
Network Working Group B. Carpenter
Internet-Draft Univ. of Auckland
Intended status: Informational October 24, 2019
Expires: April 26, 2020

Quick and Dirty Security for GRASP
draft-carpenter-anima-quads-grasp-01

Abstract

 A secure substrate is required by the Generic Autonomic Signaling
 Protocol (GRASP) used by Autonomic Service Agents. This document
 describes QUADS, a QUick And Dirty Security method using symmetric
 cryptography and preconfigured keys or passwords. It also describes
 a simplistic QUADS Key Infrastructure based on asymmetric
 cryptography used over insecure instances of GRASP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Carpenter Expires April 26, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QUADS for GRASP October 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. QUick And Dirty Security Method 2
3. QUick And Dirty Security Key Infrastructure 3
4. Implementation Status [RFC Editor: please remove] 6
5. Security Considerations 6
6. IANA Considerations . 7
7. Acknowledgements . 7
8. References . 7
8.1. Normative References 7
8.2. Informative References 7

Appendix A. Change log [RFC Editor: Please remove] 8
 Author's Address . 8

1. Introduction

 As defined in [I-D.ietf-anima-reference-model], the Autonomic Service
 Agent (ASA) is the atomic entity of an autonomic function, and it is
 instantiated on autonomic nodes. When ASAs communicate with each
 other, they should use the Generic Autonomic Signaling Protocol
 (GRASP) [I-D.ietf-anima-grasp]. It is essential that such
 communication is strongly secured to avoid malicious interference
 with the Autonomic Network Infrastructure (ANI).

 For this reason, GRASP must run over a secure substrate that is
 isolated from regular data plane traffic. This substrate is known as
 the Autonomic Control Plane (ACP). A method for constructing an ACP
 at the network layer is described in
 [I-D.ietf-anima-autonomic-control-plane]. Scenarios for link layer
 ACPs are discussed in [I-D.carpenter-anima-l2acp-scenarios]. The
 present document describes a simple method of emulating an ACP
 immediately above the transport layer, known as QUADS (QUick And
 Dirty Security) for GRASP.

 It also describes a simplistic key infrastructure known as QUADSKI,
 using asymmetric cryptography embedded in GRASP objectives used over
 insecure instances of GRASP.

2. QUick And Dirty Security Method

 Every GRASP message, whether unicast or multicast, is encrypted
 immediately before transmission, and decrypted immediately after
 reception, using the same symmetric encryption algorithm and domain-
 wide shared keys. This applies to all unicast and multicast messages

Carpenter Expires April 26, 2020 [Page 2]

Internet-Draft QUADS for GRASP October 2019

 sent over either UDP or TCP. Typically encryption will take place
 immediately after a message is encoded as CBOR [RFC7049], and
 decryption will take place immediately before a message is decoded
 from CBOR.

 There is no attempt to specify an automatic algorithm choice or key
 distribution mechanism. Every instance of GRASP in a given Autonomic
 Network (AN) must be pre-configured with the choice of encryption
 algorithm and any necessary parameters, and with the same key(s).

 An alternative to configuring the keys is that every instance of
 GRASP is pre-configured with a fixed salt value and the keys are
 created from a locally chosen keying password, using a pre-defined
 hash algorithm and that salt value. Note that the salt value cannot
 be secret as it must be the same in all QUADS for all GRASP
 implementations. In this model the secrecy depends on the keying
 password.

 The choice of algorithms should follow best current practice, e.g.
 [RFC8221]. At present the following choices are recommended: AES/
 CBC, key length 32, initialisation vector length 16, padding
 PKCS7(128).

3. QUick And Dirty Security Key Infrastructure

 A QUADSKI key server exists in one instance in a given AN. It
 supports two GRASP objectives, provisonally named "411:quadskip" and
 "411:quadski". It runs via an instance of GRASP that is not running
 QUADS, i.e. its traffic is not encrypted except as defined below.

 "411:quadskip" is a synchronization objective that is flooded out to
 all nodes in the AN. Its value is the PEM encoding of the public RSA
 key of the QUADSKI server. In fragmentary CDDL [RFC8610], it is
 defined as follows:

 quadskip-objective = ["411:quadskip", objective-flags, loop-count, value]
 objective-flags = ; as in the GRASP specification
 loop-count = ; as in the GRASP specification
 value = server-PEM
 server-PEM = bytes

 The recommended frequency of flooding is once per minute with a valid
 life time of two minutes. By this means, every autonomic node can
 learn the public key of the server.

