of BBR is to achieve both:

The full throughput (or approximate fair share thereof)

available to a flow

Achieved in a fast and scalable manner (using bandwidth in

O(log(BDP)) time).

Achieved with average packet loss rates of up to 1%.

Low queue pressure (low queuing delay and low packet loss).

These goals are in tension: sending faster improves the odds of

achieving (1) but reduces the odds of achieving (2), while sending

slower improves the odds of achieving (2) but reduces the odds of

achieving (1). Thus the algorithm cannot maximize throughput or

minimize queue pressure independently, and must jointly optimize

both.

To try to achieve these goals, and seek an operating point with high

throughput and low delay [K79] [GK81], BBR aims to adapt its sending

process to match the network delivery process, in two dimensions:

data rate: the rate at which the flow sends data should ideally

match the rate at which the network delivers the flow's data

(the available bottleneck bandwidth)

data volume: the amount of unacknowledged data in flight in the

network should ideally match the bandwidth-delay product (BDP)

of the path

Both the control of the data rate (via the pacing rate) and data

volume (directly via the congestion window or cwnd; and indirectly

via the pacing rate) are important. A mismatch in either dimension

can cause the sender to fail to meet its high-level design goals:

volume mismatch: If a sender perfectly matches its sending rate

to the available bandwidth, but its volume of in-flight data
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exceeds the BDP, then the sender can maintain a large standing

queue, increasing network latency and risking packet loss.

rate mismatch: If a sender's volume of in-flight data matches

the BDP perfectly but its sending rate exceeds the available

bottleneck bandwidth (e.g. the sender transmits a BDP of data

in an unpaced fashion, at the sender's link rate), then up to a

full BDP of data can burst into the bottleneck queue, causing

high delay and/or high loss.

3.2. Algorithm Overview

Based on the rationale above, BBR tries to spend most of its time

matching its sending process (data rate and data volume) to the

network path's delivery process. To do this, it explores the 2-

dimensional control parameter space of (1) data rate ("bandwidth" or

"throughput") and (2) data volume ("in-flight data"), with a goal of

finding the maximum values of each control parameter that are

consistent with its objective for queue pressure.

Depending on what signals a given network path manifests at a given

time, the objective for queue pressure is measured in terms of the

most strict among:

the amount of data that is estimated to be queued in the

bottleneck buffer (data_in_flight - estimated_BDP): the objective

is to maintain this amount at or below 1.5 * estimated_BDP

the packet loss rate: the objective is a maximum per-round-trip

packet loss rate of BBRLossThresh=2% (and an average packet loss

rate considerably lower)

3.3. State Machine Overview

BBR varies its control parameters with a simple state machine that

aims for high throughput, low latency, and an approximately fair

sharing of bandwidth, while maintaining an up-to-date model of the

network path.

A BBR flow starts in the Startup state, and ramps up its sending

rate quickly, to rapidly estimate the maximum available bandwidth

(BBR.max_bw). When it estimates the bottleneck bandwidth has been

fully utilized, it enters the Drain state to drain the estimated

queue. In steady state a BBR flow mostly uses the ProbeBW states, to

periodically briefly send faster to probe for higher capacity and

then briefly send slower to try to drain any resulting queue. If

needed, it briefly enters the ProbeRTT state, to lower the sending

rate to probe for lower BBR.min_rtt samples. The detailed behavior

for each state is described below.
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3.4. Network Path Model Overview

3.4.1. High-Level Design Goals for the Network Path Model

At a high level, the BBR model is trying to reflect two aspects of

the network path:

Model what's required for achieving full throughput: Estimate the

minimum data rate and data volume required to fully utilize the

fair share of the bottleneck bandwidth available to the flow.

This must incorporate estimates of the maximum available

bandwidth (BBR.max_bw), the BDP of the path (BBR.bdp), and the

requirements of any offload features on the end hosts or

mechanisms on the network path that produce aggregation effects

(summing up to BBR.max_inflight).

Model what's permitted for achieving low queue pressure: Estimate

the maximum data rate (BBR.bw) and data volume (cwnd) consistent

with the queue pressure objective, as measured by the estimated

degree of queuing and packet loss.

Note that those two aspects are in tension: the highest throughput

is available to the flow when it sends as fast as possible and

occupies as many bottleneck buffer slots as possible; the lowest que

pressure is achieved by the flow when it sends as slow as possible

and occupies as few bottleneck buffer slots as possible. To resolve

the tension, the algorithm aims to achieve the maximum throughput

achievable while still meeting the queue pressure objective.

3.4.2. Time Scales for the Network Model

At a high level, the BBR model is trying to reflect the properties

of the network path on two different time scales:

3.4.2.1. Long-term model

One goal is for BBR to maintain high average utilization of the fair

share of the available bandwidth, over long time intervals. This

requires estimates of the path's data rate and volume capacities

that are robust over long time intervals. This means being robust to

congestion signals that may be noisy or may reflect short-term

congestion that has already abated by the time an ACK arrives. This

also means providing a robust history of the best recently-

achievable performance on the path so that the flow can quickly and

robustly aim to re-probe that level of performance whenever it

decides to probe the capacity of the path.
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3.4.2.2. Short-term model

A second goal of BBR is to react to every congestion signal,

including loss, as if it may indicate a persistent/long-term

increase in congestion and/or decrease in the bandwidth available to

the flow, because that may indeed be the case.

3.4.2.3. Time Scale Strategy

BBR sequentially alternates between spending most of its time using

short-term models to conservatively respect all congestion signals

in case they represent persistent congestion, but periodically using

its long-term model to robustly probe the limits of the available

path capacity in case the congestion has abated and more capacity is

available.

3.5. Control Parameter Overview

BBR uses its model to control the connection's sending behavior.

Rather than using a single control parameter, like the cwnd

parameter that limits the volume of in-flight data in the Reno and

CUBIC congestion control algorithms, BBR uses three distinct control

parameters:

pacing rate: the maximum rate at which BBR sends data.

send quantum: the maximum size of any aggregate that the

transport sender implementation may need to transmit as a unit

to amortize per-packet transmission overheads.

cwnd: the maximum volume of data BBR allows in-flight in the

network at any time.

3.6. Environment and Usage

BBR is a congestion control algorithm that is agnostic to transport-

layer and link-layer technologies, requires only sender-side

changes, and does not require changes in the network. Open source

implementations of BBR are available for the TCP [RFC793] and QUIC

[RFC9000] transport protocols, and these implementations have been

used in production for a large volume of Internet traffic. An open

source implementation of BBR is also available for DCCP [RFC4340]

[draft-romo-iccrg-ccid5].
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4. Detailed Algorithm

4.1. State Machine

BBR implements a state machine that uses the network path model to

guide its decisions, and the control parameters to enact its

decisions.

4.1.1. State Transition Diagram

The following state transition diagram summarizes the flow of

control and the relationship between the different states:

4.1.2. State Machine Operation Overview

When starting up, BBR probes to try to quickly build a model of the

network path; to adapt to later changes to the path or its traffic,

BBR must continue to probe to update its model. If the available

bottleneck bandwidth increases, BBR must send faster to discover

this. Likewise, if the round-trip propagation delay changes, this

changes the BDP, and thus BBR must send slower to get inflight below

the new BDP in order to measure the new BBR.min_rtt. Thus, BBR's

state machine runs periodic, sequential experiments, sending faster

to check for BBR.bw increases or sending slower to yield bandwidth,

drain the queue, and check for BBR.min_rtt decreases. The frequency,

magnitude, duration, and structure of these experiments differ
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depending on what's already known (startup or steady-state) and

application sending behavior (intermittent or continuous).

This state machine has several goals:

Achieve high throughput by efficiently utilizing available

bandwidth.

Achieve low latency and packet loss rates by keeping queues

bounded and small.

Share bandwidth with other flows in an approximately fair manner.

Feed samples to the model estimators to refresh and update the

model.

4.1.3. State Machine Tactics

In the BBR framework, at any given time the sender can choose one of

the following tactics:

Acceleration: Send faster then the network is delivering data: to

probe the maximum bandwidth available to the flow

Cruising: Send at the same rate the network is delivering data:

try to match the sending rate to the flow's current available

bandwidth, to try to achieve high utilization of the available

bandwidth without increasing queue pressure

Deceleration: Send slower than the network is delivering data: to

reduce the amount of data in flight, with a number of overlapping

motivations:

Reducing queuing delay: to reduce queuing delay, to reduce

latency for request/response cross-traffic (e.g. RPC, web

traffic).

Reducing packet loss: to reduce packet loss, to reduce tail

latency for request/response cross-traffic (e.g. RPC, web

traffic) and improve coexistence with Reno/CUBIC.

Probing BBR.min_rtt: to probe the path's BBR.min_rtt

Bandwidth convergence: to aid bandwidth fairness convergence,

by leaving unused capacity in the bottleneck link or

bottleneck buffer, to allow other flows that may have lower

sending rates to discover and utilize the unused capacity

Burst tolerance: to allow bursty arrivals of cross-traffic

(e.g. short web or RPC requests) to be able to share the
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bottleneck link without causing excessive queuing delay or

packet loss

Throughout the lifetime of a BBR flow, it sequentially cycles

through all three tactics, to measure the network path and try to

optimize its operating point.

BBR's state machine uses two control mechanisms. Primarily, it uses

the pacing_gain (see the "Pacing Rate" section), which controls how

fast packets are sent relative to BBR.bw. A pacing_gain > 1

decreases inter-packet time and increases inflight. A pacing_gain <

1 has the opposite effect, increasing inter-packet time and while

aiming to decrease inflight. Second, if the state machine needs to

quickly reduce inflight to a particular absolute value, it uses the

cwnd.

4.2. Algorithm Organization

The BBR algorithm is an event-driven algorithm that executes steps

upon the following events: connection initialization, upon each ACK,

upon the transmission of each quantum, and upon loss detection

events. All of the sub-steps invoked referenced below are described

below.

4.2.1. Initialization

Upon transport connection initialization, BBR executes its

initialization steps:

4.2.2. Per-Transmit Steps

When transmitting, BBR merely needs to check for the case where the

flow is restarting from idle:

¶
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  BBROnInit():

    init_windowed_max_filter(filter=BBR.MaxBwFilter, value=0, time=0)

    BBR.min_rtt = SRTT ? SRTT : Inf

    BBR.min_rtt_stamp = Now()

    BBR.probe_rtt_done_stamp = 0

    BBR.probe_rtt_round_done = false

    BBR.prior_cwnd = 0

    BBR.idle_restart = false

    BBR.extra_acked_interval_start = Now()

    BBR.extra_acked_delivered = 0

    BBRResetCongestionSignals()

    BBRResetLowerBounds()

    BBRInitRoundCounting()

    BBRInitFullPipe()

    BBRInitPacingRate()

    BBREnterStartup()

¶

¶



4.2.3. Per-ACK Steps

On every ACK, the BBR algorithm executes the following

BBRUpdateOnACK() steps in order to update its network path model,

update its state machine, and adjust its control parameters to adapt

to the updated model:

4.2.4. Per-Loss Steps

On every packet loss event, where some sequence range "packet" is

marked lost, the BBR algorithm executes the following

BBRUpdateOnLoss() steps in order to update its network path model

4.3. State Machine Operation

4.3.1. Startup

4.3.1.1. Startup Dynamics

When a BBR flow starts up, it performs its first (and most rapid)

sequential probe/drain process in the Startup and Drain states.

