
Network Working Group B. Carpenter
Internet-Draft Univ. of Auckland
Intended status: Informational L. Ciavaglia
Expires: April 28, 2018 Nokia
 S. Jiang
 Huawei Technologies Co., Ltd
 P. Peloso
 Nokia
 October 25, 2017

Guidelines for Autonomic Service Agents
draft-carpenter-anima-asa-guidelines-03

Abstract

 This document proposes guidelines for the design of Autonomic Service
 Agents for autonomic networks. It is based on the Autonomic Network
 Infrastructure outlined in the ANIMA reference model, making use of
 the Autonomic Control Plane and the Generic Autonomic Signaling
 Protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 28, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Carpenter, et al. Expires April 28, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft ASA Guidelines October 2017

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Logical Structure of an Autonomic Service Agent 3
3. Interaction with the Autonomic Networking Infrastructure . . 5
3.1. Interaction with the security mechanisms 5
3.2. Interaction with the Autonomic Control Plane 5
3.3. Interaction with GRASP and its API 5
3.4. Interaction with Intent mechanism 6

4. Design of GRASP Objectives 6
5. Life Cycle . 7
5.1. Installation phase 8
5.1.1. Installation phase inputs and outputs 9

5.2. Instantiation phase 9
5.2.1. Operator's goal 10
5.2.2. Instantiation phase inputs and outputs 10
5.2.3. Instantiation phase requirements 11

5.3. Operation phase . 11
6. Coordination . 12
7. Robustness . 12
8. Security Considerations 13
9. IANA Considerations . 14
10. Acknowledgements . 14
11. References . 14
11.1. Normative References 14
11.2. Informative References 14

Appendix A. Change log [RFC Editor: Please remove] 16
 Authors' Addresses . 16

1. Introduction

 This document proposes guidelines for the design of Autonomic Service
 Agents (ASAs) in the context of an Autonomic Network (AN) based on
 the Autonomic Network Infrastructure (ANI) outlined in the ANIMA
 reference model [I-D.ietf-anima-reference-model]. This
 infrastructure makes use of the Autonomic Control Plane (ACP)
 [I-D.ietf-anima-autonomic-control-plane] and the Generic Autonomic
 Signaling Protocol (GRASP) [I-D.ietf-anima-grasp].

 There is a considerable literature about autonomic agents with a
 variety of proposals about how they should be characterized. Some
 examples are [DeMola06], [Huebscher08], [Movahedi12] and [GANA13].

Carpenter, et al. Expires April 28, 2018 [Page 2]

Internet-Draft ASA Guidelines October 2017

 However, for the present document, the basic definitions and goals
 for autonomic networking given in [RFC7575] apply . According to RFC

7575, an Autonomic Service Agent is "An agent implemented on an
 autonomic node that implements an autonomic function, either in part
 (in the case of a distributed function) or whole."

 The reference model [I-D.ietf-anima-reference-model] expands this by
 adding that an ASA is "a process that makes use of the features
 provided by the ANI to achieve its own goals, usually including
 interaction with other ASAs via the GRASP protocol
 [I-D.ietf-anima-grasp] or otherwise. Of course it also interacts
 with the specific targets of its function, using any suitable
 mechanism. Unless its function is very simple, the ASA will need to
 be multi-threaded so that it can handle overlapping asynchronous
 operations. It may therefore be a quite complex piece of software in
 its own right, forming part of the application layer above the ANI."

 A basic property of an ASA is that it is a relatively complex
 software component that will in many cases control and monitor
 simpler entities in the same host or elsewhere. For example, a
 device controller that manages tens or hundreds of simple devices
 might contain a single ASA.

 The remainder of this document offers guidance on the design of ASAs.

2. Logical Structure of an Autonomic Service Agent

 As mentioned above, all but the simplest ASAs will be multi-threaded
 programs.