 "411:quadski" is a negotiation objective that is used by an autonomic
 node that wishes to enrol securely in the AN, known as a "pledge" to

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc8221
https://datatracker.ietf.org/doc/html/rfc8610

Carpenter Expires April 26, 2020 [Page 3]

Internet-Draft QUADS for GRASP October 2019

 align with BRSKI [I-D.ietf-anima-bootstrapping-keyinfra] terminology.
 In fragmentary CDDL, it is defined as follows:

 quadski-objective = ["411:quadski", objective-flags, loop-count, value]
 objective-flags = ; as in the GRASP specification
 loop-count = ; as in the GRASP specification
 value = pledge-value / server-value
 pledge-value = [encrypted-password, pledge-PEM]
 server-value = encrypted-keys
 encrypted-password = bytes
 pledge-PEM = bytes
 encrypted-keys = bytes

 The encrypted-password is a previously agreed domain password (which
 should not be the same as the keying password used in Section 2),
 RSA-encrypted using the public key of the server.

 The pledge-PEM is the PEM encoding of the public RSA key of the
 pledge node.

 The encrypted-keys value is the result of the following process:

 1. Assume the symmetric cryptography in use is AES/CBC, key length
 32, initialisation vector length 16, padding PKCS7(128).

 2. Let the key bytes be 'key' and the initialisation vector bytes be
 'iv'.

 3. Construct the array object [key, iv].

 4. Encode this object in CBOR.

 5. Encrypt the resulting CBOR bytes with RSA using the public key of
 the pledge ("pledge-PEM").

 6. The result is the value of "encrypted-keys".

 The QUADSKI server must have possession of the domain keys
 (Section 2) and the domain password when it starts up, by a method
 not specified here. It then proceeds as follows:

 1. Create an RSA key pair, store the private key, and prepare the
 PEM encoding of the public key ("server-PEM").

 2. Start flooding out the "411:quadskip" objective with the "server-
 PEM" value, using the GRASP M_FLOOD message.

Carpenter Expires April 26, 2020 [Page 4]

Internet-Draft QUADS for GRASP October 2019

 3. Start listening for negotiation requests (GRASP M_NEG_REQ) for
 the "411:quadski" objective.

 4. Whenever it receives such a request, RSA-decrypt the "encrypted-
 password" using its private key.

 5. If the password matches, recover the pledge's public key from the
 "pledge-PEM".

 6. Generate the "encrypted-keys" value as described above, and reply
 (GRASP M_NEGOTIATE) with that value.

 7. Normally, the pledge will reply with GRASP M_END and an O_ACCEPT
 option.

 Error conditions such as a password mismatch will be handled like any
 GRASP error condition, with GRASP M_END and an O_DECLINE option.

 The pledge proceeds as follows:

 1. Create an RSA key pair, store the private key, and prepare the
 PEM encoding of the public key ("pledge-PEM").

 2. Wait until it detects the flooded "411:quadskip" option, at which
 point it can recover the QUADSKI server's public key from the
 "server-PEM" value.

 3. Request the domain password from the user.

 4. RSA-encrypt the password using the server's public key.

 5. Use GRASP discovery (M_DISCOVER "411:quadski") to locate the
 QUADSKI server.

 6. Construct a "411:quadski" objective whose value is [encrypted-
 password, pledge-PEM] as described above.

 7. Start the negotiation process (M_NEG_REQ).

 8. When it receives a successful reply (M_NEGOTIATE), RSA-decrypt
 the value using its own private key, decode the result from CBOR,
 and thus recover the QUADS keys [key, iv].

 9. Close the GRASP session with M_END + O_ACCEPT.

 As noted, this process uses unencrypted GRASP, since there are no
 QUADS keys available until it ends. Unlike BRSKI
 [I-D.ietf-anima-bootstrapping-keyinfra], it does not rely on any

Carpenter Expires April 26, 2020 [Page 5]

Internet-Draft QUADS for GRASP October 2019

 limitation to link-local traffic, since it is protected by asymmetric
 cryptography. However, for this to work on an evolving network where
 nodes may enrol at any time, GRASP must run encrypted for nodes that
 have acquired QUADS keys and simultaneously unencrypted for the
 QUADSKI process. The simplest way to achieve this is to run two
 GRASP instances as necessary. In particular, a node that acts as a
 GRASP relay needs to be able to relay encrypted traffic (for enrolled
 nodes) and unencrypted traffic (for nodes needing to run the QUADSKI
 process). Note that such instances will receive GRASP broadcasts
 that they cannot interpret (encrypted packets reaching an unencrypted
 GRASP instance, and vice versa). These packets can be harmlessly
 discarded.