Network link bandwidths currently span a range of at least 11 orders

of magnitude, from a few bps to 200 Gbps. To quickly learn

  BBROnTransmit():

    BBRHandleRestartFromIdle()

¶

¶

  BBRUpdateOnACK():

    BBRUpdateModelAndState()

    BBRUpdateControlParameters()

  BBRUpdateModelAndState():

    BBRUpdateLatestDeliverySignals()

    BBRUpdateCongestionSignals()

    BBRUpdateACKAggregation()

    BBRCheckStartupDone()

    BBRCheckDrain()

    BBRUpdateProbeBWCyclePhase()

    BBRUpdateMinRTT()

    BBRCheckProbeRTT()

    BBRAdvanceLatestDeliverySignals()

    BBRBoundBWForModel()

  BBRUpdateControlParameters():

    BBRSetPacingRate()

    BBRSetSendQuantum()

    BBRSetCwnd()

¶

¶

  BBRUpdateOnLoss(packet):

    BBRHandleLostPacket(packet)

¶



BBR.max_bw, given this huge range to explore, BBR's Startup state

does an exponential search of the rate space, doubling the sending

rate each round. This finds BBR.max_bw in O(log_2(BDP)) round trips.

To achieve this rapid probing in the smoothest possible fashion, in

Startup BBR uses the minimum gain values that will allow the sending

rate to double each round: in Startup BBR sets BBR.pacing_gain to

BBRStartupPacingGain (2.77) [BBRStartupPacingGain] and BBR.cwnd_gain

to BBRStartupCwndGain (2).

When initializing a connection, or upon any later entry into Startup

mode, BBR executes the following BBREnterStartup() steps:

As BBR grows its sending rate rapidly, it obtains higher delivery

rate samples, BBR.max_bw increases, and the pacing rate and cwnd

both adapt by smoothly growing in proportion. Once the pipe is full,

a queue typically forms, but the cwnd_gain bounds any queue to

(cwnd_gain - 1) * estimated_BDP, which is approximately (2.77 - 1) *

estimated_BDP = 1.77 * estimated_BDP. The immediately following

Drain state is designed to quickly drain that queue.

During Startup, BBR estimates whether the pipe is full using two

estimators. The first looks for a plateau in the BBR.max_bw

estimate. The second looks for packet loss. The following

subsections discuss these estimators.

4.3.1.2. Exiting Startup Based on Bandwidth Plateau

During Startup, BBR estimates whether the pipe is full by looking

for a plateau in the BBR.max_bw estimate. The output of this "full

pipe" estimator is tracked in BBR.filled_pipe, a boolean that

records whether BBR estimates that it has ever fully utilized its

available bandwidth ("filled the pipe"). If BBR notices that there

are several (three) rounds where attempts to double the delivery

rate actually result in little increase (less than 25 percent), then

it estimates that it has reached BBR.max_bw, sets BBR.filled_pipe to

true, exits Startup and enters Drain.

Upon connection initialization the full pipe estimator runs:

¶
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  BBREnterStartup():

    BBR.state = Startup

    BBR.pacing_gain = BBRStartupPacingGain

    BBR.cwnd_gain = BBRStartupCwndGain

¶

¶

¶

  BBRCheckStartupDone():

    BBRCheckStartupFullBandwidth()

    BBRCheckStartupHighLoss()

    if (BBR.state == Startup and BBR.filled_pipe)

      BBREnterDrain()
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Once per round trip, upon an ACK that acknowledges new data, and

when the delivery rate sample is not application-limited (see

[draft-cheng-iccrg-delivery-rate-estimation]), BBR runs the "full

pipe" estimator, if needed:

BBR waits three rounds to have solid evidence that the sender is not

detecting a delivery-rate plateau that was temporarily imposed by

the receive window. Allowing three rounds provides time for the

receiver's receive-window auto-tuning to open up the receive window

and for the BBR sender to realize that BBR.max_bw should be higher:

in the first round the receive-window auto-tuning algorithm grows

the receive window; in the second round the sender fills the higher

receive window; in the third round the sender gets higher delivery-

rate samples. This three-round threshold was validated by YouTube

experimental data.

4.3.1.3. Exiting Startup Based on Packet Loss

A second method BBR uses for estimating the bottleneck is full is by

looking at sustained packet losses Specifically for a case where the

following criteria are all met:

The connection has been in fast recovery for at least one full

round trip.

The loss rate over the time scale of a single full round trip

exceeds BBRLossThresh (2%).

There are at least BBRStartupFullLossCnt=3 discontiguous sequence

ranges lost in that round trip.

If these criteria are all met, then BBRCheckStartupHighLoss() sets

BBR.filled_pipe = true and exits Startup and enters Drain.

  BBRInitFullPipe():

    BBR.filled_pipe = false

    BBR.full_bw = 0

    BBR.full_bw_count = 0

¶

¶

  BBRCheckStartupFullBandwidth():

    if BBR.filled_pipe or

       !BBR.round_start or rs.is_app_limited

      return  /* no need to check for a full pipe now */

    if (BBR.max_bw >= BBR.full_bw * 1.25)  /* still growing? */

      BBR.full_bw = BBR.max_bw    /* record new baseline level */

      BBR.full_bw_count = 0

      return

    BBR.full_bw_count++ /* another round w/o much growth */

    if (BBR.full_bw_count >= 3)

      BBR.filled_pipe = true

¶
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The algorithm waits until all three criteria are met to filter out

noise from burst losses, and to try to ensure the bottleneck is

fully utilized on a sustained basis, and the full bottleneck

bandwidth has been measured, before attempting to drain the level of

in-flight data to the estimated BDP.

4.3.2. Drain

Upon exiting Startup, BBR enters its Drain state. In Drain, BBR aims

to quickly drain any queue created in Startup by switching to a

pacing_gain well below 1.0, until any estimated queue has been

drained. It uses a pacing_gain that is the inverse of the value used

during Startup, chosen to try to drain the queue in one round

[BBRDrainPacingGain]:

In Drain, when the amount of data in flight is less than or equal to

the estimated BDP, meaning BBR estimates that the queue has been

fully drained, then BBR exits Drain and enters ProbeBW. To implement

this, upon every ACK BBR executes:

4.3.3. ProbeBW

Long-lived BBR flows tend to spend the vast majority of their time

in the ProbeBW states. In the ProbeBW states, a BBR flow

sequentially accelerates, decelerates, and cruises, to measure the

network path, improve its operating point (increase throughput and

reduce queue pressure), and converge toward a more fair allocation

of bottleneck bandwidth. To do this, the flow sequentially cycles

through all three tactics: trying to send faster than, slower than,

and at the same rate as the network delivery process. To achieve

this, a BBR flow in ProbeBW mode cycles through the four Probe bw

states - DOWN, CRUISE, REFILL, and UP - described below in turn.

4.3.3.1. ProbeBW_DOWN

In the ProbeBW_DOWN phase of the cycle, a BBR flow pursues the

deceleration tactic, to try to send slower than the network is

delivering data, to reduce the amount of data in flight, with all of

the standard motivations for the deceleration tactic (discussed in

"State Machine Tactics", above). It does this by switching to a

BBR.pacing_gain of 0.9, sending at 90% of BBR.bw. The pacing_gain

¶

¶

  BBREnterDrain():

    BBR.state = Drain

    BBR.pacing_gain = 1/BBRStartupCwndGain  /* pace slowly */

    BBR.cwnd_gain = BBRStartupCwndGain      /* maintain cwnd */

¶

¶

  BBRCheckDrain():

    if (BBR.state == Drain and packets_in_flight <= BBRInflight(1.0))

      BBREnterProbeBW()  /* BBR estimates the queue was drained */

¶

¶



value of 0.9 is derived based on the ProbeBW_UP pacing gain of 1.25,

as the minimum pacing_gain value that allows bandwidth-based

convergence to approximate fairness.

Exit conditions: The flow exits this phase and enters CRUISE when

the flow estimates that both of the following conditions have been

met:

There is free headroom: If inflight_hi is set, then BBR remains

in DOWN at least until the volume of in-flight data is less than

or equal to BBRHeadroom*BBR.inflight_hi. The goal of this

constraint is to ensure that in cases where loss signals suggest

an upper limit on the volume of in-flight data, then the flow

attempts to leave some free headroom in the path (e.g. free space

in the bottleneck buffer or free time slots in the bottleneck

link) that can be used by cross traffic (both for volume-based

convergence of bandwidth shares and for burst tolerance).

The volume of in-flight data is less than or equal to BBR.BDP,

i.e. the flow estimates that it has drained any queue at the

bottleneck.

4.3.3.2. ProbeBW_CRUISE

In the ProbeBW_CRUISE phase of the cycle, a BBR flow pursues the

"cruising" tactic (discussed in "State Machine Tactics", above),

attempting to send at the same rate the network is delivering data.

It tries to match the sending rate to the flow's current available

bandwidth, to try to achieve high utilization of the available

bandwidth without increasing queue pressure. It does this by

switching to a pacing_gain of 1.0, sending at 100% of BBR.bw.

Notably, while in this state it responds to concrete congestion

signals (loss) by reducing BBR.bw_lo and BBR.inflight_lo, because

these signals suggest that the available bandwidth and deliverable

volume of in-flight data have likely reduced, and the flow needs to

change to adapt, slowing down to match the latest delivery process.

Exit conditions: The connection adaptively holds this state until it

decides that it is time to probe for bandwidth, at which time it

enters ProbeBW_REFILL (see "Time Scale for Bandwidth Probing",

below).

4.3.3.3. ProbeBW_REFILL

The goal of the ProbeBW_REFILL state is to "refill the pipe", to try

to fully utilize the network bottleneck without creating any

significant queue pressure.

To do this, BBR first resets the short-term model parameters bw_lo

and inflight_lo, setting both to "Infinity". This is the key moment
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in the BBR time scale strategy (see "Time Scale Strategy", above)

where the flow pivots, discarding its conservative short-term bw_lo

and inflight_lo parameters and beginning to robustly probe the

bottleneck's long-term available bandwidth. During this time bw_hi

and inflight_hi, if set, constrain the connection.

During ProbeBW_REFILL BBR uses a BBR.pacing_gain of 1.0, to send at

a rate that matches the current estimated available bandwidth, for

one packet-timed round trip. The goal is to fully utilize the

bottleneck link before transitioning into ProbeBW_UP and

significantly increasing the chances of causing a loss signal. The

motivating insight is that, as soon as a flow starts acceleration,

sending faster than the available bandwidth, it will start building

a queue at the bottleneck. And if the buffer is shallow enough, then

the flow can cause loss signals very shortly after the first

accelerating packets arrive at the bottleneck. If the flow were to

neglect to fill the pipe before it causes this loss signal, then

these very quick signals of excess queue could cause the flow's

estimate of the path's capacity (i.e. inflight_hi) to significantly

underestimate. In particular, if the flow were to transition

directly from ProbeBW_CRUISE to ProbeBW_UP, the volume of in-flight

data (at the time the first accelerating packets were sent) may

often be still very close to the volume of in-flight data maintained

in CRUISE, which may be only BBRHeadroom*inflight_hi.

Exit conditions: The flow exits ProbeBW_REFILL after one packet-

timed round trip, and enters UP. This is because after one full

round trip of sending in ProbeBW_REFILL the flow (if not

application-limited) has had an opportunity to place as many packets

in flight as its BBR.bw estimate permits. And correspondingly, at

this point the flow starts to see bandwidth samples reflecting its

ProbeBW_REFILL behavior, which may be putting too much data in

flight.

