
Registration Protocols Extensions A. Blinn
Internet-Draft R. Carney
Intended status: Informational GoDaddy Inc.
Expires: April 23, 2017 October 20, 2016

 Domain Connect API - Communications between DNS Provider and Services
 draft-carney-regext-domainconnect-01

Abstract

 This document provides information related to the Domain Connect API
 that was built to support communications between DNS Providers and
 Service Providers (hosting, social, email, hardware, etc.).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 23, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/pdf/bcp78
http://trustee.ietf.org/license-info

Blinn & Carney Expires April 23, 2017 [Page 1]

Internet-Draft Domain Connect October 2016

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Definitions . 3
 4. The API . 3
 4.1. Web-Based Authentication, Authorization & Template Action
 Flow . 5
 4.2. OAuth Based Authentication and Authorization Flow 5
 4.3. DNS Provider Initiated Flows 6
 4.4. DNS Provider Discovery 6
 4.5. Domain Connect Endpoints 7
 4.5.1. Web Based Flow 8
 4.5.2. OAuth Flow . 9
 4.5.2.1. Getting an Authorization Token 10
 4.5.2.2. Requesting an Access Token 11
 4.5.2.3. Making Requests with Access Tokens 12
 4.5.2.4. Apply Template to Domain 12
 4.5.2.5. Revert Template 13
 4.5.2.6. Revoke Access 14
 4.6. Domain Connect Objects and Templates 14
 4.7. Implementation Notes 15
 4.8. Operational and Implementation Considerations 19
 5. IANA Considerations . 19
 6. Acknowledgements . 20
 7. Change History . 20
 7.1. Change from 00 to 01 20
 8. Normative References . 20
 Authors' Addresses . 20

1. Introduction

 Configuring a service at a Service Provider to work with a domain is
 a complex task and is difficult for users.

 Typically a customer will try to configure their service by entering
 their domain name with the Service Provider. The Service Provider
 then uses a number of techniques to discover the DNS Provider. This
 might include DNS queries to determine the registrar and/or the
 nameserver providing DNS.

 Once the Service Provider discovers the DNS Provider, they typically
 give the customer instructions for proper configuration of DNS. This

 might include help text, screen shots, or even links to the
 appropriate tools.

 This often presents a number of technologies or processes to the user
 that they may not understand. DNS record types, TTLs, Hostnames,

Blinn & Carney Expires April 23, 2017 [Page 2]

Internet-Draft Domain Connect October 2016

 etc. are all confusing to many users. Instructions authored by the
 Service Provider may also be out of date, further confusing the
 issue.

 The goal of the protocol presented in this RFC is to create a system
 where Service Providers can easily enable their applications/services
 to work with the domain names of their customers. This includes both
 discovery of the DNS Provider and subsequent modification of DNS.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 XML is case sensitive. Unless stated otherwise, XML specifications
 and examples provided in this document MUST be interpreted in the
 character case presented in order to develop a conforming
 implementation.

3. Definitions

 The following definitions are used in this document:

 o Service Providers - refers to entities that provide products and
 services attached to domain names. Examples include web hosting
 providers (such as Wix or SquareSpace), email Service Providers
 (such as Microsoft or Google) and potentially even hardware
 manufacturers with DNS-enabled devices including home routers or
 automation controls (such as Linksys, Nest, and Philips).
 o DNS Providers - refers to entities that provide DNS services such
 as registrars (e.g. GoDaddy, eNom or Tucows) or standalone DNS
 services (e.g. CloudFlare).
 o Customer/User - refers to the end-user of these services.
 o Templates/Service Templates - refers to a file that describes a
 set of changes to DNS and domain functionality to enable a

https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc2119

 specific service.

4. The API

 The system will be implemented using simple web based interactions
 and standard authentication protocols, allowing for the creation and
 modification of DNS settings through the application of templates
 instead of direct manipulation of individual DNS records.

 The core of this proposal is based on templates. Templates describe
 a service owned by a Service Provider, and contain all of the
 information necessary to describe the changes to the domain and to

Blinn & Carney Expires April 23, 2017 [Page 3]

Internet-Draft Domain Connect October 2016

 DNS required to enable and operate/maintain a service. These changes
 are in the form of records/commands which map to records in DNS or
 other domain behavior (e.g. redirects).