 A typical ASA will have a main thread that performs various initial
 housekeeping actions such as:

 o Obtain authorization credentials.

 o Register the ASA with GRASP.

 o Acquire relevant policy Intent.

 o Define data structures for relevant GRASP objectives.

 o Register with GRASP those objectives that it will actively manage.

 o Launch a self-monitoring thread.

 o Enter its main loop.

https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575
https://datatracker.ietf.org/doc/html/rfc7575

Carpenter, et al. Expires April 28, 2018 [Page 3]

Internet-Draft ASA Guidelines October 2017

 The logic of the main loop will depend on the details of the
 autonomic function concerned. Whenever asynchronous operations are
 required, extra threads will be launched. Examples of such threads
 include:

 o A background thread to repeatedly flood an objective to the AN, so
 that any ASA can receive the objective's latest value.

 o A thread to accept incoming synchronization requests for an
 objective managed by this ASA.

 o A thread to accept incoming negotiation requests for an objective
 managed by this ASA, and then to conduct the resulting negotiation
 with the counterpart ASA.

 o A thread to manage subsidiary non-autonomic devices directly.

 These threads should all either exit after their job is done, or
 enter a wait state for new work, to avoid blocking other threads
 unnecessarily.

 Note: If the programming environment does not support multi-
 threading, an 'event loop' style of implementation could be adopted,
 in which case each of the above threads would be implemented as an
 event handler called in turn by the main loop. In this case, the
 GRASP API (Section 3.3) must provide non-blocking calls. If
 necessary, the GRASP session identifier will be used to distinguish
 simultaneous negotiations.

 According to the degree of parallelism needed by the application,
 some of these threads might be launched in multiple instances. In
 particular, if negotiation sessions with other ASAs are expected to
 be long or to involve wait states, the ASA designer might allow for
 multiple simultaneous negotiating threads, with appropriate use of
 queues and locks to maintain consistency.

 The main loop itself could act as the initiator of synchronization
 requests or negotiation requests, when the ASA needs data or
 resources from other ASAs. In particular, the main loop should watch
 for changes in policy Intent that affect its operation. It should
 also do whatever is required to avoid unnecessary resource
 consumption, such as including an arbitrary wait time in each cycle
 of the main loop.

 The self-monitoring thread is of considerable importance. Autonomic
 service agents must never fail. To a large extent this depends on
 careful coding and testing, with no unhandled error returns or
 exceptions, but if there is nevertheless some sort of failure, the

Carpenter, et al. Expires April 28, 2018 [Page 4]

Internet-Draft ASA Guidelines October 2017

 self-monitoring thread should detect it, fix it if possible, and in
 the worst case restart the entire ASA.

3. Interaction with the Autonomic Networking Infrastructure

3.1. Interaction with the security mechanisms

 An ASA by definition runs in an autonomic node. Before any normal
 ASAs are started, such nodes must be bootstrapped into the autonomic
 network's secure key infrastructure in accordance with
 [I-D.ietf-anima-bootstrapping-keyinfra]. This key infrastructure
 will be used to secure the ACP (next section) and may be used by ASAs
 to set up additional secure interactions with their peers, if needed.

 Note that the secure bootstrap process itself may include special-
 purpose ASAs that run in a constrained insecure mode.

3.2. Interaction with the Autonomic Control Plane

 In a normal autonomic network, ASAs will run as clients of the ACP.
 It will provide a fully secured network environment for all
 communication with other ASAs, in most cases mediated by GRASP (next
 section).

 Note that the ACP formation process itself may include special-
 purpose ASAs that run in a constrained insecure mode.

3.3. Interaction with GRASP and its API

 GRASP [I-D.ietf-anima-grasp] is expected to run as a separate process
 with its API [I-D.liu-anima-grasp-api] available in user space. Thus
 ASAs may operate without special privilege, unless they need it for
 other reasons. The ASA's view of GRASP is built around GRASP
 objectives (Section 4), defined as data structures containing
 administrative information such as the objective's unique name, and
 its current value. The format and size of the value is not
 restricted by the protocol, except that it must be possible to
 serialise it for transmission in CBOR [RFC7049], which is no
 restriction at all in practice.