4.3.3.4. ProbeBW_UP

After ProbeBW_REFILL refills the pipe, ProbeBW_UP probes for

possible increases in available bandwidth by using a BBR.pacing_gain

of 1.25, sending faster than the current estimated available

bandwidth.

If the flow has not set BBR.inflight_hi or BBR.bw_hi, it tries to

raise the volume of in-flight data to at least BBR.pacing_gain *

BBR.bdp = 1.25 * BBR.bdp; note that this may take more than

BBR.min_rtt if BBR.min_rtt is small (e.g. on a LAN).

If the flow has set BBR.inflight_hi or BBR.bw_hi, it moves to an

operating point based on those limits and then gradually increases
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the upper volume bound (BBR.inflight_hi) and rate bound (BBR.bw_hi)

using the following approach:

bw_hi: The flow raises bw_hi to the latest measured bandwidth

sample if the latest measured bandwidth sample is above bw_hi and

the loss rate for the sample is not above the BBRLossThresh.

inflight_hi: The flow raises inflight_hi in ProbeBW_UP in a

manner that is slow and cautious at first, but increasingly rapid

and bold over time. The initial caution is motivated by the fact

that a given BBR flow may be sharing a shallow buffer with

thousands of other flows, so that the buffer space available to

the flow may be quite tight - even just a single packet. The

increasingly rapid growth over time is motivated by the fact that

in a high-speed WAN the increase in available bandwidth (and thus

the estimated BDP) may require the flow to grow the volume of its

inflight data by up to O(1,000,000); even a quite typical BDP

like 10Gbps * 100ms is 82,563 packets. BBR takes an approach

where the additive increase to BBR.inflight_hi exponentially

doubles each round trip; in each successive round trip,

inflight_hi grows by 1, 2, 4, 8, 16, etc, with the increases

spread uniformly across the entire round trip. This helps allow

BBR to utilize a larger BDP in O(log(BDP)) round trips, meeting

the design goal for scalable utilization of newly-available

bandwidth.

Exit conditions: The BBR flow ends ProbeBW_UP bandwidth probing and

transitions to ProbeBW_DOWN to try to drain the bottleneck queue

when any of the following conditions are met:

Estimated queue: The flow has been in ProbeBW_UP for at least

1*min_rtt, and the estimated queue is high enough that the flow

judges it has robustly probed for available bandwidth

(packets_in_flight > 1.25 * BBR.bdp).

Loss: The current loss rate exceeds BBRLossThresh (2%).

4.3.3.5. Time Scale for Bandwidth Probing

Choosing the time scale for probing bandwidth is tied to the

question of how to coexist with legacy Reno/CUBIC flows, since

probing for bandwidth runs a significant risk of causing packet

loss, and causing packet loss can significantly limit the throughput

of such legacy Reno/CUBIC flows.

4.3.3.5.1. Bandwidth Probing and Coexistence with Reno/CUBIC

BBR has an explicit strategy for coexistence with Reno/CUBIC: to try

to behave in a manner so that Reno/CUBIC flows coexisting with BBR
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can continue to work well in the primary contexts where they do

today:

Intra-datacenter/LAN traffic: we want Reno/CUBIC to be able to

perform well in 100M through 40G enterprise and datacenter

Ethernet

BDP = 40 Gbps * 20 us / (1514 bytes) ~= 66 packets

Public Internet last mile traffic: we want Reno/CUBIC to be able

to support up to 25Mbps (for 4K Video) at an RTT of 30ms, typical

parameters for common CDNs for large video services:

BDP = 25Mbps * 30 ms / (1514 bytes) ~= 62 packets

The challenge in meeting these goals is that Reno/CUBIC need long

periods of no loss to utilize large BDPs. The good news is that in

the environments where Reno/CUBIC work well today (mentioned above),

the BDPs are small, roughly ~100 packets or less.

4.3.3.5.2. A Dual-Time-Scale Approach for Coexistence

The BBR strategy has several aspects:

The highest priority is to estimate the bandwidth available to

the BBR flow in question.

Secondarily, a given BBR flow adapts (within bounds) the

frequency at which it probes bandwidth and knowingly risks

packet loss, to allow Reno/CUBIC to reach a bandwidth at least

as high as that given BBR flow.

To adapt the frequency of bandwidth probing, BBR considers two time

scales: a BBR-native time scale, and a bounded Reno-conscious time

scale:

T_bbr: BBR-native time-scale

T_bbr = uniformly randomly distributed between 2 and 3 secs

T_reno: Reno-coexistence time scale

T_reno_bound = pick_randomly_either({62, 63})

reno_bdp = min(BBR.bdp, cwnd)

T_reno = min(reno_bdp, T_reno_bound) round trips
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T_probe: The time between bandwidth probe UP phases:

T_probe = min(T_bbr, T_reno)

This dual-time-scale approach is similar to that used by CUBIC,

which has a CUBIC-native time scale given by a cubic curve, and a

"Reno emulation" module that estimates what cwnd would give the flow

Reno-equivalent throughput. At any given moment, CUBIC choose the

cwnd implied by the more aggressive strategy.

We randomize both the T_bbr and T_reno parameters, for better mixing

and fairness convergence.

4.3.3.5.3. Design Considerations for Choosing Constant Parameters

We design the maximum wall-clock bounds of BBR-native inter-

bandwidth-probe wall clock time, T_bbr, to be:

Higher than 2 sec to try to avoid causing loss for a long enough

time to allow Reno flow with RTT=30ms to get 25Mbps (4K video)

throughput. For this workload, given the Reno sawtooth that

raises cwnd from roughly BDP to 2*BDP, one MSS per round trip,

the inter-bandwidth-probe time must be at least: BDP * RTT =

25Mbps * .030 sec / (1514 bytes) * 0.030 sec = 1.9secs

Lower than 3 sec to ensure flows can start probing in a

reasonable amount of time to discover unutilized bw on human-

scale interactive time-scales (e.g. perhaps traffic from a

competing web page download is now complete).

The maximum round-trip bounds of the Reno-coexistence time scale,

T_reno, are chosen to be 62-63 with the following considerations in

mind:

Choosing a value smaller than roughly 60 would imply that when

BBR flows coexisted with Reno/CUBIC flows (e.g. Netflix Reno

flows) on public Internet broadband links, the Reno/CUBIC flows

would not be able to achieve enough bandwidth to show 4K video.

Choosing a value larger than roughly 65 would prevent BBR from

reaching its goal of tolerating 1% loss per round trip. Given

that the steady-state (non-bandwidth-probing) BBR response to a

round trip with X% packet loss is to reduce the sending rate by

X% (see the "Updating the Model Upon Packet Loss" section), this

means that the BBR sending rate after N rounds of packet loss at

a rate loss_rate is (1 - loss_rate)^N. This means that for a flow

that encounters 1% loss in 65 round trips of ProbeBW_CRUISE, and

then doubles its cwnd (back to BBR.inflight_hi) in ProbeBW_REFILL

and ProbeBW_UP, it will be able to restore and reprobe its

original sending rate, since: BBW.max_bw * (1 - loss_rate)^N * 2

* ¶

- ¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*



= BBR.max_bw * (1 - .01)^65 ~= 1.04 * BBR.max_bw. That is, the

flow will be able to fully respond to packet loss signals in

ProbeBW_CRUISE while also fully re-measuring its maximum

achievable throughput in ProbeBW_UP.

The resulting behavior is that for BBR flows with small BDPs, the

bandwidth probing will be on roughly the same time scale as Reno/

CUBIC; flows with large BDPs will intentionally probe more rapidly/

frequently than Reno/CUBIC would (roughly every 62 round trips for

low-RTT flows, or 2-3 secs for high-RTT flows).

The considerations above for timing bandwidth probing can be

implemented as follows:

4.3.3.6. ProbeBW Algorithm Details

BBR's ProbeBW algorithm operates as follows.

Upon entering ProbeBW, BBR executes:

¶

¶

¶

  /* Is it time to transition from DOWN or CRUISE to REFILL? */

  BBRCheckTimeToProbeBW():

    if (BBRHasElapsedInPhase(BBR.bw_probe_wait) ||

        BBRIsRenoCoexistenceProbeTime())

      BBRStartProbeBW_REFILL()

      return true

    return false

  /* Randomized decision about how long to wait until

   * probing for bandwidth, using round count and wall clock.

   */

  BBRPickProbeWait():

    /* Decide random round-trip bound for wait: */

    BBR.rounds_since_bw_probe =

      random_int_between(0, 1); /* 0 or 1 */

    /* Decide the random wall clock bound for wait: */

    BBR.bw_probe_wait =

      2sec + random_float_between(0.0, 1.0) /* 0..1 sec */

  BBRIsRenoCoexistenceProbeTime():

    reno_rounds = BBRTargetInflight()

    rounds = min(reno_rounds, 63)

    return BBR.rounds_since_bw_probe >= rounds

  /* How much data do we want in flight?

   * Our estimated BDP, unless congestion cut cwnd. */

  BBRTargetInflight()

    return min(BBR.bdp, cwnd)

¶

¶

¶



The core logic for entering each state:

BBR executes the following BBRUpdateProbeBWCyclePhase() logic on

each ACK that ACKs or SACKs new data, to advance the ProbeBW state

machine:

  BBREnterProbeBW():

    BBRStartProbeBW_DOWN()

¶

¶

  BBRStartProbeBW_DOWN():

    BBRResetCongestionSignals()

    BBR.probe_up_cnt = Infinity /* not growing inflight_hi */

    BBRPickProbeWait()

    BBR.cycle_stamp = Now()  /* start wall clock */

    BBR.ack_phase  = ACKS_PROBE_STOPPING

    BBRStartRound()

    BBR.state = ProbeBW_DOWN

  BBRStartProbeBW_CRUISE():

    BBR.state = ProbeBW_CRUISE

  BBRStartProbeBW_REFILL():

    BBRResetLowerBounds()

    BBR.bw_probe_up_rounds = 0

    BBR.bw_probe_up_acks = 0

    BBR.ack_phase = ACKS_REFILLING

    BBRStartRound()

    BBR.state = ProbeBW_REFILL

  BBRStartProbeBW_UP():

    BBR.ack_phase = ACKS_PROBE_STARTING

    BBRStartRound()

    BBR.cycle_stamp = Now() /* start wall clock */

    BBR.state = ProbeBW_UP

    BBRRaiseInflightHiSlope()

¶

¶



The ancillary logic to implement the ProbeBW state machine:

  /* The core state machine logic for ProbeBW: */

  BBRUpdateProbeBWCyclePhase():

    if (!BBR.filled_pipe)

      return  /* only handling steady-state behavior here */

    BBRAdaptUpperBounds()

    if (!IsInAProbeBWState())

      return /* only handling ProbeBW states here: */

    switch (state)

    ProbeBW_DOWN:

      if (BBRCheckTimeToProbeBW())

        return /* already decided state transition */

      if (BBRCheckTimeToCruise())

        BBRStartProbeBW_CRUISE()

    ProbeBW_CRUISE:

      if (BBRCheckTimeToProbeBW())

        return /* already decided state transition */

    ProbeBW_REFILL:

      /* After one round of REFILL, start UP */

      if (BBR.round_start)

        BBR.bw_probe_samples = 1

        BBRStartProbeBW_UP()