 The individual records/commands may be identified by a group
 identifier. This allows for the application of templates in
 different stages. For example, an email provider might first set a
 TXT record to verify the domain, and later set an MX record to
 configure email. While done separately, both changes are
 fundamentally part of the same service.

 Templates can also contain variable portions, as often values of data
 in the template change based on the rules of the Service Provider
 (e.g. the IP address of a service).

 Configuration and onboarding of templates between the DNS Provider
 and the Service Provider is initially seen as a manual process. The
 template is defined by the Service Provider and given to the DNS
 Provider. Future versions of this specification may allow for an
 independent repository of templates.

 By basing the protocol on templates instead of DNS Records, several
 advantages are achieved. The DNS Provider has very explicit
 knowledge and control on the settings being changed to enable a
 service. The system is also more secure as templates are tightly
 controlled and contained.

 All parties benefit by having an open standard. With more DNS
 Providers supporting the standard, more Service Providers are likely

 to adopt and vice versa.

 The value to customers is simple, Domain Connect makes configuration
 of services much easier. Instead of editing individual DNS records,
 a customer simply approves the application of a template to their
 domain.

 To attach a domain name to a service provided by a Service Provider,
 the customer would first enter their domain name.

 Instead of relying on examination of the nameserver and mapping these
 to DNS Providers, DNS Provider discovery would be handled through
 simple records in DNS and an API. The Service Provider would query
 for a specific record in the zone to determine a REST endpoint, call
 an API, and a Domain Connect compliant DNS Provider would return
 information about that domain at the DNS Provider.

Blinn & Carney Expires April 23, 2017 [Page 4]

Internet-Draft Domain Connect October 2016

 For the application of the changes to DNS, there are two main use
 cases. The first is a synchronous web flow. The second is the API
 when the OAuth flow is used.

4.1. Web-Based Authentication, Authorization & Template Action Flow

 This flow is tailored for the Service Provider that requires a one-
 time synchronous change to DNS.

 The user would first enter their domain name at the Service Provider.

 After the Service Provider determines the DNS Provider, the Service
 Provider would display a link to the user indicating that they can
 "Connect their Domain" to the service.

 After clicking the link, the user is directed to a browser window on
 the DNS Provider's site. This could be in place, another tab, or in
 a new browser window. This link would indicate the domain name being
 updated, the service being enabled, and any additional parameters
 needed to configure the service.

 The user would be asked to authenticate at the DNS Provider site.

 After authenticating at the DNS Provider, the DNS Provider would
 verify the domain name, provided by the user, is owned by the user.
 The DNS Provider would also verify other parameters passed in are
 valid and would prompt the user to give consent for making the change
 to DNS.

 Assuming the user grants this consent, the DNS changes would be
 applied. Upon successful application of the DNS changes, an optional
 callback URL would be called at the Service Provider indicating
 success.

4.2. OAuth Based Authentication and Authorization Flow

 The OAuth flow is tailored for the Service Provider that wishes to
 make changes to DNS asynchronously to the user interaction, or may
 wish to make multiple or additional changes to DNS over time.

 The OAuth based authentication and authorization flow begins
 similarly to the web based synchronous flow.

 However, instead of applying the DNS changes on user confirmation,
 OAuth access is granted to the Service Provider. An OAuth token is
 generated and handed back to the Service Provider.

Blinn & Carney Expires April 23, 2017 [Page 5]

Internet-Draft Domain Connect October 2016

 The permission granted in the OAuth token is a right for the Service
 Provider to apply changes based on the template to the specific
 domain owned by a specific user.

 The Service Provider would call an API that applies this template to
 the domain, including any necessary parameters along with the access
 token(s). As in all OAuth flows, access can be revoked by the user
 at any time. This would be done on the DNS Providers user
 experience.

 If the OAuth flow is used, once a Service Provider has an OAuth token
 the Domain Connect API becomes available for use. The Domain Connect
 API is a simple REST service.