 The GRASP API offers the following features:

 o Registration functions, so that an ASA can register itself and the
 objectives that it manages.

 o A discovery function, by which an ASA can discover other ASAs
 supporting a given objective.

https://datatracker.ietf.org/doc/html/rfc7049

Carpenter, et al. Expires April 28, 2018 [Page 5]

Internet-Draft ASA Guidelines October 2017

 o A negotiation request function, by which an ASA can start
 negotiation of an objective with a counterpart ASA. With this,
 there is a corresponding listening function for an ASA that wishes
 to respond to negotiation requests, and a set of functions to
 support negotiating steps.

 o A synchronization function, by which an ASA can request the
 current value of an objective from a counterpart ASA. With this,
 there is a corresponding listening function for an ASA that wishes
 to respond to synchronization requests.

 o A flood function, by which an ASA can cause the current value of
 an objective to be flooded throughout the AN so that any ASA can
 receive it.

 For further details and some additional housekeeping functions, see
 [I-D.liu-anima-grasp-api].

 This API is intended to support the various interactions expected
 between most ASAs, such as the interactions outlined in Section 2.
 However, if ASAs require additional communication between themselves,
 they can do so using any desired protocol. One option is to use
 GRASP discovery and synchronization as a rendez-vous mechanism
 between two ASAs, passing communication parameters such as a TCP port
 number as the value of a GRASP objective. As noted above, either the
 ACP or in special cases the autonomic key infrastructure will be used
 to secure such communications.

3.4. Interaction with Intent mechanism

 At the time of writing, the Intent mechanism for the ANI is
 undefined. It is expected to operate by an information distribution
 mechanism that can reach all autonomic nodes, and therefore every
 ASA. However, each ASA must be capable of operating "out of the box"
 in the absence of locally defined Intent, so every ASA implementation
 must include carefully chosen default values and settings for all
 parameters and choices that might depend on Intent.

4. Design of GRASP Objectives

 The general rules for the format of GRASP Objective options, their
 names, and IANA registration are given in [I-D.ietf-anima-grasp].
 Additionally that document discusses various general considerations
 for the design of objectives, which are not repeated here. However,
 we emphasize that the GRASP protocol does not provide transactional
 integrity. In other words, if an ASA is capable of overlapping
 several negotiations for a given objective, then the ASA itself must
 use suitable locking techniques to avoid interference between these

Carpenter, et al. Expires April 28, 2018 [Page 6]

Internet-Draft ASA Guidelines October 2017

 negotiations. For example, if an ASA is allocating part of a shared
 resource to other ASAs, it needs to ensure that the same part of the
 resource is not allocated twice. This might impact the design of the
 objective as well as the logic flow of the ASA.

 In particular, if 'dry run' mode is defined for the objective, its
 specification, and every implementation, must consider what state
 needs to be saved following a dry run negotiation, such that a
 subsequent live negotiation can be expected to succeed. It must be
 clear how long this state is kept, and what happens if the live
 negotiation occurs after this state is deleted. An ASA that requests
 a dry run negotiation must take account of the possibility that a
 successful dry run is followed by a failed live negotiation. Because
 of these complexities, the dry run mechanism should only be supported
 by objectives and ASAs where there is a significant benefit from it.

 The actual value field of an objective is limited by the GRASP
 protocol definition to any data structure that can be expressed in
 Concise Binary Object Representation (CBOR) [RFC7049]. For some
 objectives, a single data item will suffice; for example an integer,
 a floating point number or a UTF-8 string. For more complex cases, a
 simple tuple structure such as [item1, item2, item3] could be used.
 Nothing prevents using other formats such as JSON, but this requires
 the ASA to be capable of parsing and generating JSON. The formats
 acceptable by the GRASP API will limit the options in practice. A
 fallback solution is for the API to accept and deliver the value
 field in raw CBOR, with the ASA itself encoding and decoding it via a
 CBOR library.