4. Implementation Status [RFC Editor: please remove]

 QUADS for GRASP has been implemented as a small extension to the
 Python GRASP prototype, using the Python 'cryptography' module. The
 algorithm choices were:

 o Encryption: AES/CBC, key lengths 32/16, padding PKCS7(128).

 o Password hash: PBKDF2HMAC SHA256, length 32, 100000 iterations.

 o Salt used for keying password hash:
 0xf474526a2e74accee189f1fbc1c34ceb.

 QUADSKI for GRASP has been implemented as two Python ASAs, known as
 'quadski.py' for the server and 'quadspledge.py' for the pledge node.
 These also use the Python 'cryptography' module.

 I probably need to specify some RSA parameters here...

 The code will be posted to https://github.com/becarpenter/graspy when
 stable.

5. Security Considerations

 QUADS provides effective secrecy for all GRASP messages, against any
 party not in possession of the relevant shared keys. However, before
 a GRASP message is encrypted or after it is decrypted, it is not
 protected within the host. Therefore, secrecy is only effective
 against nodes that do not contain a GRASP instance in possession of
 the keys. Those nodes cannot send valid GRASP messages, and they
 cannot interpret intercepted GRASP messages, including multicasts.
 However, they might attempt traffic analysis.

 QUADS provides authentication of GRASP instances to the extent that
 they must be in possession of the relevant shared keys.

https://github.com/becarpenter/graspy

Carpenter Expires April 26, 2020 [Page 6]

Internet-Draft QUADS for GRASP October 2019

 QUADS depends on pre-configuration of keys, or on password entry and
 a public salt value, for each autonomic node, unless QUADSKI is in
 use.

 QUADS offers no defence against denial of service attacks.

 QUADSKI securely avoids the need for pre-configuration of keys except
 in a central server. Nevertheless it requires each joining node to
 be in possession of a domain password, and there is presently no
 rekeying procedure without rebooting the whole autonomic network.

6. IANA Considerations

 This document makes no request of the IANA.

7. Acknowledgements

 Excellent suggestions were made by TBD

8. References

8.1. Normative References

 [RFC8221] Wouters, P., Migault, D., Mattsson, J., Nir, Y., and T.
 Kivinen, "Cryptographic Algorithm Implementation
 Requirements and Usage Guidance for Encapsulating Security
 Payload (ESP) and Authentication Header (AH)", RFC 8221,
 DOI 10.17487/RFC8221, October 2017,
 <https://www.rfc-editor.org/info/rfc8221>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

8.2. Informative References

 [I-D.carpenter-anima-l2acp-scenarios]
 Carpenter, B. and B. Liu, "Scenarios and Requirements for
 Layer 2 Autonomic Control Planes", draft-carpenter-anima-

l2acp-scenarios-01 (work in progress), October 2019.

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-

plane-20 (work in progress), July 2019.

https://datatracker.ietf.org/doc/html/rfc8221
https://www.rfc-editor.org/info/rfc8221
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-l2acp-scenarios-01
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-l2acp-scenarios-01
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-20
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-20

Carpenter Expires April 26, 2020 [Page 7]

Internet-Draft QUADS for GRASP October 2019

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-

keyinfra-28 (work in progress), September 2019.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-

grasp-15 (work in progress), July 2017.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Appendix A. Change log [RFC Editor: Please remove]

draft-carpenter-anima-quads-grasp-00, 2019-10-16:

 Initial version

draft-carpenter-anima-quads-grasp-01, 2019-10-24:

 Added QUADSKI

Author's Address

 Brian Carpenter
 The University of Auckland
 School of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-28
https://datatracker.ietf.org/doc/html/draft-ietf-anima-bootstrapping-keyinfra-28
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15
https://datatracker.ietf.org/doc/html/draft-ietf-anima-grasp-15
https://datatracker.ietf.org/doc/html/draft-ietf-anima-reference-model-10
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-quads-grasp-00
https://datatracker.ietf.org/doc/html/draft-carpenter-anima-quads-grasp-01

Carpenter Expires April 26, 2020 [Page 8]