 This REST service allows the application or removal of the changes in

 the template on a domain name. The domain name, user, and template
 must be authorized through the OAuth token and corresponding access
 token.

 Additional parameters named keys are expected to be passed as name/
 value pairs on the query string of each API call.

4.3. DNS Provider Initiated Flows

 It may be desired to expose different services available from the DNS
 Provider, mainly to expose interesting services that the user could
 attach to their domain. An example would be suggesting to a user
 that they might want to connect their domain to a partner Service
 Provider.

 If the template for the service is static, it is sometimes possible
 to simply apply the template, and be done.

 However, often the template has some dynamic elements. For this
 scenario, the DNS Provider need simply call a URL at the Service
 Provider. The Service Provider can then sign the user in, collect
 any necessary information, and call the normal web-based flows
 described above.

4.4. DNS Provider Discovery

 In order to facilitate discovery of the DNS Provider given a domain
 name, a domain will contain a record in DNS.

 This record will be a simple TXT record containing a URL used as a
 prefix for calling a discovery API. This record will be named
 domainconnect.

Blinn & Carney Expires April 23, 2017 [Page 6]

Internet-Draft Domain Connect October 2016

 An example of this record would contain:

 https://domainconnect.godaddy.com

 As a practical matter of implementation, the DNS Provider need not
 contain a copy of this data in each and every zone. Instead, the DNS
 Provider needs simply to respond to the DNS query for the
 domainconnect TXT record with the appropriate data. How this is

https://domainconnect.godaddy.com

 implemented is up to the DNS Provider.

 Once the URL prefix is discovered, it can be used by the Service
 Provider to determine the additional settings for using Domain
 Connect on this domain at the DNS Provider. This is done by calling
 a REST API.

 GET
 v2/{domain}/settings

 This will return a JSON structure containing the settings to use for
 Domain Connect on the domain name (passed in on the path) at the DNS
 Provider. This JSON structure will contain the following fields:

 o providerName: The name of the DNS Provider suitable for display on
 the Service Provider UX.
 o urlSyncUX: The URL Prefix for linking to the UX elements of Domain
 Connect for the synchronous flow at the DNS Provider.
 o urlAsyncUX: The URL Prefix for linking to the UX elements of
 Domain Connect for the asynchronous flow at the DNS Provider
 o urlAPI: This is the URL Prefix for the REST API for the
 asynchronous OAuth API.

 As an example, the JSON returned by this call might contain.

 {
 "providerName": "GoDaddy",
 "urlSyncUX": "https://domainconnect.godaddy.com",
 "urlAsyncUX": "https://domainconnect.godaddy.com",
 "urlAPI" : "https://api.domainconnect.godaddy.com"
 }

4.5. Domain Connect Endpoints

 Domain Connect contains endpoints in the form of URLs.

 The first set of endpoints are for the UX that the Service Provider
 links to.

Blinn & Carney Expires April 23, 2017 [Page 7]

Internet-Draft Domain Connect October 2016

 These are for the UX which includes the web-based flow where the user

 clicks on the link, and the OAuth flow where the user clicks on the
 link for consent.

 The second set of endpoints are for the API that is called as part of
 the asynchronous OAuth flow via REST.

 All endpoints begin with a root URL for the DNS Provider such as
 https://connect.dnsprovider.com/ and may also include any prefix at
 the discretion of the DNS Provider, for example,
 https://connect.dnsprovider.com/api/

 The root URLs for the UX endpoints and the API endpoints are returned
 in the JSON payload during DNS Provider discovery.

4.5.1. Web Based Flow

 GET
 v2/domainTemplates/providers/{providerDomain}/services/{serviceNam
 e}/apply?[properties]

 This is the URL used to apply a template to a domain. This URL is
 embedded on the Service Provider's site to start the Domain Connect
 protocol.

 Parameters/properties passed to this URL include:

 o domain: This parameter contains the domain name being configured.
 o name/value pairs: Any variable fields consumed by this template.
 The name portion of this API call corresponds to the variable(s)
 specified in the template and the value corresponds to the value
 that should be used when applying the template.
 o requestId: This OPTIONAL parameter may contain a value that will
 be passed back to the calling Service Provider via the template's
 callback URL. A Service Provider may use this value to identify a
 specific call or for any other purpose.
 o groupId: This OPTIONAL parameter specifies the group of changes
 from the template to apply. If no group is specified, all changes
 are applied.