5. Life Cycle

 Autonomic functions could be permanent, in the sense that ASAs are
 shipped as part of a product and persist throughout the product's
 life. However, a more likely situation is that ASAs need to be
 installed or updated dynamically, because of new requirements or
 bugs. Because continuity of service is fundamental to autonomic
 networking, the process of seamlessly replacing a running instance of
 an ASA with a new version needs to be part of the ASA's design.

 The implication of service continuity on the design of ASAs can be
 illustrated along the three main phases of the ASA life-cycle, namely
 Installation, Instantiation and Operation.

https://datatracker.ietf.org/doc/html/rfc7049

Carpenter, et al. Expires April 28, 2018 [Page 7]

Internet-Draft ASA Guidelines October 2017

 +--------------+
 Undeployed ------>| |------> Undeployed
 | Installed |
 +-->| |---+
 Mandate | +--------------+ | Receives a
 is revoked | +--------------+ | Mandate
 +---| |<--+
 | Instantiated |
 +-->| |---+
 set | +--------------+ | set
 down | +--------------+ | up
 +---| |<--+
 | Operational |
 | |
 +--------------+

 Figure 1: Life cycle of an Autonomic Service Agent

5.1. Installation phase

 Before being able to instantiate and run ASAs, the operator must
 first provision the infrastructure with the sets of ASA software
 corresponding to its needs and objectives. The provisioning of the
 infrastructure is realized in the installation phase and consists in
 installing (or checking the availability of) the pieces of software
 of the different ASA classes in a set of Installation Hosts.

 There are 3 properties applicable to the installation of ASAs:

 The dynamic installation property allows installing an ASA on
 demand, on any hosts compatible with the ASA.

 The decoupling property allows controlling resources of a NE from a
 remote ASA, i.e. an ASA installed on a host machine different from
 the resources' NE.

 The multiplicity property allows controlling multiple sets of
 resources from a single ASA.

 These three properties are very important in the context of the
 installation phase as their variations condition how the ASA class
 could be installed on the infrastructure.

Carpenter, et al. Expires April 28, 2018 [Page 8]

Internet-Draft ASA Guidelines October 2017

5.1.1. Installation phase inputs and outputs

 Inputs are:

 [ASA class of type_x] that specifies which classes ASAs to install,

 [Installation_target_Infrastructure] that specifies the candidate
 Installation Hosts,

 [ASA class placement function, e.g. under which criteria/constraints
 as defined by the operator]
 that specifies how the installation phase shall meet the
 operator's needs and objectives for the provision of the
 infrastructure. In the coupled mode, the placement function is
 not necessary, whereas in the decoupled mode, the placement
 function is mandatory, even though it can be as simple as an
 explicit list of Installation hosts.

 The main output of the installation phase is an up-to-date directory
 of installed ASAs which corresponds to [list of ASA classes]
 installed on [list of installation Hosts]. This output is also
 useful for the coordination function and corresponds to the static
 interaction map (see next section).

 The condition to validate in order to pass to next phase is to ensure
 that [list of ASA classes] are well installed on [list of
 installation Hosts]. The state of the ASA at the end of the
 installation phase is: installed. (not instantiated). The following
 commands or messages are foreseen: install(list of ASA classes,
 Installation_target_Infrastructure, ASA class placement function),
 and un-install (list of ASA classes).

5.2. Instantiation phase

 Once the ASAs are installed on the appropriate hosts in the network,
 these ASA may start to operate. From the operator viewpoint, an
 operating ASA means the ASA manages the network resources as per the
 objectives given. At the ASA local level, operating means executing
 their control loop/algorithm.

 But right before that, there are two things to take into
 consideration. First, there is a difference between 1. having a
 piece of code available to run on a host and 2. having an agent based
 on this piece of code running inside the host. Second, in a coupled
 case, determining which resources are controlled by an ASA is
 straightforward (the determination is embedded), in a decoupled mode
 determining this is a bit more complex (hence a starting agent will
 have to either discover or be taught it).