    ProbeBW_UP:

      if (BBRHasElapsedInPhase(BBR.min_rtt) and

          inflight > BBRInflight(BBR.max_bw, 1.25))

        BBRStartProbeBW_DOWN()

¶

¶



  IsInAProbeBWState()

    state = BBR.state

    return (state == ProbeBW_DOWN or

            state == ProbeBW_CRUISE or

            state == ProbeBW_REFILL or

            state == ProbeBW_UP)

  /* Time to transition from DOWN to CRUISE? */

  BBRCheckTimeToCruise():

    if (inflight > BBRInflightWithHeadroom())

      return false /* not enough headroom */

    if (inflight <= BBRInflight(BBR.max_bw, 1.0))

      return true  /* inflight <= estimated BDP */

  BBRHasElapsedInPhase(interval):

    return Now() > BBR.cycle_stamp + interval

  /* Return a volume of data that tries to leave free

   * headroom in the bottleneck buffer or link for

   * other flows, for fairness convergence and lower

   * RTTs and loss */

  BBRInflightWithHeadroom():

    if (BBR.inflight_hi == Infinity)

      return Infinity

    headroom = max(1, BBRHeadroom * BBR.inflight_hi)

      return max(BBR.inflight_hi - headroom,

                 BBRMinPipeCwnd)

  /* Raise inflight_hi slope if appropriate. */

  BBRRaiseInflightHiSlope():

    growth_this_round = 1MSS << BBR.bw_probe_up_rounds

    BBR.bw_probe_up_rounds = min(BBR.bw_probe_up_rounds + 1, 30)

    BBR.probe_up_cnt = max(cwnd / growth_this_round, 1)

  /* Increase inflight_hi if appropriate. */

  BBRProbeInflightHiUpward():

    if (!is_cwnd_limited or cwnd < BBR.inflight_hi)

      return  /* not fully using inflight_hi, so don't grow it */

   BBR.bw_probe_up_acks += rs.newly_acked

   if (BBR.bw_probe_up_acks >= BBR.probe_up_cnt)

     delta = BBR.bw_probe_up_acks / BBR.probe_up_cnt

     BBR.bw_probe_up_acks -= delta * BBR.bw_probe_up_cnt

     BBR.inflight_hi += delta

   if (BBR.round_start)

     BBRRaiseInflightHiSlope()

  /* Track ACK state and update BBR.max_bw window and

   * BBR.inflight_hi and BBR.bw_hi. */

  BBRAdaptUpperBounds():



    if (BBR.ack_phase == ACKS_PROBE_STARTING and BBR.round_start)

      /* starting to get bw probing samples */

      BBR.ack_phase = ACKS_PROBE_FEEDBACK

    if (BBR.ack_phase == ACKS_PROBE_STOPPING and BBR.round_start)

      /* end of samples from bw probing phase */

      if (IsInAProbeBWState() and !rs.is_app_limited)

        BBRAdvanceMaxBwFilter()

    if (!CheckInflightTooHigh())

      /* Loss rate is safe. Adjust upper bounds upward. */

      if (BBR.inflight_hi == Infinity or BBR.bw_hi == Infinity)

        return /* no upper bounds to raise */

      if (rs.tx_in_flight > BBR.inflight_hi)

        BBR.inflight_hi = rs.tx_in_flight

      if (rs.delivery_rate > BBR.bw_hi)

        BBR.bw_hi = rs.bw

      if (BBR.state == ProbeBW_UP)

        BBRProbeInflightHiUpward()

¶



4.3.4. ProbeRTT

4.3.4.1. ProbeRTT Overview

To help probe for BBR.min_rtt, on an as-needed basis BBR flows enter

the ProbeRTT state to try to cooperate to periodically drain the

bottleneck queue - and thus improve their BBR.min_rtt estimate of

the unloaded two-way propagation delay.

A critical point is that before BBR raises its BBR.min_rtt estimate

(which would in turn raise its maximum permissible cwnd), it first

enters ProbeRTT to try to make a concerted and coordinated effort to

drain the bottleneck queue and make a robust BBR.min_rtt

measurement. This allows the BBR.min_rtt estimates of ensembles of

BBR flows to converge avoiding feedback loops of ever-increasing

queues and RTT samples.

The ProbeRTT state works in concert with BBR.min_rtt estimation. Up

to once every ProbeRTTInterval = 5 seconds, the flow enters

ProbeRTT, decelerating by setting its cwnd_gain to

BBRProbeRTTCwndGain = 0.5 to reduce its volume of inflight data to

half of its estimated BDP, to try to allow the flow to measure the

unloaded two-way propagation delay.

There are two main motivations for making the MinRTTFilterLen

roughly twice the ProbeRTTInterval. First, this ensures that during

a ProbeRTT episode the flow will "remember" the BBR.min_rtt value it

measured during the previous ProbeRTT episode, providing a robust

bdp estimate for the cwnd = 0.5*bdp calculation, increasing the

likelihood of fully draining the bottleneck queue. Second, this

allows the flow's BBR.min_rtt filter window to generally include RTT

samples from two ProbeTT episodes, providing a more robust estimate.

The algorithm for ProbeRTT is as follows:

Entry conditions: In any state other than ProbeRTT itself, if the

BBR.probe_rtt_min_delay estimate has not been updated (i.e., by

getting a lower RTT measurement) for more than ProbeRTTInterval = 5

seconds, then BBR enters ProbeRTT and reduces the BBR.cwnd_gain to

BBRProbeRTTCwndGain = 0.5.

Exit conditions: After maintaining the volume of in-flight data at

BBRProbeRTTCwndGain*BBR.bdp for at least ProbeRTTDuration (200 ms)

and at least one round trip, BBR leaves ProbeRTT and transitions to

ProbeBW if it estimates the pipe was filled already, or Startup

otherwise.

¶

¶

¶

¶

¶

¶

¶



4.3.4.2. ProbeRTT Design Rationale

BBR is designed to have ProbeRTT sacrifice no more than roughly 2%

of a flow's available bandwidth. It is also designed to spend the

vast majority of its time (at least roughly 96 percent) in ProbeBW

and the rest in ProbeRTT, based on a set of tradeoffs. ProbeRTT

lasts long enough (at least ProbeRTTDuration = 200 ms) to allow

flows with different RTTs to have overlapping ProbeRTT states, while

still being short enough to bound the throughput penalty of

ProbeRTT's cwnd capping to roughly 2%, with the average throughput

targeted at:

As discussed above, BBR's BBR.min_rtt filter window,

MinRTTFilterLen, and time interval between ProbeRTT states,

ProbeRTTInterval, work in concert. BBR uses a MinRTTFilterLen equal

to or longer than ProbeRTTInterval to allow the filter window to

include at least one ProbeRTT.

To allow coordination with other BBR flows, each flow MUST use the

standard ProbeRTTInterval of 5 secs.

An ProbeRTTInterval of 5 secs is short enough to allow quick

convergence if traffic levels or routes change, but long enough so

that interactive applications (e.g., Web, remote procedure calls,

video chunks) often have natural silences or low-rate periods within

the window where the flow's rate is low enough for long enough to

drain its queue in the bottleneck. Then the BBR.probe_rtt_min_delay

filter opportunistically picks up these measurements, and the

BBR.probe_rtt_min_delay estimate refreshes without requiring

ProbeRTT. This way, flows typically need only pay the 2 percent

throughput penalty if there are multiple bulk flows busy sending

over the entire ProbeRTTInterval window.

As an optimization, when restarting from idle and finding that the

BBR.probe_rtt_min_delay has expired, BBR does not enter ProbeRTT;

the idleness is deemed a sufficient attempt to coordinate to drain

the queue.

4.3.4.3. Calculating the rs.rtt RTT Sample

Upon transmitting each packet, BBR (or the associated transport

protocol) stores in per-packet data the wall-clock scheduled

transmission time of the packet in packet.departure_time (see the

"Pacing Rate: BBR.pacing_rate" section for how this is calculated).

For every ACK that newly acknowledges some data (whether

cumulatively or selectively), the sender's BBR implementation (or

¶

  throughput = (200ms*0.5*BBR.bw + (5s - 200ms)*BBR.bw) / 5s

             = (.1s + 4.8s)/5s * BBR.bw = 0.98 * BBR.bw

¶

¶

¶

¶

¶

¶



the associated transport protocol implementation) attempts to

calculate an RTT sample. The sender MUST consider any potential

retransmission ambiguities that can arise in some transport

protocols. If some of the acknowledged data was not retransmitted,

or some of the data was retransmitted but the sender can still

unambiguously determine the RTT of the data (e.g. if the transport

supports [RFC7323] TCP timestamps or an equivalent mechanism), then

the sender calculates an RTT sample, rs.rtt, as follows:

4.3.4.4. ProbeRTT Logic

On every ACK BBR executes BBRUpdateMinRTT() to update its ProbeRTT

scheduling state (BBR.probe_rtt_min_delay and

BBR.probe_rtt_min_stamp) and its BBR.min_rtt estimate:

Here BBR.probe_rtt_expired is a boolean recording whether the

BBR.probe_rtt_min_delay has expired and is due for a refresh, via

either an application idle period or a transition into ProbeRTT

state.

On every ACK BBR executes BBRCheckProbeRTT() to handle the steps

related to the ProbeRTT state as follows:

¶

  rs.rtt = Now() - packet.departure_time¶

¶

  BBRUpdateMinRTT()

    BBR.probe_rtt_expired =

      Now() > BBR.probe_rtt_min_stamp + ProbeRTTInterval

    if (rs.rtt >= 0 and

        (rs.rtt < BBR.probe_rtt_min_delay or

         BBR.probe_rtt_expired))

       BBR.probe_rtt_min_delay = rs.rtt

       BBR.probe_rtt_min_stamp = Now()

    min_rtt_expired =

      Now() > BBR.min_rtt_stamp + MinRTTFilterLen

    if (BBR.probe_rtt_min_delay < BBR.min_rtt or

        min_rtt_expired)

      BBR.min_rtt       = BBR.probe_rtt_min_delay

      BBR.min_rtt_stamp = BBR.probe_rtt_min_stamp

¶

¶

¶



  BBRCheckProbeRTT():

    if (BBR.state != ProbeRTT and

        BBR.probe_rtt_expired and

        not BBR.idle_restart)

      BBREnterProbeRTT()

      BBRSaveCwnd()

      BBR.probe_rtt_done_stamp = 0

      BBR.ack_phase = ACKS_PROBE_STOPPING

      BBRStartRound()

    if (BBR.state == ProbeRTT)

      BBRHandleProbeRTT()

    if (rs.delivered > 0)

      BBR.idle_restart = false

  BBREnterProbeRTT():

    BBR.state = ProbeRTT

    BBR.pacing_gain = 1

    BBR.cwnd_gain = BBRProbeRTTCwndGain  /* 0.5 */

  BBRHandleProbeRTT():

    /* Ignore low rate samples during ProbeRTT: */

    MarkConnectionAppLimited()

    if (BBR.probe_rtt_done_stamp == 0 and

        packets_in_flight <= BBRProbeRTTCwnd())

      /* Wait for at least ProbeRTTDuration to elapse: */

      BBR.probe_rtt_done_stamp =

        Now() + ProbeRTTDuration

      /* Wait for at least one round to elapse: */

      BBR.probe_rtt_round_done = false

      BBRStartRound()

    else if (BBR.probe_rtt_done_stamp != 0)

      if (BBR.round_start)

        BBR.probe_rtt_round_done = true

      if (BBR.probe_rtt_round_done)

        BBRCheckProbeRTTDone()

  BBRCheckProbeRTTDone():

    if (BBR.probe_rtt_done_stamp != 0 and

        Now() > BBR.probe_rtt_done_stamp)

      /* schedule next ProbeRTT: */

      BBR.probe_rtt_min_stamp = Now()

      BBRRestoreCwnd()

      BBRExitProbeRTT()

  MarkConnectionAppLimited():

    C.app_limited =

      (C.delivered + packets_in_flight) ? : 1

¶



4.3.4.5. Exiting ProbeRTT

When exiting ProbeRTT, BBR transitions to ProbeBW if it estimates

the pipe was filled already, or Startup otherwise.