 An example query string is below:

 GET
 https://webconnect.dnsprovider.com/v2/domainTemplates/providers/co
 olprovider.com/services/hosting/
 apply?www=192.168.42.42&m=192.168.42.43&domain=example.com

Blinn & Carney Expires April 23, 2017 [Page 8]

https://connect.dnsprovider.com/
https://connect.dnsprovider.com/api/
https://webconnect.dnsprovider.com/v2/domainTemplates/providers/coolprovider.com/services/hosting/
https://webconnect.dnsprovider.com/v2/domainTemplates/providers/coolprovider.com/services/hosting/

Internet-Draft Domain Connect October 2016

 This call indicates that the Service Provider wishes to connect the
 domain example.com to the service using the template identified by
 the composite key of the provider (coolprovider.com) and the service
 owned by them (hosting). In this example, there are two variables in
 this template, "www" and "m" which both require values (in this case
 each requires an IP address). These variables are passed as name/
 value pairs.

 As part of the Domain Connect flow, a callback URL will be invoked if
 provided.

 It should also be noted that successfully getting a callback URL
 invoked in a flow such as this isn't 100% reliable. Requests often
 fail, and users may close their web browser before such a callback is
 invoked.

 This callback URL is largely for tracking and convenience. As such
 the lack of reliability is likely not a factor. A Service Provider
 who wishes to continue any process with certainty will simply check
 the DNS for any applied changes as a trigger for further action.

 The URL called is specified as part of the onboarding process with
 the service. This URL would allow for the substitution of three
 values:

 o domain: The domain name configured with domain connect.
 o requestId: The passed in requestId in the initial call.
 o status: The status or results of the operation (SUCCESS, CANCELED,
 FAILED, ERROR).

 The format of this URL provided by the Service Provider to the DNS
 Provider would be similar to:

 http://example.com/
 connectresults?domain=%domain%&request=%requestId%&status=%status%

4.5.2. OAuth Flow

 Using the OAuth flow is a more advanced use case, needed by Service
 Providers that have more complex configurations that may require
 multiple steps and/or are asynchronous from the user's interaction.

 Details of an OAuth implementation are beyond the scope of this
 specification. Instead, an overview of how OAuth fits with Domain
 Connect is given here.

Blinn & Carney Expires April 23, 2017 [Page 9]

Internet-Draft Domain Connect October 2016

 Service providers wishing to use the OAuth flow must register as an
 OAuth client with the DNS Provider. This is envisioned as a manual
 process.

 To register, the Service Provider would provide (in addition to their
 template) one or more callback URLs that specify where the customer
 will be redirected after the provider authorization. In return, the
 DNS Provider will give the Service Provider a client id and secret
 which will be used when requesting tokens as part of the OAuth
 process flow.

4.5.2.1. Getting an Authorization Token

 GET
 v2/domainTemplates/
 providers/{providerDomain}/services/{serviceName}

 To initiate the OAuth flow the Service Provider would link to the DNS
 Provider to gain consent. This endpoint is similar to the
 synchronous flow described above, and will handle authenticating the
 user and asking for the user's permission to allow the Service
 Provider to make the specified changes to the domain.

 Upon successful authorization, the DNS Provider will direct the end
 user's browser to the redirect URI provided in the request, appending
 the authorization code as a query parameter of "code".

 Upon error, the DNS Provider will direct the end user's browser to
 the redirect URI provided in the request, appending the error code as
 a query parameter "error".

 The following describes the values to be included in the query string
 parameters for this request.

 o domain: This parameter contains the domain name being configured.
 o client_id: This is the client id that was provided by the DNS
 Provider, to the Service Provider during registration.
 o redirect_uri: The location to direct the client's browser to upon
 successful authorization, or upon error.

 o scope: This is the name of the resource that the Service Provider
 is requesting access to.
 o response_type: OPTIONAL. If included should be the string 'code'
 to indicate an authorization code is being requested.
 o state: OPTIONAL but recommended. This is a random, unique string
 passed along to prevent CSRF. It will be returned as a parameter
 when redirecting to the redirect_url described above.