Carpenter, et al. Expires April 28, 2018 [Page 9]

Internet-Draft ASA Guidelines October 2017

 The instantiation phase of an ASA covers both these aspects: starting
 the agent piece of code (when this does not start automatically) and
 determining which resources have to be controlled (when this is not
 obvious).

5.2.1. Operator's goal

 Through this phase, the operator wants to control its autonomic
 network in two things:

 1 determine the scope of autonomic functions by instructing which of
 the network resources have to be managed by which autonomic
 function (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

 2 determine how the autonomic functions are organized by instructing
 which ASAs have to interact with which other ASAs (or more
 precisely which set of network resources have to be handled as an
 autonomous group by their managing ASAs).

 Additionally in this phase, the operator may want to set objectives
 to autonomic functions, by configuring the ASAs technical objectives.

 The operator's goal can be summarized in an instruction to the ANIMA
 ecosystem matching the following pattern:

 [ASA of type_x instances] ready to control
 [Instantiation_target_Infrastructure] with
 [Instantiation_target_parameters]

5.2.2. Instantiation phase inputs and outputs

 Inputs are:

 [ASA of type_x instances] that specifies which are the ASAs to be
 targeted (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

 [Instantiation_target_Infrastructure] that specifies which are the
 resources to be managed by the autonomic function, this can be the
 whole network or a subset of it like a domain a technology segment
 or even a specific list of resources,

 [Instantiation_target_parameters] that specifies which are the
 technical objectives to be set to ASAs (e.g. an optimization
 target)

 Outputs are:

Carpenter, et al. Expires April 28, 2018 [Page 10]

Internet-Draft ASA Guidelines October 2017

 [Set of ASAs - Resources relations] describing which resources are
 managed by which ASA instances, this is not a formal message, but
 a resulting configuration of a set of ASAs,

5.2.3. Instantiation phase requirements

 The instructions described in section 4.2 could be either:

 sent to a targeted ASA In which case, the receiving Agent will have
 to manage the specified list of
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

 broadcast to all ASAs In which case, the ASAs would collectively
 determine from the list which Agent(s) would handle which
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

 This set of instructions can be materialized through a message that
 is named an Instance Mandate (description TBD).

 The conclusion of this instantiation phase is a ready to operate ASA
 (or interacting set of ASAs), then this (or those) ASA(s) can
 describe themselves by depicting which are the resources they manage
 and what this means in terms of metrics being monitored and in terms
 of actions that can be executed (like modifying the parameters
 values). A message conveying such a self description is named an
 Instance Manifest (description TBD).

 Though the operator may well use such a self-description "per se",
 the final goal of such a description is to be shared with other ANIMA
 entities like:

 o the coordination entities (see [I-D.ciavaglia-anima-coordination]
 - Autonomic Functions Coordination)

 o collaborative entities in the purpose of establishing knowledge
 exchanges (some ASAs may produce knowledge or even monitor metrics
 that other ASAs cannot make by themselves why those would be
 useful for their execution)

5.3. Operation phase

 Note: This section is to be further developed in future revisions of
 the document, especially the implications on the design of ASAs.

 During the Operation phase, the operator can:

Carpenter, et al. Expires April 28, 2018 [Page 11]

Internet-Draft ASA Guidelines October 2017

 Activate/Deactivate ASA: meaning enabling those to execute their
 autonomic loop or not.

 Modify ASAs targets: meaning setting them different objectives.

 Modify ASAs managed resources: by updating the instance mandate
 which would specify different set of resources to manage (only
 applicable to decouples ASAs).