When transitioning out of ProbeRTT, BBR calls BBRResetLowerBounds()

to reset the lower bounds, since any congestion encountered in

ProbeRTT may have pulled the short-term model far below the capacity

of the path.

But the algorithm is cautious in timing the next bandwidth probe:

raising inflight after ProbeRTT may cause loss, so the algorithm

resets the bandwidth-probing clock by starting the cycle at

ProbeBW_DOWN(). But then as an optimization, since the connection is

exiting ProbeRTT, we know that infligh is already below the

estimated BDP, so the connection can proceed immediately to

ProbeBW_CRUISE.

To summarize, the logic for exiting ProbeRTT is as follows:

4.4. Restarting From Idle

4.4.1. Setting Pacing Rate in ProbeBW

When restarting from idle in ProbeBW states, BBR leaves its cwnd as-

is and paces packets at exactly BBR.bw, aiming to return as quickly

as possible to its target operating point of rate balance and a full

pipe. Specifically, if the flow's BBR.state is ProbeBW, and the flow

is application-limited, and there are no packets in flight

currently, then at the moment the flow sends one or more packets BBR

sets BBR.pacing_rate to exactly BBR.bw. More precisely, the BBR

algorithm takes the following steps in BBRHandleRestartFromIdle()

before sending a packet for a flow.

The "Restarting Idle Connections" section of [RFC5681] suggests

restarting from idle by slow-starting from the initial window.

However, this approach was assuming a congestion control algorithm

that had no estimate of the bottleneck bandwidth and no pacing, and

thus resorted to relying on slow-starting driven by an ACK clock.

The long (log_2(BDP)*RTT) delays required to reach full utilization

with that "slow start after idle" approach caused many large

deployments to disable this mechanism, resulting in a "BDP-scale

¶

¶

¶

¶

  BBRExitProbeRTT():

    BBRResetLowerBounds()

    if (BBR.filled_pipe)

      BBRStartProbeBW_DOWN()

      BBRStartProbeBW_CRUISE()

    else

      BBREnterStartup()

¶

¶



line-rate burst" approach instead. Instead of these two approaches,

BBR restarts by pacing at BBR.bw, typically achieving approximate

rate balance and a full pipe after only one BBR.min_rtt has elapsed.

4.4.2. Checking for ProberRTT Completion

As an optimization, when restarting from idle BBR checks to see if

the connection is in ProbeRTT and has met the exit conditions for

ProbeRTT. If a connection goes idle during ProbeRTT then often it

will have met those exit conditions by the time it restarts, so that

the connection can restore the cwnd to its full value before it

starts transmitting a new flight of data.

4.4.3. Logic

The BBR algorithm takes the following steps in

BBRHandleRestartFromIdle() before sending a packet for a flow:

4.5. Updating Network Path Model Parameters

BBR is a model-based congestion control algorithm: it is based on an

explicit model of the network path over which a transport flow

travels. The following is a summary of each parameter, including its

meaning and how the algorithm calculates and uses its value. We can

group the parameter into three groups:

core state machine parameters

parameters to model the data rate

parameters to model the volume of in-flight data

4.5.1. BBR.round_count: Tracking Packet-Timed Round Trips

Several aspects of the BBR algorithm depend on counting the progress

of "packet-timed" round trips, which start at the transmission of

some segment, and then end at the acknowledgement of that segment.

BBR.round_count is a count of the number of these "packet-timed"

round trips elapsed so far. BBR uses this virtual BBR.round_count

because it is more robust than using wall clock time. In particular,

arbitrary intervals of wall clock time can elapse due to application

¶

¶

¶

  BBRHandleRestartFromIdle():

    if (packets_in_flight == 0 and C.app_limited)

      BBR.idle_restart = true

         BBR.extra_acked_interval_start = Now()

      if (IsInAProbeBWState())

        BBRSetPacingRateWithGain(1)

      else if (BBR.state == ProbeRTT)

        BBRCheckProbeRTTDone()

¶

¶
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idleness, variations in RTTs, or timer delays for retransmission

timeouts, causing wall-clock-timed model parameter estimates to

"time out" or to be "forgotten" too quickly to provide robustness.

BBR counts packet-timed round trips by recording state about a

sentinel packet, and waiting for an ACK of any data packet that was

sent after that sentinel packet, using the following pseudocode:

Upon connection initialization:

Upon sending each packet, the rate estimation algorithm [draft-

cheng-iccrg-delivery-rate-estimation] records the amount of data

thus far acknowledged as delivered:

Upon receiving an ACK for a given data packet, the rate estimation

algorithm [draft-cheng-iccrg-delivery-rate-estimation] updates the

amount of data thus far acknowledged as delivered:

Upon receiving an ACK for a given data packet, the BBR algorithm

first executes the following logic to see if a round trip has

elapsed, and if so, increment the count of such round trips elapsed:

4.5.2. BBR.max_bw: Estimated Maximum Bandwidth

BBR.max_bw is BBR's estimate of the maximum bottleneck bandwidth

available to data transmissions for the transport flow. At any time,

a transport connection's data transmissions experience some slowest

link or bottleneck. The bottleneck's delivery rate determines the

connection's maximum data-delivery rate. BBR tries to closely match

¶

¶

¶

  BBRInitRoundCounting():

    BBR.next_round_delivered = 0

    BBR.round_start = false

    BBR.round_count = 0

¶

¶

  packet.delivered = C.delivered¶

¶

    C.delivered += packet.size¶

¶

  BBRUpdateRound():

    if (packet.delivered >= BBR.next_round_delivered)

      BBRStartRound()

      BBR.round_count++

      BBR.rounds_since_probe++

      BBR.round_start = true

    else

      BBR.round_start = false

  BBRStartRound():

    BBR.next_round_delivered = C.delivered

¶



its sending rate to this bottleneck delivery rate to help seek "rate

balance", where the flow's packet arrival rate at the bottleneck

equals the departure rate. The bottleneck rate varies over the life

of a connection, so BBR continually estimates BBR.max_bw using

recent signals.

4.5.2.1. Delivery Rate Samples for Estimating BBR.max_bw

Since calculating delivery rate samples is subtle, and the samples

are useful independent of congestion control, the approach BBR uses

for measuring each single delivery rate sample is specified in a

separate Internet Draft [draft-cheng-iccrg-delivery-rate-

estimation].

4.5.2.2. BBR.max_bw Max Filter

Delivery rate samples are often below the typical bottleneck

bandwidth available to the flow, due to "noise" introduced by random

variation in physical transmission processes (e.g. radio link layer

noise) or queues or along the network path. To filter these effects

BBR uses a max filter: BBR estimates BBR.max_bw using the windowed

maximum recent delivery rate sample seen by the connection over

recent history.

The BBR.max_bw max filter window covers a time period extending over

the past two ProbeBW cycles. The BBR.max_bw max filter window length

is driven by trade-offs among several considerations:

It is long enough to cover at least one entire ProbeBW cycle (see

the "ProbeBW" section). This ensures that the window contains at

least some delivery rate samples that are the result of data

transmitted with a super-unity pacing_gain (a pacing_gain larger

than 1.0). Such super-unity delivery rate samples are

instrumental in revealing the path's underlying available

bandwidth even when there is noise from delivery rate shortfalls

due to aggregation delays, queuing delays from variable cross-

traffic, lossy link layers with uncorrected losses, or short-term

buffer exhaustion (e.g., brief coincident bursts in a shallow

buffer).

It aims to be long enough to cover short-term fluctuations in the

network's delivery rate due to the aforementioned sources of

noise. In particular, the delivery rate for radio link layers

(e.g., wifi and cellular technologies) can be highly variable,

and the filter window needs to be long enough to remember "good"

delivery rate samples in order to be robust to such variations.

It aims to be short enough to respond in a timely manner to

sustained reductions in the bandwidth available to a flow,

whether this is because other flows are using a larger share of
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the bottleneck, or the bottleneck link service rate has reduced

due to layer 1 or layer 2 changes, policy changes, or routing

changes. In any of these cases, existing BBR flows traversing the

bottleneck should, in a timely manner, reduce their BBR.max_bw

estimates and thus pacing rate and in-flight data, in order to

match the sending behavior to the new available bandwidth.

4.5.2.3. BBR.max_bw and Application-limited Delivery Rate Samples

Transmissions can be application-limited, meaning the transmission

rate is limited by the application rather than the congestion

control algorithm. This is quite common because of request/response

traffic. When there is a transmission opportunity but no data to

send, the delivery rate sampler marks the corresponding bandwidth

sample(s) as application-limited [draft-cheng-iccrg-delivery-rate-

estimation]. The BBR.max_bw estimator carefully decides which

samples to include in the bandwidth model to ensure that BBR.max_bw

reflects network limits, not application limits. By default, the

estimator discards application-limited samples, since by definition

they reflect application limits. However, the estimator does use

application-limited samples if the measured delivery rate happens to

be larger than the current BBR.max_bw estimate, since this indicates

the current BBR.Max_bw estimate is too low.

4.5.2.4. Updating the BBR.max_bw Max Filter

For every ACK that acknowledges some data packets as delivered, BBR

invokes BBRUpdateMaxBw() to update the BBR.max_bw estimator as

follows (here rs.delivery_rate is the delivery rate sample obtained

from the ACK that is being processed, as specified in [draft-cheng-

iccrg-delivery-rate-estimation]):

4.5.2.5. Tracking Time for the BBR.max_bw Max Filter

BBR tracks time for the BBR.max_bw filter window using a virtual

(non-wall-clock) time tracked by counting the cyclical progression

through ProbeBW cycles. Each time through the Probe bw cycle, one

round trip after exiting ProbeBW_UP (the point at which the flow has

its best chance to measure the highest throughput of the cycle), BBR

increments BBR.cycle_count, the virtual time used by the BBR.max_bw

¶

¶

¶

  BBRUpdateMaxBw()

    BBRUpdateRound()

    if (rs.delivery_rate >= BBR.max_bw || !rs.is_app_limited)

        BBR.max_bw = update_windowed_max_filter(

                      filter=BBR.MaxBwFilter,

                      value=rs.delivery_rate,

                      time=BBR.cycle_count,

                      window_length=MaxBwFilterLen)

¶



filter window. Note that BBR.cycle_count only needs to be tracked

with a single bit, since the BBR.max_bw filter only needs to track

samples from two time slots: the previous ProbeBW cycle and the

current ProbeBW cycle:

4.5.3. BBR.min_rtt: Estimated Minimum Round-Trip Time

BBR.min_rtt is BBR's estimate of the round-trip propagation delay of

the path over which a transport connection is sending. The path's

round-trip propagation delay determines the minimum amount of time

over which the connection must be willing to sustain transmissions

at the BBR.bw rate, and thus the minimum amount of data needed in-

flight, for the connection to reach full utilization (a "Full

Pipe"). The round-trip propagation delay can vary over the life of a

connection, so BBR continually estimates BBR.min_rtt using recent

round-trip delay samples.