Blinn & Carney Expires April 23, 2017 [Page 10]

Internet-Draft Domain Connect October 2016

4.5.2.2. Requesting an Access Token

 POST /v2/oauth/access_token

 Once authorization has been granted the Service Provider must use the
 Authorization Token provided to request an Access Token. The OAuth
 specification recommends that the Authorization Token be a short
 lived token, and a reasonable recommended setting is ten minutes. As
 such this exchange needs to be completed before that time has expired
 or the process will need to be repeated.

 This token exchange is done via a server to server API call from the
 Service Provider to the DNS Provider.

 The Access Token granted will also have a short-lived lifespan, also
 on the order of ten minutes. To get a new access token, the Refresh
 Token is used.

 The following describes the POST parameters to be included in the
 request.

 o code: The authorization code that was provided in the previous
 step when the customer accepted the authorization request, or the
 refresh_token for a subsequent access token.
 o redirect_uri: OPTIONAL. If included, needs to be the same
 redirect uri provided in the previous step, simple for
 verification.
 o grant_type: The type of code in the request. Usually the string
 'authorization_code' or 'refresh_token'.
 o client_id: This is the client id that was provided by the DNS
 Provider, to the Service Provider during registration.
 o client_secret: The secret provided to the Service Provider during

 registration.

 Upon successful token exchange, the DNS Provider will return a
 response with 4 properties in the body of the response.

 o access_token: The access token to be used when making API
 requests.
 o token_type: Always the string "bearer".
 o expires_in: The number of seconds until the access_token expires.
 o refresh_token: The token that can be used to request new access
 tokens when this one has expired.

Blinn & Carney Expires April 23, 2017 [Page 11]

Internet-Draft Domain Connect October 2016

4.5.2.3. Making Requests with Access Tokens

 Once the Service Provider has the access token, they can call the DNS
 Provider's API to make change to DNS on behalf of the user.

 All calls to this API pass the access token in the Authorization
 Header of the request to the call to the API. More details can be
 found in the OAuth specifications, but as an example:

 GET /resource/1 HTTP/1.1
 Host: example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

4.5.2.4. Apply Template to Domain

 POST
 v2/domainTemplates/
 providers/{providerId}/services/{serviceId}/apply?[properties]

 The primary function of the API is to apply a template to a customer
 domain.

 While the providerId and serviceId are also implied in the
 authorization, these are on the path for consistency with the
 synchronous flows. If not matching what is in the authorization, an

 error is returned.

 In addition, the call must accept the following parameters:

 o domain: This contains the domain name being configured. It must
 match the domain in the authorization token.
 o name/value pairs: Any variable fields consumed by this template.
 The name portion of this API call corresponds to the variable(s)
 specified in the record and the value corresponds to the value
 that should be used when applying the template as per the
 implementation notes.
 o groupId: This OPTIONAL parameter specifies the group of changes in
 the template to apply. If omitted, all changes are applied.

 An example call is below. In this example, it is contemplated that
 there are two variables in this template, "www" and "m" which both
 require values (in this case each requires an IP address). These
 variables are passed as name/value pairs.

 POST
 https://connect.dnsprovider.com/v2/domainTemplates/providers/coolp
 rovider.com/services/hosting/
 apply?www=192.168.42.42&m=192.168.42.43

Blinn & Carney Expires April 23, 2017 [Page 12]

Internet-Draft Domain Connect October 2016

 The API must validate the access token for the Service Provider and
 that the domain belongs to the customer and is represented by the
 token being presented. With these checks passing, the template may
 be applied to the domain after verifying that doing so would not
 cause an error condition, either because of problems with required
 variables or the current state of the domain itself (for example,
 already having a conflicting template applied).