 During the Operation phase, running ASAs can interact the one with
 the other:

 in order to exchange knowledge (e.g. an ASA providing traffic
 predictions to load balancing ASA)

 in order to collaboratively reach an objective (e.g. ASAs
 pertaining to the same autonomic function targeted to manage a
 network domain, these ASA will collaborate - in the case of a load
 balancing one, by modifying the links metrics according to the
 neighboring resources loads)

 During the Operation phase, running ASAs are expected to apply
 coordination schemes

 then execute their control loop under coordination supervision/
 instructions

 The ASA life-cycle is discussed in more detail in "A Day in the Life
 of an Autonomic Function" [I-D.peloso-anima-autonomic-function].

6. Coordination

 Some autonomic functions will be completely independent of each
 other. However, others are at risk of interfering with each other -
 for example, two different optimization functions might both attempt
 to modify the same underlying parameter in different ways. In a
 complete system, a method is needed of identifying ASAs that might
 interfere with each other and coordinating their actions when
 necessary. This issue is considered in "Autonomic Functions
 Coordination" [I-D.ciavaglia-anima-coordination].

7. Robustness

 It is of great importance that all components of an autonomic system
 are highly robust. In principle they must never fail. This section
 lists various aspects of robustness that ASA designers should
 consider.

Carpenter, et al. Expires April 28, 2018 [Page 12]

Internet-Draft ASA Guidelines October 2017

 1. If despite all precautions, an ASA does encounter a fatal error,
 it should in any case restart automatically and try again. To
 mitigate a hard loop in case of persistent failure, a suitable
 pause should be inserted before such a restart. The length of
 the pause depends on the use case.

 2. If a newly received or calculated value for a parameter falls out
 of bounds, the corresponding parameter should be either left
 unchanged or restored to a safe value.

 3. If a GRASP synchronization or negotiation session fails for any
 reason, it may be repeated after a suitable pause. The length of
 the pause depends on the use case.

 4. If a session fails repeatedly, the ASA should consider that its
 peer has failed, and cause GRASP to flush its discovery cache and
 repeat peer discovery.

 5. Any received GRASP message should be checked. If it is wrongly
 formatted, it should be ignored. Within a unicast session, an
 Invalid message (M_INVALID) may be sent. This function may be
 provided by the GRASP implementation itself.

 6. Any received GRASP objective should be checked. If it is wrongly
 formatted, it should be ignored. Within a negotiation session, a
 Negotiation End message (M_END) with a Decline option (O_DECLINE)
 should be sent. An ASA may log such events for diagnostic
 purposes.

 7. If an ASA receives either an Invalid message (M_INVALID) or a
 Negotiation End message (M_END) with a Decline option
 (O_DECLINE), one possible reason is that the peer ASA does not
 support a new feature of either GRASP or of the objective in
 question. In such a case the ASA may choose to repeat the
 operation concerned without using that new feature.

 8. All other possible exceptions should be handled in an orderly
 way. There should be no such thing as an unhandled exception
 (but see point 1 above).

8. Security Considerations

 ASAs are intended to run in an environment that is protected by the
 Autonomic Control Plane [I-D.ietf-anima-autonomic-control-plane],
 admission to which depends on an initial secure bootstrap process
 [I-D.ietf-anima-bootstrapping-keyinfra]. However, this does not
 relieve ASAs of responsibility for security. In particular, when
 ASAs configure or manage network elements outside the ACP, they must

Carpenter, et al. Expires April 28, 2018 [Page 13]

Internet-Draft ASA Guidelines October 2017

 use secure techniques and carefully validate any incoming
 information. As appropriate to their specific functions, ASAs should
 take account of relevant privacy considerations [RFC6973].

 Authorization of ASAs is a subject for future study. At present,
 ASAs are trusted by virtue of being installed on a node that has
 successfully joined the ACP.

9. IANA Considerations

 This document makes no request of the IANA.

10. Acknowledgements

 TBD.