4.5.3.1. Round-Trip Time Samples for Estimating BBR.min_rtt

For every data packet a connection sends, BBR calculates an RTT

sample that measures the time interval from sending a data packet

until that packet is acknowledged.

For the most part, the same considerations and mechanisms that apply

to RTT estimation for the purposes of retransmission timeout

calculations [RFC6298] apply to BBR RTT samples. Namely, BBR does

not use RTT samples based on the transmission time of retransmitted

packets, since these are ambiguous, and thus unreliable. Also, BBR

calculates RTT samples using both cumulative and selective

acknowledgments (if the transport supports [RFC2018] SACK options or

an equivalent mechanism), or transport-layer timestamps (if the

transport supports [RFC7323] TCP timestamps or an equivalent

mechanism).

The only divergence from RTT estimation for retransmission timeouts

is in the case where a given acknowledgment ACKs more than one data

packet. In order to be conservative and schedule long timeouts to

avoid spurious retransmissions, the maximum among such potential RTT

samples is typically used for computing retransmission timeouts;

i.e., SRTT is typically calculated using the data packet with the

earliest transmission time. By contrast, in order for BBR to try to

reach the minimum amount of data in flight to fill the pipe, BBR

uses the minimum among such potential RTT samples; i.e., BBR

calculates the RTT using the data packet with the latest

transmission time.

¶

  BBRAdvanceMaxBwFilter():

    BBR.cycle_count++

¶

¶

¶

¶

¶



4.5.3.2. BBR.min_rtt Min Filter

RTT samples tend to be above the round-trip propagation delay of the

path, due to "noise" introduced by random variation in physical

transmission processes (e.g. radio link layer noise), queues along

the network path, the receiver's delayed ack strategy, ack

aggregation, etc. Thus to filter out these effects BBR uses a min

filter: BBR estimates BBR.min_rtt using the minimum recent RTT

sample seen by the connection over that past MinRTTFilterLen

seconds. (Many of the same network effects that can decrease

delivery rate measurements can increase RTT samples, which is why

BBR's min-filtering approach for RTTs is the complement of its max-

filtering approach for delivery rates.)

The length of the BBR.min_rtt min filter window is MinRTTFilterLen =

10 secs. This is driven by trade-offs among several considerations:

The MinRTTFilterLen is longer than ProbeRTTInterval, so that it

covers an entire ProbeRTT cycle (see the "ProbeRTT" section

below). This helps ensure that the window can contain RTT samples

that are the result of data transmitted with inflight below the

estimated BDP of the flow. Such RTT samples are important for

helping to reveal the path's underlying two-way propagation delay

even when the aforementioned "noise" effects can often obscure

it.

The MinRTTFilterLen aims to be long enough to avoid needing to

cut in-flight and throughput often. Measuring two-way propagation

delay requires in-flight to be at or below BDP, which risks some

amount of underutilization, so BBR uses a filter window long

enough that such underutilization events can be rare.

The MinRTTFilterLen aims to be long enough that many applications

have a "natural" moment of silence or low utilization that can

cut in-flight below BDP and naturally serve to refresh the

BBR.min_rtt, without requiring BBR to force an artificial cut in

in-flight. This applies to many popular applications, including

Web, RPC, chunked audio or video traffic.

The MinRTTFilterLen aims to be short enough to respond in a

timely manner to real increases in the two-way propagation delay

of the path, e.g. due to route changes, which are expected to

typically happen on longer time scales.

A BBR implementation MAY use a generic windowed min filter to track

BBR.min_rtt. However, a significant savings in space and improvement

in freshness can be achieved by integrating the BBR.min_rtt

estimation into the ProbeRTT state machine, so this document

discusses that approach in the ProbeRTT section.

¶

¶
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4.5.4. BBR.offload_budget

BBR.offload_budget is the estimate of the minimum volume of data

necessary to achieve full throughput using sender (TSO/GSO) and

receiver (LRO, GRO) host offload mechanisms, computed as follows:

The factor of 3 is chosen to allow maintaining at least:

1 quantum in the sending host's queuing discipline layer

1 quantum being segmented in the sending host TSO/GSO engine

1 quantum being reassembled or otherwise remaining unacknowledged

due to the receiver host's LRO/GRO/delayed-ACK engine

4.5.5. BBR.extra_acked

BBR.extra_acked is a volume of data that is the estimate of the

recent degree of aggregation in the network path. For each ACK, the

algorithm computes a sample of the estimated extra ACKed data beyond

the amount of data that the sender expected to be ACKed over the

timescale of a round-trip, given the BBR.bw. Then it computes

BBR.extra_acked as the windowed maximum sample over the last

BBRExtraAckedFilterLen=10 packet-timed round-trips. If the ACK rate

falls below the expected bandwidth, then the algorithm estimates an

aggregation episode has terminated, and resets the sampling interval

to start from the current time.

The BBR.extra_acked thus reflects the recently-measured magnitude of

data and ACK aggregation effects such as batching and slotting at

shared-medium L2 hops (wifi, cellular, DOCSIS), as well as end-host

offload mechanisms (TSO, GSO, LRO, GRO), and end host or middlebox

ACK decimation/thinning.

BBR augments its cwnd by BBR.extra_acked to allow the connection to

keep sending during inter-ACK silences, to an extent that matches

the recently measured degree of aggregation.

More precisely, this is computed as:

¶

    BBRUpdateOffloadBudget():

      BBR.offload_budget = 3 * BBR.send_quantum

¶

¶
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4.5.6. Updating the Model Upon Packet Loss

In every state, BBR responds to (filtered) congestion signals,

including loss. The response to those congestion signals depends on

the flow's current state, since the information that the flow can

infer depends on what the flow was doing when the flow experienced

the signal.

4.5.6.1. Probing for Bandwidth In Startup

In Startup, if the congestion signals meet the Startup exit

criteria, the flow exits Startup and enters Drain.

4.5.6.2. Probing for Bandwidth In ProbeBW

BBR searches for the maximum volume of data that can be sensibly

placed in-flight in the network. A key precondition is that the flow

is actually trying robustly to find that operating point. To

implement this, when a flow is in ProbeBW, and an ACK covers data

sent in one of the accelerating phases (REFILL or UP), and the ACK

indicates that the loss rate over the past round trip exceeds the

queue pressure objective, and the flow is not application limited,

and has not yet responded to congestion signals from the most recent

REFILL or UP phase, then the flow estimates that the volume of data

it allowed in flight exceeded what matches the current delivery

process on the path, and reduces BBR.inflight_hi:

  BBRUpdateACKAggregation():

    /* Find excess ACKed beyond expected amount over this interval */

    interval = (Now() - BBR.extra_acked_interval_start)

    expected_delivered = BBR.bw * interval

    /* Reset interval if ACK rate is below expected rate: */

    if (BBR.extra_acked_delivered <= expected_delivered)

        BBR.extra_acked_delivered = 0

        BBR.extra_acked_interval_start = Now()

        expected_delivered = 0

    BBR.extra_acked_delivered += rs.newly_acked

    extra = BBR.extra_acked_delivered - expected_delivered

    extra = min(extra, cwnd)

    BBR.extra_acked =

      update_windowed_max_filter(

        filter=BBR.ExtraACKedFilter,

        value=extra,

        time=BBR.round_count,

        window_length=BBRExtraAckedFilterLen)

¶

¶

¶

¶



Here rs.tx_in_flight is the amount of data that was estimated to be

in flight when the most recently ACKed packet was sent. And the

BBRBeta (0.7x) bound is to try to ensure that BBR does not react

more dramatically than CUBIC's 0.7x multiplicative decrease factor.

Some loss detection algorithms, including algorithms like RACK

[RFC8985] that delay loss marking while waiting for potential

reordering to resolve, may mark packets as lost long after the loss

itself happened. In such cases, the tx_in_flight for the delivered

sequence range that allowed the loss to be detected may be

considerably smaller than the tx_in_flight of the lost packet

itself. In such cases using the former tx_in_flight rather than the

latter can cause BBR.inflight_hi to be significantly underestimated.

To avoid such issues, BBR processes each loss detection event to

more precisely estimate the volume of in-flight data at which loss

rates cross BBRLossThresh, noting that this may have happened mid-

way through some packet. To estimate this value, we can solve for

"lost_prefix" in the following equation, where inflight_prev

represents the volume of in-flight data preceding this packet,

lost_prev represents the data lost among that previous in-flight

data:

In pseudocode:

  /* Do loss signals suggest inflight is too high?

   * If so, react. */

  CheckInflightTooHigh():

    if (IsInflightTooHigh(rs))

      if (BBR.bw_probe_samples)

        BBRHandleInflightTooHigh()

      return true  /* inflight too high */

    else

      return false /* inflight not too high */

  IsInflightTooHigh():

    return (rs.lost > rs.tx_in_flight * BBRLossThresh)

  BBRHandleInflightTooHigh():

    BBR.bw_probe_samples = 0;  /* only react once per bw probe */

    if (!rs.is_app_limited)

      BBR.inflight_hi = max(rs.tx_in_flight,

                            BBRTargetInflight() * BBRBeta))

    If (BBR.state == ProbeBW_UP)

      BBRStartProbeBW_DOWN()

¶

¶

¶

    lost                     /  inflight                     >= BBRLossThresh

   (lost_prev + lost_prefix) / (inflight_prev + lost_prefix) >= BBRLossThresh

   /* solving for lost_prefix we arrive at: */

   lost_prefix = (BBRLossThresh * inflight_prev - lost_prev) / (1 - BBRLossThresh)

¶

¶



4.5.6.3. When not Probing for Bandwidth

When not explicitly accelerating to probe for bandwidth (Drain,

ProbeRTT, ProbeBW_DOWN, ProbeBW_CRUISE), BBR responds to loss by

slowing down to some extent. This is because loss suggests that the

available bandwidth and safe volume of in-flight data may have

decreased recently, and the flow needs to adapt, slowing down toward

the latest delivery process. BBR flows implement this response by

reducing the short-term model parameters, BBR.bw_lo and

BBR.inflight_lo.

When encountering packet loss when the flow is not probing for

bandwidth, the strategy is to gradually adapt to the current

measured delivery process (the rate and volume of data that is

delivered through the network path over the last round trip). This

applies generally: whether in fast recovery, RTO recovery, TLP

recovery; whether application-limited or not.

There are two key parameters the algorithm tracks, to measure the

current delivery process:

BBR.bw_latest: a 1-round-trip max of delivered bandwidth

(rs.delivery_rate).

BBR.inflight_latest: a 1-round-trip max of delivered volume of data

(rs.delivered).