 Results of this call can include information indicating success, or
 an error. Errors will be 400 status codes, with the following codes
 defined.

 o Success (204): A response of an http status code of 204 indicates
 that call was successful and the template applied. Note that any
 200 level code should be considered a success.
 o Unauthorized (401,403): A response of a 401 indicates that caller
 is not authorized to make this call. This can be because the
 token was revoked, or other access issues.

https://connect.dnsprovider.com/v2/domainTemplates/providers/coolprovider.com/services/hosting/
https://connect.dnsprovider.com/v2/domainTemplates/providers/coolprovider.com/services/hosting/

 o Error (404,422): This indicates something wrong with the request
 itself, such as bad parameters.
 o Failed (409): This indicates that the call was good, and the
 caller authorized, but the change could not be applied due to
 other conditions. This might be the application of a conflicting
 template or a domain state that prevents updates.

4.5.2.5. Revert Template

 POST
 v2/domainTemplates/
 providers/{providerId}/services/{serviceId}/revert?domain={domain}

 This API allows the removal of a template from a customer domain
 using an OAuth request.

 The provider and service name in the authorizatoin must match the
 values in the URL. So must the domain name on the query string.

 This call must validate that the template requested exists and has
 been applied to the domain by the Service Provider or a warning must
 be returned that the call would have no effect. This call must
 validate that there is a valid authorization token for the domain
 passed in or an error condition must be reported.

 An example query string might look like:

 POST
 https://connect.dnsprovider.com/v2/domainTemplates/providers/coolp
 rovider.com/services/hosting/revert?domain=example.com

Blinn & Carney Expires April 23, 2017 [Page 13]

Internet-Draft Domain Connect October 2016

 Response codes are identical to above.

4.5.2.6. Revoke Access

 Like all OAuth flows, the user can revoke the access at any time
 using UX at the DNS Provider site. So the Service Provider needs to
 be aware that their access to the API may be denied.

4.6. Domain Connect Objects and Templates

 This description represents the values in the template. Since

https://connect.dnsprovider.com/v2/domainTemplates/providers/coolprovider.com/services/hosting/revert?domain=example.com
https://connect.dnsprovider.com/v2/domainTemplates/providers/coolprovider.com/services/hosting/revert?domain=example.com

 onboarding of a Service Provider with a DNS Provider is initially a
 manually oriented process, this format is a recommendation.

 There may be a repository of templates in the future.

 A template is defined as a standard JSON data structure containing
 the following data:

 o providerId: The unique identifier of the Service Provider that
 created this template. This is used in the URLs to identify the
 Service Provider. To ensure non-coordinated uniqueness, this
 would be the domain name of the Service Provider.
 o providerName: The name of the Service Provider. This will be
 displayed to the user.
 o templateId: The name or identifier of the template. This is used
 in URLs to identify the template.
 o templateName: The friendly name of this service. This will be
 displayed to the user.
 o logoUrl: A graphical logo for use in any web-based flow. This is
 a URL to a graphical logo sufficient for retrieval.
 o description: A textual description of what this template attempts
 to do. This is meant to assist integrators, and therefore should
 not be displayed to the user.
 o launchUrl: OPTIONAL. A URL suitable for a DNS Provider to call to
 initiate the execution of this template. This allows the flow to
 begin with the DNS Provider as described above.
 o returnUrl: OPTIONAL. The URL to call indicating the status of the
 call.
 o records: A list of records and/or actions for the template.

 Each template record is an entry that contains a type and several
 optional parameters based on the value.

 For all entries of a record template other than "type" and "groupId",
 the value can contain variables denoted by %<variable name>%. These
 are the values substituted at runtime when writing into DNS.

Blinn & Carney Expires April 23, 2017 [Page 14]

Internet-Draft Domain Connect October 2016

 It should be noted that as a best practice, the variable should be
 equal to the portion of the values in the template that change as
 little as possible.

 For example, say a Service Provider requires a CNAME of one of three
 values for their users: s01.example.com, s02.example.com, and
 s03.example.com.

 The value in the template could simply contain %servercluster%, and
 the fully qualified string passed in. Alternatively, the value in
 the template could contain s%var%.example.com. By placing more fixed
 data into the template, the data is more constrained. And by using a
 generic name the values in the query string are more obscured.