11. References

11.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-

plane-12 (work in progress), October 2017.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-08 (work in progress), October 2017.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

grasp-15 (work in progress), July 2017.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

11.2. Informative References

 [DeMola06]
 De Mola, F. and R. Quitadamo, "An Agent Model for Future
 Autonomic Communications", Proceedings of the 7th WOA 2006
 Workshop From Objects to Agents 51-59, September 2006.

https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-12
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-12
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-08
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-08
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049

Carpenter, et al. Expires April 28, 2018 [Page 14]

Internet-Draft ASA Guidelines October 2017

 [GANA13] ETSI GS AFI 002, "Autonomic network engineering for the
 self-managing Future Internet (AFI): GANA Architectural
 Reference Model for Autonomic Networking, Cognitive
 Networking and Self-Management.", April 2013,
 <http://www.etsi.org/deliver/etsi_gs/

AFI/001_099/002/01.01.01_60/gs_afi002v010101p.pdf>.

 [Huebscher08]
 Huebscher, M. and J. McCann, "A survey of autonomic
 computing--degrees, models, and applications", ACM
 Computing Surveys (CSUR) Volume 40 Issue 3 DOI:
 10.1145/1380584.1380585, August 2008.

 [I-D.ciavaglia-anima-coordination]
 Ciavaglia, L. and P. Peloso, "Autonomic Functions
 Coordination", draft-ciavaglia-anima-coordination-01 (work
 in progress), March 2016.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-

anima-reference-model-05 (work in progress), October 2017.

 [I-D.liu-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-liu-anima-grasp-api-05 (work in
 progress), October 2017.

 [I-D.peloso-anima-autonomic-function]
 Pierre, P. and L. Ciavaglia, "A Day in the Life of an
 Autonomic Function", draft-peloso-anima-autonomic-

function-01 (work in progress), March 2016.

 [Movahedi12]
 Movahedi, Z., Ayari, M., Langar, R., and G. Pujolle, "A
 Survey of Autonomic Network Architectures and Evaluation
 Criteria", IEEE Communications Surveys & Tutorials Volume:
 14 , Issue: 2 DOI: 10.1109/SURV.2011.042711.00078,
 Page(s): 464 - 490, 2012.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

http://www.etsi.org/deliver/etsi_gs/AFI/001_099/002/01.01.01_60/gs_afi002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/AFI/001_099/002/01.01.01_60/gs_afi002v010101p.pdf
https://datatracker.ietf.org/doc/html/draft-ciavaglia-anima-coordination-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-05
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-05
https://datatracker.ietf.org/doc/html/draft-liu-anima-grasp-api-05
https://datatracker.ietf.org/doc/html/draft-peloso-anima-autonomic-function-01
https://datatracker.ietf.org/doc/html/draft-peloso-anima-autonomic-function-01
https://datatracker.ietf.org/doc/html/rfc6973
https://www.rfc-editor.org/info/rfc6973

Carpenter, et al. Expires April 28, 2018 [Page 15]

Internet-Draft ASA Guidelines October 2017

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

Appendix A. Change log [RFC Editor: Please remove]

draft-carpenter-anima-asa-guidelines-03, 2017-10-25:

 Added details on life cycle.

 Added details on robustness.

 Added co-authors.

draft-carpenter-anima-asa-guidelines-02, 2017-07-01:

 Expanded description of event-loop case.

 Added note about 'dry run' mode.

draft-carpenter-anima-asa-guidelines-01, 2017-01-06:

 More sections filled in

draft-carpenter-anima-asa-guidelines-00, 2016-09-30:

 Initial version

Authors' Addresses

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

https://datatracker.ietf.org/doc/html/rfc7575
https://www.rfc-editor.org/info/rfc7575
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-asa-guidelines-03
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-asa-guidelines-02
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-asa-guidelines-01
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-asa-guidelines-00

Carpenter, et al. Expires April 28, 2018 [Page 16]

Internet-Draft ASA Guidelines October 2017

 Laurent Ciavaglia
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: laurent.ciavaglia@nokia.com

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: jiangsheng@huawei.com

 Pierre Peloso
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: pierre.peloso@nokia.com

Carpenter, et al. Expires April 28, 2018 [Page 17]