  BBRHandleLostPacket(packet):

    if (!BBR.bw_probe_samples)

      return /* not a packet sent while probing bandwidth */

    rs.tx_in_flight = packet.tx_in_flight /* inflight at transmit */

    rs.lost = C.lost - packet.lost /* data lost since transmit */

    rs.is_app_limited = packet.is_app_limited;

    if (IsInflightTooHigh(rs))

      rs.tx_in_flight = BBRInflightHiFromLostPacket(rs, packet)

      BBRHandleInflightTooHigh(rs)

  /* At what prefix of packet did losses exceed BBRLossThresh? */

  BBRInflightHiFromLostPacket(rs, packet):

    size = packet.size

    /* What was in flight before this packet? */

    inflight_prev = rs.tx_in_flight - size

    /* What was lost before this packet? */

    lost_prev = rs.lost - size

    lost_prefix = (BBRLossThresh * inflight_prev - lost_prev) /

                  (1 - BBRLossThresh)

    /* At what inflight value did losses cross BBRLossThresh? */

    inflight = inflight_prev + lost_prefix

    return inflight

¶

¶

¶

¶

¶

¶



Upon the ACK at the end of each round that encountered a newly-

marked loss, the flow updates its model (bw_lo and inflight_lo) as

follows:

This logic can be represented as follows:

¶

      bw_lo     = max(       bw_latest, BBRBeta *       bw_lo )

inflight_lo     = max( inflight_latest, BBRBeta * inflight_lo )

¶

¶



  /* Near start of ACK processing: */

  BBRUpdateLatestDeliverySignals():

    BBR.loss_round_start = 0

    BBR.bw_latest       = max(BBR.bw_latest,       rs.delivery_rate)

    BBR.inflight_latest = max(BBR.inflight_latest, rs.delivered)

    if (rs.prior_delivered >= BBR.loss_round_delivered)

      BBR.loss_round_delivered = C.delivered

      BBR.loss_round_start = 1

  /* Near end of ACK processing: */

  BBRAdvanceLatestDeliverySignals():

    if (BBR.loss_round_start)

      BBR.bw_latest       = rs.delivery_rate

      BBR.inflight_latest = rs.delivered

  BBRResetCongestionSignals():

    BBR.loss_in_round = 0

    BBR.bw_latest = 0

    BBR.inflight_latest = 0

  /* Update congestion state on every ACK */

  BBRUpdateCongestionSignals():

    BBRUpdateMaxBw()

    if (rs.losses > 0)

      BBR.loss_in_round = 1

    if (!BBR.loss_round_start)

      return  /* wait until end of round trip */

    BBRAdaptLowerBoundsFromCongestion()

    BBR.loss_in_round = 0

  /* Once per round-trip respond to congestion */

  BBRAdaptLowerBoundsFromCongestion():

    if (BBRIsProbingBW())

      return

    if (BBR.loss_in_round())

      BBRInitLowerBounds()

      BBRLossLowerBounds()

  /* Handle the first congestion episode in this cycle */

  BBRInitLowerBounds():

    if (BBR.bw_lo == Infinity)

      BBR.bw_lo = BBR.max_bw

    if (BBR.inflight_lo == Infinity)

      BBR.inflight_lo = cwnd

  /* Adjust model once per round based on loss */

  BBRLossLowerBounds()

    BBR.bw_lo       = max(BBR.bw_latest,

                          BBRBeta * BBR.bw_lo)



    BBR.inflight_lo = max(BBR.inflight_latest,

                          BBRBeta * BBR.infligh_lo)

  BBRResetLowerBounds():

    BBR.bw_lo       = Infinity

    BBR.inflight_lo = Infinity

  BBRBoundBWForModel():

    BBR.bw = min(BBR.max_bw, BBR.bw_lo, BBR.bw_hi)

¶



4.6. Updating Control Parameters

BBR uses three distinct but interrelated control parameters: pacing

rate, send quantum, and congestion window (cwnd).

4.6.1. Summary of Control Behavior in the State Machine

The following table summarizes how BBR modulates the control

parameters in each state. In the table below, the semantics of the

columns are as follows:

State: the state in the BBR state machine, as depicted in the

"State Transition Diagram" section above.

Tactic: The tactic chosen from the "State Machine Tactics"

subsection above: "accel" refers to acceleration, "decel" to

deceleration, and "cruise" to cruising.

Pacing Gain: the value used for BBR.pacing_gain in the given

state.

Cwnd Gain: the value used for BBR.cwnd_gain in the given state.

Rate Cap: the rate values applied as bounds on the BBR.max_bw

value applied to compute BBR.bw.

Volume Cap: the volume values applied as bounds on the

BBR.max_inflight value to compute cwnd.

The control behavior can be summarized as follows. Upon processing

each ACK, BBR uses the values in the table below to compute BBR.bw

in BBRBoundBWForModel(), and the cwnd in BBRBoundCwndForModel():

¶

¶
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4.6.2. Pacing Rate: BBR.pacing_rate

To help match the packet-arrival rate to the bottleneck bandwidth

available to the flow, BBR paces data packets. Pacing enforces a

maximum rate at which BBR schedules quanta of packets for

transmission.

The sending host implements pacing by maintaining inter-quantum

spacing at the time each packet is scheduled for departure,

calculating the next departure time for a packet for a given flow

(BBR.next_departure_time) as a function of the most recent packet

size and the current pacing rate, as follows:

To adapt to the bottleneck, in general BBR sets the pacing rate to

be proportional to bw, with a dynamic gain, or scaling factor of

proportionality, called pacing_gain.

+-----------------+--------+--------+------+--------+------------------+

| State           | Tactic | Pacing | Cwnd | Rate   | Volume           |

|                 |        | Gain   | Gain | Cap    | Cap              |

+-----------------+--------+--------+------+--------+------------------+

| Startup         | accel  | 2.77   | 2    |        |                  |

|                 |        |        |      |        |                  |

+-----------------+--------+--------+------+--------+------------------+

| Drain           | decel  | 0.5    | 2    | bw_hi, | inflight_hi,     |

|                 |        |        |      | bw_lo  | inflight_lo      |

+-----------------+--------+--------+------+--------+------------------+

| ProbeBW_DOWN    | decel  | 0.9    | 2    | bw_hi, | inflight_hi,     |

|                 |        |        |      | bw_lo  | inflight_lo      |

+-----------------+--------+--------+------+--------+------------------+

| ProbeBW_CRUISE  | cruise | 1.0    | 2    | bw_hi, | 0.85*inflight_hi |

|                 |        |        |      | bw_lo  | inflight_lo      |

+-----------------+--------+--------+------+--------+------------------+

| ProbeBW_REFILL  | accel  | 1.0    | 2    | bw_hi  | inflight_hi      |

|                 |        |        |      |        |                  |

+-----------------+--------+--------+------+--------+------------------+

| ProbeBW_UP      | accel  | 1.25   | 2    | bw_hi  | inflight_hi      |

|                 |        |        |      |        |                  |

+-----------------+--------+--------+------+--------+------------------+

| ProbeRTT        | decel  | 1.0    | 0.5  | bw_hi, | 0.85*inflight_hi |

|                 |        |        |      | bw_lo  | inflight_lo      |

+-----------------+--------+--------+------+--------+------------------+

¶

¶

¶

  BBR.next_departure_time = max(Now(), BBR.next_departure_time)

  packet.departure_time = BBR.next_departure_time

  pacing_delay = packet.size / BBR.pacing_rate

  BBR.next_departure_time = BBR.next_departure_time + pacing_delay

¶

¶



When a BBR flow starts it has no bw estimate (bw is 0). So in this

case it sets an initial pacing rate based on the transport sender

implementation's initial congestion window ("InitialCwnd", e.g. from

[RFC6928]), the initial SRTT (smoothed round-trip time) after the

first non-zero RTT sample, and the initial pacing_gain:

After initialization, on each data ACK BBR updates its pacing rate

to be proportional to bw, as long as it estimates that it has filled

the pipe (BBR.filled_pipe is true; see the "Startup" section for

details), or doing so increases the pacing rate. Limiting the pacing

rate updates in this way helps the connection probe robustly for

bandwidth until it estimates it has reached its full available

bandwidth ("filled the pipe"). In particular, this prevents the

pacing rate from being reduced when the connection has only seen

application-limited bandwidth samples. BBR updates the pacing rate

on each ACK by executing the BBRSetPacingRate() step as follows:

To help drive the network toward lower queues and low latency while

maintaining high utilization, the BBRPacingMarginPercent constant of

1 aims to cause BBR to pace at 1% below the bw, on average.

4.6.3. Send Quantum: BBR.send_quantum

In order to amortize per-packet overheads involved in the sending

process (host CPU, NIC processing, and interrupt processing delays),

high-performance transport sender implementations (e.g., Linux TCP)

often schedule an aggregate containing multiple packets (multiple

SMSS) worth of data as a single quantum (using TSO, GSO, or other

offload mechanisms). The BBR congestion control algorithm makes this

control decision explicitly, dynamically calculating a quantum

control parameter that specifies the maximum size of these

transmission aggregates. This decision is based on a trade-off:

A smaller quantum is preferred at lower data rates because it

results in shorter packet bursts, shorter queues, lower queueing

delays, and lower rates of packet loss.

¶

  BBRInitPacingRate():

    nominal_bandwidth = InitialCwnd / (SRTT ? SRTT : 1ms)

    BBR.pacing_rate =  BBRStartupPacingGain * nominal_bandwidth

¶

¶

  BBRSetPacingRateWithGain(pacing_gain):

    rate = pacing_gain * bw * (100 - BBRPacingMarginPercent) / 100

    if (BBR.filled_pipe || rate > BBR.pacing_rate)

      BBR.pacing_rate = rate

  BBRSetPacingRate():

    BBRSetPacingRateWithGain(BBR.pacing_gain)

¶

¶

¶
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A bigger quantum can be required at higher data rates because it

results in lower CPU overheads at the sending and receiving

hosts, who can ship larger amounts of data with a single trip

through the networking stack.

On each ACK, BBR runs BBRSetSendQuantum() to update BBR.send_quantum

as follows:

A BBR implementation MAY use alternate approaches to select a

BBR.send_quantum, as appropriate for the CPU overheads anticipated

for senders and receivers, and buffering considerations anticipated

in the network path. However, for the sake of the network and other

users, a BBR implementation SHOULD attempt to use the smallest

feasible quanta.

4.6.4. Congestion Window

The congestion window, or cwnd, controls the maximum volume of data

BBR allows in flight in the network at any time. It is the maximum

volume of in-flight data that the algorithm estimates is appropriate

for matching the current network path delivery process, given all

available signals in the model, at any time scale. BBR adapts the

cwnd based on its model of the network path and the state machine's

decisions about how to probe that path.

By default, BBR grows its cwnd to meet its BBR.max_inflight, which

models what's required for achieving full throughput, and as such is

scaled to adapt to the estimated BDP computed from its path model.

But BBR's selection of cwnd is designed to explicitly trade off

among competing considerations that dynamically adapt to various

conditions. So in loss recovery BBR more conservatively adjusts its

sending behavior based on more recent delivery samples, and if BBR

needs to re-probe the current BBR.min_rtt of the path then it cuts

its cwnd accordingly. The following sections describe the various

considerations that impact cwnd.

4.6.4.1. Initial cwnd

BBR generally uses measurements to build a model of the network path

and then adapts control decisions to the path based on that model.

As such, the selection of the initial cwnd is considered to be

outside the scope of the BBR algorithm, since at initialization

*

¶

¶

  BBRSetSendQuantum():

    if (BBR.pacing_rate < 1.2 Mbps)

      floor = 1 * SMSS

    else

      floor = 2 * SMSS

    BBR.send_quantum = min(BBR.pacing_rate * 1ms, 64KBytes)

    BBR.send_quantum = max(BBR.send_quantum, floor)

¶

¶

¶
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there are no measurements yet upon which BBR can operate. Thus, at

initialization, BBR uses the transport sender implementation's

initial congestion window (e.g. from [RFC6298] for TCP).