 Each record will contain the following elements:

 o type: Describes the type of record in DNS, or the operation
 impacting DNS. Valid values include: A, AAAA, CNAME, MX, TXT,
 SRV, NS, APEXCNAME, REDIR301, or REDIR302.
 o groupId: This OPTIONAL parameter identifies the group the record
 belongs to when applying changes.
 o host: The host for A, AAAA, CNAME, TXT, and MX values. This is
 the hostname in DNS.
 o pointsTo: The pointsTo location for A, AAAA, CNAME, MX, and
 APEXCNAME records.
 o ttl: This is the time-to-live for the record in DNS. Valid for A,
 AAAA, CNAME, TXT, MX, and SRV records.
 o data: This is the data for a TXT record in DNS.
 o priority: This is the priority for an MX or SRV record in DNS.
 o weight: This is the weight for the SRV record.
 o port: This is the port for the SRV record.
 o protocol: This is the protocol for the SRV record.
 o service: This is the protocol for the SRV record.
 o target: This is the target url for REDIR301 and REDIR302.

4.7. Implementation Notes

 This template format is intended for internal use by a DNS Provider
 and there are no codified API endpoints for creation or modification
 of these objects. API endpoints do not use this object directly.
 Instead, API endpoints reference a template by ID and then provide
 key/value pairs that match any variable values in these record
 objects.

 However, by defining a standard template format it is believed it
 will make it easier for Service Providers to share their provisioning
 across DNS Providers. Further revisions of this specification may
 include a repository for publishing and consuming these templates.

Blinn & Carney Expires April 23, 2017 [Page 15]

Internet-Draft Domain Connect October 2016

 Implementers are responsible for data integrity and should use the
 record type field to validate that variable input meets the criteria
 for each different data type.

 Certain record types may not be valid with others (e.g. a redirect
 and an A record), and it is up to the DNS and Service Providers to
 author templates appropriately. As such, a practical matter may be
 the redirect is valid only by itself.

 Additional record types and/or extensions to the data that can be set
 into the template can be implemented on a per DNS Provider basis.
 For example, if a DNS Provider supports additional record types,
 these can be added to this specification and templates.

 Similarly other providers may not wish to support certain record
 types (redirects, APEXCNAME). Should this be the case, a Service
 Provider depending on this functionality would not be able to operate
 with said DNS Provider.

 Example Records: Single static host record

 Consider a template for setting a single host record. The records
 section of the template would have a single record of type "A" and
 could have a value of:

 [{
 ''type'': ''A'',
 ''host'': ''www'',
 ''pointsTo'': ''192.168.1.1'',
 ''ttl'': 600
 }]

 This would have no variable substitution and the application of this
 template to a domain would simply set the host name "www" to the IP
 address "192.168.1.1"

 Example Records: Single variable host record for A

 In the case of a template for setting a single host record from a
 variable, the template would have a single record of type "A" and
 could have a value of:

 [{
 ''type'': ''A'',
 ''host'': ''@'',
 ''pointsTo'': ''192.168.1.%srv%'',
 ''ttl'': 600

 }]

Blinn & Carney Expires April 23, 2017 [Page 16]

Internet-Draft Domain Connect October 2016

 A query string with a key/value pair of

 srv=8

 would cause the application of this template to a domain to set the
 host name for the apex A record to the IP address "192.168.1.8" with
 a TTL of 600.

 Example: Multiple variable host record for A

 In the case of a template for setting a single host record from
 multiple variables, the template would have a single record of type
 "A" and could have a value of:

 [{
 ''type'': ''A'',
 ''host'': ''%hostname1%'',
 ''pointsTo'': ''%hostip1%'',
 ''ttl'': 600
 }]

 A query string with key/value pairs of

 hostname1=example&hostip1=192.168.1.3

 would cause the application of this template to a domain to set the
 host name "example" to the IP address "192.168.1.3" with a TTL of
 600.

 Example: Redirect

 In the case of a template for setting an HTTP redirect, the template
 would have a record of type "REDIRECT" and could have a value of:

 [{
 ''type'': REDIR301,
 ''target'': %url%
 }]

 A query string with key/value pairs of

 url=http://www.example-two.com.

 would cause the application of this template to signal to the DNS
 Provider to provision URL redirection to the target URL.

 Example Template JSON Format

Blinn & Carney Expires April 23, 2017 [Page 17]

Internet-Draft Domain Connect October 2016

 {
 "providerId": "example.com",
 "providerName": "Example Web Hosting",
 "templateId": "hosting",
 "templateName": "Wordpress by example.com",
 "logoUrl": "https://www.example.com/images/billthecat.jpg",
 "description": "This connects your domain to our super cool web
 hosting",
 "returnUrl": "https://www.example.com/connectresults",
 "launchURL" : "https://www.example.com/connectlaunch",
 "records": [

 {
 "groupId" : "service",
 "type": "A",
 "host": "www",
 "pointsTo": "%var1%",
 "ttl": "%var2%"
 },
 {
 "groupId" : "service",
 "type": "A",
 "host": "m",
 "pointsTo": "%var3%",
 "ttl": "%var2%"
 },
 {
 "groupId" : "service",
 "type": "CNAME",
 "host": "webmail",
 "pointsTo": "%var4%",
 "ttl": "%var2%"

 },
 {
 "groupId" : "verification",
 "type": "TXT",
 "host": "example",
 "pointsTo": "%var5%",
 "ttl": "%var2%"
 }
]
 }

Blinn & Carney Expires April 23, 2017 [Page 18]

Internet-Draft Domain Connect October 2016

4.8. Operational and Implementation Considerations

 From a DNS Provider standpoint, it is envisioned that the user has
 appropriate warnings and checks in place to prevent accidental
 destruction of other records in DNS when applying a template or
 making manual changes in DNS.

 For example, if the application of a template through the web based
 flow would interfere with previously set DNS records (either through
 another template or manual settings), it is envisioned that the user
 would be asked to confirm the clearing of the previously set
 template. If it would interfere with DNS records accessible through
 a previously issued OAuth flow, the provider could revoke the
 previously issued token.

 Similarly, when granting an OAuth token that interferes with a
 previously issued OAuth token, access to the old token could
 automatically be revoked.

 By doing so, this minimizes if not eliminates the case where an OAuth
 token cannot be applied due to conflicting templates or records
 existing on the domain.

 Manual changes to DNS through the DNS Provider could have appropriate
 warnings in place to prevent unwanted changes; with overrides being
 possible removing conflicting templates.

 The behavior of these interactions is left to the sophistication of
 the DNS Provider.

 Variables in templates that are hard-coded host names are the
 responsibility of the DNS Provider to protect. That is, DNS
 Providers are responsible for ensuring that host names do not
 interfere with known values (such as m. or www. or mail.) or internal
 names that provide critical functionality that is outside the scope
 of this specification.

5. IANA Considerations

 This document uses URNs to describe XML namespaces and XML schemas
 conforming to a registry mechanism described in [RFC3688]. The
 following URI assignment is requested of IANA:

 URI: ietf:params:xml:ns:validate-1.0

 Registrant Contact: See the "Author's Address" section of this
 document.

Blinn & Carney Expires April 23, 2017 [Page 19]

Internet-Draft Domain Connect October 2016

6. Acknowledgements

 The authors wish to thank the following persons for their feedback
 and suggestions:

 o Chris Ambler of GoDaddy Inc.
 o Jody Kolker of GoDaddy Inc.

7. Change History

7.1. Change from 00 to 01

 Minor edits and clarifications found during implementation.

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,

https://datatracker.ietf.org/doc/pdf/rfc3688
https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/rfc2119

 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

Authors' Addresses

 Arnold Blinn
 GoDaddy Inc.
 14455 N. Hayden Rd. #219
 Scottsdale, AZ 85260
 US

 Email: arnoldb@godaddy.com
 URI: http://www.godaddy.com

 Roger Carney
 GoDaddy Inc.
 14455 N. Hayden Rd. #219
 Scottsdale, AZ 85260
 US

 Email: rcarney@godaddy.com
 URI: http://www.godaddy.com

Blinn & Carney Expires April 23, 2017 [Page 20]

http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/pdf/bcp81
https://datatracker.ietf.org/doc/pdf/rfc3688
http://www.rfc-editor.org/info/rfc3688
http://www.godaddy.com
http://www.godaddy.com