4.6.4.2. Computing BBR.max_inflight

The BBR BBR.max_inflight is the upper bound on the volume of data

BBR allows in flight. This bound is always in place, and dominates

when all other considerations have been satisfied: the flow is not

in loss recovery, does not need to probe BBR.min_rtt, and has

accumulated confidence in its model parameters by receiving enough

ACKs to gradually grow the current cwnd to meet the

BBR.max_inflight.

On each ACK, BBR calculates the BBR.max_inflight in

BBRUpdateMaxInflight() as follows:

The "estimated_bdp" term tries to allow enough packets in flight to

fully utilize the estimated BDP of the path, by allowing the flow to

send at BBR.bw for a duration of BBR.min_rtt. Scaling up the BDP by

BBR.cwnd_gain bounds in-flight data to a small multiple of the BDP,

to handle common network and receiver behavior, such as delayed,

stretched, or aggregated ACKs [A15]. The "quanta" term allows enough

quanta in flight on the sending and receiving hosts to reach high

throughput even in environments using offload mechanisms.

¶

¶

¶

  BBRBDPMultiple(gain):

    if (BBR.min_rtt == Inf)

      return InitialCwnd /* no valid RTT samples yet */

    BBR.bdp = BBR.bw * BBR.min_rtt

    return gain * BBR.bdp

  BBRQuantizationBudget(inflight)

    BBRUpdateOffloadBudget()

    inflight = max(inflight, BBR.offload_budget)

    inflight = max(inflight, BBRMinPipeCwnd)

      if (BBR.state == ProbeBW && BBR.cycle_idx == ProbeBW_UP)

      inflight += 2

    return inflight

  BBRInflight(gain):

    inflight = BBRBDPMultiple(gain)

    return BBRQuantizationBudget(inflight)

  BBRUpdateMaxInflight():

    BBRUpdateAggregationBudget()

    inflight = BBRBDPMultiple(BBR.cwnd_gain)

    inflight += BBR.extra_acked

    BBR.max_inflight = BBRQuantizationBudget(inflight)

¶

¶



4.6.4.3. Minimum cwnd for Pipelining

For BBR.max_inflight, BBR imposes a floor of BBRMinPipeCwnd (4

packets, i.e. 4 * SMSS). This floor helps ensure that even at very

low BDPs, and with a transport like TCP where a receiver may ACK

only every alternate SMSS of data, there are enough packets in

flight to maintain full pipelining. In particular BBR tries to allow

at least 2 data packets in flight and ACKs for at least 2 data

packets on the path from receiver to sender.

4.6.4.4. Modulating cwnd in Loss Recovery

BBR interprets loss as a hint that there may be recent changes in

path behavior that are not yet fully reflected in its model of the

path, and thus it needs to be more conservative.

Upon a retransmission timeout (RTO), BBR conservatively reduces cwnd

to a value that will allow 1 SMSS to be transmitted. Then BBR

gradually increases cwnd using the normal approach outlined below in

"Core cwnd Adjustment Mechanism".

When a BBR sender detects packet loss but there are still packets in

flight, on the first round of the loss-repair process BBR

temporarily reduces the cwnd to match the current delivery rate as

ACKs arrive. On second and later rounds of loss repair, it ensures

the sending rate never exceeds twice the current delivery rate as

ACKs arrive.

When BBR exits loss recovery it restores the cwnd to the "last known

good" value that cwnd held before entering recovery. This applies

equally whether the flow exits loss recovery because it finishes

repairing all losses or because it executes an "undo" event after

inferring that a loss recovery event was spurious.

There are several ways to implement this high-level design for

updating cwnd in loss recovery. One is as follows:

Upon retransmission timeout (RTO):

Upon entering Fast Recovery, set cwnd to the number of packets still

in flight (allowing at least one for a fast retransmit):

¶

¶

¶

¶

¶

¶

¶

  BBROnEnterRTO():

    BBR.prior_cwnd = BBRSaveCwnd()

    cwnd = packets_in_flight + 1

¶

¶

  BBROnEnterFastRecovery():

    BBR.prior_cwnd = BBRSaveCwnd()

    cwnd = packets_in_flight + max(rs.newly_acked, 1)

    BBR.packet_conservation = true

¶



Upon every ACK in Fast Recovery, run the following

BBRModulateCwndForRecovery() steps, which help ensure packet

conservation on the first round of recovery, and sending at no more

than twice the current delivery rate on later rounds of recovery

(given that "rs.newly_acked" packets were newly marked ACKed or

SACKed and "rs.newly_lost" were newly marked lost):

After one round-trip in Fast Recovery:

Upon exiting loss recovery (RTO recovery or Fast Recovery), either

by repairing all losses or undoing recovery, BBR restores the best-

known cwnd value we had upon entering loss recovery:

Note that exiting loss recovery happens during ACK processing, and

at the end of ACK processing BBRBoundCwndForModel() will bound the

cwnd based on the current model parameters. Thus the cwnd and pacing

rate after loss recovery will generally be smaller than the values

entering loss recovery.

The BBRSaveCwnd() and BBRRestoreCwnd() helpers help remember and

restore the last-known good cwnd (the latest cwnd unmodulated by

loss recovery or ProbeRTT), and is defined as follows:

4.6.4.5. Modulating cwnd in ProbeRTT

If BBR decides it needs to enter the ProbeRTT state (see the

"ProbeRTT" section below), its goal is to quickly reduce the volume

of in-flight data and drain the bottleneck queue, thereby allowing

measurement of BBR.min_rtt. To implement this mode, BBR bounds the

¶

  BBRModulateCwndForRecovery():

    if (rs.newly_lost > 0)

      cwnd = max(cwnd - rs.newly_lost, 1)

    if (BBR.packet_conservation)

      cwnd = max(cwnd, packets_in_flight + rs.newly_acked)

¶

¶

  BBR.packet_conservation = false¶

¶

  BBR.packet_conservation = false

  BBRRestoreCwnd()

¶

¶

¶

  BBRSaveCwnd():

    if (!InLossRecovery() and BBR.state != ProbeRTT)

      return cwnd

    else

      return max(BBR.prior_cwnd, cwnd)

  BBRRestoreCwnd():

    cwnd = max(cwnd, BBR.prior_cwnd)

¶



cwnd to BBRMinPipeCwnd, the minimal value that allows pipelining

(see the "Minimum cwnd for Pipelining" section, above):

4.6.4.6. Core cwnd Adjustment Mechanism

The network path and traffic traveling over it can make sudden

dramatic changes. To adapt to these changes smoothly and robustly,

and reduce packet losses in such cases, BBR uses a conservative

strategy. When cwnd is above the BBR.max_inflight derived from BBR's

path model, BBR cuts the cwnd immediately to the BBR.max_inflight.

When cwnd is below BBR.max_inflight, BBR raises the cwnd gradually

and cautiously, increasing cwnd by no more than the amount of data

acknowledged (cumulatively or selectively) upon each ACK.

Specifically, on each ACK that acknowledges "rs.newly_acked" packets

as newly ACKed or SACKed, BBR runs the following BBRSetCwnd() steps

to update cwnd:

There are several considerations embodied in the logic above. If BBR

has measured enough samples to achieve confidence that it has filled

the pipe (see the description of BBR.filled_pipe in the "Startup"

section below), then it increases its cwnd based on the number of

packets delivered, while bounding its cwnd to be no larger than the

BBR.max_inflight adapted to the estimated BDP. Otherwise, if the

cwnd is below the BBR.max_inflight, or the sender has marked so

little data delivered (less than InitialCwnd) that it does not yet

judge its BBR.max_bw estimate and BBR.max_inflight as useful, then

¶

  BBRProbeRTTCwnd():

    probe_rtt_cwnd = BBRBDPMultiple(BBR.bw, BBRProbeRTTCwndGain)

    probe_rtt_cwnd = max(probe_rtt_cwnd, BBRMinPipeCwnd)

    return probe_rtt_cwnd

  BBRBoundCwndForProbeRTT():

    if (BBR.state == ProbeRTT)

      cwnd = min(cwnd, BBRProbeRTTCwnd())

¶

¶

¶

  BBRSetCwnd():

    BBRUpdateMaxInflight()

    BBRModulateCwndForRecovery()

    if (!BBR.packet_conservation) {

      if (BBR.filled_pipe)

        cwnd = min(cwnd + rs.newly_acked, BBR.max_inflight)

      else if (cwnd < BBR.max_inflight || C.delivered < InitialCwnd)

        cwnd = cwnd + rs.newly_acked

      cwnd = max(cwnd, BBRMinPipeCwnd)

    }

    BBRBoundCwndForProbeRTT()

    BBRBoundCwndForModel()

¶



it increases cwnd without bounding it to be below BBR.max_inflight.

Finally, BBR imposes a floor of BBRMinPipeCwnd in order to allow

pipelining even with small BDPs (see the "Minimum cwnd for

Pipelining" section, above).

4.6.4.7. Bounding cwnd Based on Recent Congestion

Finally, BBR bounds the cwnd based on recent congestion, as outlined

in the "Volume Cap" column of the table in the "Summary of Control

Behavior in the State Machine" section:

5. Implementation Status

This section records the status of known implementations of the

algorithm defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

¶

¶

  BBRBoundCwndForModel():

    cap = Infinity

    if (IsInAProbeBWState() and

        BBR.state != ProbeBW_CRUISE)

      cap = BBR.inflight_hi

    else if (BBR.state == ProbeRTT or

             BBR.state == ProbeBW_CRUISE)

      cap = BBRInflightWithHeadroom()

    /* apply inflight_lo (possibly infinite): */

    cap = min(cap, BBR.inflight_lo)

    cap = max(cap, BBRMinPipeCwnd)

    cwnd = min(cwnd, cap)

¶

¶

¶



As of the time of writing, the following implementations of BBR have

been publicly released:

Linux TCP

Source code URL:

https://github.com/google/bbr/blob/v2alpha/README.md

https://github.com/google/bbr/blob/v2alpha/net/ipv4/

tcp_bbr2.c

Source: Google

Maturity: production

License: dual-licensed: GPLv2 / BSD

Contact: https://groups.google.com/d/forum/bbr-dev

Last updated: August 21, 2021

QUIC

Source code URLs:

https://cs.chromium.org/chromium/src/net/third_party/

quiche/src/quic/core/congestion_control/bbr2_sender.cc

https://cs.chromium.org/chromium/src/net/third_party/

quiche/src/quic/core/congestion_control/bbr2_sender.h

Source: Google

Maturity: production

License: BSD-style

Contact: https://groups.google.com/d/forum/bbr-dev

Last updated: October 21, 2021

6. Security Considerations

This proposal makes no changes to the underlying security of

transport protocols or congestion control algorithms. BBR shares the

same security considerations as the existing standard congestion

control algorithm [RFC5681].
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[RFC793]

[RFC2018]

[RFC7323]

[RFC2119]

7. IANA Considerations

This document has no IANA actions. Here we are using that phrase,

suggested by [RFC5226], because BBR does not modify or extend the

wire format of any network protocol, nor does it add new

dependencies on assigned numbers. BBR involves only a change to the

congestion control algorithm of a transport sender, and does not

involve changes in the network, the receiver, or any network

protocol.

Note to RFC Editor: this section may be removed on publication as an

RFC.
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